2 * Alchemy Semi Au1000 IrDA driver
4 * Copyright 2001 MontaVista Software Inc.
5 * Author: MontaVista Software, Inc.
6 * ppopov@mvista.com or source@mvista.com
8 * This program is free software; you can distribute it and/or modify it
9 * under the terms of the GNU General Public License (Version 2) as
10 * published by the Free Software Foundation.
12 * This program is distributed in the hope it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, write to the Free Software Foundation, Inc.,
19 * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/init.h>
24 #include <linux/errno.h>
25 #include <linux/netdevice.h>
26 #include <linux/slab.h>
27 #include <linux/rtnetlink.h>
28 #include <linux/interrupt.h>
30 #include <linux/bitops.h>
34 #include <asm/au1000.h>
35 #if defined(CONFIG_MIPS_PB1000) || defined(CONFIG_MIPS_PB1100)
36 #include <asm/pb1000.h>
37 #elif defined(CONFIG_MIPS_DB1000) || defined(CONFIG_MIPS_DB1100)
38 #include <asm/db1x00.h>
40 #error au1k_ir: unsupported board
43 #include <net/irda/irda.h>
44 #include <net/irda/irmod.h>
45 #include <net/irda/wrapper.h>
46 #include <net/irda/irda_device.h>
47 #include "au1000_ircc.h"
49 static int au1k_irda_net_init(struct net_device
*);
50 static int au1k_irda_start(struct net_device
*);
51 static int au1k_irda_stop(struct net_device
*dev
);
52 static int au1k_irda_hard_xmit(struct sk_buff
*, struct net_device
*);
53 static int au1k_irda_rx(struct net_device
*);
54 static void au1k_irda_interrupt(int, void *);
55 static void au1k_tx_timeout(struct net_device
*);
56 static int au1k_irda_ioctl(struct net_device
*, struct ifreq
*, int);
57 static int au1k_irda_set_speed(struct net_device
*dev
, int speed
);
59 static void *dma_alloc(size_t, dma_addr_t
*);
60 static void dma_free(void *, size_t);
62 static int qos_mtt_bits
= 0x07; /* 1 ms or more */
63 static struct net_device
*ir_devs
[NUM_IR_IFF
];
64 static char version
[] __devinitdata
=
65 "au1k_ircc:1.2 ppopov@mvista.com\n";
67 #define RUN_AT(x) (jiffies + (x))
69 #if defined(CONFIG_MIPS_DB1000) || defined(CONFIG_MIPS_DB1100)
70 static BCSR
* const bcsr
= (BCSR
*)0xAE000000;
73 static DEFINE_SPINLOCK(ir_lock
);
76 * IrDA peripheral bug. You have to read the register
77 * twice to get the right value.
79 u32
read_ir_reg(u32 addr
)
87 * Buffer allocation/deallocation routines. The buffer descriptor returned
88 * has the virtual and dma address of a buffer suitable for
89 * both, receive and transmit operations.
91 static db_dest_t
*GetFreeDB(struct au1k_private
*aup
)
97 aup
->pDBfree
= pDB
->pnext
;
102 static void ReleaseDB(struct au1k_private
*aup
, db_dest_t
*pDB
)
104 db_dest_t
*pDBfree
= aup
->pDBfree
;
106 pDBfree
->pnext
= pDB
;
112 DMA memory allocation, derived from pci_alloc_consistent.
113 However, the Au1000 data cache is coherent (when programmed
114 so), therefore we return KSEG0 address, not KSEG1.
