x86: apic honour irq affinity which was set in early boot
[linux-2.6/linux-2.6-openrd.git] / drivers / block / cciss.c
blob12de1fdaa6c68b76479cdfed53140e7188207449
1 /*
2 * Disk Array driver for HP Smart Array controllers.
3 * (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
17 * 02111-1307, USA.
19 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/major.h>
31 #include <linux/fs.h>
32 #include <linux/bio.h>
33 #include <linux/blkpg.h>
34 #include <linux/timer.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/init.h>
38 #include <linux/hdreg.h>
39 #include <linux/spinlock.h>
40 #include <linux/compat.h>
41 #include <linux/blktrace_api.h>
42 #include <asm/uaccess.h>
43 #include <asm/io.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/blkdev.h>
47 #include <linux/genhd.h>
48 #include <linux/completion.h>
49 #include <scsi/scsi.h>
50 #include <scsi/sg.h>
51 #include <scsi/scsi_ioctl.h>
52 #include <linux/cdrom.h>
53 #include <linux/scatterlist.h>
55 #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
56 #define DRIVER_NAME "HP CISS Driver (v 3.6.20)"
57 #define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 20)
59 /* Embedded module documentation macros - see modules.h */
60 MODULE_AUTHOR("Hewlett-Packard Company");
61 MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
62 MODULE_SUPPORTED_DEVICE("HP SA5i SA5i+ SA532 SA5300 SA5312 SA641 SA642 SA6400"
63 " SA6i P600 P800 P400 P400i E200 E200i E500 P700m"
64 " Smart Array G2 Series SAS/SATA Controllers");
65 MODULE_VERSION("3.6.20");
66 MODULE_LICENSE("GPL");
68 #include "cciss_cmd.h"
69 #include "cciss.h"
70 #include <linux/cciss_ioctl.h>
72 /* define the PCI info for the cards we can control */
73 static const struct pci_device_id cciss_pci_device_id[] = {
74 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS, 0x0E11, 0x4070},
75 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
76 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
77 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
78 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
79 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
80 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
81 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
82 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
83 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSA, 0x103C, 0x3225},
84 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3223},
85 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3234},
86 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3235},
87 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3211},
88 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3212},
89 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3213},
90 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3214},
91 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3215},
92 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3237},
93 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x323D},
94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A},
100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B},
101 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
102 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
103 {0,}
106 MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
108 /* board_id = Subsystem Device ID & Vendor ID
109 * product = Marketing Name for the board
110 * access = Address of the struct of function pointers
112 static struct board_type products[] = {
113 {0x40700E11, "Smart Array 5300", &SA5_access},
114 {0x40800E11, "Smart Array 5i", &SA5B_access},
115 {0x40820E11, "Smart Array 532", &SA5B_access},
116 {0x40830E11, "Smart Array 5312", &SA5B_access},
117 {0x409A0E11, "Smart Array 641", &SA5_access},
118 {0x409B0E11, "Smart Array 642", &SA5_access},
119 {0x409C0E11, "Smart Array 6400", &SA5_access},
120 {0x409D0E11, "Smart Array 6400 EM", &SA5_access},
121 {0x40910E11, "Smart Array 6i", &SA5_access},
122 {0x3225103C, "Smart Array P600", &SA5_access},
123 {0x3223103C, "Smart Array P800", &SA5_access},
124 {0x3234103C, "Smart Array P400", &SA5_access},
125 {0x3235103C, "Smart Array P400i", &SA5_access},
126 {0x3211103C, "Smart Array E200i", &SA5_access},
127 {0x3212103C, "Smart Array E200", &SA5_access},
128 {0x3213103C, "Smart Array E200i", &SA5_access},
129 {0x3214103C, "Smart Array E200i", &SA5_access},
130 {0x3215103C, "Smart Array E200i", &SA5_access},
131 {0x3237103C, "Smart Array E500", &SA5_access},
132 {0x323D103C, "Smart Array P700m", &SA5_access},
133 {0x3241103C, "Smart Array P212", &SA5_access},
134 {0x3243103C, "Smart Array P410", &SA5_access},
135 {0x3245103C, "Smart Array P410i", &SA5_access},
136 {0x3247103C, "Smart Array P411", &SA5_access},
137 {0x3249103C, "Smart Array P812", &SA5_access},
138 {0x324A103C, "Smart Array P712m", &SA5_access},
139 {0x324B103C, "Smart Array P711m", &SA5_access},
140 {0xFFFF103C, "Unknown Smart Array", &SA5_access},
143 /* How long to wait (in milliseconds) for board to go into simple mode */
144 #define MAX_CONFIG_WAIT 30000
145 #define MAX_IOCTL_CONFIG_WAIT 1000
147 /*define how many times we will try a command because of bus resets */
148 #define MAX_CMD_RETRIES 3
150 #define MAX_CTLR 32
152 /* Originally cciss driver only supports 8 major numbers */
153 #define MAX_CTLR_ORIG 8
155 static ctlr_info_t *hba[MAX_CTLR];
157 static void do_cciss_request(struct request_queue *q);
158 static irqreturn_t do_cciss_intr(int irq, void *dev_id);
159 static int cciss_open(struct block_device *bdev, fmode_t mode);
160 static int cciss_release(struct gendisk *disk, fmode_t mode);
161 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
162 unsigned int cmd, unsigned long arg);
163 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
165 static int cciss_revalidate(struct gendisk *disk);
166 static int rebuild_lun_table(ctlr_info_t *h, int first_time);
167 static int deregister_disk(struct gendisk *disk, drive_info_struct *drv,
168 int clear_all);
170 static void cciss_read_capacity(int ctlr, int logvol, int withirq,
171 sector_t *total_size, unsigned int *block_size);
172 static void cciss_read_capacity_16(int ctlr, int logvol, int withirq,
173 sector_t *total_size, unsigned int *block_size);
174 static void cciss_geometry_inquiry(int ctlr, int logvol,
175 int withirq, sector_t total_size,
176 unsigned int block_size, InquiryData_struct *inq_buff,
177 drive_info_struct *drv);
178 static void __devinit cciss_interrupt_mode(ctlr_info_t *, struct pci_dev *,
179 __u32);
180 static void start_io(ctlr_info_t *h);
181 static int sendcmd(__u8 cmd, int ctlr, void *buff, size_t size,
182 unsigned int use_unit_num, unsigned int log_unit,
183 __u8 page_code, unsigned char *scsi3addr, int cmd_type);
184 static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
185 unsigned int use_unit_num, unsigned int log_unit,
186 __u8 page_code, int cmd_type);
188 static void fail_all_cmds(unsigned long ctlr);
190 #ifdef CONFIG_PROC_FS
191 static void cciss_procinit(int i);
192 #else
193 static void cciss_procinit(int i)
196 #endif /* CONFIG_PROC_FS */
198 #ifdef CONFIG_COMPAT
199 static int cciss_compat_ioctl(struct block_device *, fmode_t,
200 unsigned, unsigned long);
201 #endif
203 static struct block_device_operations cciss_fops = {
204 .owner = THIS_MODULE,
205 .open = cciss_open,
206 .release = cciss_release,
207 .locked_ioctl = cciss_ioctl,
208 .getgeo = cciss_getgeo,
209 #ifdef CONFIG_COMPAT
210 .compat_ioctl = cciss_compat_ioctl,
211 #endif
212 .revalidate_disk = cciss_revalidate,
216 * Enqueuing and dequeuing functions for cmdlists.
218 static inline void addQ(CommandList_struct **Qptr, CommandList_struct *c)
220 if (*Qptr == NULL) {
221 *Qptr = c;
222 c->next = c->prev = c;
223 } else {
224 c->prev = (*Qptr)->prev;
225 c->next = (*Qptr);
226 (*Qptr)->prev->next = c;
227 (*Qptr)->prev = c;
231 static inline CommandList_struct *removeQ(CommandList_struct **Qptr,
232 CommandList_struct *c)
234 if (c && c->next != c) {
235 if (*Qptr == c)
236 *Qptr = c->next;
237 c->prev->next = c->next;
238 c->next->prev = c->prev;
239 } else {
240 *Qptr = NULL;
242 return c;
245 #include "cciss_scsi.c" /* For SCSI tape support */
247 #define RAID_UNKNOWN 6
249 #ifdef CONFIG_PROC_FS
252 * Report information about this controller.
254 #define ENG_GIG 1000000000
255 #define ENG_GIG_FACTOR (ENG_GIG/512)
256 #define ENGAGE_SCSI "engage scsi"
257 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
258 "UNKNOWN"
261 static struct proc_dir_entry *proc_cciss;
263 static void cciss_seq_show_header(struct seq_file *seq)
265 ctlr_info_t *h = seq->private;
267 seq_printf(seq, "%s: HP %s Controller\n"
268 "Board ID: 0x%08lx\n"
269 "Firmware Version: %c%c%c%c\n"
270 "IRQ: %d\n"
271 "Logical drives: %d\n"
272 "Current Q depth: %d\n"
273 "Current # commands on controller: %d\n"
274 "Max Q depth since init: %d\n"
275 "Max # commands on controller since init: %d\n"
276 "Max SG entries since init: %d\n",
277 h->devname,
278 h->product_name,
279 (unsigned long)h->board_id,
280 h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
281 h->firm_ver[3], (unsigned int)h->intr[SIMPLE_MODE_INT],
282 h->num_luns,
283 h->Qdepth, h->commands_outstanding,
284 h->maxQsinceinit, h->max_outstanding, h->maxSG);
286 #ifdef CONFIG_CISS_SCSI_TAPE
287 cciss_seq_tape_report(seq, h->ctlr);
288 #endif /* CONFIG_CISS_SCSI_TAPE */
291 static void *cciss_seq_start(struct seq_file *seq, loff_t *pos)
293 ctlr_info_t *h = seq->private;
294 unsigned ctlr = h->ctlr;
295 unsigned long flags;
297 /* prevent displaying bogus info during configuration
298 * or deconfiguration of a logical volume
300 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
301 if (h->busy_configuring) {
302 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
303 return ERR_PTR(-EBUSY);
305 h->busy_configuring = 1;
306 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
308 if (*pos == 0)
309 cciss_seq_show_header(seq);
311 return pos;
314 static int cciss_seq_show(struct seq_file *seq, void *v)
316 sector_t vol_sz, vol_sz_frac;
317 ctlr_info_t *h = seq->private;
318 unsigned ctlr = h->ctlr;
319 loff_t *pos = v;
320 drive_info_struct *drv = &h->drv[*pos];
322 if (*pos > h->highest_lun)
323 return 0;
325 if (drv->heads == 0)
326 return 0;
328 vol_sz = drv->nr_blocks;
329 vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
330 vol_sz_frac *= 100;
331 sector_div(vol_sz_frac, ENG_GIG_FACTOR);
333 if (drv->raid_level > 5)
334 drv->raid_level = RAID_UNKNOWN;
335 seq_printf(seq, "cciss/c%dd%d:"
336 "\t%4u.%02uGB\tRAID %s\n",
337 ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac,
338 raid_label[drv->raid_level]);
339 return 0;
342 static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos)
344 ctlr_info_t *h = seq->private;
346 if (*pos > h->highest_lun)
347 return NULL;
348 *pos += 1;
350 return pos;
353 static void cciss_seq_stop(struct seq_file *seq, void *v)
355 ctlr_info_t *h = seq->private;
357 /* Only reset h->busy_configuring if we succeeded in setting
358 * it during cciss_seq_start. */
359 if (v == ERR_PTR(-EBUSY))
360 return;
362 h->busy_configuring = 0;
365 static struct seq_operations cciss_seq_ops = {
366 .start = cciss_seq_start,
367 .show = cciss_seq_show,
368 .next = cciss_seq_next,
369 .stop = cciss_seq_stop,
372 static int cciss_seq_open(struct inode *inode, struct file *file)
374 int ret = seq_open(file, &cciss_seq_ops);
375 struct seq_file *seq = file->private_data;
377 if (!ret)
378 seq->private = PDE(inode)->data;
380 return ret;
383 static ssize_t
384 cciss_proc_write(struct file *file, const char __user *buf,
385 size_t length, loff_t *ppos)
387 int err;
388 char *buffer;
390 #ifndef CONFIG_CISS_SCSI_TAPE
391 return -EINVAL;
392 #endif
394 if (!buf || length > PAGE_SIZE - 1)
395 return -EINVAL;
397 buffer = (char *)__get_free_page(GFP_KERNEL);
398 if (!buffer)
399 return -ENOMEM;
401 err = -EFAULT;
402 if (copy_from_user(buffer, buf, length))
403 goto out;
404 buffer[length] = '\0';
406 #ifdef CONFIG_CISS_SCSI_TAPE
407 if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) {
408 struct seq_file *seq = file->private_data;
409 ctlr_info_t *h = seq->private;
410 int rc;
412 rc = cciss_engage_scsi(h->ctlr);
413 if (rc != 0)
414 err = -rc;
415 else
416 err = length;
417 } else
418 #endif /* CONFIG_CISS_SCSI_TAPE */
419 err = -EINVAL;
420 /* might be nice to have "disengage" too, but it's not
421 safely possible. (only 1 module use count, lock issues.) */
423 out:
424 free_page((unsigned long)buffer);
425 return err;
428 static struct file_operations cciss_proc_fops = {
429 .owner = THIS_MODULE,
430 .open = cciss_seq_open,
431 .read = seq_read,
432 .llseek = seq_lseek,
433 .release = seq_release,
434 .write = cciss_proc_write,
437 static void __devinit cciss_procinit(int i)
439 struct proc_dir_entry *pde;
441 if (proc_cciss == NULL)
442 proc_cciss = proc_mkdir("driver/cciss", NULL);
443 if (!proc_cciss)
444 return;
445 pde = proc_create_data(hba[i]->devname, S_IWUSR | S_IRUSR | S_IRGRP |
446 S_IROTH, proc_cciss,
447 &cciss_proc_fops, hba[i]);
449 #endif /* CONFIG_PROC_FS */
452 * For operations that cannot sleep, a command block is allocated at init,
453 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
454 * which ones are free or in use. For operations that can wait for kmalloc
455 * to possible sleep, this routine can be called with get_from_pool set to 0.
456 * cmd_free() MUST be called with a got_from_pool set to 0 if cmd_alloc was.
458 static CommandList_struct *cmd_alloc(ctlr_info_t *h, int get_from_pool)
460 CommandList_struct *c;
461 int i;
462 u64bit temp64;
463 dma_addr_t cmd_dma_handle, err_dma_handle;
465 if (!get_from_pool) {
466 c = (CommandList_struct *) pci_alloc_consistent(h->pdev,
467 sizeof(CommandList_struct), &cmd_dma_handle);
468 if (c == NULL)
469 return NULL;
470 memset(c, 0, sizeof(CommandList_struct));
472 c->cmdindex = -1;
474 c->err_info = (ErrorInfo_struct *)
475 pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
476 &err_dma_handle);
478 if (c->err_info == NULL) {
479 pci_free_consistent(h->pdev,
480 sizeof(CommandList_struct), c, cmd_dma_handle);
481 return NULL;
483 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
484 } else { /* get it out of the controllers pool */
486 do {
487 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
488 if (i == h->nr_cmds)
489 return NULL;
490 } while (test_and_set_bit
491 (i & (BITS_PER_LONG - 1),
492 h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
493 #ifdef CCISS_DEBUG
494 printk(KERN_DEBUG "cciss: using command buffer %d\n", i);
495 #endif
496 c = h->cmd_pool + i;
497 memset(c, 0, sizeof(CommandList_struct));
498 cmd_dma_handle = h->cmd_pool_dhandle
499 + i * sizeof(CommandList_struct);
500 c->err_info = h->errinfo_pool + i;
501 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
502 err_dma_handle = h->errinfo_pool_dhandle
503 + i * sizeof(ErrorInfo_struct);
504 h->nr_allocs++;
506 c->cmdindex = i;
509 c->busaddr = (__u32) cmd_dma_handle;
510 temp64.val = (__u64) err_dma_handle;
511 c->ErrDesc.Addr.lower = temp64.val32.lower;
512 c->ErrDesc.Addr.upper = temp64.val32.upper;
513 c->ErrDesc.Len = sizeof(ErrorInfo_struct);
515 c->ctlr = h->ctlr;
516 return c;
520 * Frees a command block that was previously allocated with cmd_alloc().
