fix braindamage in audit_tree.c untag_chunk()
[linux-2.6/linux-2.6-openrd.git] / kernel / sched_fair.c
blob5bedf6e3ebf36e0ed7dc477dde9317fa3f5ec7e4
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
27 * Targeted preemption latency for CPU-bound tasks:
28 * (default: 5ms * (1 + ilog(ncpus)), units: nanoseconds)
30 * NOTE: this latency value is not the same as the concept of
31 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
35 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
38 unsigned int sysctl_sched_latency = 5000000ULL;
39 unsigned int normalized_sysctl_sched_latency = 5000000ULL;
42 * The initial- and re-scaling of tunables is configurable
43 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
45 * Options are:
46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
50 enum sched_tunable_scaling sysctl_sched_tunable_scaling
51 = SCHED_TUNABLESCALING_LOG;
54 * Minimal preemption granularity for CPU-bound tasks:
55 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
57 unsigned int sysctl_sched_min_granularity = 1000000ULL;
58 unsigned int normalized_sysctl_sched_min_granularity = 1000000ULL;
61 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
63 static unsigned int sched_nr_latency = 5;
66 * After fork, child runs first. If set to 0 (default) then
67 * parent will (try to) run first.
69 unsigned int sysctl_sched_child_runs_first __read_mostly;
72 * sys_sched_yield() compat mode
74 * This option switches the agressive yield implementation of the
75 * old scheduler back on.
77 unsigned int __read_mostly sysctl_sched_compat_yield;
80 * SCHED_OTHER wake-up granularity.
81 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
83 * This option delays the preemption effects of decoupled workloads
84 * and reduces their over-scheduling. Synchronous workloads will still
85 * have immediate wakeup/sleep latencies.
87 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
88 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
90 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
92 static const struct sched_class fair_sched_class;
94 /**************************************************************
95 * CFS operations on generic schedulable entities:
98 #ifdef CONFIG_FAIR_GROUP_SCHED
100 /* cpu runqueue to which this cfs_rq is attached */
101 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
103 return cfs_rq->rq;
106 /* An entity is a task if it doesn't "own" a runqueue */
107 #define entity_is_task(se) (!se->my_q)
109 static inline struct task_struct *task_of(struct sched_entity *se)
111 #ifdef CONFIG_SCHED_DEBUG
112 WARN_ON_ONCE(!entity_is_task(se));
113 #endif
114 return container_of(se, struct task_struct, se);
117 /* Walk up scheduling entities hierarchy */
118 #define for_each_sched_entity(se) \
119 for (; se; se = se->parent)
121 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
123 return p->se.cfs_rq;
126 /* runqueue on which this entity is (to be) queued */
127 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
129 return se->cfs_rq;
132 /* runqueue "owned" by this group */
133 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
135 return grp->my_q;
138 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
139 * another cpu ('this_cpu')
141 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
143 return cfs_rq->tg->cfs_rq[this_cpu];
146 /* Iterate thr' all leaf cfs_rq's on a runqueue */
147 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
148 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
150 /* Do the two (enqueued) entities belong to the same group ? */
151 static inline int
152 is_same_group(struct sched_entity *se, struct sched_entity *pse)
154 if (se->cfs_rq == pse->cfs_rq)
155 return 1;
157 return 0;
160 static inline struct sched_entity *parent_entity(struct sched_entity *se)
162 return se->parent;
165 /* return depth at which a sched entity is present in the hierarchy */
166 static inline int depth_se(struct sched_entity *se)
168 int depth = 0;
170 for_each_sched_entity(se)
171 depth++;
173 return depth;
176 static void
177 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
179 int se_depth, pse_depth;
182 * preemption test can be made between sibling entities who are in the
183 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
184 * both tasks until we find their ancestors who are siblings of common
185 * parent.
188 /* First walk up until both entities are at same depth */
189 se_depth = depth_se(*se);
190 pse_depth = depth_se(*pse);
192 while (se_depth > pse_depth) {
193 se_depth--;
194 *se = parent_entity(*se);
197 while (pse_depth > se_depth) {
198 pse_depth--;
199 *pse = parent_entity(*pse);
202 while (!is_same_group(*se, *pse)) {
203 *se = parent_entity(*se);
204 *pse = parent_entity(*pse);
208 #else /* !CONFIG_FAIR_GROUP_SCHED */
210 static inline struct task_struct *task_of(struct sched_entity *se)
212 return container_of(se, struct task_struct, se);
215 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
217 return container_of(cfs_rq, struct rq, cfs);
220 #define entity_is_task(se) 1
222 #define for_each_sched_entity(se) \
223 for (; se; se = NULL)
225 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
227 return &task_rq(p)->cfs;
230 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
232 struct task_struct *p = task_of(se);
233 struct rq *rq = task_rq(p);
235 return &rq->cfs;
238 /* runqueue "owned" by this group */
239 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
241 return NULL;
244 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
246 return &cpu_rq(this_cpu)->cfs;
249 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
250 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
252 static inline int
253 is_same_group(struct sched_entity *se, struct sched_entity *pse)
255 return 1;
258 static inline struct sched_entity *parent_entity(struct sched_entity *se)
260 return NULL;
263 static inline void
264 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
268 #endif /* CONFIG_FAIR_GROUP_SCHED */
271 /**************************************************************
272 * Scheduling class tree data structure manipulation methods:
275 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
277 s64 delta = (s64)(vruntime - min_vruntime);
278 if (delta > 0)
279 min_vruntime = vruntime;
281 return min_vruntime;
284 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
286 s64 delta = (s64)(vruntime - min_vruntime);
287 if (delta < 0)
288 min_vruntime = vruntime;
290 return min_vruntime;
293 static inline int entity_before(struct sched_entity *a,
294 struct sched_entity *b)
296 return (s64)(a->vruntime - b->vruntime) < 0;
299 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
301 return se->vruntime - cfs_rq->min_vruntime;
304 static void update_min_vruntime(struct cfs_rq *cfs_rq)
306 u64 vruntime = cfs_rq->min_vruntime;
308 if (cfs_rq->curr)
309 vruntime = cfs_rq->curr->vruntime;
311 if (cfs_rq->rb_leftmost) {
312 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
313 struct sched_entity,
314 run_node);
316 if (!cfs_rq->curr)
317 vruntime = se->vruntime;
318 else
319 vruntime = min_vruntime(vruntime, se->vruntime);
322 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
326 * Enqueue an entity into the rb-tree:
328 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
330 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
331 struct rb_node *parent = NULL;
332 struct sched_entity *entry;
333 s64 key = entity_key(cfs_rq, se);
334 int leftmost = 1;
337 * Find the right place in the rbtree:
339 while (*link) {
340 parent = *link;
341 entry = rb_entry(parent, struct sched_entity, run_node);
343 * We dont care about collisions. Nodes with
344 * the same key stay together.
