4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shm.h>
18 #include <linux/blkdev.h>
19 #include <linux/writeback.h>
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/rmap.h>
25 #include <linux/security.h>
26 #include <linux/backing-dev.h>
27 #include <linux/mutex.h>
28 #include <linux/capability.h>
29 #include <linux/syscalls.h>
30 #include <linux/memcontrol.h>
32 #include <asm/pgtable.h>
33 #include <asm/tlbflush.h>
34 #include <linux/swapops.h>
36 static DEFINE_SPINLOCK(swap_lock
);
37 static unsigned int nr_swapfiles
;
39 long total_swap_pages
;
40 static int swap_overflow
;
41 static int least_priority
;
43 static const char Bad_file
[] = "Bad swap file entry ";
44 static const char Unused_file
[] = "Unused swap file entry ";
45 static const char Bad_offset
[] = "Bad swap offset entry ";
46 static const char Unused_offset
[] = "Unused swap offset entry ";
48 static struct swap_list_t swap_list
= {-1, -1};
50 static struct swap_info_struct swap_info
[MAX_SWAPFILES
];
52 static DEFINE_MUTEX(swapon_mutex
);
55 * We need this because the bdev->unplug_fn can sleep and we cannot
56 * hold swap_lock while calling the unplug_fn. And swap_lock
57 * cannot be turned into a mutex.
59 static DECLARE_RWSEM(swap_unplug_sem
);
61 void swap_unplug_io_fn(struct backing_dev_info
*unused_bdi
, struct page
*page
)
65 down_read(&swap_unplug_sem
);
66 entry
.val
= page_private(page
);
67 if (PageSwapCache(page
)) {
68 struct block_device
*bdev
= swap_info
[swp_type(entry
)].bdev
;
69 struct backing_dev_info
*bdi
;
72 * If the page is removed from swapcache from under us (with a
73 * racy try_to_unuse/swapoff) we need an additional reference
74 * count to avoid reading garbage from page_private(page) above.
75 * If the WARN_ON triggers during a swapoff it maybe the race
76 * condition and it's harmless. However if it triggers without
77 * swapoff it signals a problem.
79 WARN_ON(page_count(page
) <= 1);
81 bdi
= bdev
->bd_inode
->i_mapping
->backing_dev_info
;
82 blk_run_backing_dev(bdi
, page
);
84 up_read(&swap_unplug_sem
);
88 * swapon tell device that all the old swap contents can be discarded,
89 * to allow the swap device to optimize its wear-levelling.
91 static int discard_swap(struct swap_info_struct
*si
)
93 struct swap_extent
*se
;
96 list_for_each_entry(se
, &si
->extent_list
, list
) {
97 sector_t start_block
= se
->start_block
<< (PAGE_SHIFT
- 9);
98 pgoff_t nr_blocks
= se
->nr_pages
<< (PAGE_SHIFT
- 9);
100 if (se
->start_page
== 0) {
101 /* Do not discard the swap header page! */
102 start_block
+= 1 << (PAGE_SHIFT
- 9);
103 nr_blocks
-= 1 << (PAGE_SHIFT
- 9);
108 err
= blkdev_issue_discard(si
->bdev
, start_block
,
109 nr_blocks
, GFP_KERNEL
);
115 return err
; /* That will often be -EOPNOTSUPP */
118 #define SWAPFILE_CLUSTER 256
119 #define LATENCY_LIMIT 256
121 static inline unsigned long scan_swap_map(struct swap_info_struct
*si
)
123 unsigned long offset
;
124 unsigned long last_in_cluster
;
125 int latency_ration
= LATENCY_LIMIT
;
128 * We try to cluster swap pages by allocating them sequentially
129 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
130 * way, however, we resort to first-free allocation, starting
131 * a new cluster. This prevents us from scattering swap pages
132 * all over the entire swap partition, so that we reduce
133 * overall disk seek times between swap pages. -- sct
134 * But we do now try to find an empty cluster. -Andrea
137 si
->flags
+= SWP_SCANNING
;
138 offset
= si
->cluster_next
;
140 if (unlikely(!si
->cluster_nr
--)) {
141 if (si
->pages
- si
->inuse_pages
< SWAPFILE_CLUSTER
) {
142 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
145 spin_unlock(&swap_lock
);
147 offset
= si
->lowest_bit
;
148 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
- 1;
150 /* Locate the first empty (unaligned) cluster */
151 for (; last_in_cluster
<= si
->highest_bit
; offset
++) {
152 if (si
->swap_map
[offset
])
153 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
;
154 else if (offset
== last_in_cluster
) {
155 spin_lock(&swap_lock
);
156 offset
-= SWAPFILE_CLUSTER
- 1;
157 si
->cluster_next
= offset
;
158 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
161 if (unlikely(--latency_ration
< 0)) {
163 latency_ration
= LATENCY_LIMIT
;
167 offset
= si
->lowest_bit
;
168 spin_lock(&swap_lock
);
169 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
173 if (!(si
->flags
& SWP_WRITEOK
))
175 if (!si
->highest_bit
)
177 if (offset
> si
->highest_bit
)
178 offset
= si
->lowest_bit
;
179 if (si
->swap_map
[offset
])
182 if (offset
== si
->lowest_bit
)
184 if (offset
== si
->highest_bit
)
187 if (si
->inuse_pages
== si
->pages
) {
188 si
->lowest_bit
= si
->max
;
191 si
->swap_map
[offset
] = 1;
192 si
->cluster_next
= offset
+ 1;
193 si
->flags
-= SWP_SCANNING
;
197 spin_unlock(&swap_lock
);
198 while (++offset
<= si
->highest_bit
) {
199 if (!si
->swap_map
[offset
]) {
200 spin_lock(&swap_lock
);
203 if (unlikely(--latency_ration
< 0)) {
205 latency_ration
= LATENCY_LIMIT
;
208 spin_lock(&swap_lock
);
212 si
->flags
-= SWP_SCANNING
;
216 swp_entry_t
get_swap_page(void)
218 struct swap_info_struct
*si
;
223 spin_lock(&swap_lock
);
224 if (nr_swap_pages
<= 0)
228 for (type
= swap_list
.next
; type
>= 0 && wrapped
< 2; type
= next
) {
229 si
= swap_info
+ type
;
232 (!wrapped
&& si
->prio
!= swap_info
[next
].prio
)) {
233 next
= swap_list
.head
;
237 if (!si
->highest_bit
)
239 if (!(si
->flags
& SWP_WRITEOK
))
242 swap_list
.next
= next
;
243 offset