116 static void *dma_alloc(size_t size
, dma_addr_t
* dma_handle
)
119 int gfp
= GFP_ATOMIC
| GFP_DMA
;
121 ret
= (void *) __get_free_pages(gfp
, get_order(size
));
124 memset(ret
, 0, size
);
125 *dma_handle
= virt_to_bus(ret
);
126 ret
= (void *)KSEG0ADDR(ret
);
132 static void dma_free(void *vaddr
, size_t size
)
134 vaddr
= (void *)KSEG0ADDR(vaddr
);
135 free_pages((unsigned long) vaddr
, get_order(size
));
140 setup_hw_rings(struct au1k_private
*aup
, u32 rx_base
, u32 tx_base
)
143 for (i
=0; i
<NUM_IR_DESC
; i
++) {
144 aup
->rx_ring
[i
] = (volatile ring_dest_t
*)
145 (rx_base
+ sizeof(ring_dest_t
)*i
);
147 for (i
=0; i
<NUM_IR_DESC
; i
++) {
148 aup
->tx_ring
[i
] = (volatile ring_dest_t
*)
149 (tx_base
+ sizeof(ring_dest_t
)*i
);
153 static int au1k_irda_init(void)
155 static unsigned version_printed
= 0;
156 struct au1k_private
*aup
;
157 struct net_device
*dev
;
160 if (version_printed
++ == 0) printk(version
);
162 dev
= alloc_irdadev(sizeof(struct au1k_private
));
166 dev
->irq
= AU1000_IRDA_RX_INT
; /* TX has its own interrupt */
167 err
= au1k_irda_net_init(dev
);
170 err
= register_netdev(dev
);
174 printk(KERN_INFO
"IrDA: Registered device %s\n", dev
->name
);
178 aup
= netdev_priv(dev
);
179 dma_free((void *)aup
->db
[0].vaddr
,
180 MAX_BUF_SIZE
* 2*NUM_IR_DESC
);
181 dma_free((void *)aup
->rx_ring
[0],
182 2 * MAX_NUM_IR_DESC
*(sizeof(ring_dest_t
)));
183 kfree(aup
->rx_buff
.head
);
189 static int au1k_irda_init_iobuf(iobuff_t
*io
, int size
)
191 io
->head
= kmalloc(size
, GFP_KERNEL
);
192 if (io
->head
!= NULL
) {
194 io
->in_frame
= FALSE
;
195 io
->state
= OUTSIDE_FRAME
;
198 return io
->head
? 0 : -ENOMEM
;
201 static const struct net_device_ops au1k_irda_netdev_ops
= {
202 .ndo_open
= au1k_irda_start
,
203 .ndo_stop
= au1k_irda_stop
,
204 .ndo_start_xmit
= au1k_irda_hard_xmit
,
205 .ndo_tx_timeout
= au1k_tx_timeout
,
206 .ndo_do_ioctl
= au1k_irda_ioctl
,
209 static int au1k_irda_net_init(struct net_device
*dev
)
211 struct au1k_private
*aup
= netdev_priv(dev
);
212 int i
, retval
= 0, err
;
213 db_dest_t
*pDB
, *pDBfree
;
216 err
= au1k_irda_init_iobuf(&aup
->rx_buff
, 14384);
220 dev
->netdev_ops
= &au1k_irda_netdev_ops
;
222 irda_init_max_qos_capabilies(&aup
->qos
);
224 /* The only value we must override it the baudrate */
225 aup
->qos
.baud_rate
.bits
= IR_9600
|IR_19200
|IR_38400
|IR_57600
|
226 IR_115200
|IR_576000
|(IR_4000000
<< 8);
228 aup
->qos
.min_turn_time
.bits
= qos_mtt_bits
;
229 irda_qos_bits_to_value(&aup
->qos
);
233 /* Tx ring follows rx ring + 512 bytes */
234 /* we need a 1k aligned buffer */
235 aup
->rx_ring
[0] = (ring_dest_t
*)
236 dma_alloc(2*MAX_NUM_IR_DESC
*(sizeof(ring_dest_t
)), &temp
);
237 if (!aup
->rx_ring
[0])
240 /* allocate the data buffers */
242 (void *)dma_alloc(MAX_BUF_SIZE
* 2*NUM_IR_DESC
, &temp
);
243 if (!aup
->db
[0].vaddr
)
246 setup_hw_rings(aup
, (u32