346 if (key < entity_key(cfs_rq, entry)) {
347 link = &parent->rb_left;
348 } else {
349 link = &parent->rb_right;
350 leftmost = 0;
355 * Maintain a cache of leftmost tree entries (it is frequently
356 * used):
358 if (leftmost)
359 cfs_rq->rb_leftmost = &se->run_node;
361 rb_link_node(&se->run_node, parent, link);
362 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
365 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
367 if (cfs_rq->rb_leftmost == &se->run_node) {
368 struct rb_node *next_node;
370 next_node = rb_next(&se->run_node);
371 cfs_rq->rb_leftmost = next_node;
374 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
377 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
379 struct rb_node *left = cfs_rq->rb_leftmost;
381 if (!left)
382 return NULL;
384 return rb_entry(left, struct sched_entity, run_node);
387 static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
389 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
391 if (!last)
392 return NULL;
394 return rb_entry(last, struct sched_entity, run_node);
397 /**************************************************************
398 * Scheduling class statistics methods:
401 #ifdef CONFIG_SCHED_DEBUG
402 int sched_proc_update_handler(struct ctl_table *table, int write,
403 void __user *buffer, size_t *lenp,
404 loff_t *ppos)
406 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
407 int factor = get_update_sysctl_factor();
409 if (ret || !write)
410 return ret;
412 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
413 sysctl_sched_min_granularity);
415 #define WRT_SYSCTL(name) \
416 (normalized_sysctl_##name = sysctl_##name / (factor))
417 WRT_SYSCTL(sched_min_granularity);
418 WRT_SYSCTL(sched_latency);
419 WRT_SYSCTL(sched_wakeup_granularity);
420 WRT_SYSCTL(sched_shares_ratelimit);
421 #undef WRT_SYSCTL
423 return 0;
425 #endif
428 * delta /= w
430 static inline unsigned long
431 calc_delta_fair(unsigned long delta, struct sched_entity *se)
433 if (unlikely(se->load.weight != NICE_0_LOAD))
434 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
436 return delta;
440 * The idea is to set a period in which each task runs once.
442 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
443 * this period because otherwise the slices get too small.
445 * p = (nr <= nl) ? l : l*nr/nl
447 static u64 __sched_period(unsigned long nr_running)
449 u64 period = sysctl_sched_latency;
450 unsigned long nr_latency = sched_nr_latency;
452 if (unlikely(nr_running > nr_latency)) {
453 period = sysctl_sched_min_granularity;
454 period *= nr_running;
457 return period;
461 * We calculate the wall-time slice from the period by taking a part
462 * proportional to the weight.
464 * s = p*P[w/rw]
466 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
468 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
470 for_each_sched_entity(se) {
471 struct load_weight *load;
472 struct load_weight lw;
474 cfs_rq = cfs_rq_of(se);
475 load = &cfs_rq->load;
477 if (unlikely(!se->on_rq)) {
478 lw = cfs_rq->load;
480 update_load_add(&lw, se->load.weight);
481 load = &lw;
483 slice = calc_delta_mine(slice, se->load.weight, load);
485 return slice;
489 * We calculate the vruntime slice of a to be inserted task
491 * vs = s/w
493 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
495 return calc_delta_fair(sched_slice(cfs_rq, se), se);
499 * Update the current task's runtime statistics. Skip current tasks that
500 * are not in our scheduling class.
502 static inline void
503 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
504 unsigned long delta_exec)
506 unsigned long delta_exec_weighted;
508 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
510 curr->sum_exec_runtime += delta_exec;
511 schedstat_add(cfs_rq, exec_clock, delta_exec);
512 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
513 curr->vruntime += delta_exec_weighted;
514 update_min_vruntime(cfs_rq);
517 static void update_curr(struct cfs_rq *cfs_rq)
519 struct sched_entity *curr = cfs_rq->curr;
520 u64 now = rq_of(cfs_rq)->clock;
521 unsigned long delta_exec;
523 if (unlikely(!curr))
524 return;
527 * Get the amount of time the current task was running
528 * since the last time we changed load (this cannot
529 * overflow on 32 bits):
531 delta_exec = (unsigned long)(now - curr->exec_start);
532 if (!delta_exec)
533 return;
535 __update_curr(cfs_rq, curr, delta_exec);
536 curr->exec_start = now;
538 if (entity_is_task(curr)) {
539 struct task_struct *curtask = task_of(curr);
541 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
542 cpuacct_charge(curtask, delta_exec);
543 account_group_exec_runtime(curtask, delta_exec);
547 static inline void
548 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
550 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
554 * Task is being enqueued - update stats:
556 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
559 * Are we enqueueing a waiting task? (for current tasks
560 * a dequeue/enqueue event is a NOP)
562 if (se != cfs_rq->curr)
563 update_stats_wait_start(cfs_rq, se);
566 static void
567 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
569 schedstat_set(se->wait_max, max(se->wait_max,
570 rq_of(cfs_rq)->clock - se->wait_start));
571 schedstat_set(se->wait_count, se->wait_count + 1);
572 schedstat_set(se->wait_sum, se->wait_sum +
573 rq_of(cfs_rq)->clock - se->wait_start);
574 #ifdef CONFIG_SCHEDSTATS
575 if (entity_is_task(se)) {
576 trace_sched_stat_wait(task_of(se),
577 rq_of(cfs_rq)->clock - se->wait_start);
579 #endif
580 schedstat_set(se->wait_start, 0);
583 static inline void
584 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
587 * Mark the end of the wait period if dequeueing a
588 * waiting task:
590 if (se != cfs_rq->curr)
591 update_stats_wait_end(cfs_rq, se);
595 * We are picking a new current task - update its stats:
597 static inline void
598 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
601 * We are starting a new run period:
603 se->exec_start = rq_of(cfs_rq)->clock;
606 /**************************************************
607 * Scheduling class queueing methods:
610 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
611 static void
612 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
614 cfs_rq->task_weight += weight;
616 #else
617 static inline void