522 static void cmd_free(ctlr_info_t *h, CommandList_struct *c, int got_from_pool)
524 int i;
525 u64bit temp64;
527 if (!got_from_pool) {
528 temp64.val32.lower = c->ErrDesc.Addr.lower;
529 temp64.val32.upper = c->ErrDesc.Addr.upper;
530 pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
531 c->err_info, (dma_addr_t) temp64.val);
532 pci_free_consistent(h->pdev, sizeof(CommandList_struct),
533 c, (dma_addr_t) c->busaddr);
534 } else {
535 i = c - h->cmd_pool;
536 clear_bit(i & (BITS_PER_LONG - 1),
537 h->cmd_pool_bits + (i / BITS_PER_LONG));
538 h->nr_frees++;
542 static inline ctlr_info_t *get_host(struct gendisk *disk)
544 return disk->queue->queuedata;
547 static inline drive_info_struct *get_drv(struct gendisk *disk)
549 return disk->private_data;
553 * Open. Make sure the device is really there.
555 static int cciss_open(struct block_device *bdev, fmode_t mode)
557 ctlr_info_t *host = get_host(bdev->bd_disk);
558 drive_info_struct *drv = get_drv(bdev->bd_disk);
560 #ifdef CCISS_DEBUG
561 printk(KERN_DEBUG "cciss_open %s\n", bdev->bd_disk->disk_name);
562 #endif /* CCISS_DEBUG */
564 if (host->busy_initializing || drv->busy_configuring)
565 return -EBUSY;
567 * Root is allowed to open raw volume zero even if it's not configured
568 * so array config can still work. Root is also allowed to open any
569 * volume that has a LUN ID, so it can issue IOCTL to reread the
570 * disk information. I don't think I really like this
571 * but I'm already using way to many device nodes to claim another one
572 * for "raw controller".
574 if (drv->heads == 0) {
575 if (MINOR(bdev->bd_dev) != 0) { /* not node 0? */
576 /* if not node 0 make sure it is a partition = 0 */
577 if (MINOR(bdev->bd_dev) & 0x0f) {
578 return -ENXIO;
579 /* if it is, make sure we have a LUN ID */
580 } else if (drv->LunID == 0) {
581 return -ENXIO;
584 if (!capable(CAP_SYS_ADMIN))
585 return -EPERM;
587 drv->usage_count++;
588 host->usage_count++;
589 return 0;
593 * Close. Sync first.
595 static int cciss_release(struct gendisk *disk, fmode_t mode)
597 ctlr_info_t *host = get_host(disk);
598 drive_info_struct *drv = get_drv(disk);
600 #ifdef CCISS_DEBUG
601 printk(KERN_DEBUG "cciss_release %s\n", disk->disk_name);
602 #endif /* CCISS_DEBUG */
604 drv->usage_count--;
605 host->usage_count--;
606 return 0;
609 #ifdef CONFIG_COMPAT
611 static int do_ioctl(struct block_device *bdev, fmode_t mode,
612 unsigned cmd, unsigned long arg)
614 int ret;
615 lock_kernel();
616 ret = cciss_ioctl(bdev, mode, cmd, arg);
617 unlock_kernel();
618 return ret;
621 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
622 unsigned cmd, unsigned long arg);
623 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
624 unsigned cmd, unsigned long arg);
626 static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode,
627 unsigned cmd, unsigned long arg)
629 switch (cmd) {
630 case CCISS_GETPCIINFO:
631 case CCISS_GETINTINFO:
632 case CCISS_SETINTINFO:
633 case CCISS_GETNODENAME:
634 case CCISS_SETNODENAME:
635 case CCISS_GETHEARTBEAT:
636 case CCISS_GETBUSTYPES:
637 case CCISS_GETFIRMVER:
638 case CCISS_GETDRIVVER:
639 case CCISS_REVALIDVOLS:
640 case CCISS_DEREGDISK:
641 case CCISS_REGNEWDISK:
642 case CCISS_REGNEWD:
643 case CCISS_RESCANDISK:
644 case CCISS_GETLUNINFO:
645 return do_ioctl(bdev, mode, cmd, arg);
647 case CCISS_PASSTHRU32:
648 return cciss_ioctl32_passthru(bdev, mode, cmd, arg);
649 case CCISS_BIG_PASSTHRU32:
650 return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg);
652 default:
653 return -ENOIOCTLCMD;
657 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
658 unsigned cmd, unsigned long arg)
660 IOCTL32_Command_struct __user *arg32 =
661 (IOCTL32_Command_struct __user *) arg;
662 IOCTL_Command_struct arg64;
663 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
664 int err;
665 u32 cp;
667 err = 0;
668 err |=
669 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
670 sizeof(arg64.LUN_info));
671 err |=
672 copy_from_user(&arg64.Request, &arg32->Request,
673 sizeof(arg64.Request));
674 err |=
675 copy_from_user(&arg64.error_info, &arg32->error_info,
676 sizeof(arg64.error_info));
677 err |= get_user(arg64.buf_size, &arg32->buf_size);
678 err |= get_user(cp, &arg32->buf);
679 arg64.buf = compat_ptr(cp);
680 err |= copy_to_user(p, &arg64, sizeof(arg64));
682 if (err)
683 return -EFAULT;
685 err = do_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p);
686 if (err)
687 return err;
688 err |=
689 copy_in_user(&arg32->error_info, &p->error_info,
690 sizeof(arg32->error_info));
691 if (err)
692 return -EFAULT;
693 return err;
696 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
697 unsigned cmd, unsigned long arg)
699 BIG_IOCTL32_Command_struct __user *arg32 =
700 (BIG_IOCTL32_Command_struct __user *) arg;
701 BIG_IOCTL_Command_struct arg64;
702 BIG_IOCTL_Command_struct __user *p =
703 compat_alloc_user_space(sizeof(arg64));
704 int err;
705 u32 cp;
707 err = 0;
708 err |=
709 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
710 sizeof(arg64.LUN_info));
711 err |=
712 copy_from_user(&arg64.Request, &arg32->Request,
713 sizeof(arg64.Request));
714 err |=
715 copy_from_user(&arg64.error_info, &arg32->error_info,
716 sizeof(arg64.error_info));
717 err |= get_user(arg64.buf_size, &arg32->buf_size);
718 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
719 err |= get_user(cp, &arg32->buf);
720 arg64.buf = compat_ptr(cp);
721 err |= copy_to_user(p, &arg64, sizeof(arg64));
723 if (err)
724 return -EFAULT;
726 err = do_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p);
727 if (err)
728 return err;
729 err |=
730 copy_in_user(&arg32->error_info, &p->error_info,
731 sizeof(arg32->error_info));
732 if (err)
733 return -EFAULT;
734 return err;
736 #endif
738 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
740 drive_info_struct *drv = get_drv(bdev->bd_disk);
742 if (!drv->cylinders)
743 return -ENXIO;
745 geo->heads = drv->heads;
746 geo->sectors = drv->sectors;
747 geo->cylinders = drv->cylinders;
748 return 0;
752 * ioctl
754 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
755 unsigned int cmd, unsigned long arg)
757 struct gendisk *disk = bdev->bd_disk;
758 ctlr_info_t *host = get_host(disk);
759 drive_info_struct *drv = get_drv(disk);
760 int ctlr = host->ctlr;
761 void __user *argp = (void __user *)arg;
763 #ifdef CCISS_DEBUG
764 printk(KERN_DEBUG "cciss_ioctl: Called with cmd=%x %lx\n", cmd, arg);
765 #endif /* CCISS_DEBUG */
767 switch (cmd) {
768 case CCISS_GETPCIINFO:
770 cciss_pci_info_struct pciinfo;
772 if (!arg)
773 return -EINVAL;
774 pciinfo.domain = pci_domain_nr(host->pdev->bus);
775 pciinfo.bus = host->pdev->bus->number;
776 pciinfo.dev_fn = host->pdev->devfn;
777 pciinfo.board_id = host->board_id;
778 if (copy_to_user
779 (argp, &pciinfo, sizeof(cciss_pci_info_struct)))
780 return -EFAULT;
781 return 0;
783 case CCISS_GETINTINFO:
785 cciss_coalint_struct intinfo;
786 if (!arg)
787 return -EINVAL;
788 intinfo.delay =
789 readl(&host->cfgtable->HostWrite.CoalIntDelay);
790 intinfo.count =
791 readl(&host->cfgtable->HostWrite.CoalIntCount);
792 if (copy_to_user
793 (argp, &intinfo, sizeof(cciss_coalint_struct)))
794 return -EFAULT;
795 return 0;
797 case CCISS_SETINTINFO:
799 cciss_coalint_struct intinfo;
800 unsigned long flags;
801 int i;
803 if (!arg)
804 return -EINVAL;
805 if (!capable(CAP_SYS_ADMIN))
806 return -EPERM;
807 if (copy_from_user
808 (&intinfo, argp, sizeof(cciss_coalint_struct)))
809 return -EFAULT;
810 if ((intinfo.delay == 0) && (intinfo.count == 0))
812 // printk("cciss_ioctl: delay and count cannot be 0\n");
813 return -EINVAL;
815 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
816 /* Update the field, and then ring the doorbell */
817 writel(intinfo.delay,
818 &(host->cfgtable->HostWrite.CoalIntDelay));
819 writel(intinfo.count,
820 &(host->cfgtable->HostWrite.CoalIntCount));
821 writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
823 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
824 if (!(readl(host->vaddr + SA5_DOORBELL)
825 & CFGTBL_ChangeReq))
826 break;
827 /* delay and try again */
828 udelay(1000);
830 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
831 if (i >= MAX_IOCTL_CONFIG_WAIT)
832 return -EAGAIN;
833 return 0;
835 case CCISS_GETNODENAME:
837 NodeName_type NodeName;
838 int i;
840 if (!arg)
841 return -EINVAL;
842 for (i = 0; i < 16; i++)
843 NodeName[i] =
844 readb(&host->cfgtable->ServerName[i]);
845 if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
846 return -EFAULT;
847 return 0;
849 case CCISS_SETNODENAME:
851 NodeName_type NodeName;
852 unsigned long flags;
853 int i;
855 if (!arg)
856 return -EINVAL;
857 if (!capable(CAP_SYS_ADMIN))
858 return -EPERM;
860 if (copy_from_user
861 (NodeName, argp, sizeof(NodeName_type)))
862 return -EFAULT;
864 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
866 /* Update the field, and then ring the doorbell */
867 for (i = 0; i < 16; i++)
868 writeb(NodeName[i],
869 &host->cfgtable->ServerName[i]);
871 writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
873 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
874 if (!(readl(host->vaddr + SA5_DOORBELL)
875 & CFGTBL_ChangeReq))
876 break;
877 /* delay and try again */
878 udelay(1000);
880 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
881 if (i >= MAX_IOCTL_CONFIG_WAIT)
882 return -EAGAIN;
883 return 0;
886 case CCISS_GETHEARTBEAT:
888 Heartbeat_type heartbeat;
890 if (!arg)
891 return -EINVAL;
892 heartbeat = readl(&host->cfgtable->HeartBeat);
893 if (copy_to_user
894 (argp, &heartbeat, sizeof(Heartbeat_type)))
895 return -EFAULT;
896 return 0;
898 case CCISS_GETBUSTYPES:
900 BusTypes_type BusTypes;
902 if (!arg)
903 return -EINVAL;
904 BusTypes = readl(&host->cfgtable->BusTypes);
905 if (copy_to_user
906 (argp, &BusTypes, sizeof(BusTypes_type)))
907 return -EFAULT;
908 return 0;
910 case CCISS_GETFIRMVER:
912 FirmwareVer_type firmware;
914 if (!arg)
915 return -EINVAL;
916 memcpy(firmware, host->firm_ver, 4);
918 if (copy_to_user
919 (argp, firmware, sizeof(FirmwareVer_type)))
920 return -EFAULT;
921 return 0;
923 case CCISS_GETDRIVVER:
925 DriverVer_type DriverVer = DRIVER_VERSION;
927 if (!arg)
928 return -EINVAL;
930 if (copy_to_user
931 (argp, &DriverVer, sizeof(DriverVer_type)))
932 return -EFAULT;
933 return 0;
936 case CCISS_DEREGDISK:
937 case CCISS_REGNEWD:
938 case CCISS_REVALIDVOLS:
939 return rebuild_lun_table(host, 0);
941 case CCISS_GETLUNINFO:{
942 LogvolInfo_struct luninfo;
944 luninfo.LunID = drv->LunID;
945 luninfo.num_opens = drv->usage_count;
946 luninfo.num_parts = 0;
947 if (copy_to_user(argp, &luninfo,
948 sizeof(LogvolInfo_struct)))
949 return -EFAULT;
950 return 0;
952 case CCISS_PASSTHRU:
954 IOCTL_Command_struct iocommand;
955 CommandList_struct *c;
956 char *buff = NULL;
957 u64bit temp64;
958 unsigned long flags;
959 DECLARE_COMPLETION_ONSTACK(wait);
961 if (!arg)
962 return -EINVAL;
964 if (!capable(CAP_SYS_RAWIO))
965 return -EPERM;
967 if (copy_from_user
968 (&iocommand, argp, sizeof(IOCTL_Command_struct)))
969 return -EFAULT;
970 if ((iocommand.buf_size < 1) &&
971 (iocommand.Request.Type.Direction != XFER_NONE)) {
972 return -EINVAL;
974 #if 0 /* 'buf_size' member is 16-bits, and always smaller than kmalloc limit */
975 /* Check kmalloc limits */
976 if (iocommand.buf_size > 128000)
977 return -EINVAL;
978 #endif
979 if (iocommand.buf_size > 0) {
980 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
981 if (buff == NULL)
982 return -EFAULT;
984 if (iocommand.Request.Type.Direction == XFER_WRITE) {
985 /* Copy the data into the buffer we created */
986 if (copy_from_user
987 (buff, iocommand.buf, iocommand.buf_size)) {
988 kfree(buff);
989 return -EFAULT;
991 } else {
992 memset(buff, 0, iocommand.buf_size);
994 if ((c = cmd_alloc(host, 0)) == NULL) {
995 kfree(buff);
996 return -ENOMEM;
998 // Fill in the command type
999 c->cmd_type = CMD_IOCTL_PEND;
1000 // Fill in Command Header
1001 c->Header.ReplyQueue = 0; // unused in simple mode
1002 if (iocommand.buf_size > 0) // buffer to fill
1004 c->Header.SGList = 1;
1005 c->Header.SGTotal = 1;
1006 } else // no buffers to fill
1008 c->Header.SGList = 0;
1009 c->Header.SGTotal = 0;
1011 c->Header.LUN = iocommand.LUN_info;
1012 c->Header.Tag.lower = c->busaddr; // use the kernel address the cmd block for tag
1014 // Fill in Request block
1015 c->Request = iocommand.Request;
1017 // Fill in the scatter gather information
1018 if (iocommand.buf_size > 0) {
1019 temp64.val = pci_map_single(host->pdev, buff,
1020 iocommand.buf_size,
1021 PCI_DMA_BIDIRECTIONAL);
1022 c->SG[0].Addr.lower = temp64.val32.lower;
1023 c->SG[0].Addr.upper = temp64.val32.upper;
1024 c->SG[0].Len = iocommand.buf_size;
1025 c->SG[0].Ext = 0; // we are not chaining
1027 c->waiting = &wait;
1029 /* Put the request on the tail of the request queue */
1030 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1031 addQ(&host->reqQ, c);
1032 host->Qdepth++;
1033 start_io(host);
1034 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1036 wait_for_completion(&wait);
1038 /* unlock the buffers from DMA */
1039 temp64.val32.lower = c->SG[0].Addr.lower;
1040 temp64.val32.upper = c->SG[0].Addr.upper;
1041 pci_unmap_single(host->pdev, (dma_addr_t) temp64.val,
1042 iocommand.buf_size,
1043 PCI_DMA_BIDIRECTIONAL);
1045 /* Copy the error information out */
1046 iocommand.error_info = *(c->err_info);
1047 if (copy_to_user
1048 (argp, &iocommand, sizeof(IOCTL_Command_struct))) {
1049 kfree(buff);
1050 cmd_free(host, c, 0);
1051 return -EFAULT;
1054 if (iocommand.Request.Type.Direction == XFER_READ) {