= scan_swap_map(si
);
245 spin_unlock(&swap_lock
);
246 return swp_entry(type
, offset
);
248 next
= swap_list
.next
;
253 spin_unlock(&swap_lock
);
254 return (swp_entry_t
) {0};
257 swp_entry_t
get_swap_page_of_type(int type
)
259 struct swap_info_struct
*si
;
262 spin_lock(&swap_lock
);
263 si
= swap_info
+ type
;
264 if (si
->flags
& SWP_WRITEOK
) {
266 offset
= scan_swap_map(si
);
268 spin_unlock(&swap_lock
);
269 return swp_entry(type
, offset
);
273 spin_unlock(&swap_lock
);
274 return (swp_entry_t
) {0};
277 static struct swap_info_struct
* swap_info_get(swp_entry_t entry
)
279 struct swap_info_struct
* p
;
280 unsigned long offset
, type
;
284 type
= swp_type(entry
);
285 if (type
>= nr_swapfiles
)
287 p
= & swap_info
[type
];
288 if (!(p
->flags
& SWP_USED
))
290 offset
= swp_offset(entry
);
291 if (offset
>= p
->max
)
293 if (!p
->swap_map
[offset
])
295 spin_lock(&swap_lock
);
299 printk(KERN_ERR
"swap_free: %s%08lx\n", Unused_offset
, entry
.val
);
302 printk(KERN_ERR
"swap_free: %s%08lx\n", Bad_offset
, entry
.val
);
305 printk(KERN_ERR
"swap_free: %s%08lx\n", Unused_file
, entry
.val
);
308 printk(KERN_ERR
"swap_free: %s%08lx\n", Bad_file
, entry
.val
);
313 static int swap_entry_free(struct swap_info_struct
*p
, unsigned long offset
)
315 int count
= p
->swap_map
[offset
];
317 if (count
< SWAP_MAP_MAX
) {
319 p
->swap_map
[offset
] = count
;
321 if (offset
< p
->lowest_bit
)
322 p
->lowest_bit
= offset
;
323 if (offset
> p
->highest_bit
)
324 p
->highest_bit
= offset
;
325 if (p
->prio
> swap_info
[swap_list
.next
].prio
)
326 swap_list
.next
= p
- swap_info
;
335 * Caller has made sure that the swapdevice corresponding to entry
336 * is still around or has not been recycled.
338 void swap_free(swp_entry_t entry
)
340 struct swap_info_struct
* p
;
342 p
= swap_info_get(entry
);
344 swap_entry_free(p
, swp_offset(entry
));
345 spin_unlock(&swap_lock
);
350 * How many references to page are currently swapped out?
352 static inline int page_swapcount(struct page
*page
)
355 struct swap_info_struct
*p
;
358 entry
.val
= page_private(page
);
359 p
= swap_info_get(entry
);
361 /* Subtract the 1 for the swap cache itself */
362 count
= p
->swap_map
[swp_offset(entry
)] - 1;
363 spin_unlock(&swap_lock
);
369 * We can write to an anon page without COW if there are no other references
370 * to it. And as a side-effect, free up its swap: because the old content
371 * on disk will never be read, and seeking back there to write new content
372 * later would only waste time away from clustering.
374 int reuse_swap_page(struct page
*page
)
378 VM_BUG_ON(!PageLocked(page
));
379 count
= page_mapcount(page
);
380 if (count
<= 1 && PageSwapCache(page
)) {
381 count
+= page_swapcount(page
);
382 if (count
== 1 && !PageWriteback(page
)) {
383 delete_from_swap_cache(page
);
391 * If swap is getting full, or if there are no more mappings of this page,
392 * then try_to_free_swap is called to free its swap space.
394 int try_to_free_swap(struct page
*page
)
396 VM_BUG_ON(!PageLocked(page
));
398 if (!PageSwapCache(page
))
400 if (PageWriteback(page
))
402 if (page_swapcount(page
))
405 delete_from_swap_cache(page
);
411 * Free the swap entry like above, but also try to
412 * free the page cache entry if it is the last user.
414 void free_swap_and_cache(swp_entry_t entry
)
416 struct swap_info_struct
* p
;
417 struct page
*page
= NULL
;
419 if (is_migration_entry(entry
))
422 p
= swap_info_get(entry
);
424 if (swap_entry_free(p
, swp_offset(entry
)) == 1) {
425 page
= find_get_page(&swapper_space
, entry
.val
);
426 if (page
&& !trylock_page(page
)) {
427 page_cache_release(page
);
431 spin_unlock(&swap_lock
);
435 * Not mapped elsewhere, or swap space full? Free it!
436 * Also recheck PageSwapCache now page is locked (above).
438 if (PageSwapCache(page
) && !PageWriteback(page
) &&
439 (!page_mapped(page
) || vm_swap_full())) {
440 delete_from_swap_cache(page
);
444 page_cache_release(page
);
448 #ifdef CONFIG_HIBERNATION
450 * Find the swap type that corresponds to given device (if any).
452 * @offset - number of the PAGE_SIZE-sized block of the device, starting
453 * from 0, in which the swap header is expected to be located.
455 * This is needed for the suspend to disk (aka swsusp).
457 int swap_type_of(dev_t device
, sector_t offset
, struct block_device
**bdev_p
)
459 struct block_device
*bdev
= NULL
;
463 bdev
= bdget(device
);
465 spin_lock(&swap_lock
);
466 for (i
= 0; i
< nr_swapfiles
; i
++) {
467 struct swap_info_struct
*sis
= swap_info
+ i
;
469 if (!(sis
->flags
& SWP_WRITEOK
))
476 spin_unlock(&swap_lock
);
479 if (bdev
== sis
->bdev
) {
480 struct swap_extent
*se
;
482 se
= list_entry(sis
->extent_list
.next
,
483 struct swap_extent
, list
);
484 if (se
->start_block
== offset
) {
488 spin_unlock(&swap_lock
);
494 spin_unlock(&swap_lock
);
502 * Return either the total number of swap pages of given type, or the number
503 * of free pages of that type (depending on @free)
505 * This is needed for software suspend
507 unsigned int count_swap_pages(int type
, int free
)
511 if (type
< nr_swapfiles
) {
512 spin_lock(&swap_lock
);
513 if (swap_info
[type
].flags
& SWP_WRITEOK
) {
514 n
= swap_info
[type
].pages
;
516 n
-= swap_info
[type
].inuse_pages
;
518 spin_unlock(&swap_lock
);
525 * No need to decide whether this PTE shares the swap entry with others,
526 * just let do_wp_page work it out if a write is requested later - to
527 * force COW, vm_page_prot omits write permission from any private vma.