618 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
621 #endif
623 static void
624 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
626 update_load_add(&cfs_rq->load, se->load.weight);
627 if (!parent_entity(se))
628 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
629 if (entity_is_task(se)) {
630 add_cfs_task_weight(cfs_rq, se->load.weight);
631 list_add(&se->group_node, &cfs_rq->tasks);
633 cfs_rq->nr_running++;
634 se->on_rq = 1;
637 static void
638 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
640 update_load_sub(&cfs_rq->load, se->load.weight);
641 if (!parent_entity(se))
642 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
643 if (entity_is_task(se)) {
644 add_cfs_task_weight(cfs_rq, -se->load.weight);
645 list_del_init(&se->group_node);
647 cfs_rq->nr_running--;
648 se->on_rq = 0;
651 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
653 #ifdef CONFIG_SCHEDSTATS
654 struct task_struct *tsk = NULL;
656 if (entity_is_task(se))
657 tsk = task_of(se);
659 if (se->sleep_start) {
660 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
662 if ((s64)delta < 0)
663 delta = 0;
665 if (unlikely(delta > se->sleep_max))
666 se->sleep_max = delta;
668 se->sleep_start = 0;
669 se->sum_sleep_runtime += delta;
671 if (tsk) {
672 account_scheduler_latency(tsk, delta >> 10, 1);
673 trace_sched_stat_sleep(tsk, delta);
676 if (se->block_start) {
677 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
679 if ((s64)delta < 0)
680 delta = 0;
682 if (unlikely(delta > se->block_max))
683 se->block_max = delta;
685 se->block_start = 0;
686 se->sum_sleep_runtime += delta;
688 if (tsk) {
689 if (tsk->in_iowait) {
690 se->iowait_sum += delta;
691 se->iowait_count++;
692 trace_sched_stat_iowait(tsk, delta);
696 * Blocking time is in units of nanosecs, so shift by
697 * 20 to get a milliseconds-range estimation of the
698 * amount of time that the task spent sleeping:
700 if (unlikely(prof_on == SLEEP_PROFILING)) {
701 profile_hits(SLEEP_PROFILING,
702 (void *)get_wchan(tsk),
703 delta >> 20);
705 account_scheduler_latency(tsk, delta >> 10, 0);
708 #endif
711 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
713 #ifdef CONFIG_SCHED_DEBUG
714 s64 d = se->vruntime - cfs_rq->min_vruntime;
716 if (d < 0)
717 d = -d;
719 if (d > 3*sysctl_sched_latency)
720 schedstat_inc(cfs_rq, nr_spread_over);
721 #endif
724 static void
725 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
727 u64 vruntime = cfs_rq->min_vruntime;
730 * The 'current' period is already promised to the current tasks,
731 * however the extra weight of the new task will slow them down a
732 * little, place the new task so that it fits in the slot that
733 * stays open at the end.
735 if (initial && sched_feat(START_DEBIT))
736 vruntime += sched_vslice(cfs_rq, se);
738 /* sleeps up to a single latency don't count. */
739 if (!initial && sched_feat(FAIR_SLEEPERS)) {
740 unsigned long thresh = sysctl_sched_latency;
743 * Convert the sleeper threshold into virtual time.
744 * SCHED_IDLE is a special sub-class. We care about
745 * fairness only relative to other SCHED_IDLE tasks,
746 * all of which have the same weight.
748 if (sched_feat(NORMALIZED_SLEEPER) && (!entity_is_task(se) ||
749 task_of(se)->policy != SCHED_IDLE))
750 thresh = calc_delta_fair(thresh, se);
753 * Halve their sleep time's effect, to allow
754 * for a gentler effect of sleepers:
756 if (sched_feat(GENTLE_FAIR_SLEEPERS))
757 thresh >>= 1;
759 vruntime -= thresh;
762 /* ensure we never gain time by being placed backwards. */
763 vruntime = max_vruntime(se->vruntime, vruntime);
765 se->vruntime = vruntime;
768 static void
769 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
772 * Update run-time statistics of the 'current'.
774 update_curr(cfs_rq);
775 account_entity_enqueue(cfs_rq, se);
777 if (wakeup) {
778 place_entity(cfs_rq, se, 0);
779 enqueue_sleeper(cfs_rq, se);
782 update_stats_enqueue(cfs_rq, se);
783 check_spread(cfs_rq, se);
784 if (se != cfs_rq->curr)
785 __enqueue_entity(cfs_rq, se);
788 static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
790 if (!se || cfs_rq->last == se)
791 cfs_rq->last = NULL;
793 if (!se || cfs_rq->next == se)
794 cfs_rq->next = NULL;
797 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
799 for_each_sched_entity(se)
800 __clear_buddies(cfs_rq_of(se), se);
803 static void
804 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
807 * Update run-time statistics of the 'current'.
809 update_curr(cfs_rq);
811 update_stats_dequeue(cfs_rq, se);
812 if (sleep) {
813 #ifdef CONFIG_SCHEDSTATS
814 if (entity_is_task(se)) {
815 struct task_struct *tsk = task_of(se);
817 if (tsk->state & TASK_INTERRUPTIBLE)
818 se->sleep_start = rq_of(cfs_rq)->clock;
819 if (tsk->state & TASK_UNINTERRUPTIBLE)
820 se->block_start = rq_of(cfs_rq)->clock;
822 #endif
825 clear_buddies(cfs_rq, se);
827 if (se != cfs_rq->curr)
828 __dequeue_entity(cfs_rq, se);
829 account_entity_dequeue(cfs_rq, se);
830 update_min_vruntime(cfs_rq);
834 * Preempt the current task with a newly woken task if needed:
836 static void
837 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
839 unsigned long ideal_runtime, delta_exec;
841 ideal_runtime = sched_slice(cfs_rq, curr);
842 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
843 if (delta_exec > ideal_runtime) {
844 resched_task(rq_of(cfs_rq)->curr);
846 * The current task ran long enough, ensure it doesn't get
847 * re-elected due to buddy favours.
849 clear_buddies(cfs_rq, curr);
850 return;
854 * Ensure that a task that missed wakeup preemption by a
855 * narrow margin doesn't have to wait for a full slice.
856 * This also mitigates buddy induced latencies under load.
858 if (!sched_feat(WAKEUP_PREEMPT))
859 return;
861 if (delta_exec < sysctl_sched_min_granularity)
862 return;
864 if (cfs_rq->nr_running > 1) {
865 struct sched_entity *se = __pick_next_entity(cfs_rq);
866 s64 delta = curr->vruntime - se->vruntime;
868 if (delta > ideal_runtime)
869 resched_task(rq_of(cfs_rq)->curr);
873 static void
874 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
876 /* 'current' is not kept within the tree. */
877 if (se->on_rq) {
879 * Any task has to be enqueued before it get to execute on
880 * a CPU. So account for the time it spent waiting on the
881 * runqueue.