)aup
->rx_ring
[0], (u32
)aup
->rx_ring
[0] + 512);
250 for (i
=0; i
<(2*NUM_IR_DESC
); i
++) {
251 pDB
->pnext
= pDBfree
;
254 (u32
*)((unsigned)aup
->db
[0].vaddr
+ MAX_BUF_SIZE
*i
);
255 pDB
->dma_addr
= (dma_addr_t
)virt_to_bus(pDB
->vaddr
);
258 aup
->pDBfree
= pDBfree
;
260 /* attach a data buffer to each descriptor */
261 for (i
=0; i
<NUM_IR_DESC
; i
++) {
262 pDB
= GetFreeDB(aup
);
264 aup
->rx_ring
[i
]->addr_0
= (u8
)(pDB
->dma_addr
& 0xff);
265 aup
->rx_ring
[i
]->addr_1
= (u8
)((pDB
->dma_addr
>>8) & 0xff);
266 aup
->rx_ring
[i
]->addr_2
= (u8
)((pDB
->dma_addr
>>16) & 0xff);
267 aup
->rx_ring
[i
]->addr_3
= (u8
)((pDB
->dma_addr
>>24) & 0xff);
268 aup
->rx_db_inuse
[i
] = pDB
;
270 for (i
=0; i
<NUM_IR_DESC
; i
++) {
271 pDB
= GetFreeDB(aup
);
273 aup
->tx_ring
[i
]->addr_0
= (u8
)(pDB
->dma_addr
& 0xff);
274 aup
->tx_ring
[i
]->addr_1
= (u8
)((pDB
->dma_addr
>>8) & 0xff);
275 aup
->tx_ring
[i
]->addr_2
= (u8
)((pDB
->dma_addr
>>16) & 0xff);
276 aup
->tx_ring
[i
]->addr_3
= (u8
)((pDB
->dma_addr
>>24) & 0xff);
277 aup
->tx_ring
[i
]->count_0
= 0;
278 aup
->tx_ring
[i
]->count_1
= 0;
279 aup
->tx_ring
[i
]->flags
= 0;
280 aup
->tx_db_inuse
[i
] = pDB
;
283 #if defined(CONFIG_MIPS_DB1000) || defined(CONFIG_MIPS_DB1100)
285 bcsr
->resets
&= ~BCSR_RESETS_IRDA_MODE_MASK
;
286 bcsr
->resets
|= BCSR_RESETS_IRDA_MODE_FULL
;
293 dma_free((void *)aup
->rx_ring
[0],
294 2 * MAX_NUM_IR_DESC
*(sizeof(ring_dest_t
)));
296 kfree(aup
->rx_buff
.head
);
298 printk(KERN_ERR
"au1k_init_module failed. Returns %d\n", retval
);
303 static int au1k_init(struct net_device
*dev
)
305 struct au1k_private
*aup
= netdev_priv(dev
);
310 /* bring the device out of reset */
311 control
= 0xe; /* coherent, clock enable, one half system clock */
313 #ifndef CONFIG_CPU_LITTLE_ENDIAN
320 for (i
=0; i
<NUM_IR_DESC
; i
++) {
321 aup
->rx_ring
[i
]->flags
= AU_OWN
;
324 writel(control
, IR_INTERFACE_CONFIG
);
327 writel(read_ir_reg(IR_ENABLE
) & ~0x8000, IR_ENABLE
); /* disable PHY */
330 writel(MAX_BUF_SIZE
, IR_MAX_PKT_LEN
);
332 ring_address
= (u32
)virt_to_phys((void *)aup
->rx_ring
[0]);
333 writel(ring_address
>> 26, IR_RING_BASE_ADDR_H
);
334 writel((ring_address
>> 10) & 0xffff, IR_RING_BASE_ADDR_L
);
336 writel(RING_SIZE_64
<<8 | RING_SIZE_64
<<12, IR_RING_SIZE
);
338 writel(1<<2 | IR_ONE_PIN
, IR_CONFIG_2
); /* 48MHz */
339 writel(0, IR_RING_ADDR_CMPR
);
341 au1k_irda_set_speed(dev
, 9600);
345 static int au1k_irda_start(struct net_device
*dev
)
349 struct au1k_private
*aup
= netdev_priv(dev
);
351 if ((retval
= au1k_init(dev
))) {
352 printk(KERN_ERR
"%s: error in au1k_init\n", dev
->name
);
356 if ((retval
= request_irq(AU1000_IRDA_TX_INT
, &au1k_irda_interrupt
,
357 0, dev
->name
, dev
))) {
358 printk(KERN_ERR
"%s: unable to get IRQ %d\n",
359 dev
->name
, dev
->irq
);
362 if ((retval
= request_irq(AU1000_IRDA_RX_INT
, &au1k_irda_interrupt