1055 /* Copy the data out of the buffer we created */
1056 if (copy_to_user
1057 (iocommand.buf, buff, iocommand.buf_size)) {
1058 kfree(buff);
1059 cmd_free(host, c, 0);
1060 return -EFAULT;
1063 kfree(buff);
1064 cmd_free(host, c, 0);
1065 return 0;
1067 case CCISS_BIG_PASSTHRU:{
1068 BIG_IOCTL_Command_struct *ioc;
1069 CommandList_struct *c;
1070 unsigned char **buff = NULL;
1071 int *buff_size = NULL;
1072 u64bit temp64;
1073 unsigned long flags;
1074 BYTE sg_used = 0;
1075 int status = 0;
1076 int i;
1077 DECLARE_COMPLETION_ONSTACK(wait);
1078 __u32 left;
1079 __u32 sz;
1080 BYTE __user *data_ptr;
1082 if (!arg)
1083 return -EINVAL;
1084 if (!capable(CAP_SYS_RAWIO))
1085 return -EPERM;
1086 ioc = (BIG_IOCTL_Command_struct *)
1087 kmalloc(sizeof(*ioc), GFP_KERNEL);
1088 if (!ioc) {
1089 status = -ENOMEM;
1090 goto cleanup1;
1092 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
1093 status = -EFAULT;
1094 goto cleanup1;
1096 if ((ioc->buf_size < 1) &&
1097 (ioc->Request.Type.Direction != XFER_NONE)) {
1098 status = -EINVAL;
1099 goto cleanup1;
1101 /* Check kmalloc limits using all SGs */
1102 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
1103 status = -EINVAL;
1104 goto cleanup1;
1106 if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
1107 status = -EINVAL;
1108 goto cleanup1;
1110 buff =
1111 kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
1112 if (!buff) {
1113 status = -ENOMEM;
1114 goto cleanup1;
1116 buff_size = kmalloc(MAXSGENTRIES * sizeof(int),
1117 GFP_KERNEL);
1118 if (!buff_size) {
1119 status = -ENOMEM;
1120 goto cleanup1;
1122 left = ioc->buf_size;
1123 data_ptr = ioc->buf;
1124 while (left) {
1125 sz = (left >
1126 ioc->malloc_size) ? ioc->
1127 malloc_size : left;
1128 buff_size[sg_used] = sz;
1129 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
1130 if (buff[sg_used] == NULL) {
1131 status = -ENOMEM;
1132 goto cleanup1;
1134 if (ioc->Request.Type.Direction == XFER_WRITE) {
1135 if (copy_from_user
1136 (buff[sg_used], data_ptr, sz)) {
1137 status = -EFAULT;
1138 goto cleanup1;
1140 } else {
1141 memset(buff[sg_used], 0, sz);
1143 left -= sz;
1144 data_ptr += sz;
1145 sg_used++;
1147 if ((c = cmd_alloc(host, 0)) == NULL) {
1148 status = -ENOMEM;
1149 goto cleanup1;
1151 c->cmd_type = CMD_IOCTL_PEND;
1152 c->Header.ReplyQueue = 0;
1154 if (ioc->buf_size > 0) {
1155 c->Header.SGList = sg_used;
1156 c->Header.SGTotal = sg_used;
1157 } else {
1158 c->Header.SGList = 0;
1159 c->Header.SGTotal = 0;
1161 c->Header.LUN = ioc->LUN_info;
1162 c->Header.Tag.lower = c->busaddr;
1164 c->Request = ioc->Request;
1165 if (ioc->buf_size > 0) {
1166 int i;
1167 for (i = 0; i < sg_used; i++) {
1168 temp64.val =
1169 pci_map_single(host->pdev, buff[i],
1170 buff_size[i],
1171 PCI_DMA_BIDIRECTIONAL);
1172 c->SG[i].Addr.lower =
1173 temp64.val32.lower;
1174 c->SG[i].Addr.upper =
1175 temp64.val32.upper;
1176 c->SG[i].Len = buff_size[i];
1177 c->SG[i].Ext = 0; /* we are not chaining */
1180 c->waiting = &wait;
1181 /* Put the request on the tail of the request queue */
1182 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1183 addQ(&host->reqQ, c);
1184 host->Qdepth++;
1185 start_io(host);
1186 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1187 wait_for_completion(&wait);
1188 /* unlock the buffers from DMA */
1189 for (i = 0; i < sg_used; i++) {
1190 temp64.val32.lower = c->SG[i].Addr.lower;
1191 temp64.val32.upper = c->SG[i].Addr.upper;
1192 pci_unmap_single(host->pdev,
1193 (dma_addr_t) temp64.val, buff_size[i],
1194 PCI_DMA_BIDIRECTIONAL);
1196 /* Copy the error information out */
1197 ioc->error_info = *(c->err_info);
1198 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
1199 cmd_free(host, c, 0);
1200 status = -EFAULT;
1201 goto cleanup1;
1203 if (ioc->Request.Type.Direction == XFER_READ) {
1204 /* Copy the data out of the buffer we created */
1205 BYTE __user *ptr = ioc->buf;
1206 for (i = 0; i < sg_used; i++) {
1207 if (copy_to_user
1208 (ptr, buff[i], buff_size[i])) {
1209 cmd_free(host, c, 0);
1210 status = -EFAULT;
1211 goto cleanup1;
1213 ptr += buff_size[i];
1216 cmd_free(host, c, 0);
1217 status = 0;
1218 cleanup1:
1219 if (buff) {
1220 for (i = 0; i < sg_used; i++)
1221 kfree(buff[i]);
1222 kfree(buff);
1224 kfree(buff_size);
1225 kfree(ioc);
1226 return status;
1229 /* scsi_cmd_ioctl handles these, below, though some are not */
1230 /* very meaningful for cciss. SG_IO is the main one people want. */
1232 case SG_GET_VERSION_NUM:
1233 case SG_SET_TIMEOUT:
1234 case SG_GET_TIMEOUT:
1235 case SG_GET_RESERVED_SIZE:
1236 case SG_SET_RESERVED_SIZE:
1237 case SG_EMULATED_HOST:
1238 case SG_IO:
1239 case SCSI_IOCTL_SEND_COMMAND:
1240 return scsi_cmd_ioctl(disk->queue, disk, mode, cmd, argp);
1242 /* scsi_cmd_ioctl would normally handle these, below, but */
1243 /* they aren't a good fit for cciss, as CD-ROMs are */
1244 /* not supported, and we don't have any bus/target/lun */
1245 /* which we present to the kernel. */
1247 case CDROM_SEND_PACKET:
1248 case CDROMCLOSETRAY:
1249 case CDROMEJECT:
1250 case SCSI_IOCTL_GET_IDLUN:
1251 case SCSI_IOCTL_GET_BUS_NUMBER:
1252 default:
1253 return -ENOTTY;
1257 static void cciss_check_queues(ctlr_info_t *h)
1259 int start_queue = h->next_to_run;
1260 int i;
1262 /* check to see if we have maxed out the number of commands that can
1263 * be placed on the queue. If so then exit. We do this check here
1264 * in case the interrupt we serviced was from an ioctl and did not
1265 * free any new commands.
1267 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
1268 return;
1270 /* We have room on the queue for more commands. Now we need to queue
1271 * them up. We will also keep track of the next queue to run so
1272 * that every queue gets a chance to be started first.
1274 for (i = 0; i < h->highest_lun + 1; i++) {
1275 int curr_queue = (start_queue + i) % (h->highest_lun + 1);
1276 /* make sure the disk has been added and the drive is real
1277 * because this can be called from the middle of init_one.
1279 if (!(h->drv[curr_queue].queue) || !(h->drv[curr_queue].heads))
1280 continue;
1281 blk_start_queue(h->gendisk[curr_queue]->queue);
1283 /* check to see if we have maxed out the number of commands
1284 * that can be placed on the queue.
1286 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
1287 if (curr_queue == start_queue) {
1288 h->next_to_run =
1289 (start_queue + 1) % (h->highest_lun + 1);
1290 break;
1291 } else {
1292 h->next_to_run = curr_queue;
1293 break;
1299 static void cciss_softirq_done(struct request *rq)
1301 CommandList_struct *cmd = rq->completion_data;
1302 ctlr_info_t *h = hba[cmd->ctlr];
1303 unsigned long flags;
1304 u64bit temp64;
1305 int i, ddir;
1307 if (cmd->Request.Type.Direction == XFER_READ)
1308 ddir = PCI_DMA_FROMDEVICE;
1309 else
1310 ddir = PCI_DMA_TODEVICE;
1312 /* command did not need to be retried */
1313 /* unmap the DMA mapping for all the scatter gather elements */
1314 for (i = 0; i < cmd->Header.SGList; i++) {
1315 temp64.val32.lower = cmd->SG[i].Addr.lower;
1316 temp64.val32.upper = cmd->SG[i].Addr.upper;
1317 pci_unmap_page(h->pdev, temp64.val, cmd->SG[i].Len, ddir);
1320 #ifdef CCISS_DEBUG
1321 printk("Done with %p\n", rq);
1322 #endif /* CCISS_DEBUG */
1324 if (blk_end_request(rq, (rq->errors == 0) ? 0 : -EIO, blk_rq_bytes(rq)))
1325 BUG();
1327 spin_lock_irqsave(&h->lock, flags);
1328 cmd_free(h, cmd, 1);
1329 cciss_check_queues(h);
1330 spin_unlock_irqrestore(&h->lock, flags);
1333 /* This function gets the serial number of a logical drive via
1334 * inquiry page 0x83. Serial no. is 16 bytes. If the serial
1335 * number cannot be had, for whatever reason, 16 bytes of 0xff
1336 * are returned instead.
1338 static void cciss_get_serial_no(int ctlr, int logvol, int withirq,
1339 unsigned char *serial_no, int buflen)
1341 #define PAGE_83_INQ_BYTES 64
1342 int rc;
1343 unsigned char *buf;
1345 if (buflen > 16)
1346 buflen = 16;
1347 memset(serial_no, 0xff, buflen);
1348 buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL);
1349 if (!buf)
1350 return;
1351 memset(serial_no, 0, buflen);
1352 if (withirq)
1353 rc = sendcmd_withirq(CISS_INQUIRY, ctlr, buf,
1354 PAGE_83_INQ_BYTES, 1, logvol, 0x83, TYPE_CMD);
1355 else
1356 rc = sendcmd(CISS_INQUIRY, ctlr, buf,
1357 PAGE_83_INQ_BYTES, 1, logvol, 0x83, NULL, TYPE_CMD);
1358 if (rc == IO_OK)
1359 memcpy(serial_no, &buf[8], buflen);
1360 kfree(buf);
1361 return;
1364 static void cciss_add_disk(ctlr_info_t *h, struct gendisk *disk,
1365 int drv_index)
1367 disk->queue = blk_init_queue(do_cciss_request, &h->lock);
1368 sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index);
1369 disk->major = h->major;
1370 disk->first_minor = drv_index << NWD_SHIFT;
1371 disk->fops = &cciss_fops;
1372 disk->private_data = &h->drv[drv_index];
1373 disk->driverfs_dev = &h->pdev->dev;
1375 /* Set up queue information */
1376 blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask);
1378 /* This is a hardware imposed limit. */
1379 blk_queue_max_hw_segments(disk->queue, MAXSGENTRIES);
1381 /* This is a limit in the driver and could be eliminated. */
1382 blk_queue_max_phys_segments(disk->queue, MAXSGENTRIES);
1384 blk_queue_max_sectors(disk->queue, h->cciss_max_sectors);
1386 blk_queue_softirq_done(disk->queue, cciss_softirq_done);
1388 disk->queue->queuedata = h;
1390 blk_queue_hardsect_size(disk->queue,
1391 h->drv[drv_index].block_size);
1393 /* Make sure all queue data is written out before */
1394 /* setting h->drv[drv_index].queue, as setting this */
1395 /* allows the interrupt handler to start the queue */
1396 wmb();
1397 h->drv[drv_index].queue = disk->queue;
1398 add_disk(disk);
1401 /* This function will check the usage_count of the drive to be updated/added.
1402 * If the usage_count is zero and it is a heretofore unknown drive, or,
1403 * the drive's capacity, geometry, or serial number has changed,
1404 * then the drive information will be updated and the disk will be
1405 * re-registered with the kernel. If these conditions don't hold,
1406 * then it will be left alone for the next reboot. The exception to this
1407 * is disk 0 which will always be left registered with the kernel since it
1408 * is also the controller node. Any changes to disk 0 will show up on
1409 * the next reboot.
1411 static void cciss_update_drive_info(int ctlr, int drv_index, int first_time)
1413 ctlr_info_t *h = hba[ctlr];
1414 struct gendisk *disk;
1415 InquiryData_struct *inq_buff = NULL;
1416 unsigned int block_size;
1417 sector_t total_size;
1418 unsigned long flags = 0;
1419 int ret = 0;
1420 drive_info_struct *drvinfo;
1421 int was_only_controller_node;
1423 /* Get information about the disk and modify the driver structure */
1424 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1425 drvinfo = kmalloc(sizeof(*drvinfo), GFP_KERNEL);
1426 if (inq_buff == NULL || drvinfo == NULL)
1427 goto mem_msg;
1429 /* See if we're trying to update the "controller node"
1430 * this will happen the when the first logical drive gets
1431 * created by ACU.
1433 was_only_controller_node = (drv_index == 0 &&
1434 h->drv[0].raid_level == -1);
1436 /* testing to see if 16-byte CDBs are already being used */
1437 if (h->cciss_read == CCISS_READ_16) {
1438 cciss_read_capacity_16(h->ctlr, drv_index, 1,
1439 &total_size, &block_size);
1441 } else {
1442 cciss_read_capacity(ctlr, drv_index, 1,
1443 &total_size, &block_size);
1445 /* if read_capacity returns all F's this volume is >2TB */
1446 /* in size so we switch to 16-byte CDB's for all */
1447 /* read/write ops */
1448 if (total_size == 0xFFFFFFFFULL) {
1449 cciss_read_capacity_16(ctlr, drv_index, 1,
1450 &total_size, &block_size);
1451 h->cciss_read = CCISS_READ_16;
1452 h->cciss_write = CCISS_WRITE_16;
1453 } else {
1454 h->cciss_read = CCISS_READ_10;
1455 h->cciss_write = CCISS_WRITE_10;
1459 cciss_geometry_inquiry(ctlr, drv_index, 1, total_size, block_size,
1460 inq_buff, drvinfo);
1461 drvinfo->block_size = block_size;
1462 drvinfo->nr_blocks = total_size + 1;
1464 cciss_get_serial_no(ctlr, drv_index, 1, drvinfo->serial_no,
1465 sizeof(drvinfo->serial_no));
1467 /* Is it the same disk we already know, and nothing's changed? */
1468 if (h->drv[drv_index].raid_level != -1 &&
1469 ((memcmp(drvinfo->serial_no,
1470 h->drv[drv_index].serial_no, 16) == 0) &&
1471 drvinfo->block_size == h->drv[drv_index].block_size &&
1472 drvinfo->nr_blocks == h->drv[drv_index].nr_blocks &&
1473 drvinfo->heads == h->drv[drv_index].heads &&
1474 drvinfo->sectors == h->drv[drv_index].sectors &&
1475 drvinfo->cylinders == h->drv[drv_index].cylinders))
1476 /* The disk is unchanged, nothing to update */
1477 goto freeret;
1479 /* If we get here it's not the same disk, or something's changed,
1480 * so we need to * deregister it, and re-register it, if it's not
1481 * in use.
1482 * If the disk already exists then deregister it before proceeding
1483 * (unless it's the first disk (for the controller node).
1485 if (h->drv[drv_index].raid_level != -1 && drv_index != 0) {
1486 printk(KERN_WARNING "disk %d has changed.\n", drv_index);
1487 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
1488 h->drv[drv_index].busy_configuring = 1;
1489 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1491 /* deregister_disk sets h->drv[drv_index].queue = NULL
1492 * which keeps the interrupt handler from starting
1493 * the queue.
1495 ret = deregister_disk(h->gendisk[drv_index],
1496 &h->drv[drv_index], 0);
1497 h->drv[drv_index].busy_configuring = 0;
1500 /* If the disk is in use return */
1501 if (ret)
1502 goto freeret;
1504 /* Save the new information from cciss_geometry_inquiry
1505 * and serial number inquiry.