883 update_stats_wait_end(cfs_rq, se);
884 __dequeue_entity(cfs_rq, se);
887 update_stats_curr_start(cfs_rq, se);
888 cfs_rq->curr = se;
889 #ifdef CONFIG_SCHEDSTATS
891 * Track our maximum slice length, if the CPU's load is at
892 * least twice that of our own weight (i.e. dont track it
893 * when there are only lesser-weight tasks around):
895 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
896 se->slice_max = max(se->slice_max,
897 se->sum_exec_runtime - se->prev_sum_exec_runtime);
899 #endif
900 se->prev_sum_exec_runtime = se->sum_exec_runtime;
903 static int
904 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
906 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
908 struct sched_entity *se = __pick_next_entity(cfs_rq);
909 struct sched_entity *left = se;
911 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
912 se = cfs_rq->next;
915 * Prefer last buddy, try to return the CPU to a preempted task.
917 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
918 se = cfs_rq->last;
920 clear_buddies(cfs_rq, se);
922 return se;
925 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
928 * If still on the runqueue then deactivate_task()
929 * was not called and update_curr() has to be done:
931 if (prev->on_rq)
932 update_curr(cfs_rq);
934 check_spread(cfs_rq, prev);
935 if (prev->on_rq) {
936 update_stats_wait_start(cfs_rq, prev);
937 /* Put 'current' back into the tree. */
938 __enqueue_entity(cfs_rq, prev);
940 cfs_rq->curr = NULL;
943 static void
944 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
947 * Update run-time statistics of the 'current'.
949 update_curr(cfs_rq);
951 #ifdef CONFIG_SCHED_HRTICK
953 * queued ticks are scheduled to match the slice, so don't bother
954 * validating it and just reschedule.
956 if (queued) {
957 resched_task(rq_of(cfs_rq)->curr);
958 return;
961 * don't let the period tick interfere with the hrtick preemption
963 if (!sched_feat(DOUBLE_TICK) &&
964 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
965 return;
966 #endif
968 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
969 check_preempt_tick(cfs_rq, curr);
972 /**************************************************
973 * CFS operations on tasks:
976 #ifdef CONFIG_SCHED_HRTICK
977 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
979 struct sched_entity *se = &p->se;
980 struct cfs_rq *cfs_rq = cfs_rq_of(se);
982 WARN_ON(task_rq(p) != rq);
984 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
985 u64 slice = sched_slice(cfs_rq, se);
986 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
987 s64 delta = slice - ran;
989 if (delta < 0) {
990 if (rq->curr == p)
991 resched_task(p);
992 return;
996 * Don't schedule slices shorter than 10000ns, that just
997 * doesn't make sense. Rely on vruntime for fairness.
999 if (rq->curr != p)
1000 delta = max_t(s64, 10000LL, delta);
1002 hrtick_start(rq, delta);
1007 * called from enqueue/dequeue and updates the hrtick when the
1008 * current task is from our class and nr_running is low enough
1009 * to matter.
1011 static void hrtick_update(struct rq *rq)
1013 struct task_struct *curr = rq->curr;
1015 if (curr->sched_class != &fair_sched_class)
1016 return;
1018 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
1019 hrtick_start_fair(rq, curr);
1021 #else /* !CONFIG_SCHED_HRTICK */
1022 static inline void
1023 hrtick_start_fair(struct rq *rq, struct task_struct *p)
1027 static inline void hrtick_update(struct rq *rq)
1030 #endif
1033 * The enqueue_task method is called before nr_running is
1034 * increased. Here we update the fair scheduling stats and
1035 * then put the task into the rbtree:
1037 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
1039 struct cfs_rq *cfs_rq;
1040 struct sched_entity *se = &p->se;
1042 for_each_sched_entity(se) {
1043 if (se->on_rq)
1044 break;
1045 cfs_rq = cfs_rq_of(se);
1046 enqueue_entity(cfs_rq, se, wakeup);
1047 wakeup = 1;
1050 hrtick_update(rq);
1054 * The dequeue_task method is called before nr_running is
1055 * decreased. We remove the task from the rbtree and
1056 * update the fair scheduling stats:
1058 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
1060 struct cfs_rq *cfs_rq;
1061 struct sched_entity *se = &p->se;
1063 for_each_sched_entity(se) {
1064 cfs_rq = cfs_rq_of(se);
1065 dequeue_entity(cfs_rq, se, sleep);
1066 /* Don't dequeue parent if it has other entities besides us */
1067 if (cfs_rq->load.weight)
1068 break;
1069 sleep = 1;
1072 hrtick_update(rq);
1076 * sched_yield() support is very simple - we dequeue and enqueue.
1078 * If compat_yield is turned on then we requeue to the end of the tree.
1080 static void yield_task_fair(struct rq *rq)
1082 struct task_struct *curr = rq->curr;
1083 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1084 struct sched_entity *rightmost, *se = &curr->se;
1087 * Are we the only task in the tree?
1089 if (unlikely(cfs_rq->nr_running == 1))
1090 return;
1092 clear_buddies(cfs_rq, se);
1094 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
1095 update_rq_clock(rq);
1097 * Update run-time statistics of the 'current'.
1099 update_curr(cfs_rq);
1101 return;
1104 * Find the rightmost entry in the rbtree:
1106 rightmost = __pick_last_entity(cfs_rq);
1108 * Already in the rightmost position?
1110 if (unlikely(!rightmost || entity_before(rightmost, se)))
1111 return;
1114 * Minimally necessary key value to be last in the tree:
1115 * Upon rescheduling, sched_class::put_prev_task() will place
1116 * 'current' within the tree based on its new key value.
1118 se->vruntime = rightmost->vruntime + 1;
1121 #ifdef CONFIG_SMP
1123 #ifdef CONFIG_FAIR_GROUP_SCHED
1125 * effective_load() calculates the load change as seen from the root_task_group
1127 * Adding load to a group doesn't make a group heavier, but can cause movement
1128 * of group shares between cpus. Assuming the shares were perfectly aligned one
1129 * can calculate the shift in shares.
1131 * The problem is that perfectly aligning the shares is rather expensive, hence
1132 * we try to avoid doing that too often - see update_shares(), which ratelimits
1133 * this change.