529 static int unuse_pte(struct vm_area_struct
*vma
, pmd_t
*pmd
,
530 unsigned long addr
, swp_entry_t entry
, struct page
*page
)
536 if (mem_cgroup_charge(page
, vma
->vm_mm
, GFP_KERNEL
))
539 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
540 if (unlikely(!pte_same(*pte
, swp_entry_to_pte(entry
)))) {
542 mem_cgroup_uncharge_page(page
);
547 inc_mm_counter(vma
->vm_mm
, anon_rss
);
549 set_pte_at(vma
->vm_mm
, addr
, pte
,
550 pte_mkold(mk_pte(page
, vma
->vm_page_prot
)));
551 page_add_anon_rmap(page
, vma
, addr
);
554 * Move the page to the active list so it is not
555 * immediately swapped out again after swapon.
559 pte_unmap_unlock(pte
, ptl
);
563 static int unuse_pte_range(struct vm_area_struct
*vma
, pmd_t
*pmd
,
564 unsigned long addr
, unsigned long end
,
565 swp_entry_t entry
, struct page
*page
)
567 pte_t swp_pte
= swp_entry_to_pte(entry
);
572 * We don't actually need pte lock while scanning for swp_pte: since
573 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
574 * page table while we're scanning; though it could get zapped, and on
575 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
576 * of unmatched parts which look like swp_pte, so unuse_pte must
577 * recheck under pte lock. Scanning without pte lock lets it be
578 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
580 pte
= pte_offset_map(pmd
, addr
);
583 * swapoff spends a _lot_ of time in this loop!
584 * Test inline before going to call unuse_pte.
586 if (unlikely(pte_same(*pte
, swp_pte
))) {
588 ret
= unuse_pte(vma
, pmd
, addr
, entry
, page
);
591 pte
= pte_offset_map(pmd
, addr
);
593 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
599 static inline int unuse_pmd_range(struct vm_area_struct
*vma
, pud_t
*pud
,
600 unsigned long addr
, unsigned long end
,
601 swp_entry_t entry
, struct page
*page
)
607 pmd
= pmd_offset(pud
, addr
);
609 next
= pmd_addr_end(addr
, end
);
610 if (pmd_none_or_clear_bad(pmd
))
612 ret
= unuse_pte_range(vma
, pmd
, addr
, next
, entry
, page
);
615 } while (pmd
++, addr
= next
, addr
!= end
);
619 static inline int unuse_pud_range(struct vm_area_struct
*vma
, pgd_t
*pgd
,
620 unsigned long addr
, unsigned long end
,
621 swp_entry_t entry
, struct page
*page
)
627 pud
= pud_offset(pgd
, addr
);
629 next
= pud_addr_end(addr
, end
);
630 if (pud_none_or_clear_bad(pud
))
632 ret
= unuse_pmd_range(vma
, pud
, addr
, next
, entry
, page
);
635 } while (pud
++, addr
= next
, addr
!= end
);
639 static int unuse_vma(struct vm_area_struct
*vma
,
640 swp_entry_t entry
, struct page
*page
)
643 unsigned long addr
, end
, next
;
647 addr
= page_address_in_vma(page
, vma
);
651 end
= addr
+ PAGE_SIZE
;
653 addr
= vma
->vm_start
;
657 pgd
= pgd_offset(vma
->vm_mm
, addr
);
659 next
= pgd_addr_end(addr
, end
);
660 if (pgd_none_or_clear_bad(pgd
))
662 ret
= unuse_pud_range(vma
, pgd
, addr
, next
, entry
, page
);
665 } while (pgd
++, addr
= next
, addr
!= end
);
669 static int unuse_mm(struct mm_struct
*mm
,
670 swp_entry_t entry
, struct page
*page
)
672 struct vm_area_struct
*vma
;
675 if (!down_read_trylock(&mm
->mmap_sem
)) {
677 * Activate page so shrink_inactive_list is unlikely to unmap
678 * its ptes while lock is dropped, so swapoff can make progress.
682 down_read(&mm
->mmap_sem
);
685 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
686 if (vma
->anon_vma
&& (ret
= unuse_vma(vma
, entry
, page
)))
689 up_read(&mm
->mmap_sem
);
690 return (ret
< 0)? ret
: 0;
694 * Scan swap_map from current position to next entry still in use.
695 * Recycle to start on reaching the end, returning 0 when empty.
697 static unsigned int find_next_to_unuse(struct swap_info_struct
*si
,
700 unsigned int max
= si
->max
;
701 unsigned int i
= prev
;
705 * No need for swap_lock here: we're just looking
706 * for whether an entry is in use, not modifying it; false
707 * hits are okay, and sys_swapoff() has already prevented new
708 * allocations from this area (while holding swap_lock).
717 * No entries in use at top of swap_map,
718 * loop back to start and recheck there.
724 count
= si
->swap_map
[i
];
725 if (count
&& count
!= SWAP_MAP_BAD
)
732 * We completely avoid races by reading each swap page in advance,
733 * and then search for the process using it. All the necessary
734 * page table adjustments can then be made atomically.
736 static int try_to_unuse(unsigned int type
)
738 struct swap_info_struct
* si
= &swap_info
[type
];
739 struct mm_struct
*start_mm
;
740 unsigned short *swap_map
;
741 unsigned short swcount
;
746 int reset_overflow
= 0;
750 * When searching mms for an entry, a good strategy is to
751 * start at the first mm we freed the previous entry from
752 * (though actually we don't notice whether we or coincidence
753 * freed the entry). Initialize this start_mm with a hold.
755 * A simpler strategy would be to start at the last mm we
756 * freed the previous entry from; but that would take less
757 * advantage of mmlist ordering, which clusters forked mms
758 * together, child after parent. If we race with dup_mmap(), we
759 * prefer to resolve parent before child, lest we miss entries
760 * duplicated after we scanned child: using last mm would invert
761 * that. Though it's only a serious concern when an overflowed
762 * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
765 atomic_inc(&init_mm
.mm_users
);
768 * Keep on scanning until all entries have gone. Usually,
769 * one pass through swap_map is enough, but not necessarily:
770 * there are races when an instance of an entry might be missed.
