[MTD] [NAND] fsl_elbc_nand.c: fix printk warning
[linux-2.6/linux-2.6-openrd.git] / drivers / net / tulip / de4x5.c
blob617ef41bdfea669b316085ad373802e47a259e8f
1 /* de4x5.c: A DIGITAL DC21x4x DECchip and DE425/DE434/DE435/DE450/DE500
2 ethernet driver for Linux.
4 Copyright 1994, 1995 Digital Equipment Corporation.
6 Testing resources for this driver have been made available
7 in part by NASA Ames Research Center (mjacob@nas.nasa.gov).
9 The author may be reached at davies@maniac.ultranet.com.
11 This program is free software; you can redistribute it and/or modify it
12 under the terms of the GNU General Public License as published by the
13 Free Software Foundation; either version 2 of the License, or (at your
14 option) any later version.
16 THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
17 WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18 MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
19 NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
22 USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
23 ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 You should have received a copy of the GNU General Public License along
28 with this program; if not, write to the Free Software Foundation, Inc.,
29 675 Mass Ave, Cambridge, MA 02139, USA.
31 Originally, this driver was written for the Digital Equipment
32 Corporation series of EtherWORKS ethernet cards:
34 DE425 TP/COAX EISA
35 DE434 TP PCI
36 DE435 TP/COAX/AUI PCI
37 DE450 TP/COAX/AUI PCI
38 DE500 10/100 PCI Fasternet
40 but it will now attempt to support all cards which conform to the
41 Digital Semiconductor SROM Specification. The driver currently
42 recognises the following chips:
44 DC21040 (no SROM)
45 DC21041[A]
46 DC21140[A]
47 DC21142
48 DC21143
50 So far the driver is known to work with the following cards:
52 KINGSTON
53 Linksys
54 ZNYX342
55 SMC8432
56 SMC9332 (w/new SROM)
57 ZNYX31[45]
58 ZNYX346 10/100 4 port (can act as a 10/100 bridge!)
60 The driver has been tested on a relatively busy network using the DE425,
61 DE434, DE435 and DE500 cards and benchmarked with 'ttcp': it transferred
62 16M of data to a DECstation 5000/200 as follows:
64 TCP UDP
65 TX RX TX RX
66 DE425 1030k 997k 1170k 1128k
67 DE434 1063k 995k 1170k 1125k
68 DE435 1063k 995k 1170k 1125k
69 DE500 1063k 998k 1170k 1125k in 10Mb/s mode
71 All values are typical (in kBytes/sec) from a sample of 4 for each
72 measurement. Their error is +/-20k on a quiet (private) network and also
73 depend on what load the CPU has.
75 =========================================================================
76 This driver has been written substantially from scratch, although its
77 inheritance of style and stack interface from 'ewrk3.c' and in turn from
78 Donald Becker's 'lance.c' should be obvious. With the module autoload of
79 every usable DECchip board, I pinched Donald's 'next_module' field to
80 link my modules together.
82 Upto 15 EISA cards can be supported under this driver, limited primarily
83 by the available IRQ lines. I have checked different configurations of
84 multiple depca, EtherWORKS 3 cards and de4x5 cards and have not found a
85 problem yet (provided you have at least depca.c v0.38) ...
87 PCI support has been added to allow the driver to work with the DE434,
88 DE435, DE450 and DE500 cards. The I/O accesses are a bit of a kludge due
89 to the differences in the EISA and PCI CSR address offsets from the base
90 address.
92 The ability to load this driver as a loadable module has been included
93 and used extensively during the driver development (to save those long
94 reboot sequences). Loadable module support under PCI and EISA has been
95 achieved by letting the driver autoprobe as if it were compiled into the
96 kernel. Do make sure you're not sharing interrupts with anything that
97 cannot accommodate interrupt sharing!
99 To utilise this ability, you have to do 8 things:
101 0) have a copy of the loadable modules code installed on your system.
102 1) copy de4x5.c from the /linux/drivers/net directory to your favourite
103 temporary directory.
104 2) for fixed autoprobes (not recommended), edit the source code near
105 line 5594 to reflect the I/O address you're using, or assign these when
106 loading by:
108 insmod de4x5 io=0xghh where g = bus number
109 hh = device number
111 NB: autoprobing for modules is now supported by default. You may just
112 use:
114 insmod de4x5
116 to load all available boards. For a specific board, still use
117 the 'io=?' above.
118 3) compile de4x5.c, but include -DMODULE in the command line to ensure
119 that the correct bits are compiled (see end of source code).
120 4) if you are wanting to add a new card, goto 5. Otherwise, recompile a
121 kernel with the de4x5 configuration turned off and reboot.
122 5) insmod de4x5 [io=0xghh]
123 6) run the net startup bits for your new eth?? interface(s) manually
124 (usually /etc/rc.inet[12] at boot time).
125 7) enjoy!
127 To unload a module, turn off the associated interface(s)
128 'ifconfig eth?? down' then 'rmmod de4x5'.
130 Automedia detection is included so that in principal you can disconnect
131 from, e.g. TP, reconnect to BNC and things will still work (after a
132 pause whilst the driver figures out where its media went). My tests
133 using ping showed that it appears to work....
135 By default, the driver will now autodetect any DECchip based card.
136 Should you have a need to restrict the driver to DIGITAL only cards, you
137 can compile with a DEC_ONLY define, or if loading as a module, use the
138 'dec_only=1' parameter.
140 I've changed the timing routines to use the kernel timer and scheduling
141 functions so that the hangs and other assorted problems that occurred
142 while autosensing the media should be gone. A bonus for the DC21040
143 auto media sense algorithm is that it can now use one that is more in
144 line with the rest (the DC21040 chip doesn't have a hardware timer).
145 The downside is the 1 'jiffies' (10ms) resolution.
147 IEEE 802.3u MII interface code has been added in anticipation that some
148 products may use it in the future.
150 The SMC9332 card has a non-compliant SROM which needs fixing - I have
151 patched this driver to detect it because the SROM format used complies
152 to a previous DEC-STD format.
154 I have removed the buffer copies needed for receive on Intels. I cannot
155 remove them for Alphas since the Tulip hardware only does longword
156 aligned DMA transfers and the Alphas get alignment traps with non
157 longword aligned data copies (which makes them really slow). No comment.
159 I have added SROM decoding routines to make this driver work with any
160 card that supports the Digital Semiconductor SROM spec. This will help
161 all cards running the dc2114x series chips in particular. Cards using
162 the dc2104x chips should run correctly with the basic driver. I'm in
163 debt to <mjacob@feral.com> for the testing and feedback that helped get
164 this feature working. So far we have tested KINGSTON, SMC8432, SMC9332
165 (with the latest SROM complying with the SROM spec V3: their first was
166 broken), ZNYX342 and LinkSys. ZYNX314 (dual 21041 MAC) and ZNYX 315
167 (quad 21041 MAC) cards also appear to work despite their incorrectly
168 wired IRQs.
170 I have added a temporary fix for interrupt problems when some SCSI cards
171 share the same interrupt as the DECchip based cards. The problem occurs
172 because the SCSI card wants to grab the interrupt as a fast interrupt
173 (runs the service routine with interrupts turned off) vs. this card
174 which really needs to run the service routine with interrupts turned on.
175 This driver will now add the interrupt service routine as a fast
176 interrupt if it is bounced from the slow interrupt. THIS IS NOT A
177 RECOMMENDED WAY TO RUN THE DRIVER and has been done for a limited time
178 until people sort out their compatibility issues and the kernel
179 interrupt service code is fixed. YOU SHOULD SEPARATE OUT THE FAST
180 INTERRUPT CARDS FROM THE SLOW INTERRUPT CARDS to ensure that they do not
181 run on the same interrupt. PCMCIA/CardBus is another can of worms...
183 Finally, I think I have really fixed the module loading problem with
184 more than one DECchip based card. As a side effect, I don't mess with
185 the device structure any more which means that if more than 1 card in
186 2.0.x is installed (4 in 2.1.x), the user will have to edit
187 linux/drivers/net/Space.c to make room for them. Hence, module loading
188 is the preferred way to use this driver, since it doesn't have this
189 limitation.
191 Where SROM media detection is used and full duplex is specified in the
192 SROM, the feature is ignored unless lp->params.fdx is set at compile
193 time OR during a module load (insmod de4x5 args='eth??:fdx' [see
194 below]). This is because there is no way to automatically detect full
195 duplex links except through autonegotiation. When I include the
196 autonegotiation feature in the SROM autoconf code, this detection will
197 occur automatically for that case.
199 Command line arguments are now allowed, similar to passing arguments
200 through LILO. This will allow a per adapter board set up of full duplex
201 and media. The only lexical constraints are: the board name (dev->name)
202 appears in the list before its parameters. The list of parameters ends
203 either at the end of the parameter list or with another board name. The
204 following parameters are allowed:
206 fdx for full duplex
207 autosense to set the media/speed; with the following
208 sub-parameters:
209 TP, TP_NW, BNC, AUI, BNC_AUI, 100Mb, 10Mb, AUTO
211 Case sensitivity is important for the sub-parameters. They *must* be
212 upper case. Examples:
214 insmod de4x5 args='eth1:fdx autosense=BNC eth0:autosense=100Mb'.
216 For a compiled in driver, at or above line 548, place e.g.
217 #define DE4X5_PARM "eth0:fdx autosense=AUI eth2:autosense=TP"
219 Yes, I know full duplex isn't permissible on BNC or AUI; they're just
220 examples. By default, full duplex is turned off and AUTO is the default
221 autosense setting. In reality, I expect only the full duplex option to
222 be used. Note the use of single quotes in the two examples above and the
223 lack of commas to separate items. ALSO, you must get the requested media
224 correct in relation to what the adapter SROM says it has. There's no way
225 to determine this in advance other than by trial and error and common
226 sense, e.g. call a BNC connectored port 'BNC', not '10Mb'.
228 Changed the bus probing. EISA used to be done first, followed by PCI.
229 Most people probably don't even know what a de425 is today and the EISA
230 probe has messed up some SCSI cards in the past, so now PCI is always
231 probed first followed by EISA if a) the architecture allows EISA and
232 either b) there have been no PCI cards detected or c) an EISA probe is
233 forced by the user. To force a probe include "force_eisa" in your
234 insmod "args" line; for built-in kernels either change the driver to do
235 this automatically or include #define DE4X5_FORCE_EISA on or before
236 line 1040 in the driver.
238 TO DO:
239 ------
241 Revision History
242 ----------------
244 Version Date Description
246 0.1 17-Nov-94 Initial writing. ALPHA code release.
247 0.2 13-Jan-95 Added PCI support for DE435's.
248 0.21 19-Jan-95 Added auto media detection.
249 0.22 10-Feb-95 Fix interrupt handler call <chris@cosy.sbg.ac.at>.
250 Fix recognition bug reported by <bkm@star.rl.ac.uk>.
251 Add request/release_region code.
252 Add loadable modules support for PCI.
253 Clean up loadable modules support.
254 0.23 28-Feb-95 Added DC21041 and DC21140 support.
255 Fix missed frame counter value and initialisation.
256 Fixed EISA probe.
257 0.24 11-Apr-95 Change delay routine to use <linux/udelay>.
258 Change TX_BUFFS_AVAIL macro.
259 Change media autodetection to allow manual setting.
260 Completed DE500 (DC21140) support.
261 0.241 18-Apr-95 Interim release without DE500 Autosense Algorithm.
262 0.242 10-May-95 Minor changes.
263 0.30 12-Jun-95 Timer fix for DC21140.
264 Portability changes.
265 Add ALPHA changes from <jestabro@ant.tay1.dec.com>.
266 Add DE500 semi automatic autosense.
267 Add Link Fail interrupt TP failure detection.
268 Add timer based link change detection.
269 Plugged a memory leak in de4x5_queue_pkt().
270 0.31 13-Jun-95 Fixed PCI stuff for 1.3.1.
271 0.32 26-Jun-95 Added verify_area() calls in de4x5_ioctl() from a
272 suggestion by <heiko@colossus.escape.de>.
273 0.33 8-Aug-95 Add shared interrupt support (not released yet).
274 0.331 21-Aug-95 Fix de4x5_open() with fast CPUs.
275 Fix de4x5_interrupt().
276 Fix dc21140_autoconf() mess.
277 No shared interrupt support.
278 0.332 11-Sep-95 Added MII management interface routines.
279 0.40 5-Mar-96 Fix setup frame timeout <maartenb@hpkuipc.cern.ch>.
280 Add kernel timer code (h/w is too flaky).
281 Add MII based PHY autosense.
282 Add new multicasting code.
283 Add new autosense algorithms for media/mode
284 selection using kernel scheduling/timing.