,
363 0, dev
->name
, dev
))) {
364 free_irq(AU1000_IRDA_TX_INT
, dev
);
365 printk(KERN_ERR
"%s: unable to get IRQ %d\n",
366 dev
->name
, dev
->irq
);
370 /* Give self a hardware name */
371 sprintf(hwname
, "Au1000 SIR/FIR");
372 aup
->irlap
= irlap_open(dev
, &aup
->qos
, hwname
);
373 netif_start_queue(dev
);
375 writel(read_ir_reg(IR_CONFIG_2
) | 1<<8, IR_CONFIG_2
); /* int enable */
377 aup
->timer
.expires
= RUN_AT((3*HZ
));
378 aup
->timer
.data
= (unsigned long)dev
;
382 static int au1k_irda_stop(struct net_device
*dev
)
384 struct au1k_private
*aup
= netdev_priv(dev
);
386 /* disable interrupts */
387 writel(read_ir_reg(IR_CONFIG_2
) & ~(1<<8), IR_CONFIG_2
);
388 writel(0, IR_CONFIG_1
);
389 writel(0, IR_INTERFACE_CONFIG
); /* disable clock */
393 irlap_close(aup
->irlap
);
397 netif_stop_queue(dev
);
398 del_timer(&aup
->timer
);
400 /* disable the interrupt */
401 free_irq(AU1000_IRDA_TX_INT
, dev
);
402 free_irq(AU1000_IRDA_RX_INT
, dev
);
406 static void __exit
au1k_irda_exit(void)
408 struct net_device
*dev
= ir_devs
[0];
409 struct au1k_private
*aup
= netdev_priv(dev
);
411 unregister_netdev(dev
);
413 dma_free((void *)aup
->db
[0].vaddr
,
414 MAX_BUF_SIZE
* 2*NUM_IR_DESC
);
415 dma_free((void *)aup
->rx_ring
[0],
416 2 * MAX_NUM_IR_DESC
*(sizeof(ring_dest_t
)));
417 kfree(aup
->rx_buff
.head
);
423 update_tx_stats(struct net_device
*dev
, u32 status
, u32 pkt_len
)
425 struct au1k_private
*aup
= netdev_priv(dev
);
426 struct net_device_stats
*ps
= &aup
->stats
;
429 ps
->tx_bytes
+= pkt_len
;
431 if (status
& IR_TX_ERROR
) {
433 ps
->tx_aborted_errors
++;
438 static void au1k_tx_ack(struct net_device
*dev
)
440 struct au1k_private
*aup
= netdev_priv(dev
);
441 volatile ring_dest_t
*ptxd
;
443 ptxd
= aup
->tx_ring
[aup
->tx_tail
];
444 while (!(ptxd
->flags
& AU_OWN
) && (aup
->tx_tail
!= aup
->tx_head
)) {
445 update_tx_stats(dev
, ptxd
->flags
,
446 ptxd
->count_1
<<8 | ptxd
->count_0
);
451 aup
->tx_tail
= (aup
->tx_tail
+ 1) & (NUM_IR_DESC
- 1);
452 ptxd
= aup
->tx_ring
[aup
->tx_tail
];
456 netif_wake_queue(dev
);
460 if (aup
->tx_tail
== aup
->tx_head
) {
462 au1k_irda_set_speed(dev
, aup
->newspeed
);
466 writel(read_ir_reg(IR_CONFIG_1
) & ~IR_TX_ENABLE
,
469 writel(read_ir_reg(IR_CONFIG_1
) | IR_RX_ENABLE
,
471 writel(0, IR_RING_PROMPT
);
479 * Au1000 transmit routine.
481 static int au1k_irda_hard_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
483 struct au1k_private
*aup
= netdev_priv(dev
);
484 int speed
= irda_get_next_speed(skb
);
485 volatile ring_dest_t
*ptxd
;
491 if (speed
!= aup
->speed
&& speed
!= -1) {
492 aup
->newspeed
= speed
;
495 if ((skb
->len
== 0) && (aup
->newspeed
)) {
496 if (aup
->tx_tail
== aup
->tx_head
) {
497 au1k_irda_set_speed(dev
, speed
);
504 ptxd
= aup
->tx_ring
[aup
->tx_head
];
507 if (flags
& AU_OWN
) {
508 printk(KERN_DEBUG
"%s: tx_full\n", dev
->name