1507 h->drv[drv_index].block_size = drvinfo->block_size;
1508 h->drv[drv_index].nr_blocks = drvinfo->nr_blocks;
1509 h->drv[drv_index].heads = drvinfo->heads;
1510 h->drv[drv_index].sectors = drvinfo->sectors;
1511 h->drv[drv_index].cylinders = drvinfo->cylinders;
1512 h->drv[drv_index].raid_level = drvinfo->raid_level;
1513 memcpy(h->drv[drv_index].serial_no, drvinfo->serial_no, 16);
1515 ++h->num_luns;
1516 disk = h->gendisk[drv_index];
1517 set_capacity(disk, h->drv[drv_index].nr_blocks);
1519 /* If it's not disk 0 (drv_index != 0)
1520 * or if it was disk 0, but there was previously
1521 * no actual corresponding configured logical drive
1522 * (raid_leve == -1) then we want to update the
1523 * logical drive's information.
1525 if (drv_index || first_time)
1526 cciss_add_disk(h, disk, drv_index);
1528 freeret:
1529 kfree(inq_buff);
1530 kfree(drvinfo);
1531 return;
1532 mem_msg:
1533 printk(KERN_ERR "cciss: out of memory\n");
1534 goto freeret;
1537 /* This function will find the first index of the controllers drive array
1538 * that has a -1 for the raid_level and will return that index. This is
1539 * where new drives will be added. If the index to be returned is greater
1540 * than the highest_lun index for the controller then highest_lun is set
1541 * to this new index. If there are no available indexes then -1 is returned.
1542 * "controller_node" is used to know if this is a real logical drive, or just
1543 * the controller node, which determines if this counts towards highest_lun.
1545 static int cciss_find_free_drive_index(int ctlr, int controller_node)
1547 int i;
1549 for (i = 0; i < CISS_MAX_LUN; i++) {
1550 if (hba[ctlr]->drv[i].raid_level == -1) {
1551 if (i > hba[ctlr]->highest_lun)
1552 if (!controller_node)
1553 hba[ctlr]->highest_lun = i;
1554 return i;
1557 return -1;
1560 /* cciss_add_gendisk finds a free hba[]->drv structure
1561 * and allocates a gendisk if needed, and sets the lunid
1562 * in the drvinfo structure. It returns the index into
1563 * the ->drv[] array, or -1 if none are free.
1564 * is_controller_node indicates whether highest_lun should
1565 * count this disk, or if it's only being added to provide
1566 * a means to talk to the controller in case no logical
1567 * drives have yet been configured.
1569 static int cciss_add_gendisk(ctlr_info_t *h, __u32 lunid, int controller_node)
1571 int drv_index;
1573 drv_index = cciss_find_free_drive_index(h->ctlr, controller_node);
1574 if (drv_index == -1)
1575 return -1;
1576 /*Check if the gendisk needs to be allocated */
1577 if (!h->gendisk[drv_index]) {
1578 h->gendisk[drv_index] =
1579 alloc_disk(1 << NWD_SHIFT);
1580 if (!h->gendisk[drv_index]) {
1581 printk(KERN_ERR "cciss%d: could not "
1582 "allocate a new disk %d\n",
1583 h->ctlr, drv_index);
1584 return -1;
1587 h->drv[drv_index].LunID = lunid;
1589 /* Don't need to mark this busy because nobody */
1590 /* else knows about this disk yet to contend */
1591 /* for access to it. */
1592 h->drv[drv_index].busy_configuring = 0;
1593 wmb();
1594 return drv_index;
1597 /* This is for the special case of a controller which
1598 * has no logical drives. In this case, we still need
1599 * to register a disk so the controller can be accessed
1600 * by the Array Config Utility.
1602 static void cciss_add_controller_node(ctlr_info_t *h)
1604 struct gendisk *disk;
1605 int drv_index;
1607 if (h->gendisk[0] != NULL) /* already did this? Then bail. */
1608 return;
1610 drv_index = cciss_add_gendisk(h, 0, 1);
1611 if (drv_index == -1) {
1612 printk(KERN_WARNING "cciss%d: could not "
1613 "add disk 0.\n", h->ctlr);
1614 return;
1616 h->drv[drv_index].block_size = 512;
1617 h->drv[drv_index].nr_blocks = 0;
1618 h->drv[drv_index].heads = 0;
1619 h->drv[drv_index].sectors = 0;
1620 h->drv[drv_index].cylinders = 0;
1621 h->drv[drv_index].raid_level = -1;
1622 memset(h->drv[drv_index].serial_no, 0, 16);
1623 disk = h->gendisk[drv_index];
1624 cciss_add_disk(h, disk, drv_index);
1627 /* This function will add and remove logical drives from the Logical
1628 * drive array of the controller and maintain persistency of ordering
1629 * so that mount points are preserved until the next reboot. This allows
1630 * for the removal of logical drives in the middle of the drive array
1631 * without a re-ordering of those drives.
1632 * INPUT
1633 * h = The controller to perform the operations on
1635 static int rebuild_lun_table(ctlr_info_t *h, int first_time)
1637 int ctlr = h->ctlr;
1638 int num_luns;
1639 ReportLunData_struct *ld_buff = NULL;
1640 int return_code;
1641 int listlength = 0;
1642 int i;
1643 int drv_found;
1644 int drv_index = 0;
1645 __u32 lunid = 0;
1646 unsigned long flags;
1648 if (!capable(CAP_SYS_RAWIO))
1649 return -EPERM;
1651 /* Set busy_configuring flag for this operation */
1652 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
1653 if (h->busy_configuring) {
1654 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1655 return -EBUSY;
1657 h->busy_configuring = 1;
1658 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1660 ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
1661 if (ld_buff == NULL)
1662 goto mem_msg;
1664 return_code = sendcmd_withirq(CISS_REPORT_LOG, ctlr, ld_buff,
1665 sizeof(ReportLunData_struct), 0,
1666 0, 0, TYPE_CMD);
1668 if (return_code == IO_OK)
1669 listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
1670 else { /* reading number of logical volumes failed */
1671 printk(KERN_WARNING "cciss: report logical volume"
1672 " command failed\n");
1673 listlength = 0;
1674 goto freeret;
1677 num_luns = listlength / 8; /* 8 bytes per entry */
1678 if (num_luns > CISS_MAX_LUN) {
1679 num_luns = CISS_MAX_LUN;
1680 printk(KERN_WARNING "cciss: more luns configured"
1681 " on controller than can be handled by"
1682 " this driver.\n");
1685 if (num_luns == 0)
1686 cciss_add_controller_node(h);
1688 /* Compare controller drive array to driver's drive array
1689 * to see if any drives are missing on the controller due
1690 * to action of Array Config Utility (user deletes drive)
1691 * and deregister logical drives which have disappeared.
1693 for (i = 0; i <= h->highest_lun; i++) {
1694 int j;
1695 drv_found = 0;
1696 for (j = 0; j < num_luns; j++) {
1697 memcpy(&lunid, &ld_buff->LUN[j][0], 4);
1698 lunid = le32_to_cpu(lunid);
1699 if (h->drv[i].LunID == lunid) {
1700 drv_found = 1;
1701 break;
1704 if (!drv_found) {
1705 /* Deregister it from the OS, it's gone. */
1706 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
1707 h->drv[i].busy_configuring = 1;
1708 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1709 return_code = deregister_disk(h->gendisk[i],
1710 &h->drv[i], 1);
1711 h->drv[i].busy_configuring = 0;
1715 /* Compare controller drive array to driver's drive array.
1716 * Check for updates in the drive information and any new drives
1717 * on the controller due to ACU adding logical drives, or changing
1718 * a logical drive's size, etc. Reregister any new/changed drives
1720 for (i = 0; i < num_luns; i++) {
1721 int j;
1723 drv_found = 0;
1725 memcpy(&lunid, &ld_buff->LUN[i][0], 4);
1726 lunid = le32_to_cpu(lunid);
1728 /* Find if the LUN is already in the drive array
1729 * of the driver. If so then update its info
1730 * if not in use. If it does not exist then find
1731 * the first free index and add it.
1733 for (j = 0; j <= h->highest_lun; j++) {
1734 if (h->drv[j].raid_level != -1 &&
1735 h->drv[j].LunID == lunid) {
1736 drv_index = j;
1737 drv_found = 1;
1738 break;
1742 /* check if the drive was found already in the array */
1743 if (!drv_found) {
1744 drv_index = cciss_add_gendisk(h, lunid, 0);
1745 if (drv_index == -1)
1746 goto freeret;
1748 cciss_update_drive_info(ctlr, drv_index, first_time);
1749 } /* end for */
1751 freeret:
1752 kfree(ld_buff);
1753 h->busy_configuring = 0;
1754 /* We return -1 here to tell the ACU that we have registered/updated
1755 * all of the drives that we can and to keep it from calling us
1756 * additional times.
1758 return -1;
1759 mem_msg:
1760 printk(KERN_ERR "cciss: out of memory\n");
1761 h->busy_configuring = 0;
1762 goto freeret;
1765 /* This function will deregister the disk and it's queue from the
1766 * kernel. It must be called with the controller lock held and the
1767 * drv structures busy_configuring flag set. It's parameters are:
1769 * disk = This is the disk to be deregistered
1770 * drv = This is the drive_info_struct associated with the disk to be
1771 * deregistered. It contains information about the disk used
1772 * by the driver.
1773 * clear_all = This flag determines whether or not the disk information
1774 * is going to be completely cleared out and the highest_lun
1775 * reset. Sometimes we want to clear out information about
1776 * the disk in preparation for re-adding it. In this case
1777 * the highest_lun should be left unchanged and the LunID
1778 * should not be cleared.
1780 static int deregister_disk(struct gendisk *disk, drive_info_struct *drv,
1781 int clear_all)
1783 int i;
1784 ctlr_info_t *h = get_host(disk);
1786 if (!capable(CAP_SYS_RAWIO))
1787 return -EPERM;
1789 /* make sure logical volume is NOT is use */
1790 if (clear_all || (h->gendisk[0] == disk)) {
1791 if (drv->usage_count > 1)
1792 return -EBUSY;
1793 } else if (drv->usage_count > 0)
1794 return -EBUSY;
1796 /* invalidate the devices and deregister the disk. If it is disk
1797 * zero do not deregister it but just zero out it's values. This
1798 * allows us to delete disk zero but keep the controller registered.
1800 if (h->gendisk[0] != disk) {
1801 struct request_queue *q = disk->queue;
1802 if (disk->flags & GENHD_FL_UP)
1803 del_gendisk(disk);
1804 if (q) {
1805 blk_cleanup_queue(q);
1806 /* Set drv->queue to NULL so that we do not try
1807 * to call blk_start_queue on this queue in the
1808 * interrupt handler
1810 drv->queue = NULL;
1812 /* If clear_all is set then we are deleting the logical
1813 * drive, not just refreshing its info. For drives
1814 * other than disk 0 we will call put_disk. We do not
1815 * do this for disk 0 as we need it to be able to
1816 * configure the controller.
1818 if (clear_all){
1819 /* This isn't pretty, but we need to find the
1820 * disk in our array and NULL our the pointer.
1821 * This is so that we will call alloc_disk if
1822 * this index is used again later.
1824 for (i=0; i < CISS_MAX_LUN; i++){
1825 if (h->gendisk[i] == disk) {
1826 h->gendisk[i] = NULL;
1827 break;
1830 put_disk(disk);
1832 } else {
1833 set_capacity(disk, 0);
1836 --h->num_luns;
1837 /* zero out the disk size info */
1838 drv->nr_blocks = 0;
1839 drv->block_size = 0;
1840 drv->heads = 0;
1841 drv->sectors = 0;
1842 drv->cylinders = 0;
1843 drv->raid_level = -1; /* This can be used as a flag variable to
1844 * indicate that this element of the drive
1845 * array is free.
1848 if (clear_all) {
1849 /* check to see if it was the last disk */
1850 if (drv == h->drv + h->highest_lun) {
1851 /* if so, find the new hightest lun */
1852 int i, newhighest = -1;
1853 for (i = 0; i <= h->highest_lun; i++) {
1854 /* if the disk has size > 0, it is available */
1855 if (h->drv[i].heads)
1856 newhighest = i;
1858 h->highest_lun = newhighest;
1861 drv->LunID = 0;
1863 return 0;
1866 static int fill_cmd(CommandList_struct *c, __u8 cmd, int ctlr, void *buff, size_t size, unsigned int use_unit_num, /* 0: address the controller,
1867 1: address logical volume log_unit,
1868 2: periph device address is scsi3addr */
1869 unsigned int log_unit, __u8 page_code,
1870 unsigned char *scsi3addr, int cmd_type)
1872 ctlr_info_t *h = hba[ctlr];
1873 u64bit buff_dma_handle;
1874 int status = IO_OK;
1876 c->cmd_type = CMD_IOCTL_PEND;
1877 c->Header.ReplyQueue = 0;
1878 if (buff != NULL) {
1879 c->Header.SGList = 1;
1880 c->Header.SGTotal = 1;
1881 } else {
1882 c->Header.SGList = 0;
1883 c->Header.SGTotal = 0;
1885 c->Header.Tag.lower = c->busaddr;
1887 c->Request.Type.Type = cmd_type;
1888 if (cmd_type == TYPE_CMD) {
1889 switch (cmd) {
1890 case CISS_INQUIRY:
1891 /* If the logical unit number is 0 then, this is going
1892 to controller so It's a physical command
1893 mode = 0 target = 0. So we have nothing to write.
1894 otherwise, if use_unit_num == 1,
1895 mode = 1(volume set addressing) target = LUNID
1896 otherwise, if use_unit_num == 2,
1897 mode = 0(periph dev addr) target = scsi3addr */
1898 if (use_unit_num == 1) {
1899 c->Header.LUN.LogDev.VolId =
1900 h->drv[log_unit].LunID;
1901 c->Header.LUN.LogDev.Mode = 1;
1902 } else if (use_unit_num == 2) {
1903 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr,
1905 c->Header.LUN.LogDev.Mode = 0;
1907 /* are we trying to read a vital product page */
1908 if (page_code != 0) {
1909 c->Request.CDB[1] = 0x01;
1910 c->Request.CDB[2] = page_code;
1912 c->Request.CDBLen = 6;
1913 c->Request.Type.Attribute = ATTR_SIMPLE;
1914 c->Request.Type.Direction = XFER_READ;
1915 c->Request.Timeout = 0;
1916 c->Request.CDB[0] = CISS_INQUIRY;
1917 c->Request.CDB[4] = size & 0xFF;
1918 break;
1919 case CISS_REPORT_LOG:
1920 case CISS_REPORT_PHYS:
1921 /* Talking to controller so It's a physical command
1922 mode = 00 target = 0. Nothing to write.