285 Re-formatted.
286 Made changes suggested by <jeff@router.patch.net>:
287 Change driver to detect all DECchip based cards
288 with DEC_ONLY restriction a special case.
289 Changed driver to autoprobe as a module. No irq
290 checking is done now - assume BIOS is good!
291 Added SMC9332 detection <manabe@Roy.dsl.tutics.ac.jp>
292 0.41 21-Mar-96 Don't check for get_hw_addr checksum unless DEC card
293 only <niles@axp745gsfc.nasa.gov>
294 Fix for multiple PCI cards reported by <jos@xos.nl>
295 Duh, put the IRQF_SHARED flag into request_interrupt().
296 Fix SMC ethernet address in enet_det[].
297 Print chip name instead of "UNKNOWN" during boot.
298 0.42 26-Apr-96 Fix MII write TA bit error.
299 Fix bug in dc21040 and dc21041 autosense code.
300 Remove buffer copies on receive for Intels.
301 Change sk_buff handling during media disconnects to
302 eliminate DUP packets.
303 Add dynamic TX thresholding.
304 Change all chips to use perfect multicast filtering.
305 Fix alloc_device() bug <jari@markkus2.fimr.fi>
306 0.43 21-Jun-96 Fix unconnected media TX retry bug.
307 Add Accton to the list of broken cards.
308 Fix TX under-run bug for non DC21140 chips.
309 Fix boot command probe bug in alloc_device() as
310 reported by <koen.gadeyne@barco.com> and
311 <orava@nether.tky.hut.fi>.
312 Add cache locks to prevent a race condition as
313 reported by <csd@microplex.com> and
314 <baba@beckman.uiuc.edu>.
315 Upgraded alloc_device() code.
316 0.431 28-Jun-96 Fix potential bug in queue_pkt() from discussion
317 with <csd@microplex.com>
318 0.44 13-Aug-96 Fix RX overflow bug in 2114[023] chips.
319 Fix EISA probe bugs reported by <os2@kpi.kharkov.ua>
320 and <michael@compurex.com>.
321 0.441 9-Sep-96 Change dc21041_autoconf() to probe quiet BNC media
322 with a loopback packet.
323 0.442 9-Sep-96 Include AUI in dc21041 media printout. Bug reported
324 by <bhat@mundook.cs.mu.OZ.AU>
325 0.45 8-Dec-96 Include endian functions for PPC use, from work
326 by <cort@cs.nmt.edu> and <g.thomas@opengroup.org>.
327 0.451 28-Dec-96 Added fix to allow autoprobe for modules after
328 suggestion from <mjacob@feral.com>.
329 0.5 30-Jan-97 Added SROM decoding functions.
330 Updated debug flags.
331 Fix sleep/wakeup calls for PCI cards, bug reported
332 by <cross@gweep.lkg.dec.com>.
333 Added multi-MAC, one SROM feature from discussion
334 with <mjacob@feral.com>.
335 Added full module autoprobe capability.
336 Added attempt to use an SMC9332 with broken SROM.
337 Added fix for ZYNX multi-mac cards that didn't
338 get their IRQs wired correctly.
339 0.51 13-Feb-97 Added endian fixes for the SROM accesses from
340 <paubert@iram.es>
341 Fix init_connection() to remove extra device reset.
342 Fix MAC/PHY reset ordering in dc21140m_autoconf().
343 Fix initialisation problem with lp->timeout in
344 typeX_infoblock() from <paubert@iram.es>.
345 Fix MII PHY reset problem from work done by
346 <paubert@iram.es>.
347 0.52 26-Apr-97 Some changes may not credit the right people -
348 a disk crash meant I lost some mail.
349 Change RX interrupt routine to drop rather than
350 defer packets to avoid hang reported by
351 <g.thomas@opengroup.org>.
352 Fix srom_exec() to return for COMPACT and type 1
353 infoblocks.
354 Added DC21142 and DC21143 functions.
355 Added byte counters from <phil@tazenda.demon.co.uk>
356 Added IRQF_DISABLED temporary fix from
357 <mjacob@feral.com>.
358 0.53 12-Nov-97 Fix the *_probe() to include 'eth??' name during
359 module load: bug reported by
360 <Piete.Brooks@cl.cam.ac.uk>
361 Fix multi-MAC, one SROM, to work with 2114x chips:
362 bug reported by <cmetz@inner.net>.
363 Make above search independent of BIOS device scan
364 direction.
365 Completed DC2114[23] autosense functions.
366 0.531 21-Dec-97 Fix DE500-XA 100Mb/s bug reported by
367 <robin@intercore.com
368 Fix type1_infoblock() bug introduced in 0.53, from
369 problem reports by
370 <parmee@postecss.ncrfran.france.ncr.com> and
371 <jo@ice.dillingen.baynet.de>.
372 Added argument list to set up each board from either
373 a module's command line or a compiled in #define.
374 Added generic MII PHY functionality to deal with
375 newer PHY chips.
376 Fix the mess in 2.1.67.
377 0.532 5-Jan-98 Fix bug in mii_get_phy() reported by
378 <redhat@cococo.net>.
379 Fix bug in pci_probe() for 64 bit systems reported
380 by <belliott@accessone.com>.
381 0.533 9-Jan-98 Fix more 64 bit bugs reported by <jal@cs.brown.edu>.
382 0.534 24-Jan-98 Fix last (?) endian bug from <geert@linux-m68k.org>
383 0.535 21-Feb-98 Fix Ethernet Address PROM reset bug for DC21040.
384 0.536 21-Mar-98 Change pci_probe() to use the pci_dev structure.
385 **Incompatible with 2.0.x from here.**
386 0.540 5-Jul-98 Atomicize assertion of dev->interrupt for SMP
387 from <lma@varesearch.com>
388 Add TP, AUI and BNC cases to 21140m_autoconf() for
389 case where a 21140 under SROM control uses, e.g. AUI
390 from problem report by <delchini@lpnp09.in2p3.fr>
391 Add MII parallel detection to 2114x_autoconf() for
392 case where no autonegotiation partner exists from
393 problem report by <mlapsley@ndirect.co.uk>.
394 Add ability to force connection type directly even
395 when using SROM control from problem report by
396 <earl@exis.net>.
397 Updated the PCI interface to conform with the latest
398 version. I hope nothing is broken...
399 Add TX done interrupt modification from suggestion
400 by <Austin.Donnelly@cl.cam.ac.uk>.
401 Fix is_anc_capable() bug reported by
402 <Austin.Donnelly@cl.cam.ac.uk>.
403 Fix type[13]_infoblock() bug: during MII search, PHY
404 lp->rst not run because lp->ibn not initialised -
405 from report & fix by <paubert@iram.es>.
406 Fix probe bug with EISA & PCI cards present from
407 report by <eirik@netcom.com>.
408 0.541 24-Aug-98 Fix compiler problems associated with i386-string
409 ops from multiple bug reports and temporary fix
410 from <paubert@iram.es>.
411 Fix pci_probe() to correctly emulate the old
412 pcibios_find_class() function.
413 Add an_exception() for old ZYNX346 and fix compile
414 warning on PPC & SPARC, from <ecd@skynet.be>.
415 Fix lastPCI to correctly work with compiled in
416 kernels and modules from bug report by
417 <Zlatko.Calusic@CARNet.hr> et al.
418 0.542 15-Sep-98 Fix dc2114x_autoconf() to stop multiple messages
419 when media is unconnected.
420 Change dev->interrupt to lp->interrupt to ensure
421 alignment for Alpha's and avoid their unaligned
422 access traps. This flag is merely for log messages:
423 should do something more definitive though...
424 0.543 30-Dec-98 Add SMP spin locking.
425 0.544 8-May-99 Fix for buggy SROM in Motorola embedded boards using
426 a 21143 by <mmporter@home.com>.
427 Change PCI/EISA bus probing order.
428 0.545 28-Nov-99 Further Moto SROM bug fix from
429 <mporter@eng.mcd.mot.com>
430 Remove double checking for DEBUG_RX in de4x5_dbg_rx()
431 from report by <geert@linux-m68k.org>
432 0.546 22-Feb-01 Fixes Alpha XP1000 oops. The srom_search function
433 was causing a page fault when initializing the
434 variable 'pb', on a non de4x5 PCI device, in this
435 case a PCI bridge (DEC chip 21152). The value of
436 'pb' is now only initialized if a de4x5 chip is
437 present.
438 <france@handhelds.org>
439 0.547 08-Nov-01 Use library crc32 functions by <Matt_Domsch@dell.com>
440 0.548 30-Aug-03 Big 2.6 cleanup. Ported to PCI/EISA probing and
441 generic DMA APIs. Fixed DE425 support on Alpha.
442 <maz@wild-wind.fr.eu.org>
443 =========================================================================
446 #include <linux/module.h>
447 #include <linux/kernel.h>
448 #include <linux/string.h>
449 #include <linux/interrupt.h>
450 #include <linux/ptrace.h>
451 #include <linux/errno.h>
452 #include <linux/ioport.h>
453 #include <linux/slab.h>
454 #include <linux/pci.h>
455 #include <linux/eisa.h>
456 #include <linux/delay.h>
457 #include <linux/init.h>
458 #include <linux/spinlock.h>
459 #include <linux/crc32.h>
460 #include <linux/netdevice.h>
461 #include <linux/etherdevice.h>
462 #include <linux/skbuff.h>
463 #include <linux/time.h>
464 #include <linux/types.h>
465 #include <linux/unistd.h>
466 #include <linux/ctype.h>
467 #include <linux/dma-mapping.h>
468 #include <linux/moduleparam.h>
469 #include <linux/bitops.h>
471 #include <asm/io.h>
472 #include <asm/dma.h>
473 #include <asm/byteorder.h>
474 #include <asm/unaligned.h>
475 #include <asm/uaccess.h>
476 #ifdef CONFIG_PPC_PMAC
477 #include <asm/machdep.h>
478 #endif /* CONFIG_PPC_PMAC */
480 #include "de4x5.h"
482 static char version[] __devinitdata = "de4x5.c:V0.546 2001/02/22 davies@maniac.ultranet.com\n";
484 #define c_char const char
487 ** MII Information
489 struct phy_table {
490 int reset; /* Hard reset required? */
491 int id; /* IEEE OUI */
492 int ta; /* One cycle TA time - 802.3u is confusing here */
493 struct { /* Non autonegotiation (parallel) speed det. */
494 int reg;
495 int mask;
496 int value;
497 } spd;
500 struct mii_phy {
501 int reset; /* Hard reset required? */
502 int id; /* IEEE OUI */
503 int ta; /* One cycle TA time */
504 struct { /* Non autonegotiation (parallel) speed det. */
505 int reg;
506 int mask;
507 int value;
508 } spd;
509 int addr; /* MII address for the PHY */
510 u_char *gep; /* Start of GEP sequence block in SROM */
511 u_char *rst; /* Start of reset sequence in SROM */
512 u_int mc; /* Media Capabilities */
513 u_int ana; /* NWay Advertisement */
514 u_int fdx; /* Full DupleX capabilities for each media */
515 u_int ttm; /* Transmit Threshold Mode for each media */
516 u_int mci; /* 21142 MII Connector Interrupt info */
519 #define DE4X5_MAX_PHY 8 /* Allow upto 8 attached PHY devices per board */
521 struct sia_phy {
522 u_char mc; /* Media Code */
523 u_char ext; /* csr13-15 valid when set */
524 int csr13; /* SIA Connectivity Register */
525 int csr14; /* SIA TX/RX Register */
526 int csr15; /* SIA General Register */
527 int gepc; /* SIA GEP Control Information */
528 int gep; /* SIA GEP Data */
532 ** Define the know universe of PHY devices that can be
533 ** recognised by this driver.
535 static struct phy_table phy_info[] = {
536 {0, NATIONAL_TX, 1, {0x19, 0x40, 0x00}}, /* National TX */
537 {1, BROADCOM_T4, 1, {0x10, 0x02, 0x02}}, /* Broadcom T4 */
538 {0, SEEQ_T4 , 1, {0x12, 0x10, 0x10}}, /* SEEQ T4 */
539 {0, CYPRESS_T4 , 1, {0x05, 0x20, 0x20}}, /* Cypress T4 */
540 {0, 0x7810 , 1, {0x14, 0x0800, 0x0800}} /* Level One LTX970 */
544 ** These GENERIC values assumes that the PHY devices follow 802.3u and
545 ** allow parallel detection to set the link partner ability register.
546 ** Detection of 100Base-TX [H/F Duplex] and 100Base-T4 is supported.