772 while ((i
= find_next_to_unuse(si
, i
)) != 0) {
773 if (signal_pending(current
)) {
779 * Get a page for the entry, using the existing swap
780 * cache page if there is one. Otherwise, get a clean
781 * page and read the swap into it.
783 swap_map
= &si
->swap_map
[i
];
784 entry
= swp_entry(type
, i
);
785 page
= read_swap_cache_async(entry
,
786 GFP_HIGHUSER_MOVABLE
, NULL
, 0);
789 * Either swap_duplicate() failed because entry
790 * has been freed independently, and will not be
791 * reused since sys_swapoff() already disabled
792 * allocation from here, or alloc_page() failed.
801 * Don't hold on to start_mm if it looks like exiting.
803 if (atomic_read(&start_mm
->mm_users
) == 1) {
806 atomic_inc(&init_mm
.mm_users
);
810 * Wait for and lock page. When do_swap_page races with
811 * try_to_unuse, do_swap_page can handle the fault much
812 * faster than try_to_unuse can locate the entry. This
813 * apparently redundant "wait_on_page_locked" lets try_to_unuse
814 * defer to do_swap_page in such a case - in some tests,
815 * do_swap_page and try_to_unuse repeatedly compete.
817 wait_on_page_locked(page
);
818 wait_on_page_writeback(page
);
820 wait_on_page_writeback(page
);
823 * Remove all references to entry.
824 * Whenever we reach init_mm, there's no address space
825 * to search, but use it as a reminder to search shmem.
830 if (start_mm
== &init_mm
)
831 shmem
= shmem_unuse(entry
, page
);
833 retval
= unuse_mm(start_mm
, entry
, page
);
836 int set_start_mm
= (*swap_map
>= swcount
);
837 struct list_head
*p
= &start_mm
->mmlist
;
838 struct mm_struct
*new_start_mm
= start_mm
;
839 struct mm_struct
*prev_mm
= start_mm
;
840 struct mm_struct
*mm
;
842 atomic_inc(&new_start_mm
->mm_users
);
843 atomic_inc(&prev_mm
->mm_users
);
844 spin_lock(&mmlist_lock
);
845 while (*swap_map
> 1 && !retval
&& !shmem
&&
846 (p
= p
->next
) != &start_mm
->mmlist
) {
847 mm
= list_entry(p
, struct mm_struct
, mmlist
);
848 if (!atomic_inc_not_zero(&mm
->mm_users
))
850 spin_unlock(&mmlist_lock
);
859 else if (mm
== &init_mm
) {
861 shmem
= shmem_unuse(entry
, page
);
863 retval
= unuse_mm(mm
, entry
, page
);
864 if (set_start_mm
&& *swap_map
< swcount
) {
866 atomic_inc(&mm
->mm_users
);
870 spin_lock(&mmlist_lock
);
872 spin_unlock(&mmlist_lock
);
875 start_mm
= new_start_mm
;
878 /* page has already been unlocked and released */
886 page_cache_release(page
);
891 * How could swap count reach 0x7fff when the maximum
892 * pid is 0x7fff, and there's no way to repeat a swap
893 * page within an mm (except in shmem, where it's the
894 * shared object which takes the reference count)?
895 * We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
897 * If that's wrong, then we should worry more about
898 * exit_mmap() and do_munmap() cases described above:
899 * we might be resetting SWAP_MAP_MAX too early here.
900 * We know "Undead"s can happen, they're okay, so don't
901 * report them; but do report if we reset SWAP_MAP_MAX.
903 if (*swap_map
== SWAP_MAP_MAX
) {
904 spin_lock(&swap_lock
);
906 spin_unlock(&swap_lock
);
911 * If a reference remains (rare), we would like to leave
912 * the page in the swap cache; but try_to_unmap could
913 * then re-duplicate the entry once we drop page lock,
914 * so we might loop indefinitely; also, that page could
915 * not be swapped out to other storage meanwhile. So:
916 * delete from cache even if there's another reference,
917 * after ensuring that the data has been saved to disk -
918 * since if the reference remains (rarer), it will be
919 * read from disk into another page. Splitting into two
920 * pages would be incorrect if swap supported "shared
921 * private" pages, but they are handled by tmpfs files.
923 if ((*swap_map
> 1) && PageDirty(page
) && PageSwapCache(page
)) {
924 struct writeback_control wbc
= {
925 .sync_mode
= WB_SYNC_NONE
,
928 swap_writepage(page
, &wbc
);
930 wait_on_page_writeback(page
);
934 * It is conceivable that a racing task removed this page from
935 * swap cache just before we acquired the page lock at the top,
936 * or while we dropped it in unuse_mm(). The page might even
937 * be back in swap cache on another swap area: that we must not
938 * delete, since it may not have been written out to swap yet.
940 if (PageSwapCache(page
) &&
941 likely(page_private(page
) == entry
.val
))
942 delete_from_swap_cache(page
);
945 * So we could skip searching mms once swap count went
946 * to 1, we did not mark any present ptes as dirty: must
947 * mark page dirty so shrink_page_list will preserve it.
951 page_cache_release(page
);
954 * Make sure that we aren't completely killing
955 * interactive performance.
961 if (reset_overflow
) {
962 printk(KERN_WARNING
"swapoff: cleared swap entry overflow\n");
969 * After a successful try_to_unuse, if no swap is now in use, we know
970 * we can empty the mmlist. swap_lock must be held on entry and exit.
971 * Note that mmlist_lock nests inside swap_lock, and an mm must be
972 * added to the mmlist just after page_duplicate - before would be racy.
974 static void drain_mmlist(void)
976 struct list_head
*p
, *next
;
979 for (i
= 0; i
< nr_swapfiles
; i
++)
980 if (swap_info
[i
].inuse_pages
)
982 spin_lock(&mmlist_lock
);
983 list_for_each_safe(p
, next
, &init_mm
.mmlist
)
985 spin_unlock(&mmlist_lock
);
989 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
990 * corresponds to page offset `offset'.