1924 c->Request.CDBLen = 12;
1925 c->Request.Type.Attribute = ATTR_SIMPLE;
1926 c->Request.Type.Direction = XFER_READ;
1927 c->Request.Timeout = 0;
1928 c->Request.CDB[0] = cmd;
1929 c->Request.CDB[6] = (size >> 24) & 0xFF; //MSB
1930 c->Request.CDB[7] = (size >> 16) & 0xFF;
1931 c->Request.CDB[8] = (size >> 8) & 0xFF;
1932 c->Request.CDB[9] = size & 0xFF;
1933 break;
1935 case CCISS_READ_CAPACITY:
1936 c->Header.LUN.LogDev.VolId = h->drv[log_unit].LunID;
1937 c->Header.LUN.LogDev.Mode = 1;
1938 c->Request.CDBLen = 10;
1939 c->Request.Type.Attribute = ATTR_SIMPLE;
1940 c->Request.Type.Direction = XFER_READ;
1941 c->Request.Timeout = 0;
1942 c->Request.CDB[0] = cmd;
1943 break;
1944 case CCISS_READ_CAPACITY_16:
1945 c->Header.LUN.LogDev.VolId = h->drv[log_unit].LunID;
1946 c->Header.LUN.LogDev.Mode = 1;
1947 c->Request.CDBLen = 16;
1948 c->Request.Type.Attribute = ATTR_SIMPLE;
1949 c->Request.Type.Direction = XFER_READ;
1950 c->Request.Timeout = 0;
1951 c->Request.CDB[0] = cmd;
1952 c->Request.CDB[1] = 0x10;
1953 c->Request.CDB[10] = (size >> 24) & 0xFF;
1954 c->Request.CDB[11] = (size >> 16) & 0xFF;
1955 c->Request.CDB[12] = (size >> 8) & 0xFF;
1956 c->Request.CDB[13] = size & 0xFF;
1957 c->Request.Timeout = 0;
1958 c->Request.CDB[0] = cmd;
1959 break;
1960 case CCISS_CACHE_FLUSH:
1961 c->Request.CDBLen = 12;
1962 c->Request.Type.Attribute = ATTR_SIMPLE;
1963 c->Request.Type.Direction = XFER_WRITE;
1964 c->Request.Timeout = 0;
1965 c->Request.CDB[0] = BMIC_WRITE;
1966 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
1967 break;
1968 default:
1969 printk(KERN_WARNING
1970 "cciss%d: Unknown Command 0x%c\n", ctlr, cmd);
1971 return IO_ERROR;
1973 } else if (cmd_type == TYPE_MSG) {
1974 switch (cmd) {
1975 case 0: /* ABORT message */
1976 c->Request.CDBLen = 12;
1977 c->Request.Type.Attribute = ATTR_SIMPLE;
1978 c->Request.Type.Direction = XFER_WRITE;
1979 c->Request.Timeout = 0;
1980 c->Request.CDB[0] = cmd; /* abort */
1981 c->Request.CDB[1] = 0; /* abort a command */
1982 /* buff contains the tag of the command to abort */
1983 memcpy(&c->Request.CDB[4], buff, 8);
1984 break;
1985 case 1: /* RESET message */
1986 c->Request.CDBLen = 12;
1987 c->Request.Type.Attribute = ATTR_SIMPLE;
1988 c->Request.Type.Direction = XFER_WRITE;
1989 c->Request.Timeout = 0;
1990 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
1991 c->Request.CDB[0] = cmd; /* reset */
1992 c->Request.CDB[1] = 0x04; /* reset a LUN */
1993 break;
1994 case 3: /* No-Op message */
1995 c->Request.CDBLen = 1;
1996 c->Request.Type.Attribute = ATTR_SIMPLE;
1997 c->Request.Type.Direction = XFER_WRITE;
1998 c->Request.Timeout = 0;
1999 c->Request.CDB[0] = cmd;
2000 break;
2001 default:
2002 printk(KERN_WARNING
2003 "cciss%d: unknown message type %d\n", ctlr, cmd);
2004 return IO_ERROR;
2006 } else {
2007 printk(KERN_WARNING
2008 "cciss%d: unknown command type %d\n", ctlr, cmd_type);
2009 return IO_ERROR;
2011 /* Fill in the scatter gather information */
2012 if (size > 0) {
2013 buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
2014 buff, size,
2015 PCI_DMA_BIDIRECTIONAL);
2016 c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
2017 c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
2018 c->SG[0].Len = size;
2019 c->SG[0].Ext = 0; /* we are not chaining */
2021 return status;
2024 static int sendcmd_withirq(__u8 cmd,
2025 int ctlr,
2026 void *buff,
2027 size_t size,
2028 unsigned int use_unit_num,
2029 unsigned int log_unit, __u8 page_code, int cmd_type)
2031 ctlr_info_t *h = hba[ctlr];
2032 CommandList_struct *c;
2033 u64bit buff_dma_handle;
2034 unsigned long flags;
2035 int return_status;
2036 DECLARE_COMPLETION_ONSTACK(wait);
2038 if ((c = cmd_alloc(h, 0)) == NULL)
2039 return -ENOMEM;
2040 return_status = fill_cmd(c, cmd, ctlr, buff, size, use_unit_num,
2041 log_unit, page_code, NULL, cmd_type);
2042 if (return_status != IO_OK) {
2043 cmd_free(h, c, 0);
2044 return return_status;
2046 resend_cmd2:
2047 c->waiting = &wait;
2049 /* Put the request on the tail of the queue and send it */
2050 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
2051 addQ(&h->reqQ, c);
2052 h->Qdepth++;
2053 start_io(h);
2054 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
2056 wait_for_completion(&wait);
2058 if (c->err_info->CommandStatus != 0) { /* an error has occurred */
2059 switch (c->err_info->CommandStatus) {
2060 case CMD_TARGET_STATUS:
2061 printk(KERN_WARNING "cciss: cmd %p has "
2062 " completed with errors\n", c);
2063 if (c->err_info->ScsiStatus) {
2064 printk(KERN_WARNING "cciss: cmd %p "
2065 "has SCSI Status = %x\n",
2066 c, c->err_info->ScsiStatus);
2069 break;
2070 case CMD_DATA_UNDERRUN:
2071 case CMD_DATA_OVERRUN:
2072 /* expected for inquire and report lun commands */
2073 break;
2074 case CMD_INVALID:
2075 printk(KERN_WARNING "cciss: Cmd %p is "
2076 "reported invalid\n", c);
2077 return_status = IO_ERROR;
2078 break;
2079 case CMD_PROTOCOL_ERR:
2080 printk(KERN_WARNING "cciss: cmd %p has "
2081 "protocol error \n", c);
2082 return_status = IO_ERROR;
2083 break;
2084 case CMD_HARDWARE_ERR:
2085 printk(KERN_WARNING "cciss: cmd %p had "
2086 " hardware error\n", c);
2087 return_status = IO_ERROR;
2088 break;
2089 case CMD_CONNECTION_LOST:
2090 printk(KERN_WARNING "cciss: cmd %p had "
2091 "connection lost\n", c);
2092 return_status = IO_ERROR;
2093 break;
2094 case CMD_ABORTED:
2095 printk(KERN_WARNING "cciss: cmd %p was "
2096 "aborted\n", c);
2097 return_status = IO_ERROR;
2098 break;
2099 case CMD_ABORT_FAILED:
2100 printk(KERN_WARNING "cciss: cmd %p reports "
2101 "abort failed\n", c);
2102 return_status = IO_ERROR;
2103 break;
2104 case CMD_UNSOLICITED_ABORT:
2105 printk(KERN_WARNING
2106 "cciss%d: unsolicited abort %p\n", ctlr, c);
2107 if (c->retry_count < MAX_CMD_RETRIES) {
2108 printk(KERN_WARNING
2109 "cciss%d: retrying %p\n", ctlr, c);
2110 c->retry_count++;
2111 /* erase the old error information */
2112 memset(c->err_info, 0,
2113 sizeof(ErrorInfo_struct));
2114 return_status = IO_OK;
2115 INIT_COMPLETION(wait);
2116 goto resend_cmd2;
2118 return_status = IO_ERROR;
2119 break;
2120 default:
2121 printk(KERN_WARNING "cciss: cmd %p returned "
2122 "unknown status %x\n", c,
2123 c->err_info->CommandStatus);
2124 return_status = IO_ERROR;
2127 /* unlock the buffers from DMA */
2128 buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2129 buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2130 pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
2131 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2132 cmd_free(h, c, 0);
2133 return return_status;
2136 static void cciss_geometry_inquiry(int ctlr, int logvol,
2137 int withirq, sector_t total_size,
2138 unsigned int block_size,
2139 InquiryData_struct *inq_buff,
2140 drive_info_struct *drv)
2142 int return_code;
2143 unsigned long t;
2145 memset(inq_buff, 0, sizeof(InquiryData_struct));
2146 if (withirq)
2147 return_code = sendcmd_withirq(CISS_INQUIRY, ctlr,
2148 inq_buff, sizeof(*inq_buff), 1,
2149 logvol, 0xC1, TYPE_CMD);
2150 else
2151 return_code = sendcmd(CISS_INQUIRY, ctlr, inq_buff,
2152 sizeof(*inq_buff), 1, logvol, 0xC1, NULL,
2153 TYPE_CMD);
2154 if (return_code == IO_OK) {
2155 if (inq_buff->data_byte[8] == 0xFF) {
2156 printk(KERN_WARNING
2157 "cciss: reading geometry failed, volume "
2158 "does not support reading geometry\n");
2159 drv->heads = 255;
2160 drv->sectors = 32; // Sectors per track
2161 drv->cylinders = total_size + 1;
2162 drv->raid_level = RAID_UNKNOWN;
2163 } else {
2164 drv->heads = inq_buff->data_byte[6];
2165 drv->sectors = inq_buff->data_byte[7];
2166 drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
2167 drv->cylinders += inq_buff->data_byte[5];
2168 drv->raid_level = inq_buff->data_byte[8];
2170 drv->block_size = block_size;
2171 drv->nr_blocks = total_size + 1;
2172 t = drv->heads * drv->sectors;
2173 if (t > 1) {
2174 sector_t real_size = total_size + 1;
2175 unsigned long rem = sector_div(real_size, t);
2176 if (rem)
2177 real_size++;
2178 drv->cylinders = real_size;
2180 } else { /* Get geometry failed */
2181 printk(KERN_WARNING "cciss: reading geometry failed\n");
2183 printk(KERN_INFO " heads=%d, sectors=%d, cylinders=%d\n\n",
2184 drv->heads, drv->sectors, drv->cylinders);
2187 static void
2188 cciss_read_capacity(int ctlr, int logvol, int withirq, sector_t *total_size,
2189 unsigned int *block_size)
2191 ReadCapdata_struct *buf;
2192 int return_code;
2194 buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
2195 if (!buf) {
2196 printk(KERN_WARNING "cciss: out of memory\n");
2197 return;
2200 if (withirq)
2201 return_code = sendcmd_withirq(CCISS_READ_CAPACITY,
2202 ctlr, buf, sizeof(ReadCapdata_struct),
2203 1, logvol, 0, TYPE_CMD);
2204 else
2205 return_code = sendcmd(CCISS_READ_CAPACITY,
2206 ctlr, buf, sizeof(ReadCapdata_struct),
2207 1, logvol, 0, NULL, TYPE_CMD);
2208 if (return_code == IO_OK) {
2209 *total_size = be32_to_cpu(*(__be32 *) buf->total_size);
2210 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2211 } else { /* read capacity command failed */
2212 printk(KERN_WARNING "cciss: read capacity failed\n");
2213 *total_size = 0;
2214 *block_size = BLOCK_SIZE;
2216 if (*total_size != 0)
2217 printk(KERN_INFO " blocks= %llu block_size= %d\n",
2218 (unsigned long long)*total_size+1, *block_size);
2219 kfree(buf);
2222 static void
2223 cciss_read_capacity_16(int ctlr, int logvol, int withirq, sector_t *total_size, unsigned int *block_size)
2225 ReadCapdata_struct_16 *buf;
2226 int return_code;
2228 buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
2229 if (!buf) {
2230 printk(KERN_WARNING "cciss: out of memory\n");
2231 return;
2234 if (withirq) {
2235 return_code = sendcmd_withirq(CCISS_READ_CAPACITY_16,
2236 ctlr, buf, sizeof(ReadCapdata_struct_16),
2237 1, logvol, 0, TYPE_CMD);
2239 else {
2240 return_code = sendcmd(CCISS_READ_CAPACITY_16,
2241 ctlr, buf, sizeof(ReadCapdata_struct_16),
2242 1, logvol, 0, NULL, TYPE_CMD);
2244 if (return_code == IO_OK) {
2245 *total_size = be64_to_cpu(*(__be64 *) buf->total_size);
2246 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2247 } else { /* read capacity command failed */
2248 printk(KERN_WARNING "cciss: read capacity failed\n");
2249 *total_size = 0;
2250 *block_size = BLOCK_SIZE;
2252 printk(KERN_INFO " blocks= %llu block_size= %d\n",
2253 (unsigned long long)*total_size+1, *block_size);
2254 kfree(buf);
2257 static int cciss_revalidate(struct gendisk *disk)
2259 ctlr_info_t *h = get_host(disk);
2260 drive_info_struct *drv = get_drv(disk);
2261 int logvol;
2262 int FOUND = 0;
2263 unsigned int block_size;
2264 sector_t total_size;
2265 InquiryData_struct *inq_buff = NULL;
2267 for (logvol = 0; logvol < CISS_MAX_LUN; logvol++) {
2268 if (h->drv[logvol].LunID == drv->LunID) {
2269 FOUND = 1;
2270 break;
2274 if (!FOUND)
2275 return 1;
2277 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2278 if (inq_buff == NULL) {
2279 printk(KERN_WARNING "cciss: out of memory\n");
2280 return 1;
2282 if (h->cciss_read == CCISS_READ_10) {
2283 cciss_read_capacity(h->ctlr, logvol, 1,
2284 &total_size, &block_size);
2285 } else {
2286 cciss_read_capacity_16(h->ctlr, logvol, 1,
2287 &total_size, &block_size);
2289 cciss_geometry_inquiry(h->ctlr, logvol, 1, total_size, block_size,
2290 inq_buff, drv);
2292 blk_queue_hardsect_size(drv->queue, drv->block_size);
2293 set_capacity(disk, drv->nr_blocks);
2295 kfree(inq_buff);
2296 return 0;
2300 * Wait polling for a command to complete.
2301 * The memory mapped FIFO is polled for the completion.
2302 * Used only at init time, interrupts from the HBA are disabled.
2304 static unsigned long pollcomplete(int ctlr)
2306 unsigned long done;
2307 int i;
2309 /* Wait (up to 20 seconds) for a command to complete */
2311 for (i = 20 * HZ; i > 0; i--) {
2312 done = hba[ctlr]->access.command_completed(hba[ctlr]);
2313 if (done == FIFO_EMPTY)
2314 schedule_timeout_uninterruptible(1);
2315 else
2316 return done;
2318 /* Invalid address to tell caller we ran out of time */
2319 return 1;
2322 static int add_sendcmd_reject(__u8 cmd, int ctlr, unsigned long complete)
2324 /* We get in here if sendcmd() is polling for completions
2325 and gets some command back that it wasn't expecting --
2326 something other than that which it just sent down.
2327 Ordinarily, that shouldn't happen, but it can happen when
2328 the scsi tape stuff gets into error handling mode, and
2329 starts using sendcmd() to try to abort commands and
2330 reset tape drives. In that case, sendcmd may pick up
2331 completions of commands that were sent to logical drives
2332 through the block i/o system, or cciss ioctls completing, etc.
2333 In that case, we need to save those completions for later
2334 processing by the interrupt handler.
2337 #ifdef CONFIG_CISS_SCSI_TAPE
2338 struct sendcmd_reject_list *srl = &hba[ctlr]->scsi_rejects;
2340 /* If it's not the scsi tape stuff doing error handling, (abort */
2341 /* or reset) then we don't expect anything weird. */
2342 if (cmd != CCISS_RESET_MSG && cmd != CCISS_ABORT_MSG) {
2343 #endif
2344 printk(KERN_WARNING "cciss cciss%d: SendCmd "
2345 "Invalid command list address returned! (%lx)\n",
2346 ctlr, complete);
2347 /* not much we can do. */
2348 #ifdef CONFIG_CISS_SCSI_TAPE
2349 return 1;
2352 /* We've sent down an abort or reset, but something else
2353 has completed */
2354 if (srl->ncompletions >= (hba[ctlr]->nr_cmds + 2)) {
2355 /* Uh oh. No room to save it for later... */
2356 printk(KERN_WARNING "cciss%d: Sendcmd: Invalid command addr, "
2357 "reject list overflow, command lost!\n", ctlr);
2358 return 1;
2360 /* Save it for later */
2361 srl->complete[srl->ncompletions] = complete;
2362 srl->ncompletions++;
2363 #endif
2364 return 0;
2368 * Send a command to the controller, and wait for it to complete.
2369 * Only used at init time.