548 #define GENERIC_REG 0x05 /* Autoneg. Link Partner Advertisement Reg. */
549 #define GENERIC_MASK MII_ANLPA_100M /* All 100Mb/s Technologies */
550 #define GENERIC_VALUE MII_ANLPA_100M /* 100B-TX, 100B-TX FDX, 100B-T4 */
553 ** Define special SROM detection cases
555 static c_char enet_det[][ETH_ALEN] = {
556 {0x00, 0x00, 0xc0, 0x00, 0x00, 0x00},
557 {0x00, 0x00, 0xe8, 0x00, 0x00, 0x00}
560 #define SMC 1
561 #define ACCTON 2
564 ** SROM Repair definitions. If a broken SROM is detected a card may
565 ** use this information to help figure out what to do. This is a
566 ** "stab in the dark" and so far for SMC9332's only.
568 static c_char srom_repair_info[][100] = {
569 {0x00,0x1e,0x00,0x00,0x00,0x08, /* SMC9332 */
570 0x1f,0x01,0x8f,0x01,0x00,0x01,0x00,0x02,
571 0x01,0x00,0x00,0x78,0xe0,0x01,0x00,0x50,
572 0x00,0x18,}
576 #ifdef DE4X5_DEBUG
577 static int de4x5_debug = DE4X5_DEBUG;
578 #else
579 /*static int de4x5_debug = (DEBUG_MII | DEBUG_SROM | DEBUG_PCICFG | DEBUG_MEDIA | DEBUG_VERSION);*/
580 static int de4x5_debug = (DEBUG_MEDIA | DEBUG_VERSION);
581 #endif
584 ** Allow per adapter set up. For modules this is simply a command line
585 ** parameter, e.g.:
586 ** insmod de4x5 args='eth1:fdx autosense=BNC eth0:autosense=100Mb'.
588 ** For a compiled in driver, place e.g.
589 ** #define DE4X5_PARM "eth0:fdx autosense=AUI eth2:autosense=TP"
590 ** here
592 #ifdef DE4X5_PARM
593 static char *args = DE4X5_PARM;
594 #else
595 static char *args;
596 #endif
598 struct parameters {
599 bool fdx;
600 int autosense;
603 #define DE4X5_AUTOSENSE_MS 250 /* msec autosense tick (DE500) */
605 #define DE4X5_NDA 0xffe0 /* No Device (I/O) Address */
608 ** Ethernet PROM defines
610 #define PROBE_LENGTH 32
611 #define ETH_PROM_SIG 0xAA5500FFUL
614 ** Ethernet Info
616 #define PKT_BUF_SZ 1536 /* Buffer size for each Tx/Rx buffer */
617 #define IEEE802_3_SZ 1518 /* Packet + CRC */
618 #define MAX_PKT_SZ 1514 /* Maximum ethernet packet length */
619 #define MAX_DAT_SZ 1500 /* Maximum ethernet data length */
620 #define MIN_DAT_SZ 1 /* Minimum ethernet data length */
621 #define PKT_HDR_LEN 14 /* Addresses and data length info */
622 #define FAKE_FRAME_LEN (MAX_PKT_SZ + 1)
623 #define QUEUE_PKT_TIMEOUT (3*HZ) /* 3 second timeout */
627 ** EISA bus defines
629 #define DE4X5_EISA_IO_PORTS 0x0c00 /* I/O port base address, slot 0 */
630 #define DE4X5_EISA_TOTAL_SIZE 0x100 /* I/O address extent */
632 #define EISA_ALLOWED_IRQ_LIST {5, 9, 10, 11}
634 #define DE4X5_SIGNATURE {"DE425","DE434","DE435","DE450","DE500"}
635 #define DE4X5_NAME_LENGTH 8
637 static c_char *de4x5_signatures[] = DE4X5_SIGNATURE;
640 ** Ethernet PROM defines for DC21040
642 #define PROBE_LENGTH 32
643 #define ETH_PROM_SIG 0xAA5500FFUL
646 ** PCI Bus defines
648 #define PCI_MAX_BUS_NUM 8
649 #define DE4X5_PCI_TOTAL_SIZE 0x80 /* I/O address extent */
650 #define DE4X5_CLASS_CODE 0x00020000 /* Network controller, Ethernet */
653 ** Memory Alignment. Each descriptor is 4 longwords long. To force a
654 ** particular alignment on the TX descriptor, adjust DESC_SKIP_LEN and
655 ** DESC_ALIGN. ALIGN aligns the start address of the private memory area
656 ** and hence the RX descriptor ring's first entry.
658 #define DE4X5_ALIGN4 ((u_long)4 - 1) /* 1 longword align */
659 #define DE4X5_ALIGN8 ((u_long)8 - 1) /* 2 longword align */
660 #define DE4X5_ALIGN16 ((u_long)16 - 1) /* 4 longword align */
661 #define DE4X5_ALIGN32 ((u_long)32 - 1) /* 8 longword align */
662 #define DE4X5_ALIGN64 ((u_long)64 - 1) /* 16 longword align */
663 #define DE4X5_ALIGN128 ((u_long)128 - 1) /* 32 longword align */
665 #define DE4X5_ALIGN DE4X5_ALIGN32 /* Keep the DC21040 happy... */
666 #define DE4X5_CACHE_ALIGN CAL_16LONG
667 #define DESC_SKIP_LEN DSL_0 /* Must agree with DESC_ALIGN */
668 /*#define DESC_ALIGN u32 dummy[4]; / * Must agree with DESC_SKIP_LEN */
669 #define DESC_ALIGN
671 #ifndef DEC_ONLY /* See README.de4x5 for using this */
672 static int dec_only;
673 #else
674 static int dec_only = 1;
675 #endif
678 ** DE4X5 IRQ ENABLE/DISABLE
680 #define ENABLE_IRQs { \
681 imr |= lp->irq_en;\
682 outl(imr, DE4X5_IMR); /* Enable the IRQs */\
685 #define DISABLE_IRQs {\
686 imr = inl(DE4X5_IMR);\
687 imr &= ~lp->irq_en;\
688 outl(imr, DE4X5_IMR); /* Disable the IRQs */\
691 #define UNMASK_IRQs {\
692 imr |= lp->irq_mask;\
693 outl(imr, DE4X5_IMR); /* Unmask the IRQs */\
696 #define MASK_IRQs {\
697 imr = inl(DE4X5_IMR);\
698 imr &= ~lp->irq_mask;\
699 outl(imr, DE4X5_IMR); /* Mask the IRQs */\
703 ** DE4X5 START/STOP
705 #define START_DE4X5 {\
706 omr = inl(DE4X5_OMR);\
707 omr |= OMR_ST | OMR_SR;\
708 outl(omr, DE4X5_OMR); /* Enable the TX and/or RX */\
711 #define STOP_DE4X5 {\
712 omr = inl(DE4X5_OMR);\
713 omr &= ~(OMR_ST|OMR_SR);\
714 outl(omr, DE4X5_OMR); /* Disable the TX and/or RX */ \
718 ** DE4X5 SIA RESET
720 #define RESET_SIA outl(0, DE4X5_SICR); /* Reset SIA connectivity regs */
723 ** DE500 AUTOSENSE TIMER INTERVAL (MILLISECS)
725 #define DE4X5_AUTOSENSE_MS 250
728 ** SROM Structure
730 struct de4x5_srom {
731 char sub_vendor_id[2];
732 char sub_system_id[2];
733 char reserved[12];
734 char id_block_crc;
735 char reserved2;
736 char version;
737 char num_controllers;
738 char ieee_addr[6];
739 char info[100];
740 short chksum;
742 #define SUB_VENDOR_ID 0x500a
745 ** DE4X5 Descriptors. Make sure that all the RX buffers are contiguous
746 ** and have sizes of both a power of 2 and a multiple of 4.
747 ** A size of 256 bytes for each buffer could be chosen because over 90% of
748 ** all packets in our network are <256 bytes long and 64 longword alignment
749 ** is possible. 1536 showed better 'ttcp' performance. Take your pick. 32 TX
750 ** descriptors are needed for machines with an ALPHA CPU.
752 #define NUM_RX_DESC 8 /* Number of RX descriptors */
753 #define NUM_TX_DESC 32 /* Number of TX descriptors */
754 #define RX_BUFF_SZ 1536 /* Power of 2 for kmalloc and */
755 /* Multiple of 4 for DC21040 */
756 /* Allows 512 byte alignment */
757 struct de4x5_desc {
758 volatile __le32 status;
759 __le32 des1;
760 __le32 buf;
761 __le32 next;
762 DESC_ALIGN
766 ** The DE4X5 private structure
768 #define DE4X5_PKT_STAT_SZ 16
769 #define DE4X5_PKT_BIN_SZ 128 /* Should be >=100 unless you
770 increase DE4X5_PKT_STAT_SZ */
772 struct pkt_stats {
773 u_int bins[DE4X5_PKT_STAT_SZ]; /* Private stats counters */
774 u_int unicast;
775 u_int multicast;
776 u_int broadcast;
777 u_int excessive_collisions;
778 u_int tx_underruns;
779 u_int excessive_underruns;
780 u_int rx_runt_frames;
781 u_int rx_collision;
782 u_int rx_dribble;
783 u_int rx_overflow;
786 struct de4x5_private {
787 char adapter_name[80]; /* Adapter name */
788 u_long interrupt; /* Aligned ISR flag */
789 struct de4x5_desc *rx_ring; /* RX descriptor ring */
790 struct de4x5_desc *tx_ring; /* TX descriptor ring */
791 struct sk_buff *tx_skb[NUM_TX_DESC]; /* TX skb for freeing when sent */
792 struct sk_buff *rx_skb[NUM_RX_DESC]; /* RX skb's */
793 int rx_new, rx_old; /* RX descriptor ring pointers */
794 int tx_new, tx_old; /* TX descriptor ring pointers */
795 char setup_frame[SETUP_FRAME_LEN]; /* Holds MCA and PA info. */
796 char frame[64]; /* Min sized packet for loopback*/
797 spinlock_t lock; /* Adapter specific spinlock */
798 struct net_device_stats stats; /* Public stats */
799 struct pkt_stats pktStats; /* Private stats counters */
800 char rxRingSize;
801 char txRingSize;
802 int bus; /* EISA or PCI */
803 int bus_num; /* PCI Bus number */
804 int device; /* Device number on PCI bus */
805 int state; /* Adapter OPENED or CLOSED */
806 int chipset; /* DC21040, DC21041 or DC21140 */
807 s32 irq_mask; /* Interrupt Mask (Enable) bits */
808 s32 irq_en; /* Summary interrupt bits */
809 int media; /* Media (eg TP), mode (eg 100B)*/
810 int c_media; /* Remember the last media conn */
811 bool fdx; /* media full duplex flag */
812 int linkOK; /* Link is OK */
813 int autosense; /* Allow/disallow autosensing */
814 bool tx_enable; /* Enable descriptor polling */
815 int setup_f; /* Setup frame filtering type */
816 int local_state; /* State within a 'media' state */
817 struct mii_phy phy[DE4X5_MAX_PHY]; /* List of attached PHY devices */
818 struct sia_phy sia; /* SIA PHY Information */
819 int active; /* Index to active PHY device */
820 int mii_cnt; /* Number of attached PHY's */
821 int timeout; /* Scheduling counter */
822 struct timer_list timer; /* Timer info for kernel */
823 int tmp; /* Temporary global per card */
824 struct {
825 u_long lock; /* Lock the cache accesses */
826 s32 csr0; /* Saved Bus Mode Register */
827 s32 csr6; /* Saved Operating Mode Reg. */
828 s32 csr7; /* Saved IRQ Mask Register */
829 s32 gep; /* Saved General Purpose Reg. */
830 s32 gepc; /* Control info for GEP */
831 s32 csr13; /* Saved SIA Connectivity Reg. */
832 s32 csr14; /* Saved SIA TX/RX Register */
833 s32 csr15; /* Saved SIA General Register */
834 int save_cnt; /* Flag if state already saved */
835 struct sk_buff *skb; /* Save the (re-ordered) skb's */
836 } cache;
837 struct de4x5_srom srom; /* A copy of the SROM */
838 int cfrv; /* Card CFRV copy */
839 int rx_ovf; /* Check for 'RX overflow' tag */
840 bool useSROM; /* For non-DEC card use SROM */
841 bool useMII; /* Infoblock using the MII */
842 int asBitValid; /* Autosense bits in GEP? */
843 int asPolarity; /* 0 => asserted high */
844 int asBit; /* Autosense bit number in GEP */
845 int defMedium; /* SROM default medium */
846 int tcount; /* Last infoblock number */
847 int infoblock_init; /* Initialised this infoblock? */
848 int infoleaf_offset; /* SROM infoleaf for controller */
849 s32 infoblock_csr6; /* csr6 value in SROM infoblock */
850 int infoblock_media; /* infoblock media */
851 int (*infoleaf_fn)(struct net_device *); /* Pointer to infoleaf function */
852 u_char *rst; /* Pointer to Type 5 reset info */
853 u_char ibn; /* Infoblock number */
854 struct parameters params; /* Command line/ #defined params */
855 struct device *gendev; /* Generic device */
856 dma_addr_t dma_rings; /* DMA handle for rings */
857 int dma_size; /* Size of the DMA area */
858 char *rx_bufs; /* rx bufs on alpha, sparc, ... */
862 ** To get around certain poxy cards that don't provide an SROM
863 ** for the second and more DECchip, I have to key off the first
864 ** chip's address. I'll assume there's not a bad SROM iff:
866 ** o the chipset is the same
867 ** o the bus number is the same and > 0
868 ** o the sum of all the returned hw address bytes is 0 or 0x5fa
870 ** Also have to save the irq for those cards whose hardware designers
871 ** can't follow the PCI to PCI Bridge Architecture spec.