992 sector_t
map_swap_page(struct swap_info_struct
*sis
, pgoff_t offset
)
994 struct swap_extent
*se
= sis
->curr_swap_extent
;
995 struct swap_extent
*start_se
= se
;
998 struct list_head
*lh
;
1000 if (se
->start_page
<= offset
&&
1001 offset
< (se
->start_page
+ se
->nr_pages
)) {
1002 return se
->start_block
+ (offset
- se
->start_page
);
1005 if (lh
== &sis
->extent_list
)
1007 se
= list_entry(lh
, struct swap_extent
, list
);
1008 sis
->curr_swap_extent
= se
;
1009 BUG_ON(se
== start_se
); /* It *must* be present */
1013 #ifdef CONFIG_HIBERNATION
1015 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1016 * corresponding to given index in swap_info (swap type).
1018 sector_t
swapdev_block(int swap_type
, pgoff_t offset
)
1020 struct swap_info_struct
*sis
;
1022 if (swap_type
>= nr_swapfiles
)
1025 sis
= swap_info
+ swap_type
;
1026 return (sis
->flags
& SWP_WRITEOK
) ? map_swap_page(sis
, offset
) : 0;
1028 #endif /* CONFIG_HIBERNATION */
1031 * Free all of a swapdev's extent information
1033 static void destroy_swap_extents(struct swap_info_struct
*sis
)
1035 while (!list_empty(&sis
->extent_list
)) {
1036 struct swap_extent
*se
;
1038 se
= list_entry(sis
->extent_list
.next
,
1039 struct swap_extent
, list
);
1040 list_del(&se
->list
);
1046 * Add a block range (and the corresponding page range) into this swapdev's
1047 * extent list. The extent list is kept sorted in page order.
1049 * This function rather assumes that it is called in ascending page order.
1052 add_swap_extent(struct swap_info_struct
*sis
, unsigned long start_page
,
1053 unsigned long nr_pages
, sector_t start_block
)
1055 struct swap_extent
*se
;
1056 struct swap_extent
*new_se
;
1057 struct list_head
*lh
;
1059 lh
= sis
->extent_list
.prev
; /* The highest page extent */
1060 if (lh
!= &sis
->extent_list
) {
1061 se
= list_entry(lh
, struct swap_extent
, list
);
1062 BUG_ON(se
->start_page
+ se
->nr_pages
!= start_page
);
1063 if (se
->start_block
+ se
->nr_pages
== start_block
) {
1065 se
->nr_pages
+= nr_pages
;
1071 * No merge. Insert a new extent, preserving ordering.
1073 new_se
= kmalloc(sizeof(*se
), GFP_KERNEL
);
1076 new_se
->start_page
= start_page
;
1077 new_se
->nr_pages
= nr_pages
;
1078 new_se
->start_block
= start_block
;
1080 list_add_tail(&new_se
->list
, &sis
->extent_list
);
1085 * A `swap extent' is a simple thing which maps a contiguous range of pages
1086 * onto a contiguous range of disk blocks. An ordered list of swap extents
1087 * is built at swapon time and is then used at swap_writepage/swap_readpage
1088 * time for locating where on disk a page belongs.
1090 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1091 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1092 * swap files identically.
1094 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1095 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1096 * swapfiles are handled *identically* after swapon time.
1098 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1099 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1100 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1101 * requirements, they are simply tossed out - we will never use those blocks
1104 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1105 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1106 * which will scribble on the fs.
1108 * The amount of disk space which a single swap extent represents varies.
1109 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1110 * extents in the list. To avoid much list walking, we cache the previous
1111 * search location in `curr_swap_extent', and start new searches from there.
1112 * This is extremely effective. The average number of iterations in
1113 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1115 static int setup_swap_extents(struct swap_info_struct
*sis
, sector_t
*span
)
1117 struct inode
*inode
;
1118 unsigned blocks_per_page
;
1119 unsigned long page_no
;
1121 sector_t probe_block
;
1122 sector_t last_block
;
1123 sector_t lowest_block
= -1;
1124 sector_t highest_block
= 0;
1128 inode
= sis
->swap_file
->f_mapping
->host
;
1129 if (S_ISBLK(inode
->i_mode
)) {
1130 ret
= add_swap_extent(sis
, 0, sis
->max
, 0);
1135 blkbits
= inode
->i_blkbits
;
1136 blocks_per_page
= PAGE_SIZE
>> blkbits
;
1139 * Map all the blocks into the extent list. This code doesn't try
1144 last_block
= i_size_read(inode
) >> blkbits
;
1145 while ((probe_block
+ blocks_per_page
) <= last_block
&&
1146 page_no
< sis
->max
) {
1147 unsigned block_in_page
;
1148 sector_t first_block
;
1150 first_block
= bmap(inode
, probe_block
);
1151 if (first_block
== 0)
1155 * It must be PAGE_SIZE aligned on-disk
1157 if (first_block
& (blocks_per_page
- 1)) {
1162 for (block_in_page
= 1; block_in_page
< blocks_per_page
;
1166 block
= bmap(inode
, probe_block
+ block_in_page
);
1169 if (block
!= first_block
+ block_in_page
) {
1176 first_block
>>= (PAGE_SHIFT
- blkbits
);
1177 if (page_no
) { /* exclude the header page */
1178 if (first_block
< lowest_block
)
1179 lowest_block
= first_block
;
1180 if (first_block