2371 static int sendcmd(__u8 cmd, int ctlr, void *buff, size_t size, unsigned int use_unit_num, /* 0: address the controller,
2372 1: address logical volume log_unit,
2373 2: periph device address is scsi3addr */
2374 unsigned int log_unit,
2375 __u8 page_code, unsigned char *scsi3addr, int cmd_type)
2377 CommandList_struct *c;
2378 int i;
2379 unsigned long complete;
2380 ctlr_info_t *info_p = hba[ctlr];
2381 u64bit buff_dma_handle;
2382 int status, done = 0;
2384 if ((c = cmd_alloc(info_p, 1)) == NULL) {
2385 printk(KERN_WARNING "cciss: unable to get memory");
2386 return IO_ERROR;
2388 status = fill_cmd(c, cmd, ctlr, buff, size, use_unit_num,
2389 log_unit, page_code, scsi3addr, cmd_type);
2390 if (status != IO_OK) {
2391 cmd_free(info_p, c, 1);
2392 return status;
2394 resend_cmd1:
2396 * Disable interrupt
2398 #ifdef CCISS_DEBUG
2399 printk(KERN_DEBUG "cciss: turning intr off\n");
2400 #endif /* CCISS_DEBUG */
2401 info_p->access.set_intr_mask(info_p, CCISS_INTR_OFF);
2403 /* Make sure there is room in the command FIFO */
2404 /* Actually it should be completely empty at this time */
2405 /* unless we are in here doing error handling for the scsi */
2406 /* tape side of the driver. */
2407 for (i = 200000; i > 0; i--) {
2408 /* if fifo isn't full go */
2409 if (!(info_p->access.fifo_full(info_p))) {
2411 break;
2413 udelay(10);
2414 printk(KERN_WARNING "cciss cciss%d: SendCmd FIFO full,"
2415 " waiting!\n", ctlr);
2418 * Send the cmd
2420 info_p->access.submit_command(info_p, c);
2421 done = 0;
2422 do {
2423 complete = pollcomplete(ctlr);
2425 #ifdef CCISS_DEBUG
2426 printk(KERN_DEBUG "cciss: command completed\n");
2427 #endif /* CCISS_DEBUG */
2429 if (complete == 1) {
2430 printk(KERN_WARNING
2431 "cciss cciss%d: SendCmd Timeout out, "
2432 "No command list address returned!\n", ctlr);
2433 status = IO_ERROR;
2434 done = 1;
2435 break;
2438 /* This will need to change for direct lookup completions */
2439 if ((complete & CISS_ERROR_BIT)
2440 && (complete & ~CISS_ERROR_BIT) == c->busaddr) {
2441 /* if data overrun or underun on Report command
2442 ignore it
2444 if (((c->Request.CDB[0] == CISS_REPORT_LOG) ||
2445 (c->Request.CDB[0] == CISS_REPORT_PHYS) ||
2446 (c->Request.CDB[0] == CISS_INQUIRY)) &&
2447 ((c->err_info->CommandStatus ==
2448 CMD_DATA_OVERRUN) ||
2449 (c->err_info->CommandStatus == CMD_DATA_UNDERRUN)
2450 )) {
2451 complete = c->busaddr;
2452 } else {
2453 if (c->err_info->CommandStatus ==
2454 CMD_UNSOLICITED_ABORT) {
2455 printk(KERN_WARNING "cciss%d: "
2456 "unsolicited abort %p\n",
2457 ctlr, c);
2458 if (c->retry_count < MAX_CMD_RETRIES) {
2459 printk(KERN_WARNING
2460 "cciss%d: retrying %p\n",
2461 ctlr, c);
2462 c->retry_count++;
2463 /* erase the old error */
2464 /* information */
2465 memset(c->err_info, 0,
2466 sizeof
2467 (ErrorInfo_struct));
2468 goto resend_cmd1;
2469 } else {
2470 printk(KERN_WARNING
2471 "cciss%d: retried %p too "
2472 "many times\n", ctlr, c);
2473 status = IO_ERROR;
2474 goto cleanup1;
2476 } else if (c->err_info->CommandStatus ==
2477 CMD_UNABORTABLE) {
2478 printk(KERN_WARNING
2479 "cciss%d: command could not be aborted.\n",
2480 ctlr);
2481 status = IO_ERROR;
2482 goto cleanup1;
2484 printk(KERN_WARNING "ciss ciss%d: sendcmd"
2485 " Error %x \n", ctlr,
2486 c->err_info->CommandStatus);
2487 printk(KERN_WARNING "ciss ciss%d: sendcmd"
2488 " offensive info\n"
2489 " size %x\n num %x value %x\n",
2490 ctlr,
2491 c->err_info->MoreErrInfo.Invalid_Cmd.
2492 offense_size,
2493 c->err_info->MoreErrInfo.Invalid_Cmd.
2494 offense_num,
2495 c->err_info->MoreErrInfo.Invalid_Cmd.
2496 offense_value);
2497 status = IO_ERROR;
2498 goto cleanup1;
2501 /* This will need changing for direct lookup completions */
2502 if (complete != c->busaddr) {
2503 if (add_sendcmd_reject(cmd, ctlr, complete) != 0) {
2504 BUG(); /* we are pretty much hosed if we get here. */
2506 continue;
2507 } else
2508 done = 1;
2509 } while (!done);
2511 cleanup1:
2512 /* unlock the data buffer from DMA */
2513 buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2514 buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2515 pci_unmap_single(info_p->pdev, (dma_addr_t) buff_dma_handle.val,
2516 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2517 #ifdef CONFIG_CISS_SCSI_TAPE
2518 /* if we saved some commands for later, process them now. */
2519 if (info_p->scsi_rejects.ncompletions > 0)
2520 do_cciss_intr(0, info_p);
2521 #endif
2522 cmd_free(info_p, c, 1);
2523 return status;
2527 * Map (physical) PCI mem into (virtual) kernel space
2529 static void __iomem *remap_pci_mem(ulong base, ulong size)
2531 ulong page_base = ((ulong) base) & PAGE_MASK;
2532 ulong page_offs = ((ulong) base) - page_base;
2533 void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2535 return page_remapped ? (page_remapped + page_offs) : NULL;
2539 * Takes jobs of the Q and sends them to the hardware, then puts it on
2540 * the Q to wait for completion.
2542 static void start_io(ctlr_info_t *h)
2544 CommandList_struct *c;
2546 while ((c = h->reqQ) != NULL) {
2547 /* can't do anything if fifo is full */
2548 if ((h->access.fifo_full(h))) {
2549 printk(KERN_WARNING "cciss: fifo full\n");
2550 break;
2553 /* Get the first entry from the Request Q */
2554 removeQ(&(h->reqQ), c);
2555 h->Qdepth--;
2557 /* Tell the controller execute command */
2558 h->access.submit_command(h, c);
2560 /* Put job onto the completed Q */
2561 addQ(&(h->cmpQ), c);
2565 /* Assumes that CCISS_LOCK(h->ctlr) is held. */
2566 /* Zeros out the error record and then resends the command back */
2567 /* to the controller */
2568 static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
2570 /* erase the old error information */
2571 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2573 /* add it to software queue and then send it to the controller */
2574 addQ(&(h->reqQ), c);
2575 h->Qdepth++;
2576 if (h->Qdepth > h->maxQsinceinit)
2577 h->maxQsinceinit = h->Qdepth;
2579 start_io(h);
2582 static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
2583 unsigned int msg_byte, unsigned int host_byte,
2584 unsigned int driver_byte)
2586 /* inverse of macros in scsi.h */
2587 return (scsi_status_byte & 0xff) |
2588 ((msg_byte & 0xff) << 8) |
2589 ((host_byte & 0xff) << 16) |
2590 ((driver_byte & 0xff) << 24);
2593 static inline int evaluate_target_status(CommandList_struct *cmd)
2595 unsigned char sense_key;
2596 unsigned char status_byte, msg_byte, host_byte, driver_byte;
2597 int error_value;
2599 /* If we get in here, it means we got "target status", that is, scsi status */
2600 status_byte = cmd->err_info->ScsiStatus;
2601 driver_byte = DRIVER_OK;
2602 msg_byte = cmd->err_info->CommandStatus; /* correct? seems too device specific */
2604 if (blk_pc_request(cmd->rq))
2605 host_byte = DID_PASSTHROUGH;
2606 else
2607 host_byte = DID_OK;
2609 error_value = make_status_bytes(status_byte, msg_byte,
2610 host_byte, driver_byte);
2612 if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) {
2613 if (!blk_pc_request(cmd->rq))
2614 printk(KERN_WARNING "cciss: cmd %p "
2615 "has SCSI Status 0x%x\n",
2616 cmd, cmd->err_info->ScsiStatus);
2617 return error_value;
2620 /* check the sense key */
2621 sense_key = 0xf & cmd->err_info->SenseInfo[2];
2622 /* no status or recovered error */
2623 if (((sense_key == 0x0) || (sense_key == 0x1)) && !blk_pc_request(cmd->rq))
2624 error_value = 0;
2626 if (!blk_pc_request(cmd->rq)) { /* Not SG_IO or similar? */
2627 if (error_value != 0)
2628 printk(KERN_WARNING "cciss: cmd %p has CHECK CONDITION"
2629 " sense key = 0x%x\n", cmd, sense_key);
2630 return error_value;
2633 /* SG_IO or similar, copy sense data back */
2634 if (cmd->rq->sense) {
2635 if (cmd->rq->sense_len > cmd->err_info->SenseLen)
2636 cmd->rq->sense_len = cmd->err_info->SenseLen;
2637 memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
2638 cmd->rq->sense_len);
2639 } else
2640 cmd->rq->sense_len = 0;
2642 return error_value;
2645 /* checks the status of the job and calls complete buffers to mark all
2646 * buffers for the completed job. Note that this function does not need
2647 * to hold the hba/queue lock.
2649 static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
2650 int timeout)
2652 int retry_cmd = 0;
2653 struct request *rq = cmd->rq;
2655 rq->errors = 0;
2657 if (timeout)
2658 rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);
2660 if (cmd->err_info->CommandStatus == 0) /* no error has occurred */
2661 goto after_error_processing;
2663 switch (cmd->err_info->CommandStatus) {
2664 case CMD_TARGET_STATUS:
2665 rq->errors = evaluate_target_status(cmd);
2666 break;
2667 case CMD_DATA_UNDERRUN:
2668 if (blk_fs_request(cmd->rq)) {
2669 printk(KERN_WARNING "cciss: cmd %p has"
2670 " completed with data underrun "
2671 "reported\n", cmd);
2672 cmd->rq->data_len = cmd->err_info->ResidualCnt;
2674 break;
2675 case CMD_DATA_OVERRUN:
2676 if (blk_fs_request(cmd->rq))
2677 printk(KERN_WARNING "cciss: cmd %p has"
2678 " completed with data overrun "
2679 "reported\n", cmd);
2680 break;
2681 case CMD_INVALID:
2682 printk(KERN_WARNING "cciss: cmd %p is "
2683 "reported invalid\n", cmd);
2684 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2685 cmd->err_info->CommandStatus, DRIVER_OK,
2686 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2687 break;
2688 case CMD_PROTOCOL_ERR:
2689 printk(KERN_WARNING "cciss: cmd %p has "
2690 "protocol error \n", cmd);
2691 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2692 cmd->err_info->CommandStatus, DRIVER_OK,
2693 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2694 break;
2695 case CMD_HARDWARE_ERR:
2696 printk(KERN_WARNING "cciss: cmd %p had "
2697 " hardware error\n", cmd);
2698 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2699 cmd->err_info->CommandStatus, DRIVER_OK,
2700 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2701 break;
2702 case CMD_CONNECTION_LOST:
2703 printk(KERN_WARNING "cciss: cmd %p had "
2704 "connection lost\n", cmd);
2705 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2706 cmd->err_info->CommandStatus, DRIVER_OK,
2707 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2708 break;
2709 case CMD_ABORTED:
2710 printk(KERN_WARNING "cciss: cmd %p was "
2711 "aborted\n", cmd);
2712 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2713 cmd->err_info->CommandStatus, DRIVER_OK,
2714 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
2715 break;
2716 case CMD_ABORT_FAILED:
2717 printk(KERN_WARNING "cciss: cmd %p reports "
2718 "abort failed\n", cmd);
2719 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2720 cmd->err_info->CommandStatus, DRIVER_OK,
2721 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2722 break;
2723 case CMD_UNSOLICITED_ABORT:
2724 printk(KERN_WARNING "cciss%d: unsolicited "
2725 "abort %p\n", h->ctlr, cmd);
2726 if (cmd->retry_count < MAX_CMD_RETRIES) {
2727 retry_cmd = 1;
2728 printk(KERN_WARNING
2729 "cciss%d: retrying %p\n", h->ctlr, cmd);
2730 cmd->retry_count++;
2731 } else
2732 printk(KERN_WARNING
2733 "cciss%d: %p retried too "
2734 "many times\n", h->ctlr, cmd);
2735 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2736 cmd->err_info->CommandStatus, DRIVER_OK,
2737 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
2738 break;
2739 case CMD_TIMEOUT:
2740 printk(KERN_WARNING "cciss: cmd %p timedout\n", cmd);
2741 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2742 cmd->err_info->CommandStatus, DRIVER_OK,
2743 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2744 break;
2745 default:
2746 printk(KERN_WARNING "cciss: cmd %p returned "
2747 "unknown status %x\n", cmd,
2748 cmd->err_info->CommandStatus);
2749 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2750 cmd->err_info->CommandStatus, DRIVER_OK,
2751 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2754 after_error_processing:
2756 /* We need to return this command */
2757 if (retry_cmd) {
2758 resend_cciss_cmd(h, cmd);
2759 return;
2761 cmd->rq->completion_data = cmd;
2762 blk_complete_request(cmd->rq);
2766 * Get a request and submit it to the controller.
2768 static void do_cciss_request(struct request_queue *q)
2770 ctlr_info_t *h = q->queuedata;
2771 CommandList_struct *c;
2772 sector_t start_blk;
2773 int seg;
2774 struct request *creq;
2775 u64bit temp64;
2776 struct scatterlist tmp_sg[MAXSGENTRIES];
2777 drive_info_struct *drv;
2778 int i, dir;
2780 /* We call start_io here in case there is a command waiting on the
2781 * queue that has not been sent.
2783 if (blk_queue_plugged(q))
2784 goto startio;
2786 queue:
2787 creq = elv_next_request(q);
2788 if (!creq)
2789 goto startio;
2791 BUG_ON(creq->nr_phys_segments > MAXSGENTRIES);
2793 if ((c = cmd_alloc(h, 1)) == NULL)
2794 goto full;
2796 blkdev_dequeue_request(creq);
2798 spin_unlock_irq(q->queue_lock);
2800 c->cmd_type = CMD_RWREQ;
2801 c->rq = creq;
2803 /* fill in the request */
2804 drv = creq->rq_disk->private_data;
2805 c->Header.ReplyQueue = 0; // unused in simple mode
2806 /* got command from pool, so use the command block index instead */
2807 /* for direct lookups. */
2808 /* The first 2 bits are reserved for controller error reporting. */
2809 c->Header.Tag.lower = (c->cmdindex << 3);
2810 c->Header.Tag.lower |= 0x04; /* flag for direct lookup. */
2811 c->Header.LUN.LogDev.VolId = drv->LunID;
2812 c->Header.LUN.LogDev.Mode = 1;
2813 c->Request.CDBLen = 10; // 12 byte commands not in FW yet;
2814 c->Request.Type.Type = TYPE_CMD; // It is a command.
2815 c->Request.Type.Attribute = ATTR_SIMPLE;
2816 c->Request.Type.Direction =
2817 (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
2818 c->Request.Timeout = 0; // Don't time out
2819 c->Request.CDB[0] =
2820 (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
2821 start_blk = creq->sector;
2822 #ifdef CCISS_DEBUG
2823 printk(KERN_DEBUG "ciss: sector =%d nr_sectors=%d\n", (int)creq->sector,
2824 (int)creq->nr_sectors);
2825 #endif /* CCISS_DEBUG */
2827 sg_init_table(tmp_sg, MAXSGENTRIES);
2828 seg = blk_rq_map_sg(q, creq, tmp_sg);
2830 /* get the DMA records for the setup */
2831 if (c->Request.Type.Direction == XFER_READ)
2832 dir = PCI_DMA_FROMDEVICE;
2833 else
2834 dir = PCI_DMA_TODEVICE;
2836 for (i = 0; i < seg; i++) {
2837 c->SG[i].Len = tmp_sg[i].length;
2838 temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]),
2839 tmp_sg[i].offset,
2840 tmp_sg[i].length, dir);
2841 c->SG[i].Addr.lower = temp64.val32.lower;
2842 c->SG[i].Addr.upper = temp64.val32.upper;
2843 c->SG[i].Ext = 0; // we are not chaining
2845 /* track how many SG entries we are using */
2846 if (seg > h->maxSG)
2847 h->maxSG = seg;
2849 #ifdef CCISS_DEBUG
2850 printk(KERN_DEBUG "cciss: Submitting %d sectors in %d segments\n",
2851 creq->nr_sectors, seg);
2852 #endif /* CCISS_DEBUG */
2854 c->Header.SGList = c->Header.SGTotal = seg;
2855 if (likely(blk_fs_request(creq))) {
2856 if(h->cciss_read == CCISS_READ_10) {
2857 c->Request.CDB[1] = 0;
2858 c->Request.CDB[2] = (start_blk >> 24) & 0xff; //MSB
2859 c->Request.CDB[3] = (start_blk >> 16) & 0xff;
2860 c->Request.CDB[4] = (start_blk >> 8) & 0xff;
2861 c->Request.CDB[5] = start_blk & 0xff;
2862 c->Request.CDB[6] = 0; // (sect >> 24) & 0xff; MSB
2863 c->Request.CDB[7] = (creq->nr_sectors >> 8) & 0xff;
2864 c->Request.CDB[8] = creq->nr_sectors & 0xff;
2865 c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
2866 } else {
2867 u32 upper32 = upper_32_bits(start_blk);
2869 c->Request.CDBLen = 16;
2870 c->Request.CDB[1]= 0;
2871 c->Request.CDB[2]= (upper32 >> 24) & 0xff; //MSB
2872 c->Request.CDB[3]= (upper32 >> 16) & 0xff;
2873 c->Request.CDB[4]= (upper32 >> 8) & 0xff;
2874 c->Request.CDB[5]= upper32 & 0xff;
2875 c->Request.CDB[6]= (start_blk >> 24) & 0xff;
2876 c->Request.CDB[7]= (start_blk >> 16) & 0xff;
2877 c->Request.CDB[8]= (start_blk >> 8) & 0xff;
2878 c->Request.CDB[9]= start_blk & 0xff;
2879 c->Request.CDB[10]= (creq->nr_sectors >> 24) & 0xff;
2880 c->Request.CDB[11]= (creq->nr_sectors >> 16) & 0xff;
2881 c->Request.CDB[12]= (creq->nr_sectors >> 8) & 0xff;
2882 c->Request.CDB[13]= creq->nr_sectors & 0xff;
2883 c->Request.CDB[14] = c->Request.CDB[15] = 0;
2885 } else if (blk_pc_request(creq)) {
2886 c->Request.CDBLen = creq->cmd_len;
2887 memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB);
2888 } else {
2889 printk(KERN_WARNING "cciss%d: bad request type %d\n", h->ctlr, creq->cmd_type);
2890 BUG();
2893 spin_lock_irq(q->queue_lock);
2895 addQ(&(h->reqQ), c);
2896 h->Qdepth++;
2897 if (h->Qdepth > h->maxQsinceinit)
2898 h->maxQsinceinit = h->Qdepth;
2900 goto queue;
2901 full:
2902 blk_stop_queue(q);
2903 startio:
2904 /* We will already have the driver lock here so not need
2905 * to lock it.