1135 * We compensate this by not only taking the current delta into account, but
1136 * also considering the delta between when the shares were last adjusted and
1137 * now.
1139 * We still saw a performance dip, some tracing learned us that between
1140 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1141 * significantly. Therefore try to bias the error in direction of failing
1142 * the affine wakeup.
1145 static long effective_load(struct task_group *tg, int cpu,
1146 long wl, long wg)
1148 struct sched_entity *se = tg->se[cpu];
1150 if (!tg->parent)
1151 return wl;
1154 * By not taking the decrease of shares on the other cpu into
1155 * account our error leans towards reducing the affine wakeups.
1157 if (!wl && sched_feat(ASYM_EFF_LOAD))
1158 return wl;
1160 for_each_sched_entity(se) {
1161 long S, rw, s, a, b;
1162 long more_w;
1165 * Instead of using this increment, also add the difference
1166 * between when the shares were last updated and now.
1168 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1169 wl += more_w;
1170 wg += more_w;
1172 S = se->my_q->tg->shares;
1173 s = se->my_q->shares;
1174 rw = se->my_q->rq_weight;
1176 a = S*(rw + wl);
1177 b = S*rw + s*wg;
1179 wl = s*(a-b);
1181 if (likely(b))
1182 wl /= b;
1185 * Assume the group is already running and will
1186 * thus already be accounted for in the weight.
1188 * That is, moving shares between CPUs, does not
1189 * alter the group weight.
1191 wg = 0;
1194 return wl;
1197 #else
1199 static inline unsigned long effective_load(struct task_group *tg, int cpu,
1200 unsigned long wl, unsigned long wg)
1202 return wl;
1205 #endif
1207 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
1209 struct task_struct *curr = current;
1210 unsigned long this_load, load;
1211 int idx, this_cpu, prev_cpu;
1212 unsigned long tl_per_task;
1213 unsigned int imbalance;
1214 struct task_group *tg;
1215 unsigned long weight;
1216 int balanced;
1218 idx = sd->wake_idx;
1219 this_cpu = smp_processor_id();
1220 prev_cpu = task_cpu(p);
1221 load = source_load(prev_cpu, idx);
1222 this_load = target_load(this_cpu, idx);
1224 if (sync) {
1225 if (sched_feat(SYNC_LESS) &&
1226 (curr->se.avg_overlap > sysctl_sched_migration_cost ||
1227 p->se.avg_overlap > sysctl_sched_migration_cost))
1228 sync = 0;
1229 } else {
1230 if (sched_feat(SYNC_MORE) &&
1231 (curr->se.avg_overlap < sysctl_sched_migration_cost &&
1232 p->se.avg_overlap < sysctl_sched_migration_cost))
1233 sync = 1;
1237 * If sync wakeup then subtract the (maximum possible)
1238 * effect of the currently running task from the load
1239 * of the current CPU:
1241 if (sync) {
1242 tg = task_group(current);
1243 weight = current->se.load.weight;
1245 this_load += effective_load(tg, this_cpu, -weight, -weight);
1246 load += effective_load(tg, prev_cpu, 0, -weight);
1249 tg = task_group(p);
1250 weight = p->se.load.weight;
1252 imbalance = 100 + (sd->imbalance_pct - 100) / 2;
1255 * In low-load situations, where prev_cpu is idle and this_cpu is idle
1256 * due to the sync cause above having dropped this_load to 0, we'll
1257 * always have an imbalance, but there's really nothing you can do
1258 * about that, so that's good too.
1260 * Otherwise check if either cpus are near enough in load to allow this
1261 * task to be woken on this_cpu.
1263 balanced = !this_load ||
1264 100*(this_load + effective_load(tg, this_cpu, weight, weight)) <=
1265 imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
1268 * If the currently running task will sleep within
1269 * a reasonable amount of time then attract this newly
1270 * woken task:
1272 if (sync && balanced)
1273 return 1;
1275 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1276 tl_per_task = cpu_avg_load_per_task(this_cpu);
1278 if (balanced ||
1279 (this_load <= load &&
1280 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
1282 * This domain has SD_WAKE_AFFINE and
1283 * p is cache cold in this domain, and
1284 * there is no bad imbalance.
1286 schedstat_inc(sd, ttwu_move_affine);
1287 schedstat_inc(p, se.nr_wakeups_affine);
1289 return 1;
1291 return 0;
1295 * find_idlest_group finds and returns the least busy CPU group within the
1296 * domain.
1298 static struct sched_group *
1299 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
1300 int this_cpu, int load_idx)
1302 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1303 unsigned long min_load = ULONG_MAX, this_load = 0;
1304 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1306 do {
1307 unsigned long load, avg_load;
1308 int local_group;
1309 int i;
1311 /* Skip over this group if it has no CPUs allowed */
1312 if (!cpumask_intersects(sched_group_cpus(group),
1313 &p->cpus_allowed))
1314 continue;
1316 local_group = cpumask_test_cpu(this_cpu,
1317 sched_group_cpus(group));
1319 /* Tally up the load of all CPUs in the group */
1320 avg_load = 0;
1322 for_each_cpu(i, sched_group_cpus(group)) {
1323 /* Bias balancing toward cpus of our domain */
1324 if (local_group)
1325 load = source_load(i, load_idx);
1326 else
1327 load = target_load(i, load_idx);
1329 avg_load += load;
1332 /* Adjust by relative CPU power of the group */
1333 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1335 if (local_group) {
1336 this_load = avg_load;
1337 this = group;
1338 } else if (avg_load < min_load) {
1339 min_load = avg_load;
1340 idlest = group;
1342 } while (group = group->next, group != sd->groups);
1344 if (!idlest || 100*this_load < imbalance*min_load)
1345 return NULL;
1346 return idlest;
1350 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1352 static int
1353 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1355 unsigned long load, min_load = ULONG_MAX;
1356 int idlest = -1;
1357 int i;
1359 /* Traverse only the allowed CPUs */
1360 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
1361 load = weighted_cpuload(i);
1363 if (load < min_load || (load == min_load && i == this_cpu)) {
1364 min_load = load;
1365 idlest = i;
1369 return idlest;
1373 * Try and locate an idle CPU in the sched_domain.
1375 static int
1376 select_idle_sibling(struct task_struct *p, struct sched_domain *sd, int target)
1378 int cpu = smp_processor_id();
1379 int prev_cpu = task_cpu(p);
1380 int i;
1383 * If this domain spans both cpu and prev_cpu (see the SD_WAKE_AFFINE
1384 * test in select_task_rq_fair) and the prev_cpu is idle then that's
1385 * always a better target than the current cpu.