873 static struct {
874 int chipset;
875 int bus;
876 int irq;
877 u_char addr[ETH_ALEN];
878 } last = {0,};
881 ** The transmit ring full condition is described by the tx_old and tx_new
882 ** pointers by:
883 ** tx_old = tx_new Empty ring
884 ** tx_old = tx_new+1 Full ring
885 ** tx_old+txRingSize = tx_new+1 Full ring (wrapped condition)
887 #define TX_BUFFS_AVAIL ((lp->tx_old<=lp->tx_new)?\
888 lp->tx_old+lp->txRingSize-lp->tx_new-1:\
889 lp->tx_old -lp->tx_new-1)
891 #define TX_PKT_PENDING (lp->tx_old != lp->tx_new)
894 ** Public Functions
896 static int de4x5_open(struct net_device *dev);
897 static int de4x5_queue_pkt(struct sk_buff *skb, struct net_device *dev);
898 static irqreturn_t de4x5_interrupt(int irq, void *dev_id);
899 static int de4x5_close(struct net_device *dev);
900 static struct net_device_stats *de4x5_get_stats(struct net_device *dev);
901 static void de4x5_local_stats(struct net_device *dev, char *buf, int pkt_len);
902 static void set_multicast_list(struct net_device *dev);
903 static int de4x5_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
906 ** Private functions
908 static int de4x5_hw_init(struct net_device *dev, u_long iobase, struct device *gendev);
909 static int de4x5_init(struct net_device *dev);
910 static int de4x5_sw_reset(struct net_device *dev);
911 static int de4x5_rx(struct net_device *dev);
912 static int de4x5_tx(struct net_device *dev);
913 static void de4x5_ast(struct net_device *dev);
914 static int de4x5_txur(struct net_device *dev);
915 static int de4x5_rx_ovfc(struct net_device *dev);
917 static int autoconf_media(struct net_device *dev);
918 static void create_packet(struct net_device *dev, char *frame, int len);
919 static void load_packet(struct net_device *dev, char *buf, u32 flags, struct sk_buff *skb);
920 static int dc21040_autoconf(struct net_device *dev);
921 static int dc21041_autoconf(struct net_device *dev);
922 static int dc21140m_autoconf(struct net_device *dev);
923 static int dc2114x_autoconf(struct net_device *dev);
924 static int srom_autoconf(struct net_device *dev);
925 static int de4x5_suspect_state(struct net_device *dev, int timeout, int prev_state, int (*fn)(struct net_device *, int), int (*asfn)(struct net_device *));
926 static int dc21040_state(struct net_device *dev, int csr13, int csr14, int csr15, int timeout, int next_state, int suspect_state, int (*fn)(struct net_device *, int));
927 static int test_media(struct net_device *dev, s32 irqs, s32 irq_mask, s32 csr13, s32 csr14, s32 csr15, s32 msec);
928 static int test_for_100Mb(struct net_device *dev, int msec);
929 static int wait_for_link(struct net_device *dev);
930 static int test_mii_reg(struct net_device *dev, int reg, int mask, bool pol, long msec);
931 static int is_spd_100(struct net_device *dev);
932 static int is_100_up(struct net_device *dev);
933 static int is_10_up(struct net_device *dev);
934 static int is_anc_capable(struct net_device *dev);
935 static int ping_media(struct net_device *dev, int msec);
936 static struct sk_buff *de4x5_alloc_rx_buff(struct net_device *dev, int index, int len);
937 static void de4x5_free_rx_buffs(struct net_device *dev);
938 static void de4x5_free_tx_buffs(struct net_device *dev);
939 static void de4x5_save_skbs(struct net_device *dev);
940 static void de4x5_rst_desc_ring(struct net_device *dev);
941 static void de4x5_cache_state(struct net_device *dev, int flag);
942 static void de4x5_put_cache(struct net_device *dev, struct sk_buff *skb);
943 static void de4x5_putb_cache(struct net_device *dev, struct sk_buff *skb);
944 static struct sk_buff *de4x5_get_cache(struct net_device *dev);
945 static void de4x5_setup_intr(struct net_device *dev);
946 static void de4x5_init_connection(struct net_device *dev);
947 static int de4x5_reset_phy(struct net_device *dev);
948 static void reset_init_sia(struct net_device *dev, s32 sicr, s32 strr, s32 sigr);
949 static int test_ans(struct net_device *dev, s32 irqs, s32 irq_mask, s32 msec);
950 static int test_tp(struct net_device *dev, s32 msec);
951 static int EISA_signature(char *name, struct device *device);
952 static int PCI_signature(char *name, struct de4x5_private *lp);
953 static void DevicePresent(struct net_device *dev, u_long iobase);
954 static void enet_addr_rst(u_long aprom_addr);
955 static int de4x5_bad_srom(struct de4x5_private *lp);
956 static short srom_rd(u_long address, u_char offset);
957 static void srom_latch(u_int command, u_long address);
958 static void srom_command(u_int command, u_long address);
959 static void srom_address(u_int command, u_long address, u_char offset);
960 static short srom_data(u_int command, u_long address);
961 /*static void srom_busy(u_int command, u_long address);*/
962 static void sendto_srom(u_int command, u_long addr);
963 static int getfrom_srom(u_long addr);
964 static int srom_map_media(struct net_device *dev);
965 static int srom_infoleaf_info(struct net_device *dev);
966 static void srom_init(struct net_device *dev);
967 static void srom_exec(struct net_device *dev, u_char *p);
968 static int mii_rd(u_char phyreg, u_char phyaddr, u_long ioaddr);
969 static void mii_wr(int data, u_char phyreg, u_char phyaddr, u_long ioaddr);
970 static int mii_rdata(u_long ioaddr);
971 static void mii_wdata(int data, int len, u_long ioaddr);
972 static void mii_ta(u_long rw, u_long ioaddr);
973 static int mii_swap(int data, int len);
974 static void mii_address(u_char addr, u_long ioaddr);
975 static void sendto_mii(u32 command, int data, u_long ioaddr);
976 static int getfrom_mii(u32 command, u_long ioaddr);
977 static int mii_get_oui(u_char phyaddr, u_long ioaddr);
978 static int mii_get_phy(struct net_device *dev);
979 static void SetMulticastFilter(struct net_device *dev);
980 static int get_hw_addr(struct net_device *dev);
981 static void srom_repair(struct net_device *dev, int card);
982 static int test_bad_enet(struct net_device *dev, int status);
983 static int an_exception(struct de4x5_private *lp);
984 static char *build_setup_frame(struct net_device *dev, int mode);
985 static void disable_ast(struct net_device *dev);
986 static long de4x5_switch_mac_port(struct net_device *dev);
987 static int gep_rd(struct net_device *dev);
988 static void gep_wr(s32 data, struct net_device *dev);
989 static void yawn(struct net_device *dev, int state);
990 static void de4x5_parse_params(struct net_device *dev);
991 static void de4x5_dbg_open(struct net_device *dev);
992 static void de4x5_dbg_mii(struct net_device *dev, int k);
993 static void de4x5_dbg_media(struct net_device *dev);
994 static void de4x5_dbg_srom(struct de4x5_srom *p);
995 static void de4x5_dbg_rx(struct sk_buff *skb, int len);
996 static int de4x5_strncmp(char *a, char *b, int n);
997 static int dc21041_infoleaf(struct net_device *dev);
998 static int dc21140_infoleaf(struct net_device *dev);
999 static int dc21142_infoleaf(struct net_device *dev);
1000 static int dc21143_infoleaf(struct net_device *dev);
1001 static int type0_infoblock(struct net_device *dev, u_char count, u_char *p);
1002 static int type1_infoblock(struct net_device *dev, u_char count, u_char *p);
1003 static int type2_infoblock(struct net_device *dev, u_char count, u_char *p);
1004 static int type3_infoblock(struct net_device *dev, u_char count, u_char *p);
1005 static int type4_infoblock(struct net_device *dev, u_char count, u_char *p);
1006 static int type5_infoblock(struct net_device *dev, u_char count, u_char *p);
1007 static int compact_infoblock(struct net_device *dev, u_char count, u_char *p);
1010 ** Note now that module autoprobing is allowed under EISA and PCI. The
1011 ** IRQ lines will not be auto-detected; instead I'll rely on the BIOSes
1012 ** to "do the right thing".
1015 static int io=0x0;/* EDIT THIS LINE FOR YOUR CONFIGURATION IF NEEDED */
1017 module_param(io, int, 0);
1018 module_param(de4x5_debug, int, 0);
1019 module_param(dec_only, int, 0);
1020 module_param(args, charp, 0);
1022 MODULE_PARM_DESC(io, "de4x5 I/O base address");
1023 MODULE_PARM_DESC(de4x5_debug, "de4x5 debug mask");
1024 MODULE_PARM_DESC(dec_only, "de4x5 probe only for Digital boards (0-1)");
1025 MODULE_PARM_DESC(args, "de4x5 full duplex and media type settings; see de4x5.c for details");
1026 MODULE_LICENSE("GPL");
1029 ** List the SROM infoleaf functions and chipsets
1031 struct InfoLeaf {
1032 int chipset;
1033 int (*fn)(struct net_device *);
1035 static struct InfoLeaf infoleaf_array[] = {
1036 {DC21041, dc21041_infoleaf},
1037 {DC21140, dc21140_infoleaf},
1038 {DC21142, dc21142_infoleaf},
1039 {DC21143, dc21143_infoleaf}
1041 #define INFOLEAF_SIZE ARRAY_SIZE(infoleaf_array)
1044 ** List the SROM info block functions
1046 static int (*dc_infoblock[])(struct net_device *dev, u_char, u_char *) = {
1047 type0_infoblock,
1048 type1_infoblock,
1049 type2_infoblock,
1050 type3_infoblock,
1051 type4_infoblock,
1052 type5_infoblock,
1053 compact_infoblock
1056 #define COMPACT (ARRAY_SIZE(dc_infoblock) - 1)
1059 ** Miscellaneous defines...
1061 #define RESET_DE4X5 {\
1062 int i;\
1063 i=inl(DE4X5_BMR);\
1064 mdelay(1);\
1065 outl(i | BMR_SWR, DE4X5_BMR);\
1066 mdelay(1);\
1067 outl(i, DE4X5_BMR);\
1068 mdelay(1);\
1069 for (i=0;i<5;i++) {inl(DE4X5_BMR); mdelay(1);}\
1070 mdelay(1);\
1073 #define PHY_HARD_RESET {\
1074 outl(GEP_HRST, DE4X5_GEP); /* Hard RESET the PHY dev. */\
1075 mdelay(1); /* Assert for 1ms */\
1076 outl(0x00, DE4X5_GEP);\
1077 mdelay(2); /* Wait for 2ms */\
1081 static int __devinit
1082 de4x5_hw_init(struct net_device *dev, u_long iobase, struct device *gendev)
1084 char name[DE4X5_NAME_LENGTH + 1];
1085 struct de4x5_private *lp = netdev_priv(dev);
1086 struct pci_dev *pdev = NULL;
1087 int i, status=0;
1088 DECLARE_MAC_BUF(mac);
1090 gendev->driver_data = dev;
1092 /* Ensure we're not sleeping */
1093 if (lp->bus == EISA) {
1094 outb(WAKEUP, PCI_CFPM);
1095 } else {
1096 pdev = to_pci_dev (gendev);
1097 pci_write_config_byte(pdev, PCI_CFDA_PSM, WAKEUP);
1099 mdelay(10);
1101 RESET_DE4X5;
1103 if ((inl(DE4X5_STS) & (STS_TS | STS_RS)) != 0) {
1104 return -ENXIO; /* Hardware could not reset */
1108 ** Now find out what kind of DC21040/DC21041/DC21140 board we have.