);
509 netif_stop_queue(dev
);
511 return NETDEV_TX_BUSY
;
513 else if (((aup
->tx_head
+ 1) & (NUM_IR_DESC
- 1)) == aup
->tx_tail
) {
514 printk(KERN_DEBUG
"%s: tx_full\n", dev
->name
);
515 netif_stop_queue(dev
);
517 return NETDEV_TX_BUSY
;
520 pDB
= aup
->tx_db_inuse
[aup
->tx_head
];
523 if (read_ir_reg(IR_RX_BYTE_CNT
) != 0) {
524 printk("tx warning: rx byte cnt %x\n",
525 read_ir_reg(IR_RX_BYTE_CNT
));
529 if (aup
->speed
== 4000000) {
531 skb_copy_from_linear_data(skb
, pDB
->vaddr
, skb
->len
);
532 ptxd
->count_0
= skb
->len
& 0xff;
533 ptxd
->count_1
= (skb
->len
>> 8) & 0xff;
538 len
= async_wrap_skb(skb
, (u8
*)pDB
->vaddr
, MAX_BUF_SIZE
);
539 ptxd
->count_0
= len
& 0xff;
540 ptxd
->count_1
= (len
>> 8) & 0xff;
541 ptxd
->flags
|= IR_DIS_CRC
;
542 au_writel(au_readl(0xae00000c) & ~(1<<13), 0xae00000c);
544 ptxd
->flags
|= AU_OWN
;
547 writel(read_ir_reg(IR_CONFIG_1
) | IR_TX_ENABLE
, IR_CONFIG_1
);
548 writel(0, IR_RING_PROMPT
);
552 aup
->tx_head
= (aup
->tx_head
+ 1) & (NUM_IR_DESC
- 1);
553 dev
->trans_start
= jiffies
;
559 update_rx_stats(struct net_device
*dev
, u32 status
, u32 count
)
561 struct au1k_private
*aup
= netdev_priv(dev
);
562 struct net_device_stats
*ps
= &aup
->stats
;
566 if (status
& IR_RX_ERROR
) {
568 if (status
& (IR_PHY_ERROR
|IR_FIFO_OVER
))
569 ps
->rx_missed_errors
++;
570 if (status
& IR_MAX_LEN
)
571 ps
->rx_length_errors
++;
572 if (status
& IR_CRC_ERROR
)
576 ps
->rx_bytes
+= count
;
580 * Au1000 receive routine.
582 static int au1k_irda_rx(struct net_device
*dev
)
584 struct au1k_private
*aup
= netdev_priv(dev
);
586 volatile ring_dest_t
*prxd
;
590 prxd
= aup
->rx_ring
[aup
->rx_head
];
593 while (!(flags
& AU_OWN
)) {
594 pDB
= aup
->rx_db_inuse
[aup
->rx_head
];
595 count
= prxd
->count_1
<<8 | prxd
->count_0
;
596 if (!(flags
& IR_RX_ERROR
)) {
598 update_rx_stats(dev
, flags
, count
);
599 skb
=alloc_skb(count
+1,GFP_ATOMIC
);
601 aup
->netdev
->stats
.rx_dropped
++;
605 if (aup
->speed
== 4000000)
608 skb_put(skb
, count
-2);
609 skb_copy_to_linear_data(skb
, pDB
->vaddr
, count
- 2);
611 skb_reset_mac_header(skb
);
612 skb
->protocol
= htons(ETH_P_IRDA
);
617 prxd
->flags
|= AU_OWN
;
618 aup
->rx_head
= (aup
->rx_head
+ 1) & (NUM_IR_DESC
- 1);
619 writel(0, IR_RING_PROMPT
);
622 /* next descriptor */
623 prxd
= aup
->rx_ring
[aup
->rx_head
];
631 static irqreturn_t
au1k_irda_interrupt(int dummy
, void *dev_id
)
633 struct net_device
*dev
= dev_id
;
635 writel(0, IR_INT_CLEAR
); /* ack irda interrupts */
645 * The Tx ring has been full longer than the watchdog timeout
646 * value. The transmitter must be hung?
648 static void au1k_tx_timeout(struct net_device
*dev
)
651 struct au1k_private
*aup
= netdev_priv(dev
);
653 printk(KERN_ERR
"%s: tx timeout\n", dev
->name
);
656 au1k_irda_set_speed(dev
, speed
);
658 netif_wake_queue(dev
);
663 * Set the IrDA communications speed.