> highest_block
)
1181 highest_block
= first_block
;
1185 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1187 ret
= add_swap_extent(sis
, page_no
, 1, first_block
);
1192 probe_block
+= blocks_per_page
;
1197 *span
= 1 + highest_block
- lowest_block
;
1199 page_no
= 1; /* force Empty message */
1201 sis
->pages
= page_no
- 1;
1202 sis
->highest_bit
= page_no
- 1;
1204 sis
->curr_swap_extent
= list_entry(sis
->extent_list
.prev
,
1205 struct swap_extent
, list
);
1208 printk(KERN_ERR
"swapon: swapfile has holes\n");
1214 #if 0 /* We don't need this yet */
1215 #include <linux/backing-dev.h>
1216 int page_queue_congested(struct page
*page
)
1218 struct backing_dev_info
*bdi
;
1220 VM_BUG_ON(!PageLocked(page
)); /* It pins the swap_info_struct */
1222 if (PageSwapCache(page
)) {
1223 swp_entry_t entry
= { .val
= page_private(page
) };
1224 struct swap_info_struct
*sis
;
1226 sis
= get_swap_info_struct(swp_type(entry
));
1227 bdi
= sis
->bdev
->bd_inode
->i_mapping
->backing_dev_info
;
1229 bdi
= page
->mapping
->backing_dev_info
;
1230 return bdi_write_congested(bdi
);
1234 asmlinkage
long sys_swapoff(const char __user
* specialfile
)
1236 struct swap_info_struct
* p
= NULL
;
1237 unsigned short *swap_map
;
1238 struct file
*swap_file
, *victim
;
1239 struct address_space
*mapping
;
1240 struct inode
*inode
;
1245 if (!capable(CAP_SYS_ADMIN
))
1248 pathname
= getname(specialfile
);
1249 err
= PTR_ERR(pathname
);
1250 if (IS_ERR(pathname
))
1253 victim
= filp_open(pathname
, O_RDWR
|O_LARGEFILE
, 0);
1255 err
= PTR_ERR(victim
);
1259 mapping
= victim
->f_mapping
;
1261 spin_lock(&swap_lock
);
1262 for (type
= swap_list
.head
; type
>= 0; type
= swap_info
[type
].next
) {
1263 p
= swap_info
+ type
;
1264 if (p
->flags
& SWP_WRITEOK
) {
1265 if (p
->swap_file
->f_mapping
== mapping
)
1272 spin_unlock(&swap_lock
);
1275 if (!security_vm_enough_memory(p
->pages
))
1276 vm_unacct_memory(p
->pages
);
1279 spin_unlock(&swap_lock
);
1283 swap_list
.head
= p
->next
;
1285 swap_info
[prev
].next
= p
->next
;
1287 if (type
== swap_list
.next
) {
1288 /* just pick something that's safe... */
1289 swap_list
.next
= swap_list
.head
;
1292 for (i
= p
->next
; i
>= 0; i
= swap_info
[i
].next
)
1293 swap_info
[i
].prio
= p
->prio
--;
1296 nr_swap_pages
-= p
->pages
;
1297 total_swap_pages
-= p
->pages
;
1298 p
->flags
&= ~SWP_WRITEOK
;
1299 spin_unlock(&swap_lock
);
1301 current
->flags
|= PF_SWAPOFF
;
1302 err
= try_to_unuse(type
);
1303 current
->flags
&= ~PF_SWAPOFF
;
1306 /* re-insert swap space back into swap_list */
1307 spin_lock(&swap_lock
);
1309 p
->prio
= --least_priority
;
1311 for (i
= swap_list
.head
; i
>= 0; i
= swap_info
[i
].next
) {
1312 if (p
->prio
>= swap_info
[i
].prio
)
1318 swap_list
.head
= swap_list
.next
= p
- swap_info
;
1320 swap_info
[prev
].next
= p
- swap_info
;
1321 nr_swap_pages
+= p
->pages
;
1322 total_swap_pages
+= p
->pages
;
1323 p
->flags
|= SWP_WRITEOK
;
1324 spin_unlock(&swap_lock
);
1328 /* wait for any unplug function to finish */
1329 down_write(&swap_unplug_sem
);
1330 up_write(&swap_unplug_sem
);
1332 destroy_swap_extents(p
);
1333 mutex_lock(&swapon_mutex
);
1334 spin_lock(&swap_lock
);
1337 /* wait for anyone still in scan_swap_map */
1338 p
->highest_bit
= 0; /* cuts scans short */
1339 while (p
->flags
>= SWP_SCANNING
) {
1340 spin_unlock(&swap_lock
);
1341 schedule_timeout_uninterruptible(1);
1342 spin_lock(&swap_lock
);
1345 swap_file
= p
->swap_file
;
1346 p
->swap_file
= NULL
;
1348 swap_map
= p
->swap_map
;
1351 spin_unlock(&swap_lock
);
1352 mutex_unlock(&swapon_mutex
);
1354 inode
= mapping
->host
;
1355 if (S_ISBLK(inode
->i_mode
)) {
1356 struct block_device
*bdev
= I_BDEV(inode
);
1357 set_blocksize(bdev
, p
->old_block_size
);
1360 mutex_lock(&inode
->i_mutex
);
1361 inode
->i_flags
&= ~S_SWAPFILE
;
1362 mutex_unlock(&inode
->i_mutex
);
1364 filp_close(swap_file
, NULL
);
1368 filp_close(victim
, NULL
);
1373 #ifdef CONFIG_PROC_FS
1375 static void *swap_start(struct seq_file
*swap
, loff_t
*pos
)
1377 struct swap_info_struct
*ptr
= swap_info
;
1381 mutex_lock(&swapon_mutex
);
1384 return SEQ_START_TOKEN
;
1386 for (i
= 0; i
< nr_swapfiles
; i
++, ptr
++) {
1387 if (!(ptr
->flags
& SWP_USED
) || !ptr
->swap_map
)
1396 static void *swap_next(struct seq_file
*swap
, void *v
, loff_t
*pos
)
1398 struct swap_info_struct
*ptr
;
1399 struct swap_info_struct
*endptr
= swap_info
+ nr_swapfiles
;
1401 if (v
== SEQ_START_TOKEN
)
1408 for (; ptr
< endptr
; ptr
++) {
1409 if (!(ptr
->flags
& SWP_USED
) || !ptr
->swap_map
)
1418 static void swap_stop(struct seq_file
*swap
, void *v
)
1420 mutex_unlock(&swapon_mutex
);
1423 static int swap_show(struct seq_file
*swap
, void *v
)
1425 struct swap_info_struct
*ptr
= v
;
1429 if (ptr
== SEQ_START_TOKEN
) {
1430 seq_puts(swap
,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1434 file
= ptr
->swap_file
;
1435 len
= seq_path(swap
, &file
->f_path
, " \t\n\\");
1436 seq_printf(swap
, "%*s%s\t%u\t%u\t%d\n",
1437 len
< 40 ? 40 - len
: 1, " ",
1438 S_ISBLK(file
->f_path
.dentry
->d_inode
->i_mode
) ?