1110 lp->useSROM = false;
1111 if (lp->bus == PCI) {
1112 PCI_signature(name, lp);
1113 } else {
1114 EISA_signature(name, gendev);
1117 if (*name == '\0') { /* Not found a board signature */
1118 return -ENXIO;
1121 dev->base_addr = iobase;
1122 printk ("%s: %s at 0x%04lx", gendev->bus_id, name, iobase);
1124 status = get_hw_addr(dev);
1125 printk(", h/w address %s\n", print_mac(mac, dev->dev_addr));
1127 if (status != 0) {
1128 printk(" which has an Ethernet PROM CRC error.\n");
1129 return -ENXIO;
1130 } else {
1131 lp->cache.gepc = GEP_INIT;
1132 lp->asBit = GEP_SLNK;
1133 lp->asPolarity = GEP_SLNK;
1134 lp->asBitValid = ~0;
1135 lp->timeout = -1;
1136 lp->gendev = gendev;
1137 spin_lock_init(&lp->lock);
1138 init_timer(&lp->timer);
1139 lp->timer.function = (void (*)(unsigned long))de4x5_ast;
1140 lp->timer.data = (unsigned long)dev;
1141 de4x5_parse_params(dev);
1144 ** Choose correct autosensing in case someone messed up
1146 lp->autosense = lp->params.autosense;
1147 if (lp->chipset != DC21140) {
1148 if ((lp->chipset==DC21040) && (lp->params.autosense&TP_NW)) {
1149 lp->params.autosense = TP;
1151 if ((lp->chipset==DC21041) && (lp->params.autosense&BNC_AUI)) {
1152 lp->params.autosense = BNC;
1155 lp->fdx = lp->params.fdx;
1156 sprintf(lp->adapter_name,"%s (%s)", name, gendev->bus_id);
1158 lp->dma_size = (NUM_RX_DESC + NUM_TX_DESC) * sizeof(struct de4x5_desc);
1159 #if defined(__alpha__) || defined(__powerpc__) || defined(CONFIG_SPARC) || defined(DE4X5_DO_MEMCPY)
1160 lp->dma_size += RX_BUFF_SZ * NUM_RX_DESC + DE4X5_ALIGN;
1161 #endif
1162 lp->rx_ring = dma_alloc_coherent(gendev, lp->dma_size,
1163 &lp->dma_rings, GFP_ATOMIC);
1164 if (lp->rx_ring == NULL) {
1165 return -ENOMEM;
1168 lp->tx_ring = lp->rx_ring + NUM_RX_DESC;
1171 ** Set up the RX descriptor ring (Intels)
1172 ** Allocate contiguous receive buffers, long word aligned (Alphas)
1174 #if !defined(__alpha__) && !defined(__powerpc__) && !defined(CONFIG_SPARC) && !defined(DE4X5_DO_MEMCPY)
1175 for (i=0; i<NUM_RX_DESC; i++) {
1176 lp->rx_ring[i].status = 0;
1177 lp->rx_ring[i].des1 = cpu_to_le32(RX_BUFF_SZ);
1178 lp->rx_ring[i].buf = 0;
1179 lp->rx_ring[i].next = 0;
1180 lp->rx_skb[i] = (struct sk_buff *) 1; /* Dummy entry */
1183 #else
1185 dma_addr_t dma_rx_bufs;
1187 dma_rx_bufs = lp->dma_rings + (NUM_RX_DESC + NUM_TX_DESC)
1188 * sizeof(struct de4x5_desc);
1189 dma_rx_bufs = (dma_rx_bufs + DE4X5_ALIGN) & ~DE4X5_ALIGN;
1190 lp->rx_bufs = (char *)(((long)(lp->rx_ring + NUM_RX_DESC
1191 + NUM_TX_DESC) + DE4X5_ALIGN) & ~DE4X5_ALIGN);
1192 for (i=0; i<NUM_RX_DESC; i++) {
1193 lp->rx_ring[i].status = 0;
1194 lp->rx_ring[i].des1 = cpu_to_le32(RX_BUFF_SZ);
1195 lp->rx_ring[i].buf =
1196 cpu_to_le32(dma_rx_bufs+i*RX_BUFF_SZ);
1197 lp->rx_ring[i].next = 0;
1198 lp->rx_skb[i] = (struct sk_buff *) 1; /* Dummy entry */
1202 #endif
1204 barrier();
1206 lp->rxRingSize = NUM_RX_DESC;
1207 lp->txRingSize = NUM_TX_DESC;
1209 /* Write the end of list marker to the descriptor lists */
1210 lp->rx_ring[lp->rxRingSize - 1].des1 |= cpu_to_le32(RD_RER);
1211 lp->tx_ring[lp->txRingSize - 1].des1 |= cpu_to_le32(TD_TER);
1213 /* Tell the adapter where the TX/RX rings are located. */
1214 outl(lp->dma_rings, DE4X5_RRBA);
1215 outl(lp->dma_rings + NUM_RX_DESC * sizeof(struct de4x5_desc),
1216 DE4X5_TRBA);
1218 /* Initialise the IRQ mask and Enable/Disable */
1219 lp->irq_mask = IMR_RIM | IMR_TIM | IMR_TUM | IMR_UNM;
1220 lp->irq_en = IMR_NIM | IMR_AIM;
1222 /* Create a loopback packet frame for later media probing */
1223 create_packet(dev, lp->frame, sizeof(lp->frame));
1225 /* Check if the RX overflow bug needs testing for */
1226 i = lp->cfrv & 0x000000fe;
1227 if ((lp->chipset == DC21140) && (i == 0x20)) {
1228 lp->rx_ovf = 1;
1231 /* Initialise the SROM pointers if possible */
1232 if (lp->useSROM) {
1233 lp->state = INITIALISED;
1234 if (srom_infoleaf_info(dev)) {
1235 dma_free_coherent (gendev, lp->dma_size,
1236 lp->rx_ring, lp->dma_rings);
1237 return -ENXIO;
1239 srom_init(dev);
1242 lp->state = CLOSED;
1245 ** Check for an MII interface
1247 if ((lp->chipset != DC21040) && (lp->chipset != DC21041)) {
1248 mii_get_phy(dev);
1251 printk(" and requires IRQ%d (provided by %s).\n", dev->irq,
1252 ((lp->bus == PCI) ? "PCI BIOS" : "EISA CNFG"));
1255 if (de4x5_debug & DEBUG_VERSION) {
1256 printk(version);
1259 /* The DE4X5-specific entries in the device structure. */
1260 SET_NETDEV_DEV(dev, gendev);
1261 dev->open = &de4x5_open;
1262 dev->hard_start_xmit = &de4x5_queue_pkt;
1263 dev->stop = &de4x5_close;
1264 dev->get_stats = &de4x5_get_stats;
1265 dev->set_multicast_list = &set_multicast_list;
1266 dev->do_ioctl = &de4x5_ioctl;
1268 dev->mem_start = 0;
1270 /* Fill in the generic fields of the device structure. */
1271 if ((status = register_netdev (dev))) {
1272 dma_free_coherent (gendev, lp->dma_size,
1273 lp->rx_ring, lp->dma_rings);
1274 return status;
1277 /* Let the adapter sleep to save power */
1278 yawn(dev, SLEEP);
1280 return status;
1284 static int
1285 de4x5_open(struct net_device *dev)
1287 struct de4x5_private *lp = netdev_priv(dev);
1288 u_long iobase = dev->base_addr;
1289 int i, status = 0;
1290 s32 omr;
1292 /* Allocate the RX buffers */
1293 for (i=0; i<lp->rxRingSize; i++) {
1294 if (de4x5_alloc_rx_buff(dev, i, 0) == NULL) {
1295 de4x5_free_rx_buffs(dev);
1296 return -EAGAIN;
1301 ** Wake up the adapter
1303 yawn(dev, WAKEUP);
1306 ** Re-initialize the DE4X5...
1308 status = de4x5_init(dev);
1309 spin_lock_init(&lp->lock);
1310 lp->state = OPEN;
1311 de4x5_dbg_open(dev);
1313 if (request_irq(dev->irq, de4x5_interrupt, IRQF_SHARED,
1314 lp->adapter_name, dev)) {
1315 printk("de4x5_open(): Requested IRQ%d is busy - attemping FAST/SHARE...", dev->irq);
1316 if (request_irq(dev->irq, de4x5_interrupt, IRQF_DISABLED | IRQF_SHARED,
1317 lp->adapter_name, dev)) {
1318 printk("\n Cannot get IRQ- reconfigure your hardware.\n");
1319 disable_ast(dev);
1320 de4x5_free_rx_buffs(dev);
1321 de4x5_free_tx_buffs(dev);
1322 yawn(dev, SLEEP);
1323 lp->state = CLOSED;
1324 return -EAGAIN;
1325 } else {
1326 printk("\n Succeeded, but you should reconfigure your hardware to avoid this.\n");
1327 printk("WARNING: there may be IRQ related problems in heavily loaded systems.\n");
1331 lp->interrupt = UNMASK_INTERRUPTS;
1332 dev->trans_start = jiffies;
1334 START_DE4X5;
1336 de4x5_setup_intr(dev);
1338 if (de4x5_debug & DEBUG_OPEN) {
1339 printk("\tsts: 0x%08x\n", inl(DE4X5_STS));
1340 printk("\tbmr: 0x%08x\n", inl(DE4X5_BMR));
1341 printk("\timr: 0x%08x\n", inl(DE4X5_IMR));
1342 printk("\tomr: 0x%08x\n", inl(DE4X5_OMR));
1343 printk("\tsisr: 0x%08x\n", inl(DE4X5_SISR));
1344 printk("\tsicr: 0x%08x\n", inl(DE4X5_SICR));
1345 printk("\tstrr: 0x%08x\n", inl(DE4X5_STRR));
1346 printk("\tsigr: 0x%08x\n", inl(DE4X5_SIGR));
1349 return status;
1353 ** Initialize the DE4X5 operating conditions. NB: a chip problem with the
1354 ** DC21140 requires using perfect filtering mode for that chip. Since I can't
1355 ** see why I'd want > 14 multicast addresses, I have changed all chips to use
1356 ** the perfect filtering mode. Keep the DMA burst length at 8: there seems
1357 ** to be data corruption problems if it is larger (UDP errors seen from a
1358 ** ttcp source).
1360 static int
1361 de4x5_init(struct net_device *dev)
1363 /* Lock out other processes whilst setting up the hardware */
1364 netif_stop_queue(dev);
1366 de4x5_sw_reset(dev);
1368 /* Autoconfigure the connected port */
1369 autoconf_media(dev);
1371 return 0;
1374 static int
1375 de4x5_sw_reset(struct net_device *dev)
1377 struct de4x5_private *lp = netdev_priv(dev);
1378 u_long iobase = dev->base_addr;
1379 int i, j, status = 0;
1380 s32 bmr, omr;
1382 /* Select the MII or SRL port now and RESET the MAC */
1383 if (!lp->useSROM) {
1384 if (lp->phy[lp->active].id != 0) {
1385 lp->infoblock_csr6 = OMR_SDP | OMR_PS | OMR_HBD;
1386 } else {
1387 lp->infoblock_csr6 = OMR_SDP | OMR_TTM;
1389 de4x5_switch_mac_port(dev);
1393 ** Set the programmable burst length to 8 longwords for all the DC21140
1394 ** Fasternet chips and 4 longwords for all others: DMA errors result
1395 ** without these values. Cache align 16 long.
1397 bmr = (lp->chipset==DC21140 ? PBL_8 : PBL_4) | DESC_SKIP_LEN | DE4X5_CACHE_ALIGN;
1398 bmr |= ((lp->chipset & ~0x00ff)==DC2114x ? BMR_RML : 0);
1399 outl(bmr, DE4X5_BMR);
1401 omr = inl(DE4X5_OMR) & ~OMR_PR; /* Turn off promiscuous mode */
1402 if (lp->chipset == DC21140) {
1403 omr |= (OMR_SDP | OMR_SB);
1405 lp->setup_f = PERFECT;
1406 outl(lp->dma_rings, DE4X5_RRBA);
1407 outl(lp->dma_rings + NUM_RX_DESC * sizeof(struct de4x5_desc),
1408 DE4X5_TRBA);
1410 lp->rx_new = lp->rx_old = 0;
1411 lp->tx_new = lp->tx_old = 0;
1413 for (i = 0; i < lp->rxRingSize; i++) {
1414 lp->rx_ring[i].status = cpu_to_le32(R_OWN);
1417 for (i = 0; i < lp->txRingSize; i++) {
1418 lp->tx_ring[i].status = cpu_to_le32(0);
1421 barrier();
1423 /* Build the setup frame depending on filtering mode */
1424 SetMulticastFilter(dev);
1426 load_packet(dev, lp->setup_frame, PERFECT_F|TD_SET|SETUP_FRAME_LEN, (struct sk_buff *)1);
1427 outl(omr|OMR_ST, DE4X5_OMR);
1429 /* Poll for setup frame completion (adapter interrupts are disabled now) */
1431 for (j=0, i=0;(i<500) && (j==0);i++) { /* Upto 500ms delay */
1432 mdelay(1);
1433 if ((s32)le32_to_cpu(lp->tx_ring[lp->tx_new].status) >= 0) j=1;
1435 outl(omr, DE4X5_OMR); /* Stop everything! */
1437 if (j == 0) {
1438 printk("%s: Setup frame timed out, status %08x\n", dev->name,
1439 inl(DE4X5_STS));
1440 status = -EIO;
1443 lp->tx_new = (++lp->tx_new) % lp->txRingSize;
1444 lp->tx_old = lp->tx_new;
1446 return status;
1450 ** Writes a socket buffer address to the next available transmit descriptor.