666 au1k_irda_set_speed(struct net_device
*dev
, int speed
)
669 struct au1k_private
*aup
= netdev_priv(dev
);
671 int ret
= 0, timeout
= 10, i
;
672 volatile ring_dest_t
*ptxd
;
673 #if defined(CONFIG_MIPS_DB1000) || defined(CONFIG_MIPS_DB1100)
674 unsigned long irda_resets
;
677 if (speed
== aup
->speed
)
680 spin_lock_irqsave(&ir_lock
, flags
);
682 /* disable PHY first */
683 writel(read_ir_reg(IR_ENABLE
) & ~0x8000, IR_ENABLE
);
686 writel(read_ir_reg(IR_CONFIG_1
) & ~(IR_RX_ENABLE
|IR_TX_ENABLE
),
689 while (read_ir_reg(IR_ENABLE
) & (IR_RX_STATUS
| IR_TX_STATUS
)) {
692 printk(KERN_ERR
"%s: rx/tx disable timeout\n",
699 writel(read_ir_reg(IR_CONFIG_1
) & ~IR_DMA_ENABLE
, IR_CONFIG_1
);
703 * After we disable tx/rx. the index pointers
706 aup
->tx_head
= aup
->tx_tail
= aup
->rx_head
= 0;
707 for (i
=0; i
<NUM_IR_DESC
; i
++) {
708 ptxd
= aup
->tx_ring
[i
];
714 for (i
=0; i
<NUM_IR_DESC
; i
++) {
715 ptxd
= aup
->rx_ring
[i
];
718 ptxd
->flags
= AU_OWN
;
721 if (speed
== 4000000) {
722 #if defined(CONFIG_MIPS_DB1000) || defined(CONFIG_MIPS_DB1100)
723 bcsr
->resets
|= BCSR_RESETS_FIR_SEL
;
724 #else /* Pb1000 and Pb1100 */
725 writel(1<<13, CPLD_AUX1
);
729 #if defined(CONFIG_MIPS_DB1000) || defined(CONFIG_MIPS_DB1100)
730 bcsr
->resets
&= ~BCSR_RESETS_FIR_SEL
;
731 #else /* Pb1000 and Pb1100 */
732 writel(readl(CPLD_AUX1
) & ~(1<<13), CPLD_AUX1
);
738 writel(11<<10 | 12<<5, IR_WRITE_PHY_CONFIG
);
739 writel(IR_SIR_MODE
, IR_CONFIG_1
);
742 writel(5<<10 | 12<<5, IR_WRITE_PHY_CONFIG
);
743 writel(IR_SIR_MODE
, IR_CONFIG_1
);
746 writel(2<<10 | 12<<5, IR_WRITE_PHY_CONFIG
);
747 writel(IR_SIR_MODE
, IR_CONFIG_1
);
750 writel(1<<10 | 12<<5, IR_WRITE_PHY_CONFIG
);
751 writel(IR_SIR_MODE
, IR_CONFIG_1
);
754 writel(12<<5, IR_WRITE_PHY_CONFIG
);
755 writel(IR_SIR_MODE
, IR_CONFIG_1
);
758 writel(0xF, IR_WRITE_PHY_CONFIG
);
759 writel(IR_FIR
|IR_DMA_ENABLE
|IR_RX_ENABLE
, IR_CONFIG_1
);
762 printk(KERN_ERR
"%s unsupported speed %x\n", dev
->name
, speed
);
768 writel(read_ir_reg(IR_ENABLE
) | 0x8000, IR_ENABLE
);
771 control
= read_ir_reg(IR_ENABLE
);
772 writel(0, IR_RING_PROMPT
);
775 if (control
& (1<<14)) {
776 printk(KERN_ERR
"%s: configuration error\n", dev
->name
);
779 if (control
& (1<<11))
780 printk(KERN_DEBUG
"%s Valid SIR config\n", dev
->name
);
781 if (control
& (1<<12))
782 printk(KERN_DEBUG
"%s Valid MIR config\n", dev
->name
);
783 if (control
& (1<<13))
784 printk(KERN_DEBUG
"%s Valid FIR config\n", dev
->name
);
785 if (control
& (1<<10))
786 printk(KERN_DEBUG
"%s TX enabled\n", dev
->name
);
787 if (control
& (1<<9))
788 printk(KERN_DEBUG
"%s RX enabled\n", dev
->name
);
791 spin_unlock_irqrestore(&ir_lock
, flags
);
796 au1k_irda_ioctl(struct net_device
*dev
, struct ifreq
*ifreq
, int cmd
)
798 struct if_irda_req
*rq
= (struct if_irda_req
*)ifreq
;
799 struct au1k_private
*aup
= netdev_priv(dev
);
800 int ret
= -EOPNOTSUPP
;
804 if (capable(CAP_NET_ADMIN
)) {
806 * We are unable to set the speed if the
807 * device is not running.
810 ret
= au1k_irda_set_speed(dev
,
813 printk(KERN_ERR
"%s ioctl: !netif_running\n",
822 if (capable(CAP_NET_ADMIN
)) {
823 irda_device_set_media_busy(dev
, TRUE
);
829 rq
->ifr_receiving
= 0;
837 MODULE_AUTHOR("Pete Popov <ppopov@mvista.com>");
838 MODULE_DESCRIPTION("Au1000 IrDA Device Driver");
840 module_init(au1k_irda_init
);
841 module_exit(au1k_irda_exit
);