2907 start_io(h);
2910 static inline unsigned long get_next_completion(ctlr_info_t *h)
2912 #ifdef CONFIG_CISS_SCSI_TAPE
2913 /* Any rejects from sendcmd() lying around? Process them first */
2914 if (h->scsi_rejects.ncompletions == 0)
2915 return h->access.command_completed(h);
2916 else {
2917 struct sendcmd_reject_list *srl;
2918 int n;
2919 srl = &h->scsi_rejects;
2920 n = --srl->ncompletions;
2921 /* printk("cciss%d: processing saved reject\n", h->ctlr); */
2922 printk("p");
2923 return srl->complete[n];
2925 #else
2926 return h->access.command_completed(h);
2927 #endif
2930 static inline int interrupt_pending(ctlr_info_t *h)
2932 #ifdef CONFIG_CISS_SCSI_TAPE
2933 return (h->access.intr_pending(h)
2934 || (h->scsi_rejects.ncompletions > 0));
2935 #else
2936 return h->access.intr_pending(h);
2937 #endif
2940 static inline long interrupt_not_for_us(ctlr_info_t *h)
2942 #ifdef CONFIG_CISS_SCSI_TAPE
2943 return (((h->access.intr_pending(h) == 0) ||
2944 (h->interrupts_enabled == 0))
2945 && (h->scsi_rejects.ncompletions == 0));
2946 #else
2947 return (((h->access.intr_pending(h) == 0) ||
2948 (h->interrupts_enabled == 0)));
2949 #endif
2952 static irqreturn_t do_cciss_intr(int irq, void *dev_id)
2954 ctlr_info_t *h = dev_id;
2955 CommandList_struct *c;
2956 unsigned long flags;
2957 __u32 a, a1, a2;
2959 if (interrupt_not_for_us(h))
2960 return IRQ_NONE;
2962 * If there are completed commands in the completion queue,
2963 * we had better do something about it.
2965 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2966 while (interrupt_pending(h)) {
2967 while ((a = get_next_completion(h)) != FIFO_EMPTY) {
2968 a1 = a;
2969 if ((a & 0x04)) {
2970 a2 = (a >> 3);
2971 if (a2 >= h->nr_cmds) {
2972 printk(KERN_WARNING
2973 "cciss: controller cciss%d failed, stopping.\n",
2974 h->ctlr);
2975 fail_all_cmds(h->ctlr);
2976 return IRQ_HANDLED;
2979 c = h->cmd_pool + a2;
2980 a = c->busaddr;
2982 } else {
2983 a &= ~3;
2984 if ((c = h->cmpQ) == NULL) {
2985 printk(KERN_WARNING
2986 "cciss: Completion of %08x ignored\n",
2987 a1);
2988 continue;
2990 while (c->busaddr != a) {
2991 c = c->next;
2992 if (c == h->cmpQ)
2993 break;
2997 * If we've found the command, take it off the
2998 * completion Q and free it
3000 if (c->busaddr == a) {
3001 removeQ(&h->cmpQ, c);
3002 if (c->cmd_type == CMD_RWREQ) {
3003 complete_command(h, c, 0);
3004 } else if (c->cmd_type == CMD_IOCTL_PEND) {
3005 complete(c->waiting);
3007 # ifdef CONFIG_CISS_SCSI_TAPE
3008 else if (c->cmd_type == CMD_SCSI)
3009 complete_scsi_command(c, 0, a1);
3010 # endif
3011 continue;
3016 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
3017 return IRQ_HANDLED;
3021 * We cannot read the structure directly, for portability we must use
3022 * the io functions.
3023 * This is for debug only.
3025 #ifdef CCISS_DEBUG
3026 static void print_cfg_table(CfgTable_struct *tb)
3028 int i;
3029 char temp_name[17];
3031 printk("Controller Configuration information\n");
3032 printk("------------------------------------\n");
3033 for (i = 0; i < 4; i++)
3034 temp_name[i] = readb(&(tb->Signature[i]));
3035 temp_name[4] = '\0';
3036 printk(" Signature = %s\n", temp_name);
3037 printk(" Spec Number = %d\n", readl(&(tb->SpecValence)));
3038 printk(" Transport methods supported = 0x%x\n",
3039 readl(&(tb->TransportSupport)));
3040 printk(" Transport methods active = 0x%x\n",
3041 readl(&(tb->TransportActive)));
3042 printk(" Requested transport Method = 0x%x\n",
3043 readl(&(tb->HostWrite.TransportRequest)));
3044 printk(" Coalesce Interrupt Delay = 0x%x\n",
3045 readl(&(tb->HostWrite.CoalIntDelay)));
3046 printk(" Coalesce Interrupt Count = 0x%x\n",
3047 readl(&(tb->HostWrite.CoalIntCount)));
3048 printk(" Max outstanding commands = 0x%d\n",
3049 readl(&(tb->CmdsOutMax)));
3050 printk(" Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3051 for (i = 0; i < 16; i++)
3052 temp_name[i] = readb(&(tb->ServerName[i]));
3053 temp_name[16] = '\0';
3054 printk(" Server Name = %s\n", temp_name);
3055 printk(" Heartbeat Counter = 0x%x\n\n\n", readl(&(tb->HeartBeat)));
3057 #endif /* CCISS_DEBUG */
3059 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3061 int i, offset, mem_type, bar_type;
3062 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3063 return 0;
3064 offset = 0;
3065 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3066 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3067 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3068 offset += 4;
3069 else {
3070 mem_type = pci_resource_flags(pdev, i) &
3071 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3072 switch (mem_type) {
3073 case PCI_BASE_ADDRESS_MEM_TYPE_32:
3074 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3075 offset += 4; /* 32 bit */
3076 break;
3077 case PCI_BASE_ADDRESS_MEM_TYPE_64:
3078 offset += 8;
3079 break;
3080 default: /* reserved in PCI 2.2 */
3081 printk(KERN_WARNING
3082 "Base address is invalid\n");
3083 return -1;
3084 break;
3087 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3088 return i + 1;
3090 return -1;
3093 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3094 * controllers that are capable. If not, we use IO-APIC mode.
3097 static void __devinit cciss_interrupt_mode(ctlr_info_t *c,
3098 struct pci_dev *pdev, __u32 board_id)
3100 #ifdef CONFIG_PCI_MSI
3101 int err;
3102 struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1},
3103 {0, 2}, {0, 3}
3106 /* Some boards advertise MSI but don't really support it */
3107 if ((board_id == 0x40700E11) ||
3108 (board_id == 0x40800E11) ||
3109 (board_id == 0x40820E11) || (board_id == 0x40830E11))
3110 goto default_int_mode;
3112 if (pci_find_capability(pdev, PCI_CAP_ID_MSIX)) {
3113 err = pci_enable_msix(pdev, cciss_msix_entries, 4);
3114 if (!err) {
3115 c->intr[0] = cciss_msix_entries[0].vector;
3116 c->intr[1] = cciss_msix_entries[1].vector;
3117 c->intr[2] = cciss_msix_entries[2].vector;
3118 c->intr[3] = cciss_msix_entries[3].vector;
3119 c->msix_vector = 1;
3120 return;
3122 if (err > 0) {
3123 printk(KERN_WARNING "cciss: only %d MSI-X vectors "
3124 "available\n", err);
3125 goto default_int_mode;
3126 } else {
3127 printk(KERN_WARNING "cciss: MSI-X init failed %d\n",
3128 err);
3129 goto default_int_mode;
3132 if (pci_find_capability(pdev, PCI_CAP_ID_MSI)) {
3133 if (!pci_enable_msi(pdev)) {
3134 c->msi_vector = 1;
3135 } else {
3136 printk(KERN_WARNING "cciss: MSI init failed\n");
3139 default_int_mode:
3140 #endif /* CONFIG_PCI_MSI */
3141 /* if we get here we're going to use the default interrupt mode */
3142 c->intr[SIMPLE_MODE_INT] = pdev->irq;
3143 return;
3146 static int __devinit cciss_pci_init(ctlr_info_t *c, struct pci_dev *pdev)
3148 ushort subsystem_vendor_id, subsystem_device_id, command;
3149 __u32 board_id, scratchpad = 0;
3150 __u64 cfg_offset;
3151 __u32 cfg_base_addr;
3152 __u64 cfg_base_addr_index;
3153 int i, err;
3155 /* check to see if controller has been disabled */
3156 /* BEFORE trying to enable it */
3157 (void)pci_read_config_word(pdev, PCI_COMMAND, &command);
3158 if (!(command & 0x02)) {
3159 printk(KERN_WARNING
3160 "cciss: controller appears to be disabled\n");
3161 return -ENODEV;
3164 err = pci_enable_device(pdev);
3165 if (err) {
3166 printk(KERN_ERR "cciss: Unable to Enable PCI device\n");
3167 return err;
3170 err = pci_request_regions(pdev, "cciss");
3171 if (err) {
3172 printk(KERN_ERR "cciss: Cannot obtain PCI resources, "
3173 "aborting\n");
3174 return err;
3177 subsystem_vendor_id = pdev->subsystem_vendor;
3178 subsystem_device_id = pdev->subsystem_device;
3179 board_id = (((__u32) (subsystem_device_id << 16) & 0xffff0000) |
3180 subsystem_vendor_id);
3182 #ifdef CCISS_DEBUG
3183 printk("command = %x\n", command);
3184 printk("irq = %x\n", pdev->irq);
3185 printk("board_id = %x\n", board_id);
3186 #endif /* CCISS_DEBUG */
3188 /* If the kernel supports MSI/MSI-X we will try to enable that functionality,
3189 * else we use the IO-APIC interrupt assigned to us by system ROM.
3191 cciss_interrupt_mode(c, pdev, board_id);
3194 * Memory base addr is first addr , the second points to the config
3195 * table
3198 c->paddr = pci_resource_start(pdev, 0); /* addressing mode bits already removed */
3199 #ifdef CCISS_DEBUG
3200 printk("address 0 = %x\n", c->paddr);
3201 #endif /* CCISS_DEBUG */
3202 c->vaddr = remap_pci_mem(c->paddr, 0x250);
3204 /* Wait for the board to become ready. (PCI hotplug needs this.)
3205 * We poll for up to 120 secs, once per 100ms. */
3206 for (i = 0; i < 1200; i++) {
3207 scratchpad = readl(c->vaddr + SA5_SCRATCHPAD_OFFSET);
3208 if (scratchpad == CCISS_FIRMWARE_READY)
3209 break;
3210 set_current_state(TASK_INTERRUPTIBLE);
3211 schedule_timeout(HZ / 10); /* wait 100ms */
3213 if (scratchpad != CCISS_FIRMWARE_READY) {
3214 printk(KERN_WARNING "cciss: Board not ready. Timed out.\n");
3215 err = -ENODEV;
3216 goto err_out_free_res;
3219 /* get the address index number */
3220 cfg_base_addr = readl(c->vaddr + SA5_CTCFG_OFFSET);
3221 cfg_base_addr &= (__u32) 0x0000ffff;
3222 #ifdef CCISS_DEBUG
3223 printk("cfg base address = %x\n", cfg_base_addr);
3224 #endif /* CCISS_DEBUG */
3225 cfg_base_addr_index = find_PCI_BAR_index(pdev, cfg_base_addr);
3226 #ifdef CCISS_DEBUG
3227 printk("cfg base address index = %x\n", cfg_base_addr_index);
3228 #endif /* CCISS_DEBUG */
3229 if (cfg_base_addr_index == -1) {
3230 printk(KERN_WARNING "cciss: Cannot find cfg_base_addr_index\n");
3231 err = -ENODEV;
3232 goto err_out_free_res;
3235 cfg_offset = readl(c->vaddr + SA5_CTMEM_OFFSET);
3236 #ifdef CCISS_DEBUG
3237 printk("cfg offset = %x\n", cfg_offset);
3238 #endif /* CCISS_DEBUG */
3239 c->cfgtable = remap_pci_mem(pci_resource_start(pdev,
3240 cfg_base_addr_index) +
3241 cfg_offset, sizeof(CfgTable_struct));
3242 c->board_id = board_id;
3244 #ifdef CCISS_DEBUG
3245 print_cfg_table(c->cfgtable);
3246 #endif /* CCISS_DEBUG */
3248 /* Some controllers support Zero Memory Raid (ZMR).
3249 * When configured in ZMR mode the number of supported
3250 * commands drops to 64. So instead of just setting an
3251 * arbitrary value we make the driver a little smarter.
3252 * We read the config table to tell us how many commands
3253 * are supported on the controller then subtract 4 to
3254 * leave a little room for ioctl calls.
3256 c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
3257 for (i = 0; i < ARRAY_SIZE(products); i++) {
3258 if (board_id == products[i].board_id) {
3259 c->product_name = products[i].product_name;
3260 c->access = *(products[i].access);
3261 c->nr_cmds = c->max_commands - 4;
3262 break;
3265 if ((readb(&c->cfgtable->Signature[0]) != 'C') ||
3266 (readb(&c->cfgtable->Signature[1]) != 'I') ||
3267 (readb(&c->cfgtable->Signature[2]) != 'S') ||
3268 (readb(&c->cfgtable->Signature[3]) != 'S')) {
3269 printk("Does not appear to be a valid CISS config table\n");
3270 err = -ENODEV;
3271 goto err_out_free_res;
3273 /* We didn't find the controller in our list. We know the
3274 * signature is valid. If it's an HP device let's try to
3275 * bind to the device and fire it up. Otherwise we bail.
3277 if (i == ARRAY_SIZE(products)) {
3278 if (subsystem_vendor_id == PCI_VENDOR_ID_HP) {
3279 c->product_name = products[i-1].product_name;
3280 c->access = *(products[i-1].access);
3281 c->nr_cmds = c->max_commands - 4;
3282 printk(KERN_WARNING "cciss: This is an unknown "
3283 "Smart Array controller.\n"
3284 "cciss: Please update to the latest driver "
3285 "available from www.hp.com.\n");
3286 } else {
3287 printk(KERN_WARNING "cciss: Sorry, I don't know how"
3288 " to access the Smart Array controller %08lx\n"
3289 , (unsigned long)board_id);
3290 err = -ENODEV;
3291 goto err_out_free_res;
3294 #ifdef CONFIG_X86
3296 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3297 __u32 prefetch;
3298 prefetch = readl(&(c->cfgtable->SCSI_Prefetch));
3299 prefetch |= 0x100;
3300 writel(prefetch, &(c->cfgtable->SCSI_Prefetch));
3302 #endif
3304 /* Disabling DMA prefetch and refetch for the P600.