1387 if (target == cpu && !cpu_rq(prev_cpu)->cfs.nr_running)
1388 return prev_cpu;
1391 * Otherwise, iterate the domain and find an elegible idle cpu.
1393 for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
1394 if (!cpu_rq(i)->cfs.nr_running) {
1395 target = i;
1396 break;
1400 return target;
1404 * sched_balance_self: balance the current task (running on cpu) in domains
1405 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1406 * SD_BALANCE_EXEC.
1408 * Balance, ie. select the least loaded group.
1410 * Returns the target CPU number, or the same CPU if no balancing is needed.
1412 * preempt must be disabled.
1414 static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
1416 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
1417 int cpu = smp_processor_id();
1418 int prev_cpu = task_cpu(p);
1419 int new_cpu = cpu;
1420 int want_affine = 0;
1421 int want_sd = 1;
1422 int sync = wake_flags & WF_SYNC;
1424 if (sd_flag & SD_BALANCE_WAKE) {
1425 if (sched_feat(AFFINE_WAKEUPS) &&
1426 cpumask_test_cpu(cpu, &p->cpus_allowed))
1427 want_affine = 1;
1428 new_cpu = prev_cpu;
1431 for_each_domain(cpu, tmp) {
1433 * If power savings logic is enabled for a domain, see if we
1434 * are not overloaded, if so, don't balance wider.
1436 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
1437 unsigned long power = 0;
1438 unsigned long nr_running = 0;
1439 unsigned long capacity;
1440 int i;
1442 for_each_cpu(i, sched_domain_span(tmp)) {
1443 power += power_of(i);
1444 nr_running += cpu_rq(i)->cfs.nr_running;
1447 capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
1449 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1450 nr_running /= 2;
1452 if (nr_running < capacity)
1453 want_sd = 0;
1457 * While iterating the domains looking for a spanning
1458 * WAKE_AFFINE domain, adjust the affine target to any idle cpu
1459 * in cache sharing domains along the way.
1461 if (want_affine) {
1462 int target = -1;
1465 * If both cpu and prev_cpu are part of this domain,
1466 * cpu is a valid SD_WAKE_AFFINE target.
1468 if (cpumask_test_cpu(prev_cpu, sched_domain_span(tmp)))
1469 target = cpu;
1472 * If there's an idle sibling in this domain, make that
1473 * the wake_affine target instead of the current cpu.
1475 if (tmp->flags & SD_PREFER_SIBLING)
1476 target = select_idle_sibling(p, tmp, target);
1478 if (target >= 0) {
1479 if (tmp->flags & SD_WAKE_AFFINE) {
1480 affine_sd = tmp;
1481 want_affine = 0;
1483 cpu = target;
1487 if (!want_sd && !want_affine)
1488 break;
1490 if (!(tmp->flags & sd_flag))
1491 continue;
1493 if (want_sd)
1494 sd = tmp;
1497 if (sched_feat(LB_SHARES_UPDATE)) {
1499 * Pick the largest domain to update shares over
1501 tmp = sd;
1502 if (affine_sd && (!tmp ||
1503 cpumask_weight(sched_domain_span(affine_sd)) >
1504 cpumask_weight(sched_domain_span(sd))))
1505 tmp = affine_sd;
1507 if (tmp)
1508 update_shares(tmp);
1511 if (affine_sd && wake_affine(affine_sd, p, sync))
1512 return cpu;
1514 while (sd) {
1515 int load_idx = sd->forkexec_idx;
1516 struct sched_group *group;
1517 int weight;
1519 if (!(sd->flags & sd_flag)) {
1520 sd = sd->child;
1521 continue;
1524 if (sd_flag & SD_BALANCE_WAKE)
1525 load_idx = sd->wake_idx;
1527 group = find_idlest_group(sd, p, cpu, load_idx);
1528 if (!group) {
1529 sd = sd->child;
1530 continue;
1533 new_cpu = find_idlest_cpu(group, p, cpu);
1534 if (new_cpu == -1 || new_cpu == cpu) {
1535 /* Now try balancing at a lower domain level of cpu */
1536 sd = sd->child;
1537 continue;
1540 /* Now try balancing at a lower domain level of new_cpu */
1541 cpu = new_cpu;
1542 weight = cpumask_weight(sched_domain_span(sd));
1543 sd = NULL;
1544 for_each_domain(cpu, tmp) {
1545 if (weight <= cpumask_weight(sched_domain_span(tmp)))
1546 break;
1547 if (tmp->flags & sd_flag)
1548 sd = tmp;
1550 /* while loop will break here if sd == NULL */
1553 return new_cpu;
1555 #endif /* CONFIG_SMP */
1558 * Adaptive granularity
1560 * se->avg_wakeup gives the average time a task runs until it does a wakeup,
1561 * with the limit of wakeup_gran -- when it never does a wakeup.
1563 * So the smaller avg_wakeup is the faster we want this task to preempt,
1564 * but we don't want to treat the preemptee unfairly and therefore allow it
1565 * to run for at least the amount of time we'd like to run.
1567 * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one
1569 * NOTE: we use *nr_running to scale with load, this nicely matches the
1570 * degrading latency on load.
1572 static unsigned long
1573 adaptive_gran(struct sched_entity *curr, struct sched_entity *se)
1575 u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1576 u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running;
1577 u64 gran = 0;
1579 if (this_run < expected_wakeup)
1580 gran = expected_wakeup - this_run;
1582 return min_t(s64, gran, sysctl_sched_wakeup_granularity);
1585 static unsigned long
1586 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
1588 unsigned long gran = sysctl_sched_wakeup_granularity;
1590 if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN))
1591 gran = adaptive_gran(curr, se);
1594 * Since its curr running now, convert the gran from real-time
1595 * to virtual-time in his units.
1597 if (sched_feat(ASYM_GRAN)) {
1599 * By using 'se' instead of 'curr' we penalize light tasks, so
1600 * they get preempted easier. That is, if 'se' < 'curr' then
1601 * the resulting gran will be larger, therefore penalizing the
1602 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1603 * be smaller, again penalizing the lighter task.
1605 * This is especially important for buddies when the leftmost
1606 * task is higher priority than the buddy.
1608 if (unlikely(se->load.weight != NICE_0_LOAD))
1609 gran = calc_delta_fair(gran, se);
1610 } else {
1611 if (unlikely(curr->load.weight != NICE_0_LOAD))
1612 gran = calc_delta_fair(gran, curr);
1615 return gran;
1619 * Should 'se' preempt 'curr'.