1452 static int
1453 de4x5_queue_pkt(struct sk_buff *skb, struct net_device *dev)
1455 struct de4x5_private *lp = netdev_priv(dev);
1456 u_long iobase = dev->base_addr;
1457 int status = 0;
1458 u_long flags = 0;
1460 netif_stop_queue(dev);
1461 if (!lp->tx_enable) { /* Cannot send for now */
1462 return -1;
1466 ** Clean out the TX ring asynchronously to interrupts - sometimes the
1467 ** interrupts are lost by delayed descriptor status updates relative to
1468 ** the irq assertion, especially with a busy PCI bus.
1470 spin_lock_irqsave(&lp->lock, flags);
1471 de4x5_tx(dev);
1472 spin_unlock_irqrestore(&lp->lock, flags);
1474 /* Test if cache is already locked - requeue skb if so */
1475 if (test_and_set_bit(0, (void *)&lp->cache.lock) && !lp->interrupt)
1476 return -1;
1478 /* Transmit descriptor ring full or stale skb */
1479 if (netif_queue_stopped(dev) || (u_long) lp->tx_skb[lp->tx_new] > 1) {
1480 if (lp->interrupt) {
1481 de4x5_putb_cache(dev, skb); /* Requeue the buffer */
1482 } else {
1483 de4x5_put_cache(dev, skb);
1485 if (de4x5_debug & DEBUG_TX) {
1486 printk("%s: transmit busy, lost media or stale skb found:\n STS:%08x\n tbusy:%d\n IMR:%08x\n OMR:%08x\n Stale skb: %s\n",dev->name, inl(DE4X5_STS), netif_queue_stopped(dev), inl(DE4X5_IMR), inl(DE4X5_OMR), ((u_long) lp->tx_skb[lp->tx_new] > 1) ? "YES" : "NO");
1488 } else if (skb->len > 0) {
1489 /* If we already have stuff queued locally, use that first */
1490 if (lp->cache.skb && !lp->interrupt) {
1491 de4x5_put_cache(dev, skb);
1492 skb = de4x5_get_cache(dev);
1495 while (skb && !netif_queue_stopped(dev) &&
1496 (u_long) lp->tx_skb[lp->tx_new] <= 1) {
1497 spin_lock_irqsave(&lp->lock, flags);
1498 netif_stop_queue(dev);
1499 load_packet(dev, skb->data, TD_IC | TD_LS | TD_FS | skb->len, skb);
1500 lp->stats.tx_bytes += skb->len;
1501 outl(POLL_DEMAND, DE4X5_TPD);/* Start the TX */
1503 lp->tx_new = (++lp->tx_new) % lp->txRingSize;
1504 dev->trans_start = jiffies;
1506 if (TX_BUFFS_AVAIL) {
1507 netif_start_queue(dev); /* Another pkt may be queued */
1509 skb = de4x5_get_cache(dev);
1510 spin_unlock_irqrestore(&lp->lock, flags);
1512 if (skb) de4x5_putb_cache(dev, skb);
1515 lp->cache.lock = 0;
1517 return status;
1521 ** The DE4X5 interrupt handler.
1523 ** I/O Read/Writes through intermediate PCI bridges are never 'posted',
1524 ** so that the asserted interrupt always has some real data to work with -
1525 ** if these I/O accesses are ever changed to memory accesses, ensure the
1526 ** STS write is read immediately to complete the transaction if the adapter
1527 ** is not on bus 0. Lost interrupts can still occur when the PCI bus load
1528 ** is high and descriptor status bits cannot be set before the associated
1529 ** interrupt is asserted and this routine entered.
1531 static irqreturn_t
1532 de4x5_interrupt(int irq, void *dev_id)
1534 struct net_device *dev = dev_id;
1535 struct de4x5_private *lp;
1536 s32 imr, omr, sts, limit;
1537 u_long iobase;
1538 unsigned int handled = 0;
1540 lp = netdev_priv(dev);
1541 spin_lock(&lp->lock);
1542 iobase = dev->base_addr;
1544 DISABLE_IRQs; /* Ensure non re-entrancy */
1546 if (test_and_set_bit(MASK_INTERRUPTS, (void*) &lp->interrupt))
1547 printk("%s: Re-entering the interrupt handler.\n", dev->name);
1549 synchronize_irq(dev->irq);
1551 for (limit=0; limit<8; limit++) {
1552 sts = inl(DE4X5_STS); /* Read IRQ status */
1553 outl(sts, DE4X5_STS); /* Reset the board interrupts */
1555 if (!(sts & lp->irq_mask)) break;/* All done */
1556 handled = 1;
1558 if (sts & (STS_RI | STS_RU)) /* Rx interrupt (packet[s] arrived) */
1559 de4x5_rx(dev);
1561 if (sts & (STS_TI | STS_TU)) /* Tx interrupt (packet sent) */
1562 de4x5_tx(dev);
1564 if (sts & STS_LNF) { /* TP Link has failed */
1565 lp->irq_mask &= ~IMR_LFM;
1568 if (sts & STS_UNF) { /* Transmit underrun */
1569 de4x5_txur(dev);
1572 if (sts & STS_SE) { /* Bus Error */
1573 STOP_DE4X5;
1574 printk("%s: Fatal bus error occurred, sts=%#8x, device stopped.\n",
1575 dev->name, sts);
1576 spin_unlock(&lp->lock);
1577 return IRQ_HANDLED;
1581 /* Load the TX ring with any locally stored packets */
1582 if (!test_and_set_bit(0, (void *)&lp->cache.lock)) {
1583 while (lp->cache.skb && !netif_queue_stopped(dev) && lp->tx_enable) {
1584 de4x5_queue_pkt(de4x5_get_cache(dev), dev);
1586 lp->cache.lock = 0;
1589 lp->interrupt = UNMASK_INTERRUPTS;
1590 ENABLE_IRQs;
1591 spin_unlock(&lp->lock);
1593 return IRQ_RETVAL(handled);
1596 static int
1597 de4x5_rx(struct net_device *dev)
1599 struct de4x5_private *lp = netdev_priv(dev);
1600 u_long iobase = dev->base_addr;
1601 int entry;
1602 s32 status;
1604 for (entry=lp->rx_new; (s32)le32_to_cpu(lp->rx_ring[entry].status)>=0;
1605 entry=lp->rx_new) {
1606 status = (s32)le32_to_cpu(lp->rx_ring[entry].status);
1608 if (lp->rx_ovf) {
1609 if (inl(DE4X5_MFC) & MFC_FOCM) {
1610 de4x5_rx_ovfc(dev);
1611 break;
1615 if (status & RD_FS) { /* Remember the start of frame */
1616 lp->rx_old = entry;
1619 if (status & RD_LS) { /* Valid frame status */
1620 if (lp->tx_enable) lp->linkOK++;
1621 if (status & RD_ES) { /* There was an error. */
1622 lp->stats.rx_errors++; /* Update the error stats. */
1623 if (status & (RD_RF | RD_TL)) lp->stats.rx_frame_errors++;
1624 if (status & RD_CE) lp->stats.rx_crc_errors++;
1625 if (status & RD_OF) lp->stats.rx_fifo_errors++;
1626 if (status & RD_TL) lp->stats.rx_length_errors++;
1627 if (status & RD_RF) lp->pktStats.rx_runt_frames++;
1628 if (status & RD_CS) lp->pktStats.rx_collision++;
1629 if (status & RD_DB) lp->pktStats.rx_dribble++;
1630 if (status & RD_OF) lp->pktStats.rx_overflow++;
1631 } else { /* A valid frame received */
1632 struct sk_buff *skb;
1633 short pkt_len = (short)(le32_to_cpu(lp->rx_ring[entry].status)
1634 >> 16) - 4;
1636 if ((skb = de4x5_alloc_rx_buff(dev, entry, pkt_len)) == NULL) {
1637 printk("%s: Insufficient memory; nuking packet.\n",
1638 dev->name);
1639 lp->stats.rx_dropped++;
1640 } else {
1641 de4x5_dbg_rx(skb, pkt_len);
1643 /* Push up the protocol stack */
1644 skb->protocol=eth_type_trans(skb,dev);
1645 de4x5_local_stats(dev, skb->data, pkt_len);
1646 netif_rx(skb);
1648 /* Update stats */
1649 dev->last_rx = jiffies;
1650 lp->stats.rx_packets++;
1651 lp->stats.rx_bytes += pkt_len;
1655 /* Change buffer ownership for this frame, back to the adapter */
1656 for (;lp->rx_old!=entry;lp->rx_old=(++lp->rx_old)%lp->rxRingSize) {
1657 lp->rx_ring[lp->rx_old].status = cpu_to_le32(R_OWN);
1658 barrier();
1660 lp->rx_ring[entry].status = cpu_to_le32(R_OWN);
1661 barrier();
1665 ** Update entry information
1667 lp->rx_new = (++lp->rx_new) % lp->rxRingSize;
1670 return 0;
1673 static inline void
1674 de4x5_free_tx_buff(struct de4x5_private *lp, int entry)
1676 dma_unmap_single(lp->gendev, le32_to_cpu(lp->tx_ring[entry].buf),
1677 le32_to_cpu(lp->tx_ring[entry].des1) & TD_TBS1,
1678 DMA_TO_DEVICE);
1679 if ((u_long) lp->tx_skb[entry] > 1)
1680 dev_kfree_skb_irq(lp->tx_skb[entry]);
1681 lp->tx_skb[entry] = NULL;
1685 ** Buffer sent - check for TX buffer errors.