1439 "partition" : "file\t",
1440 ptr
->pages
<< (PAGE_SHIFT
- 10),
1441 ptr
->inuse_pages
<< (PAGE_SHIFT
- 10),
1446 static const struct seq_operations swaps_op
= {
1447 .start
= swap_start
,
1453 static int swaps_open(struct inode
*inode
, struct file
*file
)
1455 return seq_open(file
, &swaps_op
);
1458 static const struct file_operations proc_swaps_operations
= {
1461 .llseek
= seq_lseek
,
1462 .release
= seq_release
,
1465 static int __init
procswaps_init(void)
1467 proc_create("swaps", 0, NULL
, &proc_swaps_operations
);
1470 __initcall(procswaps_init
);
1471 #endif /* CONFIG_PROC_FS */
1473 #ifdef MAX_SWAPFILES_CHECK
1474 static int __init
max_swapfiles_check(void)
1476 MAX_SWAPFILES_CHECK();
1479 late_initcall(max_swapfiles_check
);
1483 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1485 * The swapon system call
1487 asmlinkage
long sys_swapon(const char __user
* specialfile
, int swap_flags
)
1489 struct swap_info_struct
* p
;
1491 struct block_device
*bdev
= NULL
;
1492 struct file
*swap_file
= NULL
;
1493 struct address_space
*mapping
;
1497 union swap_header
*swap_header
= NULL
;
1498 unsigned int nr_good_pages
= 0;
1501 unsigned long maxpages
= 1;
1502 unsigned long swapfilepages
;
1503 unsigned short *swap_map
= NULL
;
1504 struct page
*page
= NULL
;
1505 struct inode
*inode
= NULL
;
1508 if (!capable(CAP_SYS_ADMIN
))
1510 spin_lock(&swap_lock
);
1512 for (type
= 0 ; type
< nr_swapfiles
; type
++,p
++)
1513 if (!(p
->flags
& SWP_USED
))
1516 if (type
>= MAX_SWAPFILES
) {
1517 spin_unlock(&swap_lock
);
1520 if (type
>= nr_swapfiles
)
1521 nr_swapfiles
= type
+1;
1522 memset(p
, 0, sizeof(*p
));
1523 INIT_LIST_HEAD(&p
->extent_list
);
1524 p
->flags
= SWP_USED
;
1526 spin_unlock(&swap_lock
);
1527 name
= getname(specialfile
);
1528 error
= PTR_ERR(name
);
1533 swap_file
= filp_open(name
, O_RDWR
|O_LARGEFILE
, 0);
1534 error
= PTR_ERR(swap_file
);
1535 if (IS_ERR(swap_file
)) {
1540 p
->swap_file
= swap_file
;
1541 mapping
= swap_file
->f_mapping
;
1542 inode
= mapping
->host
;
1545 for (i
= 0; i
< nr_swapfiles
; i
++) {
1546 struct swap_info_struct
*q
= &swap_info
[i
];
1548 if (i
== type
|| !q
->swap_file
)
1550 if (mapping
== q
->swap_file
->f_mapping
)
1555 if (S_ISBLK(inode
->i_mode
)) {
1556 bdev
= I_BDEV(inode
);
1557 error
= bd_claim(bdev
, sys_swapon
);
1563 p
->old_block_size
= block_size(bdev
);
1564 error
= set_blocksize(bdev
, PAGE_SIZE
);
1568 } else if (S_ISREG(inode
->i_mode
)) {
1569 p
->bdev
= inode
->i_sb
->s_bdev
;
1570 mutex_lock(&inode
->i_mutex
);
1572 if (IS_SWAPFILE(inode
)) {
1580 swapfilepages
= i_size_read(inode
) >> PAGE_SHIFT
;
1583 * Read the swap header.
1585 if (!mapping
->a_ops
->readpage
) {
1589 page
= read_mapping_page(mapping
, 0, swap_file
);
1591 error
= PTR_ERR(page
);
1594 swap_header
= kmap(page
);
1596 if (memcmp("SWAPSPACE2", swap_header
->magic
.magic
, 10)) {
1597 printk(KERN_ERR
"Unable to find swap-space signature\n");
1602 /* swap partition endianess hack... */
1603 if (swab32(swap_header
->info
.version
) == 1) {
1604 swab32s(&swap_header
->info
.version
);
1605 swab32s(&swap_header
->info
.last_page
);
1606 swab32s(&swap_header
->info
.nr_badpages
);
1607 for (i
= 0; i
< swap_header
->info
.nr_badpages
; i
++)
1608 swab32s(&swap_header
->info
.badpages
[i
]);
1610 /* Check the swap header's sub-version */
1611 if (swap_header
->info
.version
!= 1) {
1613 "Unable to handle swap header version %d\n",
1614 swap_header
->info
.version
);
1620 p
->cluster_next
= 1;
1623 * Find out how many pages are allowed for a single swap
1624 * device. There are two limiting factors: 1) the number of
1625 * bits for the swap offset in the swp_entry_t type and
1626 * 2) the number of bits in the a swap pte as defined by
1627 * the different architectures. In order to find the
1628 * largest possible bit mask a swap entry with swap type 0
1629 * and swap offset ~0UL is created, encoded to a swap pte,
1630 * decoded to a swp_entry_t again and finally the swap
1631 * offset is extracted. This will mask all the bits from
1632 * the initial ~0UL mask that can't be encoded in either
1633 * the swp_entry_t or the architecture definition of a
1636 maxpages
= swp_offset(pte_to_swp_entry(
1637 swp_entry_to_pte(swp_entry(0, ~0UL)))) - 1;
1638 if (maxpages
> swap_header
->info
.last_page
)
1639 maxpages
= swap_header
->info
.last_page
;
1640 p
->highest_bit
= maxpages
- 1;
1645 if (swapfilepages
&& maxpages
> swapfilepages
) {
1647 "Swap area shorter than signature indicates\n");
1650 if (swap_header
->info
.nr_badpages
&& S_ISREG(inode
->i_mode
))
1652 if (swap_header
->info
.nr_badpages
> MAX_SWAP_BADPAGES
)
1655 /* OK, set up the swap map and apply the bad block list */
1656 swap_map
= vmalloc(maxpages
* sizeof(short));
1662 memset(swap_map
, 0, maxpages
* sizeof(short));
1663 for (i
= 0; i