1621 * |s1
1622 * |s2
1623 * |s3
1625 * |<--->|c
1627 * w(c, s1) = -1
1628 * w(c, s2) = 0
1629 * w(c, s3) = 1
1632 static int
1633 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1635 s64 gran, vdiff = curr->vruntime - se->vruntime;
1637 if (vdiff <= 0)
1638 return -1;
1640 gran = wakeup_gran(curr, se);
1641 if (vdiff > gran)
1642 return 1;
1644 return 0;
1647 static void set_last_buddy(struct sched_entity *se)
1649 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1650 for_each_sched_entity(se)
1651 cfs_rq_of(se)->last = se;
1655 static void set_next_buddy(struct sched_entity *se)
1657 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1658 for_each_sched_entity(se)
1659 cfs_rq_of(se)->next = se;
1664 * Preempt the current task with a newly woken task if needed:
1666 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1668 struct task_struct *curr = rq->curr;
1669 struct sched_entity *se = &curr->se, *pse = &p->se;
1670 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1671 int sync = wake_flags & WF_SYNC;
1672 int scale = cfs_rq->nr_running >= sched_nr_latency;
1674 if (unlikely(rt_prio(p->prio)))
1675 goto preempt;
1677 if (unlikely(p->sched_class != &fair_sched_class))
1678 return;
1680 if (unlikely(se == pse))
1681 return;
1683 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
1684 set_next_buddy(pse);
1687 * We can come here with TIF_NEED_RESCHED already set from new task
1688 * wake up path.
1690 if (test_tsk_need_resched(curr))
1691 return;
1694 * Batch and idle tasks do not preempt (their preemption is driven by
1695 * the tick):
1697 if (unlikely(p->policy != SCHED_NORMAL))
1698 return;
1700 /* Idle tasks are by definition preempted by everybody. */
1701 if (unlikely(curr->policy == SCHED_IDLE))
1702 goto preempt;
1704 if (sched_feat(WAKEUP_SYNC) && sync)
1705 goto preempt;
1707 if (sched_feat(WAKEUP_OVERLAP) &&
1708 se->avg_overlap < sysctl_sched_migration_cost &&
1709 pse->avg_overlap < sysctl_sched_migration_cost)
1710 goto preempt;
1712 if (!sched_feat(WAKEUP_PREEMPT))
1713 return;
1715 update_curr(cfs_rq);
1716 find_matching_se(&se, &pse);
1717 BUG_ON(!pse);
1718 if (wakeup_preempt_entity(se, pse) == 1)
1719 goto preempt;
1721 return;
1723 preempt:
1724 resched_task(curr);
1726 * Only set the backward buddy when the current task is still
1727 * on the rq. This can happen when a wakeup gets interleaved
1728 * with schedule on the ->pre_schedule() or idle_balance()
1729 * point, either of which can * drop the rq lock.
1731 * Also, during early boot the idle thread is in the fair class,
1732 * for obvious reasons its a bad idea to schedule back to it.
1734 if (unlikely(!se->on_rq || curr == rq->idle))
1735 return;
1737 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
1738 set_last_buddy(se);
1741 static struct task_struct *pick_next_task_fair(struct rq *rq)
1743 struct task_struct *p;
1744 struct cfs_rq *cfs_rq = &rq->cfs;
1745 struct sched_entity *se;
1747 if (!cfs_rq->nr_running)
1748 return NULL;
1750 do {
1751 se = pick_next_entity(cfs_rq);
1752 set_next_entity(cfs_rq, se);
1753 cfs_rq = group_cfs_rq(se);
1754 } while (cfs_rq);
1756 p = task_of(se);
1757 hrtick_start_fair(rq, p);
1759 return p;
1763 * Account for a descheduled task:
1765 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1767 struct sched_entity *se = &prev->se;
1768 struct cfs_rq *cfs_rq;
1770 for_each_sched_entity(se) {
1771 cfs_rq = cfs_rq_of(se);
1772 put_prev_entity(cfs_rq, se);
1776 #ifdef CONFIG_SMP
1777 /**************************************************
1778 * Fair scheduling class load-balancing methods:
1782 * Load-balancing iterator. Note: while the runqueue stays locked
1783 * during the whole iteration, the current task might be
1784 * dequeued so the iterator has to be dequeue-safe. Here we
1785 * achieve that by always pre-iterating before returning
1786 * the current task:
1788 static struct task_struct *
1789 __load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
1791 struct task_struct *p = NULL;
1792 struct sched_entity *se;
1794 if (next == &cfs_rq->tasks)
1795 return NULL;
1797 se = list_entry(next, struct sched_entity, group_node);
1798 p = task_of(se);
1799 cfs_rq->balance_iterator = next->next;
1801 return p;
1804 static struct task_struct *load_balance_start_fair(void *arg)
1806 struct cfs_rq *cfs_rq = arg;
1808 return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
1811 static struct task_struct *load_balance_next_fair(void *arg)
1813 struct cfs_rq *cfs_rq = arg;
1815 return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
1818 static unsigned long
1819 __load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1820 unsigned long max_load_move, struct sched_domain *sd,
1821 enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
1822 struct cfs_rq *cfs_rq)
1824 struct rq_iterator cfs_rq_iterator;
1826 cfs_rq_iterator.start = load_balance_start_fair;
1827 cfs_rq_iterator.next = load_balance_next_fair;
1828 cfs_rq_iterator.arg = cfs_rq;
1830 return balance_tasks(this_rq, this_cpu, busiest,
1831 max_load_move, sd, idle, all_pinned,
1832 this_best_prio, &cfs_rq_iterator);
1835 #ifdef CONFIG_FAIR_GROUP_SCHED
1836 static unsigned long
1837 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1838 unsigned long max_load_move,
1839 struct sched_domain *sd, enum cpu_idle_type idle,
1840 int *all_pinned, int *this_best_prio)
1842 long rem_load_move = max_load_move;
1843 int busiest_cpu = cpu_of(busiest);
1844 struct task_group *tg;
1846 rcu_read_lock();
1847 update_h_load(busiest_cpu);
1849 list_for_each_entry_rcu(tg, &task_groups, list) {
1850 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
1851 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1852 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
1853 u64 rem_load, moved_load;
1856 * empty group
1858 if (!busiest_cfs_rq->task_weight)
1859 continue;
1861 rem_load = (u64)rem_load_move * busiest_weight;