1687 static int
1688 de4x5_tx(struct net_device *dev)
1690 struct de4x5_private *lp = netdev_priv(dev);
1691 u_long iobase = dev->base_addr;
1692 int entry;
1693 s32 status;
1695 for (entry = lp->tx_old; entry != lp->tx_new; entry = lp->tx_old) {
1696 status = (s32)le32_to_cpu(lp->tx_ring[entry].status);
1697 if (status < 0) { /* Buffer not sent yet */
1698 break;
1699 } else if (status != 0x7fffffff) { /* Not setup frame */
1700 if (status & TD_ES) { /* An error happened */
1701 lp->stats.tx_errors++;
1702 if (status & TD_NC) lp->stats.tx_carrier_errors++;
1703 if (status & TD_LC) lp->stats.tx_window_errors++;
1704 if (status & TD_UF) lp->stats.tx_fifo_errors++;
1705 if (status & TD_EC) lp->pktStats.excessive_collisions++;
1706 if (status & TD_DE) lp->stats.tx_aborted_errors++;
1708 if (TX_PKT_PENDING) {
1709 outl(POLL_DEMAND, DE4X5_TPD);/* Restart a stalled TX */
1711 } else { /* Packet sent */
1712 lp->stats.tx_packets++;
1713 if (lp->tx_enable) lp->linkOK++;
1715 /* Update the collision counter */
1716 lp->stats.collisions += ((status & TD_EC) ? 16 :
1717 ((status & TD_CC) >> 3));
1719 /* Free the buffer. */
1720 if (lp->tx_skb[entry] != NULL)
1721 de4x5_free_tx_buff(lp, entry);
1724 /* Update all the pointers */
1725 lp->tx_old = (++lp->tx_old) % lp->txRingSize;
1728 /* Any resources available? */
1729 if (TX_BUFFS_AVAIL && netif_queue_stopped(dev)) {
1730 if (lp->interrupt)
1731 netif_wake_queue(dev);
1732 else
1733 netif_start_queue(dev);
1736 return 0;
1739 static void
1740 de4x5_ast(struct net_device *dev)
1742 struct de4x5_private *lp = netdev_priv(dev);
1743 int next_tick = DE4X5_AUTOSENSE_MS;
1744 int dt;
1746 if (lp->useSROM)
1747 next_tick = srom_autoconf(dev);
1748 else if (lp->chipset == DC21140)
1749 next_tick = dc21140m_autoconf(dev);
1750 else if (lp->chipset == DC21041)
1751 next_tick = dc21041_autoconf(dev);
1752 else if (lp->chipset == DC21040)
1753 next_tick = dc21040_autoconf(dev);
1754 lp->linkOK = 0;
1756 dt = (next_tick * HZ) / 1000;
1758 if (!dt)
1759 dt = 1;
1761 mod_timer(&lp->timer, jiffies + dt);
1764 static int
1765 de4x5_txur(struct net_device *dev)
1767 struct de4x5_private *lp = netdev_priv(dev);
1768 u_long iobase = dev->base_addr;
1769 int omr;
1771 omr = inl(DE4X5_OMR);
1772 if (!(omr & OMR_SF) || (lp->chipset==DC21041) || (lp->chipset==DC21040)) {
1773 omr &= ~(OMR_ST|OMR_SR);
1774 outl(omr, DE4X5_OMR);
1775 while (inl(DE4X5_STS) & STS_TS);
1776 if ((omr & OMR_TR) < OMR_TR) {
1777 omr += 0x4000;
1778 } else {
1779 omr |= OMR_SF;
1781 outl(omr | OMR_ST | OMR_SR, DE4X5_OMR);
1784 return 0;
1787 static int
1788 de4x5_rx_ovfc(struct net_device *dev)
1790 struct de4x5_private *lp = netdev_priv(dev);
1791 u_long iobase = dev->base_addr;
1792 int omr;
1794 omr = inl(DE4X5_OMR);
1795 outl(omr & ~OMR_SR, DE4X5_OMR);
1796 while (inl(DE4X5_STS) & STS_RS);
1798 for (; (s32)le32_to_cpu(lp->rx_ring[lp->rx_new].status)>=0;) {
1799 lp->rx_ring[lp->rx_new].status = cpu_to_le32(R_OWN);
1800 lp->rx_new = (++lp->rx_new % lp->rxRingSize);
1803 outl(omr, DE4X5_OMR);
1805 return 0;
1808 static int
1809 de4x5_close(struct net_device *dev)
1811 struct de4x5_private *lp = netdev_priv(dev);
1812 u_long iobase = dev->base_addr;
1813 s32 imr, omr;
1815 disable_ast(dev);
1817 netif_stop_queue(dev);
1819 if (de4x5_debug & DEBUG_CLOSE) {
1820 printk("%s: Shutting down ethercard, status was %8.8x.\n",
1821 dev->name, inl(DE4X5_STS));
1825 ** We stop the DE4X5 here... mask interrupts and stop TX & RX
1827 DISABLE_IRQs;
1828 STOP_DE4X5;
1830 /* Free the associated irq */
1831 free_irq(dev->irq, dev);
1832 lp->state = CLOSED;
1834 /* Free any socket buffers */
1835 de4x5_free_rx_buffs(dev);
1836 de4x5_free_tx_buffs(dev);
1838 /* Put the adapter to sleep to save power */
1839 yawn(dev, SLEEP);
1841 return 0;
1844 static struct net_device_stats *
1845 de4x5_get_stats(struct net_device *dev)
1847 struct de4x5_private *lp = netdev_priv(dev);
1848 u_long iobase = dev->base_addr;
1850 lp->stats.rx_missed_errors = (int)(inl(DE4X5_MFC) & (MFC_OVFL | MFC_CNTR));
1852 return &lp->stats;
1855 static void
1856 de4x5_local_stats(struct net_device *dev, char *buf, int pkt_len)
1858 struct de4x5_private *lp = netdev_priv(dev);
1859 int i;
1861 for (i=1; i<DE4X5_PKT_STAT_SZ-1; i++) {
1862 if (pkt_len < (i*DE4X5_PKT_BIN_SZ)) {
1863 lp->pktStats.bins[i]++;
1864 i = DE4X5_PKT_STAT_SZ;
1867 if (buf[0] & 0x01) { /* Multicast/Broadcast */
1868 if ((*(s32 *)&buf[0] == -1) && (*(s16 *)&buf[4] == -1)) {
1869 lp->pktStats.broadcast++;
1870 } else {
1871 lp->pktStats.multicast++;
1873 } else if ((*(s32 *)&buf[0] == *(s32 *)&dev->dev_addr[0]) &&
1874 (*(s16 *)&buf[4] == *(s16 *)&dev->dev_addr[4])) {
1875 lp->pktStats.unicast++;
1878 lp->pktStats.bins[0]++; /* Duplicates stats.rx_packets */
1879 if (lp->pktStats.bins[0] == 0) { /* Reset counters */
1880 memset((char *)&lp->pktStats, 0, sizeof(lp->pktStats));
1883 return;
1887 ** Removes the TD_IC flag from previous descriptor to improve TX performance.
1888 ** If the flag is changed on a descriptor that is being read by the hardware,
1889 ** I assume PCI transaction ordering will mean you are either successful or
1890 ** just miss asserting the change to the hardware. Anyway you're messing with
1891 ** a descriptor you don't own, but this shouldn't kill the chip provided
1892 ** the descriptor register is read only to the hardware.
1894 static void
1895 load_packet(struct net_device *dev, char *buf, u32 flags, struct sk_buff *skb)
1897 struct de4x5_private *lp = netdev_priv(dev);
1898 int entry = (lp->tx_new ? lp->tx_new-1 : lp->txRingSize-1);
1899 dma_addr_t buf_dma = dma_map_single(lp->gendev, buf, flags & TD_TBS1, DMA_TO_DEVICE);
1901 lp->tx_ring[lp->tx_new].buf = cpu_to_le32(buf_dma);
1902 lp->tx_ring[lp->tx_new].des1 &= cpu_to_le32(TD_TER);
1903 lp->tx_ring[lp->tx_new].des1 |= cpu_to_le32(flags);
1904 lp->tx_skb[lp->tx_new] = skb;
1905 lp->tx_ring[entry].des1 &= cpu_to_le32(~TD_IC);
1906 barrier();
1908 lp->tx_ring[lp->tx_new].status = cpu_to_le32(T_OWN);
1909 barrier();
1913 ** Set or clear the multicast filter for this adaptor.
1915 static void
1916 set_multicast_list(struct net_device *dev)
1918 struct de4x5_private *lp = netdev_priv(dev);
1919 u_long iobase = dev->base_addr;
1921 /* First, double check that the adapter is open */
1922 if (lp->state == OPEN) {
1923 if (dev->flags & IFF_PROMISC) { /* set promiscuous mode */
1924 u32 omr;
1925 omr = inl(DE4X5_OMR);
1926 omr |= OMR_PR;
1927 outl(omr, DE4X5_OMR);
1928 } else {
1929 SetMulticastFilter(dev);
1930 load_packet(dev, lp->setup_frame, TD_IC | PERFECT_F | TD_SET |
1931 SETUP_FRAME_LEN, (struct sk_buff *)1);
1933 lp->tx_new = (++lp->tx_new) % lp->txRingSize;
1934 outl(POLL_DEMAND, DE4X5_TPD); /* Start the TX */
1935 dev->trans_start = jiffies;
1941 ** Calculate the hash code and update the logical address filter
1942 ** from a list of ethernet multicast addresses.
1943 ** Little endian crc one liner from Matt Thomas, DEC.
1945 static void
1946 SetMulticastFilter(struct net_device *dev)
1948 struct de4x5_private *lp = netdev_priv(dev);
1949 struct dev_mc_list *dmi=dev->mc_list;
1950 u_long iobase = dev->base_addr;
1951 int i, j, bit, byte;
1952 u16 hashcode;
1953 u32 omr, crc;
1954 char *pa;
1955 unsigned char *addrs;
1957 omr = inl(DE4X5_OMR);
1958 omr &= ~(OMR_PR | OMR_PM);
1959 pa = build_setup_frame(dev, ALL); /* Build the basic frame */
1961 if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 14)) {
1962 omr |= OMR_PM; /* Pass all multicasts */
1963 } else if (lp->setup_f == HASH_PERF) { /* Hash Filtering */
1964 for (i=0;i<dev->mc_count;i++) { /* for each address in the list */
1965 addrs=dmi->dmi_addr;
1966 dmi=dmi->next;
1967 if ((*addrs & 0x01) == 1) { /* multicast address? */
1968 crc = ether_crc_le(ETH_ALEN, addrs);
1969 hashcode = crc & HASH_BITS; /* hashcode is 9 LSb of CRC */
1971 byte = hashcode >> 3; /* bit[3-8] -> byte in filter */
1972 bit = 1 << (hashcode & 0x07);/* bit[0-2] -> bit in byte */
1974 byte <<= 1; /* calc offset into setup frame */
1975 if (byte & 0x02) {
1976 byte -= 1;
1978 lp->setup_frame[byte] |= bit;
1981 } else { /* Perfect filtering */
1982 for (j=0; j<dev->mc_count; j++) {
1983 addrs=dmi->dmi_addr;
1984 dmi=dmi->next;
1985 for (i=0; i<ETH_ALEN; i++) {
1986 *(pa + (i&1)) = *addrs++;
1987 if (i & 0x01) pa += 4;
1991 outl(omr, DE4X5_OMR);
1993 return;
1996 #ifdef CONFIG_EISA
1998 static u_char de4x5_irq[] = EISA_ALLOWED_IRQ_LIST;
2000 static int __init de4x5_eisa_probe (struct device *gendev)
2002 struct eisa_device *edev;
2003 u_long iobase;
2004 u_char irq, regval;
2005 u_short vendor;
2006 u32 cfid;
2007 int status, device;
2008 struct net_device *dev;
2009 struct de4x5_private *lp;
2011 edev = to_eisa_device (gendev);
2012 iobase = edev->base_addr;
2014 if (!request_region (iobase, DE4X5_EISA_TOTAL_SIZE, "de4x5"))
2015 return -EBUSY;
2017 if (!request_region (iobase + DE4X5_EISA_IO_PORTS,
2018 DE4X5_EISA_TOTAL_SIZE, "de4x5")) {
2019 status = -EBUSY;
2020 goto release_reg_1;
2023 if (!(dev = alloc_etherdev (sizeof (struct de4x5_private)))) {
2024 status = -ENOMEM;
2025 goto release_reg_2;
2027 lp = netdev_priv(dev);
2029 cfid = (u32) inl(PCI_CFID);
2030 lp->cfrv = (u_short) inl(PCI_CFRV);
2031 device = (cfid >> 8) & 0x00ffff00;
2032 vendor = (u_short) cfid;
2034 /* Read the EISA Configuration Registers */
2035 regval = inb(EISA_REG0) & (ER0_INTL | ER0_INTT);
2036 #ifdef CONFIG_ALPHA
2037 /* Looks like the Jensen firmware (rev 2.2) doesn't really
2038 * care about the EISA configuration, and thus doesn't
2039 * configure the PLX bridge properly. Oh well... Simply mimic
2040 * the EISA config file to sort it out. */
2042 /* EISA REG1: Assert DecChip 21040 HW Reset */
2043 outb (ER1_IAM | 1, EISA_REG1);
2044 mdelay (1);
2046 /* EISA REG1: Deassert DecChip 21040 HW Reset */
2047 outb (ER1_IAM, EISA_REG1);
2048 mdelay (1);
2050 /* EISA REG3: R/W Burst Transfer Enable */
2051 outb (ER3_BWE | ER3_BRE, EISA_REG3);
2053 /* 32_bit slave/master, Preempt Time=23 bclks, Unlatched Interrupt */
2054 outb (ER0_BSW | ER0_BMW | ER0_EPT | regval, EISA_REG0);
2055 #endif
2056 irq = de4x5_irq[(regval >> 1) & 0x03];
2058 if (is_DC2114x) {
2059 device = ((lp->cfrv & CFRV_RN) < DC2114x_BRK ? DC21142 : DC21143);
2061 lp->chipset = device;
2062 lp->bus = EISA;
2064 /* Write the PCI Configuration Registers */
2065 outl(PCI_COMMAND_IO | PCI_COMMAND_MASTER, PCI_CFCS);
2066 outl(0x00006000, PCI_CFLT);
2067 outl(iobase, PCI_CBIO);
2069 DevicePresent(dev, EISA_APROM);
2071 dev->irq = irq;
2073 if (!(status = de4x5_hw_init (dev, iobase, gendev))) {
2074 return 0;
2077 free_netdev (dev);
2078 release_reg_2:
2079 release_region (iobase + DE4X5_EISA_IO_PORTS, DE4X5_EISA_TOTAL_SIZE);
2080 release_reg_1:
2081 release_region (iobase, DE4X5_EISA_TOTAL_SIZE);
2083 return status;
2086 static int __devexit de4x5_eisa_remove (struct device *device)
2088 struct net_device *dev;
2089 u_long iobase;
2091 dev = device->driver_data;
2092 iobase = dev->base_addr;
2094 unregister_netdev (dev);
2095 free_netdev (dev);
2096 release_region (iobase + DE4X5_EISA_IO_PORTS, DE4X5_EISA_TOTAL_SIZE);
2097 release_region (iobase, DE4X5_EISA_TOTAL_SIZE);
2099 return 0;
2102 static struct eisa_device_id de4x5_eisa_ids[] = {
2103 { "DEC4250", 0 }, /* 0 is the board name index... */
2104 { "" }
2106 MODULE_DEVICE_TABLE(eisa, de4x5_eisa_ids);
2108 static struct eisa_driver de4x5_eisa_driver = {
2109 .id_table = de4x5_eisa_ids,
2110 .driver = {
2111 .name = "de4x5",
2112 .probe = de4x5_eisa_probe,
2113 .remove = __devexit_p (de4x5_eisa_remove),
2116 MODULE_DEVICE_TABLE(eisa, de4x5_eisa_ids);
2117 #endif
2119 #ifdef CONFIG_PCI
2122 ** This function searches the current bus (which is >0) for a DECchip with an
2123 ** SROM, so that in multiport cards that have one SROM shared between multiple
2124 ** DECchips, we can find the base SROM irrespective of the BIOS scan direction.