< swap_header
->info
.nr_badpages
; i
++) {
1664 int page_nr
= swap_header
->info
.badpages
[i
];
1665 if (page_nr
<= 0 || page_nr
>= swap_header
->info
.last_page
) {
1669 swap_map
[page_nr
] = SWAP_MAP_BAD
;
1671 nr_good_pages
= swap_header
->info
.last_page
-
1672 swap_header
->info
.nr_badpages
-
1673 1 /* header page */;
1675 if (nr_good_pages
) {
1676 swap_map
[0] = SWAP_MAP_BAD
;
1678 p
->pages
= nr_good_pages
;
1679 nr_extents
= setup_swap_extents(p
, &span
);
1680 if (nr_extents
< 0) {
1684 nr_good_pages
= p
->pages
;
1686 if (!nr_good_pages
) {
1687 printk(KERN_WARNING
"Empty swap-file\n");
1692 if (discard_swap(p
) == 0)
1693 p
->flags
|= SWP_DISCARDABLE
;
1695 mutex_lock(&swapon_mutex
);
1696 spin_lock(&swap_lock
);
1697 if (swap_flags
& SWAP_FLAG_PREFER
)
1699 (swap_flags
& SWAP_FLAG_PRIO_MASK
) >> SWAP_FLAG_PRIO_SHIFT
;
1701 p
->prio
= --least_priority
;
1702 p
->swap_map
= swap_map
;
1703 p
->flags
|= SWP_WRITEOK
;
1704 nr_swap_pages
+= nr_good_pages
;
1705 total_swap_pages
+= nr_good_pages
;
1707 printk(KERN_INFO
"Adding %uk swap on %s. "
1708 "Priority:%d extents:%d across:%lluk%s\n",
1709 nr_good_pages
<<(PAGE_SHIFT
-10), name
, p
->prio
,
1710 nr_extents
, (unsigned long long)span
<<(PAGE_SHIFT
-10),
1711 (p
->flags
& SWP_DISCARDABLE
) ? " D" : "");
1713 /* insert swap space into swap_list: */
1715 for (i
= swap_list
.head
; i
>= 0; i
= swap_info
[i
].next
) {
1716 if (p
->prio
>= swap_info
[i
].prio
) {
1723 swap_list
.head
= swap_list
.next
= p
- swap_info
;
1725 swap_info
[prev
].next
= p
- swap_info
;
1727 spin_unlock(&swap_lock
);
1728 mutex_unlock(&swapon_mutex
);
1733 set_blocksize(bdev
, p
->old_block_size
);
1736 destroy_swap_extents(p
);
1738 spin_lock(&swap_lock
);
1739 p
->swap_file
= NULL
;
1741 spin_unlock(&swap_lock
);
1744 filp_close(swap_file
, NULL
);
1746 if (page
&& !IS_ERR(page
)) {
1748 page_cache_release(page
);
1754 inode
->i_flags
|= S_SWAPFILE
;
1755 mutex_unlock(&inode
->i_mutex
);
1760 void si_swapinfo(struct sysinfo
*val
)
1763 unsigned long nr_to_be_unused
= 0;
1765 spin_lock(&swap_lock
);
1766 for (i
= 0; i
< nr_swapfiles
; i
++) {
1767 if (!(swap_info
[i
].flags
& SWP_USED
) ||
1768 (swap_info
[i
].flags
& SWP_WRITEOK
))
1770 nr_to_be_unused
+= swap_info
[i
].inuse_pages
;
1772 val
->freeswap
= nr_swap_pages
+ nr_to_be_unused
;
1773 val
->totalswap
= total_swap_pages
+ nr_to_be_unused
;
1774 spin_unlock(&swap_lock
);
1778 * Verify that a swap entry is valid and increment its swap map count.
1780 * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
1781 * "permanent", but will be reclaimed by the next swapoff.
1783 int swap_duplicate(swp_entry_t entry
)
1785 struct swap_info_struct
* p
;
1786 unsigned long offset
, type
;
1789 if (is_migration_entry(entry
))
1792 type
= swp_type(entry
);
1793 if (type
>= nr_swapfiles
)
1795 p
= type
+ swap_info
;
1796 offset
= swp_offset(entry
);
1798 spin_lock(&swap_lock
);
1799 if (offset
< p
->max
&& p
->swap_map
[offset
]) {
1800 if (p
->swap_map
[offset
] < SWAP_MAP_MAX
- 1) {
1801 p
->swap_map
[offset
]++;
1803 } else if (p
->swap_map
[offset
] <= SWAP_MAP_MAX
) {
1804 if (swap_overflow
++ < 5)
1805 printk(KERN_WARNING
"swap_dup: swap entry overflow\n");
1806 p
->swap_map
[offset
] = SWAP_MAP_MAX
;
1810 spin_unlock(&swap_lock
);
1815 printk(KERN_ERR
"swap_dup: %s%08lx\n", Bad_file
, entry
.val
);
1819 struct swap_info_struct
*
1820 get_swap_info_struct(unsigned type
)
1822 return &swap_info
[type
];
1826 * swap_lock prevents swap_map being freed. Don't grab an extra
1827 * reference on the swaphandle, it doesn't matter if it becomes unused.
1829 int valid_swaphandles(swp_entry_t entry
, unsigned long *offset
)
1831 struct swap_info_struct
*si
;
1832 int our_page_cluster
= page_cluster
;
1833 pgoff_t target
, toff
;
1837 if (!our_page_cluster
) /* no readahead */
1840 si
= &swap_info
[swp_type(entry
)];
1841 target
= swp_offset(entry
);
1842 base
= (target
>> our_page_cluster
) << our_page_cluster
;
1843 end
= base
+ (1 << our_page_cluster
);
1844 if (!base
) /* first page is swap header */
1847 spin_lock(&swap_lock
);
1848 if (end
> si
->max
) /* don't go beyond end of map */
1851 /* Count contiguous allocated slots above our target */
1852 for (toff
= target
; ++toff
< end
; nr_pages
++) {
1853 /* Don't read in free or bad pages */
1854 if (!si
->swap_map
[toff
])
1856 if (si
->swap_map
[toff
] == SWAP_MAP_BAD
)
1859 /* Count contiguous allocated slots below our target */
1860 for (toff
= target
; --toff
>= base
; nr_pages
++) {
1861 /* Don't read in free or bad pages */
1862 if (!si
->swap_map
[toff
])
1864 if (si
->swap_map
[toff
] == SWAP_MAP_BAD
)
1867 spin_unlock(&swap_lock
);
1870 * Indicate starting offset, and return number of pages to get:
1871 * if only 1, say 0, since there's then no readahead to be done.
1874 return nr_pages
? ++nr_pages
: 0;