1862 rem_load = div_u64(rem_load, busiest_h_load + 1);
1864 moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
1865 rem_load, sd, idle, all_pinned, this_best_prio,
1866 tg->cfs_rq[busiest_cpu]);
1868 if (!moved_load)
1869 continue;
1871 moved_load *= busiest_h_load;
1872 moved_load = div_u64(moved_load, busiest_weight + 1);
1874 rem_load_move -= moved_load;
1875 if (rem_load_move < 0)
1876 break;
1878 rcu_read_unlock();
1880 return max_load_move - rem_load_move;
1882 #else
1883 static unsigned long
1884 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1885 unsigned long max_load_move,
1886 struct sched_domain *sd, enum cpu_idle_type idle,
1887 int *all_pinned, int *this_best_prio)
1889 return __load_balance_fair(this_rq, this_cpu, busiest,
1890 max_load_move, sd, idle, all_pinned,
1891 this_best_prio, &busiest->cfs);
1893 #endif
1895 static int
1896 move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1897 struct sched_domain *sd, enum cpu_idle_type idle)
1899 struct cfs_rq *busy_cfs_rq;
1900 struct rq_iterator cfs_rq_iterator;
1902 cfs_rq_iterator.start = load_balance_start_fair;
1903 cfs_rq_iterator.next = load_balance_next_fair;
1905 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1907 * pass busy_cfs_rq argument into
1908 * load_balance_[start|next]_fair iterators
1910 cfs_rq_iterator.arg = busy_cfs_rq;
1911 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1912 &cfs_rq_iterator))
1913 return 1;
1916 return 0;
1919 static void rq_online_fair(struct rq *rq)
1921 update_sysctl();
1924 static void rq_offline_fair(struct rq *rq)
1926 update_sysctl();
1929 #endif /* CONFIG_SMP */
1932 * scheduler tick hitting a task of our scheduling class:
1934 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1936 struct cfs_rq *cfs_rq;
1937 struct sched_entity *se = &curr->se;
1939 for_each_sched_entity(se) {
1940 cfs_rq = cfs_rq_of(se);
1941 entity_tick(cfs_rq, se, queued);
1946 * called on fork with the child task as argument from the parent's context
1947 * - child not yet on the tasklist
1948 * - preemption disabled
1950 static void task_fork_fair(struct task_struct *p)
1952 struct cfs_rq *cfs_rq = task_cfs_rq(current);
1953 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1954 int this_cpu = smp_processor_id();
1955 struct rq *rq = this_rq();
1956 unsigned long flags;
1958 raw_spin_lock_irqsave(&rq->lock, flags);
1960 if (unlikely(task_cpu(p) != this_cpu))
1961 __set_task_cpu(p, this_cpu);
1963 update_curr(cfs_rq);
1965 if (curr)
1966 se->vruntime = curr->vruntime;
1967 place_entity(cfs_rq, se, 1);
1969 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
1971 * Upon rescheduling, sched_class::put_prev_task() will place
1972 * 'current' within the tree based on its new key value.
1974 swap(curr->vruntime, se->vruntime);
1975 resched_task(rq->curr);
1978 raw_spin_unlock_irqrestore(&rq->lock, flags);
1982 * Priority of the task has changed. Check to see if we preempt
1983 * the current task.
1985 static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1986 int oldprio, int running)
1989 * Reschedule if we are currently running on this runqueue and
1990 * our priority decreased, or if we are not currently running on
1991 * this runqueue and our priority is higher than the current's
1993 if (running) {
1994 if (p->prio > oldprio)
1995 resched_task(rq->curr);
1996 } else
1997 check_preempt_curr(rq, p, 0);
2001 * We switched to the sched_fair class.
2003 static void switched_to_fair(struct rq *rq, struct task_struct *p,
2004 int running)
2007 * We were most likely switched from sched_rt, so
2008 * kick off the schedule if running, otherwise just see
2009 * if we can still preempt the current task.
2011 if (running)
2012 resched_task(rq->curr);
2013 else
2014 check_preempt_curr(rq, p, 0);
2017 /* Account for a task changing its policy or group.
2019 * This routine is mostly called to set cfs_rq->curr field when a task
2020 * migrates between groups/classes.
2022 static void set_curr_task_fair(struct rq *rq)
2024 struct sched_entity *se = &rq->curr->se;
2026 for_each_sched_entity(se)
2027 set_next_entity(cfs_rq_of(se), se);
2030 #ifdef CONFIG_FAIR_GROUP_SCHED
2031 static void moved_group_fair(struct task_struct *p)
2033 struct cfs_rq *cfs_rq = task_cfs_rq(p);
2035 update_curr(cfs_rq);
2036 place_entity(cfs_rq, &p->se, 1);
2038 #endif
2040 unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
2042 struct sched_entity *se = &task->se;
2043 unsigned int rr_interval = 0;
2046 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
2047 * idle runqueue:
2049 if (rq->cfs.load.weight)
2050 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
2052 return rr_interval;
2056 * All the scheduling class methods:
2058 static const struct sched_class fair_sched_class = {
2059 .next = &idle_sched_class,
2060 .enqueue_task = enqueue_task_fair,
2061 .dequeue_task = dequeue_task_fair,
2062 .yield_task = yield_task_fair,
2064 .check_preempt_curr = check_preempt_wakeup,
2066 .pick_next_task = pick_next_task_fair,
2067 .put_prev_task = put_prev_task_fair,
2069 #ifdef CONFIG_SMP
2070 .select_task_rq = select_task_rq_fair,
2072 .load_balance = load_balance_fair,
2073 .move_one_task = move_one_task_fair,
2074 .rq_online = rq_online_fair,
2075 .rq_offline = rq_offline_fair,
2076 #endif
2078 .set_curr_task = set_curr_task_fair,
2079 .task_tick = task_tick_fair,
2080 .task_fork = task_fork_fair,
2082 .prio_changed = prio_changed_fair,
2083 .switched_to = switched_to_fair,
2085 .get_rr_interval = get_rr_interval_fair,
2087 #ifdef CONFIG_FAIR_GROUP_SCHED
2088 .moved_group = moved_group_fair,
2089 #endif
2092 #ifdef CONFIG_SCHED_DEBUG
2093 static void print_cfs_stats(struct seq_file *m, int cpu)
2095 struct cfs_rq *cfs_rq;
2097 rcu_read_lock();
2098 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
2099 print_cfs_rq(m, cpu, cfs_rq);
2100 rcu_read_unlock();
2102 #endif