3305 * An ASIC bug may result in accesses to invalid memory addresses.
3306 * We've disabled prefetch for some time now. Testing with XEN
3307 * kernels revealed a bug in the refetch if dom0 resides on a P600.
3309 if(board_id == 0x3225103C) {
3310 __u32 dma_prefetch;
3311 __u32 dma_refetch;
3312 dma_prefetch = readl(c->vaddr + I2O_DMA1_CFG);
3313 dma_prefetch |= 0x8000;
3314 writel(dma_prefetch, c->vaddr + I2O_DMA1_CFG);
3315 pci_read_config_dword(pdev, PCI_COMMAND_PARITY, &dma_refetch);
3316 dma_refetch |= 0x1;
3317 pci_write_config_dword(pdev, PCI_COMMAND_PARITY, dma_refetch);
3320 #ifdef CCISS_DEBUG
3321 printk("Trying to put board into Simple mode\n");
3322 #endif /* CCISS_DEBUG */
3323 c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
3324 /* Update the field, and then ring the doorbell */
3325 writel(CFGTBL_Trans_Simple, &(c->cfgtable->HostWrite.TransportRequest));
3326 writel(CFGTBL_ChangeReq, c->vaddr + SA5_DOORBELL);
3328 /* under certain very rare conditions, this can take awhile.
3329 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3330 * as we enter this code.) */
3331 for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3332 if (!(readl(c->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3333 break;
3334 /* delay and try again */
3335 set_current_state(TASK_INTERRUPTIBLE);
3336 schedule_timeout(10);
3339 #ifdef CCISS_DEBUG
3340 printk(KERN_DEBUG "I counter got to %d %x\n", i,
3341 readl(c->vaddr + SA5_DOORBELL));
3342 #endif /* CCISS_DEBUG */
3343 #ifdef CCISS_DEBUG
3344 print_cfg_table(c->cfgtable);
3345 #endif /* CCISS_DEBUG */
3347 if (!(readl(&(c->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3348 printk(KERN_WARNING "cciss: unable to get board into"
3349 " simple mode\n");
3350 err = -ENODEV;
3351 goto err_out_free_res;
3353 return 0;
3355 err_out_free_res:
3357 * Deliberately omit pci_disable_device(): it does something nasty to
3358 * Smart Array controllers that pci_enable_device does not undo
3360 pci_release_regions(pdev);
3361 return err;
3364 /* Function to find the first free pointer into our hba[] array
3365 * Returns -1 if no free entries are left.
3367 static int alloc_cciss_hba(void)
3369 int i;
3371 for (i = 0; i < MAX_CTLR; i++) {
3372 if (!hba[i]) {
3373 ctlr_info_t *p;
3375 p = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
3376 if (!p)
3377 goto Enomem;
3378 hba[i] = p;
3379 return i;
3382 printk(KERN_WARNING "cciss: This driver supports a maximum"
3383 " of %d controllers.\n", MAX_CTLR);
3384 return -1;
3385 Enomem:
3386 printk(KERN_ERR "cciss: out of memory.\n");
3387 return -1;
3390 static void free_hba(int i)
3392 ctlr_info_t *p = hba[i];
3393 int n;
3395 hba[i] = NULL;
3396 for (n = 0; n < CISS_MAX_LUN; n++)
3397 put_disk(p->gendisk[n]);
3398 kfree(p);
3402 * This is it. Find all the controllers and register them. I really hate
3403 * stealing all these major device numbers.
3404 * returns the number of block devices registered.
3406 static int __devinit cciss_init_one(struct pci_dev *pdev,
3407 const struct pci_device_id *ent)
3409 int i;
3410 int j = 0;
3411 int rc;
3412 int dac, return_code;
3413 InquiryData_struct *inq_buff = NULL;
3415 i = alloc_cciss_hba();
3416 if (i < 0)
3417 return -1;
3419 hba[i]->busy_initializing = 1;
3421 if (cciss_pci_init(hba[i], pdev) != 0)
3422 goto clean1;
3424 sprintf(hba[i]->devname, "cciss%d", i);
3425 hba[i]->ctlr = i;
3426 hba[i]->pdev = pdev;
3428 /* configure PCI DMA stuff */
3429 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK))
3430 dac = 1;
3431 else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK))
3432 dac = 0;
3433 else {
3434 printk(KERN_ERR "cciss: no suitable DMA available\n");
3435 goto clean1;
3439 * register with the major number, or get a dynamic major number
3440 * by passing 0 as argument. This is done for greater than
3441 * 8 controller support.
3443 if (i < MAX_CTLR_ORIG)
3444 hba[i]->major = COMPAQ_CISS_MAJOR + i;
3445 rc = register_blkdev(hba[i]->major, hba[i]->devname);
3446 if (rc == -EBUSY || rc == -EINVAL) {
3447 printk(KERN_ERR
3448 "cciss: Unable to get major number %d for %s "
3449 "on hba %d\n", hba[i]->major, hba[i]->devname, i);
3450 goto clean1;
3451 } else {
3452 if (i >= MAX_CTLR_ORIG)
3453 hba[i]->major = rc;
3456 /* make sure the board interrupts are off */
3457 hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_OFF);
3458 if (request_irq(hba[i]->intr[SIMPLE_MODE_INT], do_cciss_intr,
3459 IRQF_DISABLED | IRQF_SHARED, hba[i]->devname, hba[i])) {
3460 printk(KERN_ERR "cciss: Unable to get irq %d for %s\n",
3461 hba[i]->intr[SIMPLE_MODE_INT], hba[i]->devname);
3462 goto clean2;
3465 printk(KERN_INFO "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
3466 hba[i]->devname, pdev->device, pci_name(pdev),
3467 hba[i]->intr[SIMPLE_MODE_INT], dac ? "" : " not");
3469 hba[i]->cmd_pool_bits =
3470 kmalloc(DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG)
3471 * sizeof(unsigned long), GFP_KERNEL);
3472 hba[i]->cmd_pool = (CommandList_struct *)
3473 pci_alloc_consistent(hba[i]->pdev,
3474 hba[i]->nr_cmds * sizeof(CommandList_struct),
3475 &(hba[i]->cmd_pool_dhandle));
3476 hba[i]->errinfo_pool = (ErrorInfo_struct *)
3477 pci_alloc_consistent(hba[i]->pdev,
3478 hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
3479 &(hba[i]->errinfo_pool_dhandle));
3480 if ((hba[i]->cmd_pool_bits == NULL)
3481 || (hba[i]->cmd_pool == NULL)
3482 || (hba[i]->errinfo_pool == NULL)) {
3483 printk(KERN_ERR "cciss: out of memory");
3484 goto clean4;
3486 #ifdef CONFIG_CISS_SCSI_TAPE
3487 hba[i]->scsi_rejects.complete =
3488 kmalloc(sizeof(hba[i]->scsi_rejects.complete[0]) *
3489 (hba[i]->nr_cmds + 5), GFP_KERNEL);
3490 if (hba[i]->scsi_rejects.complete == NULL) {
3491 printk(KERN_ERR "cciss: out of memory");
3492 goto clean4;
3494 #endif
3495 spin_lock_init(&hba[i]->lock);
3497 /* Initialize the pdev driver private data.
3498 have it point to hba[i]. */
3499 pci_set_drvdata(pdev, hba[i]);
3500 /* command and error info recs zeroed out before
3501 they are used */
3502 memset(hba[i]->cmd_pool_bits, 0,
3503 DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG)
3504 * sizeof(unsigned long));
3506 hba[i]->num_luns = 0;
3507 hba[i]->highest_lun = -1;
3508 for (j = 0; j < CISS_MAX_LUN; j++) {
3509 hba[i]->drv[j].raid_level = -1;
3510 hba[i]->drv[j].queue = NULL;
3511 hba[i]->gendisk[j] = NULL;
3514 cciss_scsi_setup(i);
3516 /* Turn the interrupts on so we can service requests */
3517 hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_ON);
3519 /* Get the firmware version */
3520 inq_buff = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
3521 if (inq_buff == NULL) {
3522 printk(KERN_ERR "cciss: out of memory\n");
3523 goto clean4;
3526 return_code = sendcmd_withirq(CISS_INQUIRY, i, inq_buff,
3527 sizeof(InquiryData_struct), 0, 0 , 0, TYPE_CMD);
3528 if (return_code == IO_OK) {
3529 hba[i]->firm_ver[0] = inq_buff->data_byte[32];
3530 hba[i]->firm_ver[1] = inq_buff->data_byte[33];
3531 hba[i]->firm_ver[2] = inq_buff->data_byte[34];
3532 hba[i]->firm_ver[3] = inq_buff->data_byte[35];
3533 } else { /* send command failed */
3534 printk(KERN_WARNING "cciss: unable to determine firmware"
3535 " version of controller\n");
3538 cciss_procinit(i);
3540 hba[i]->cciss_max_sectors = 2048;
3542 hba[i]->busy_initializing = 0;
3544 rebuild_lun_table(hba[i], 1);
3545 return 1;
3547 clean4:
3548 kfree(inq_buff);
3549 #ifdef CONFIG_CISS_SCSI_TAPE
3550 kfree(hba[i]->scsi_rejects.complete);
3551 #endif
3552 kfree(hba[i]->cmd_pool_bits);
3553 if (hba[i]->cmd_pool)
3554 pci_free_consistent(hba[i]->pdev,
3555 hba[i]->nr_cmds * sizeof(CommandList_struct),
3556 hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
3557 if (hba[i]->errinfo_pool)
3558 pci_free_consistent(hba[i]->pdev,
3559 hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
3560 hba[i]->errinfo_pool,
3561 hba[i]->errinfo_pool_dhandle);
3562 free_irq(hba[i]->intr[SIMPLE_MODE_INT], hba[i]);
3563 clean2:
3564 unregister_blkdev(hba[i]->major, hba[i]->devname);
3565 clean1:
3566 hba[i]->busy_initializing = 0;
3567 /* cleanup any queues that may have been initialized */
3568 for (j=0; j <= hba[i]->highest_lun; j++){
3569 drive_info_struct *drv = &(hba[i]->drv[j]);
3570 if (drv->queue)
3571 blk_cleanup_queue(drv->queue);
3574 * Deliberately omit pci_disable_device(): it does something nasty to
3575 * Smart Array controllers that pci_enable_device does not undo
3577 pci_release_regions(pdev);
3578 pci_set_drvdata(pdev, NULL);
3579 free_hba(i);
3580 return -1;
3583 static void cciss_shutdown(struct pci_dev *pdev)
3585 ctlr_info_t *tmp_ptr;
3586 int i;
3587 char flush_buf[4];
3588 int return_code;
3590 tmp_ptr = pci_get_drvdata(pdev);
3591 if (tmp_ptr == NULL)
3592 return;
3593 i = tmp_ptr->ctlr;
3594 if (hba[i] == NULL)
3595 return;
3597 /* Turn board interrupts off and send the flush cache command */
3598 /* sendcmd will turn off interrupt, and send the flush...
3599 * To write all data in the battery backed cache to disks */
3600 memset(flush_buf, 0, 4);
3601 return_code = sendcmd(CCISS_CACHE_FLUSH, i, flush_buf, 4, 0, 0, 0, NULL,
3602 TYPE_CMD);
3603 if (return_code == IO_OK) {
3604 printk(KERN_INFO "Completed flushing cache on controller %d\n", i);
3605 } else {
3606 printk(KERN_WARNING "Error flushing cache on controller %d\n", i);
3608 free_irq(hba[i]->intr[2], hba[i]);
3611 static void __devexit cciss_remove_one(struct pci_dev *pdev)
3613 ctlr_info_t *tmp_ptr;
3614 int i, j;
3616 if (pci_get_drvdata(pdev) == NULL) {
3617 printk(KERN_ERR "cciss: Unable to remove device \n");
3618 return;
3620 tmp_ptr = pci_get_drvdata(pdev);
3621 i = tmp_ptr->ctlr;
3622 if (hba[i] == NULL) {
3623 printk(KERN_ERR "cciss: device appears to "
3624 "already be removed \n");
3625 return;
3628 remove_proc_entry(hba[i]->devname, proc_cciss);
3629 unregister_blkdev(hba[i]->major, hba[i]->devname);
3631 /* remove it from the disk list */
3632 for (j = 0; j < CISS_MAX_LUN; j++) {
3633 struct gendisk *disk = hba[i]->gendisk[j];
3634 if (disk) {
3635 struct request_queue *q = disk->queue;
3637 if (disk->flags & GENHD_FL_UP)
3638 del_gendisk(disk);
3639 if (q)
3640 blk_cleanup_queue(q);
3644 #ifdef CONFIG_CISS_SCSI_TAPE
3645 cciss_unregister_scsi(i); /* unhook from SCSI subsystem */
3646 #endif
3648 cciss_shutdown(pdev);
3650 #ifdef CONFIG_PCI_MSI
3651 if (hba[i]->msix_vector)
3652 pci_disable_msix(hba[i]->pdev);
3653 else if (hba[i]->msi_vector)
3654 pci_disable_msi(hba[i]->pdev);
3655 #endif /* CONFIG_PCI_MSI */
3657 iounmap(hba[i]->vaddr);
3659 pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(CommandList_struct),
3660 hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
3661 pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
3662 hba[i]->errinfo_pool, hba[i]->errinfo_pool_dhandle);
3663 kfree(hba[i]->cmd_pool_bits);
3664 #ifdef CONFIG_CISS_SCSI_TAPE
3665 kfree(hba[i]->scsi_rejects.complete);
3666 #endif
3668 * Deliberately omit pci_disable_device(): it does something nasty to
3669 * Smart Array controllers that pci_enable_device does not undo
3671 pci_release_regions(pdev);
3672 pci_set_drvdata(pdev, NULL);
3673 free_hba(i);
3676 static struct pci_driver cciss_pci_driver = {
3677 .name = "cciss",
3678 .probe = cciss_init_one,
3679 .remove = __devexit_p(cciss_remove_one),
3680 .id_table = cciss_pci_device_id, /* id_table */
3681 .shutdown = cciss_shutdown,
3685 * This is it. Register the PCI driver information for the cards we control
3686 * the OS will call our registered routines when it finds one of our cards.
3688 static int __init cciss_init(void)
3690 printk(KERN_INFO DRIVER_NAME "\n");
3692 /* Register for our PCI devices */
3693 return pci_register_driver(&cciss_pci_driver);
3696 static void __exit cciss_cleanup(void)
3698 int i;
3700 pci_unregister_driver(&cciss_pci_driver);
3701 /* double check that all controller entrys have been removed */
3702 for (i = 0; i < MAX_CTLR; i++) {
3703 if (hba[i] != NULL) {
3704 printk(KERN_WARNING "cciss: had to remove"
3705 " controller %d\n", i);
3706 cciss_remove_one(hba[i]->pdev);
3709 remove_proc_entry("driver/cciss", NULL);
3712 static void fail_all_cmds(unsigned long ctlr)
3714 /* If we get here, the board is apparently dead. */
3715 ctlr_info_t *h = hba[ctlr];
3716 CommandList_struct *c;
3717 unsigned long flags;
3719 printk(KERN_WARNING "cciss%d: controller not responding.\n", h->ctlr);
3720 h->alive = 0; /* the controller apparently died... */
3722 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
3724 pci_disable_device(h->pdev); /* Make sure it is really dead. */
3726 /* move everything off the request queue onto the completed queue */
3727 while ((c = h->reqQ) != NULL) {
3728 removeQ(&(h->reqQ), c);
3729 h->Qdepth--;
3730 addQ(&(h->cmpQ), c);
3733 /* Now, fail everything on the completed queue with a HW error */
3734 while ((c = h->cmpQ) != NULL) {
3735 removeQ(&h->cmpQ, c);
3736 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
3737 if (c->cmd_type == CMD_RWREQ) {
3738 complete_command(h, c, 0);
3739 } else if (c->cmd_type == CMD_IOCTL_PEND)
3740 complete(c->waiting);
3741 #ifdef CONFIG_CISS_SCSI_TAPE
3742 else if (c->cmd_type == CMD_SCSI)
3743 complete_scsi_command(c, 0, 0);
3744 #endif
3746 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
3747 return;
3750 module_init(cciss_init);
3751 module_exit(cciss_cleanup);