2125 ** For single port cards this is a time waster...
2127 static void __devinit
2128 srom_search(struct net_device *dev, struct pci_dev *pdev)
2130 u_char pb;
2131 u_short vendor, status;
2132 u_int irq = 0, device;
2133 u_long iobase = 0; /* Clear upper 32 bits in Alphas */
2134 int i, j;
2135 struct de4x5_private *lp = netdev_priv(dev);
2136 struct list_head *walk;
2138 list_for_each(walk, &pdev->bus_list) {
2139 struct pci_dev *this_dev = pci_dev_b(walk);
2141 /* Skip the pci_bus list entry */
2142 if (list_entry(walk, struct pci_bus, devices) == pdev->bus) continue;
2144 vendor = this_dev->vendor;
2145 device = this_dev->device << 8;
2146 if (!(is_DC21040 || is_DC21041 || is_DC21140 || is_DC2114x)) continue;
2148 /* Get the chip configuration revision register */
2149 pb = this_dev->bus->number;
2151 /* Set the device number information */
2152 lp->device = PCI_SLOT(this_dev->devfn);
2153 lp->bus_num = pb;
2155 /* Set the chipset information */
2156 if (is_DC2114x) {
2157 device = ((this_dev->revision & CFRV_RN) < DC2114x_BRK
2158 ? DC21142 : DC21143);
2160 lp->chipset = device;
2162 /* Get the board I/O address (64 bits on sparc64) */
2163 iobase = pci_resource_start(this_dev, 0);
2165 /* Fetch the IRQ to be used */
2166 irq = this_dev->irq;
2167 if ((irq == 0) || (irq == 0xff) || ((int)irq == -1)) continue;
2169 /* Check if I/O accesses are enabled */
2170 pci_read_config_word(this_dev, PCI_COMMAND, &status);
2171 if (!(status & PCI_COMMAND_IO)) continue;
2173 /* Search for a valid SROM attached to this DECchip */
2174 DevicePresent(dev, DE4X5_APROM);
2175 for (j=0, i=0; i<ETH_ALEN; i++) {
2176 j += (u_char) *((u_char *)&lp->srom + SROM_HWADD + i);
2178 if (j != 0 && j != 6 * 0xff) {
2179 last.chipset = device;
2180 last.bus = pb;
2181 last.irq = irq;
2182 for (i=0; i<ETH_ALEN; i++) {
2183 last.addr[i] = (u_char)*((u_char *)&lp->srom + SROM_HWADD + i);
2185 return;
2189 return;
2193 ** PCI bus I/O device probe
2194 ** NB: PCI I/O accesses and Bus Mastering are enabled by the PCI BIOS, not
2195 ** the driver. Some PCI BIOS's, pre V2.1, need the slot + features to be
2196 ** enabled by the user first in the set up utility. Hence we just check for
2197 ** enabled features and silently ignore the card if they're not.
2199 ** STOP PRESS: Some BIOS's __require__ the driver to enable the bus mastering
2200 ** bit. Here, check for I/O accesses and then set BM. If you put the card in
2201 ** a non BM slot, you're on your own (and complain to the PC vendor that your
2202 ** PC doesn't conform to the PCI standard)!
2204 ** This function is only compatible with the *latest* 2.1.x kernels. For 2.0.x
2205 ** kernels use the V0.535[n] drivers.
2208 static int __devinit de4x5_pci_probe (struct pci_dev *pdev,
2209 const struct pci_device_id *ent)
2211 u_char pb, pbus = 0, dev_num, dnum = 0, timer;
2212 u_short vendor, status;
2213 u_int irq = 0, device;
2214 u_long iobase = 0; /* Clear upper 32 bits in Alphas */
2215 int error;
2216 struct net_device *dev;
2217 struct de4x5_private *lp;
2219 dev_num = PCI_SLOT(pdev->devfn);
2220 pb = pdev->bus->number;
2222 if (io) { /* probe a single PCI device */
2223 pbus = (u_short)(io >> 8);
2224 dnum = (u_short)(io & 0xff);
2225 if ((pbus != pb) || (dnum != dev_num))
2226 return -ENODEV;
2229 vendor = pdev->vendor;
2230 device = pdev->device << 8;
2231 if (!(is_DC21040 || is_DC21041 || is_DC21140 || is_DC2114x))
2232 return -ENODEV;
2234 /* Ok, the device seems to be for us. */
2235 if ((error = pci_enable_device (pdev)))
2236 return error;
2238 if (!(dev = alloc_etherdev (sizeof (struct de4x5_private)))) {
2239 error = -ENOMEM;
2240 goto disable_dev;
2243 lp = netdev_priv(dev);
2244 lp->bus = PCI;
2245 lp->bus_num = 0;
2247 /* Search for an SROM on this bus */
2248 if (lp->bus_num != pb) {
2249 lp->bus_num = pb;
2250 srom_search(dev, pdev);
2253 /* Get the chip configuration revision register */
2254 lp->cfrv = pdev->revision;
2256 /* Set the device number information */
2257 lp->device = dev_num;
2258 lp->bus_num = pb;
2260 /* Set the chipset information */
2261 if (is_DC2114x) {
2262 device = ((lp->cfrv & CFRV_RN) < DC2114x_BRK ? DC21142 : DC21143);
2264 lp->chipset = device;
2266 /* Get the board I/O address (64 bits on sparc64) */
2267 iobase = pci_resource_start(pdev, 0);
2269 /* Fetch the IRQ to be used */
2270 irq = pdev->irq;
2271 if ((irq == 0) || (irq == 0xff) || ((int)irq == -1)) {
2272 error = -ENODEV;
2273 goto free_dev;
2276 /* Check if I/O accesses and Bus Mastering are enabled */
2277 pci_read_config_word(pdev, PCI_COMMAND, &status);
2278 #ifdef __powerpc__
2279 if (!(status & PCI_COMMAND_IO)) {
2280 status |= PCI_COMMAND_IO;
2281 pci_write_config_word(pdev, PCI_COMMAND, status);
2282 pci_read_config_word(pdev, PCI_COMMAND, &status);
2284 #endif /* __powerpc__ */
2285 if (!(status & PCI_COMMAND_IO)) {
2286 error = -ENODEV;
2287 goto free_dev;
2290 if (!(status & PCI_COMMAND_MASTER)) {
2291 status |= PCI_COMMAND_MASTER;
2292 pci_write_config_word(pdev, PCI_COMMAND, status);
2293 pci_read_config_word(pdev, PCI_COMMAND, &status);
2295 if (!(status & PCI_COMMAND_MASTER)) {
2296 error = -ENODEV;
2297 goto free_dev;
2300 /* Check the latency timer for values >= 0x60 */
2301 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &timer);
2302 if (timer < 0x60) {
2303 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0x60);
2306 DevicePresent(dev, DE4X5_APROM);
2308 if (!request_region (iobase, DE4X5_PCI_TOTAL_SIZE, "de4x5")) {
2309 error = -EBUSY;
2310 goto free_dev;
2313 dev->irq = irq;
2315 if ((error = de4x5_hw_init(dev, iobase, &pdev->dev))) {
2316 goto release;
2319 return 0;
2321 release:
2322 release_region (iobase, DE4X5_PCI_TOTAL_SIZE);
2323 free_dev:
2324 free_netdev (dev);
2325 disable_dev:
2326 pci_disable_device (pdev);
2327 return error;
2330 static void __devexit de4x5_pci_remove (struct pci_dev *pdev)
2332 struct net_device *dev;
2333 u_long iobase;
2335 dev = pdev->dev.driver_data;
2336 iobase = dev->base_addr;
2338 unregister_netdev (dev);
2339 free_netdev (dev);
2340 release_region (iobase, DE4X5_PCI_TOTAL_SIZE);
2341 pci_disable_device (pdev);
2344 static struct pci_device_id de4x5_pci_tbl[] = {
2345 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP,
2346 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
2347 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_PLUS,
2348 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
2349 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_FAST,
2350 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 2 },
2351 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_21142,
2352 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 3 },
2353 { },
2356 static struct pci_driver de4x5_pci_driver = {
2357 .name = "de4x5",
2358 .id_table = de4x5_pci_tbl,
2359 .probe = de4x5_pci_probe,
2360 .remove = __devexit_p (de4x5_pci_remove),
2363 #endif
2366 ** Auto configure the media here rather than setting the port at compile
2367 ** time. This routine is called by de4x5_init() and when a loss of media is
2368 ** detected (excessive collisions, loss of carrier, no carrier or link fail
2369 ** [TP] or no recent receive activity) to check whether the user has been
2370 ** sneaky and changed the port on us.
2372 static int
2373 autoconf_media(struct net_device *dev)
2375 struct de4x5_private *lp = netdev_priv(dev);
2376 u_long iobase = dev->base_addr;
2378 disable_ast(dev);
2380 lp->c_media = AUTO; /* Bogus last media */
2381 inl(DE4X5_MFC); /* Zero the lost frames counter */
2382 lp->media = INIT;
2383 lp->tcount = 0;
2385 de4x5_ast(dev);
2387 return lp->media;
2391 ** Autoconfigure the media when using the DC21040. AUI cannot be distinguished
2392 ** from BNC as the port has a jumper to set thick or thin wire. When set for
2393 ** BNC, the BNC port will indicate activity if it's not terminated correctly.
2394 ** The only way to test for that is to place a loopback packet onto the
2395 ** network and watch for errors. Since we're messing with the interrupt mask
2396 ** register, disable the board interrupts and do not allow any more packets to
2397 ** be queued to the hardware. Re-enable everything only when the media is
2398 ** found.
2399 ** I may have to "age out" locally queued packets so that the higher layer
2400 ** timeouts don't effectively duplicate packets on the network.
2402 static int
2403 dc21040_autoconf(struct net_device *dev)
2405 struct de4x5_private *lp = netdev_priv(dev);
2406 u_long iobase = dev->base_addr;
2407 int next_tick = DE4X5_AUTOSENSE_MS;
2408 s32 imr;
2410 switch (lp->media) {
2411 case INIT:
2412 DISABLE_IRQs;
2413 lp->tx_enable = false;
2414 lp->timeout = -1;
2415 de4x5_save_skbs(dev);
2416 if ((lp->autosense == AUTO) || (lp->autosense == TP)) {
2417 lp->media = TP;
2418 } else if ((lp->autosense == BNC) || (lp->autosense == AUI) || (lp->autosense == BNC_AUI)) {
2419 lp->media = BNC_AUI;
2420 } else if (lp->autosense == EXT_SIA) {
2421 lp->media = EXT_SIA;
2422 } else {
2423 lp->media = NC;
2425 lp->local_state = 0;
2426 next_tick = dc21040_autoconf(dev);
2427 break;
2429 case TP:
2430 next_tick = dc21040_state(dev, 0x8f01, 0xffff, 0x0000, 3000, BNC_AUI,
2431 TP_SUSPECT, test_tp);
2432 break;
2434 case TP_SUSPECT:
2435 next_tick = de4x5_suspect_state(dev, 1000, TP, test_tp, dc21040_autoconf);
2436 break;
2438 case BNC:
2439 case AUI:
2440 case BNC_AUI:
2441 next_tick = dc21040_state(dev, 0x8f09, 0x0705, 0x0006, 3000, EXT_SIA,
2442 BNC_AUI_SUSPECT, ping_media);
2443 break;
2445 case BNC_AUI_SUSPECT:
2446 next_tick = de4x5_suspect_state(dev, 1000, BNC_AUI, ping_media, dc21040_autoconf);
2447 break;
2449 case EXT_SIA:
2450 next_tick = dc21040_state(dev, 0x3041, 0x0000, 0x0006, 3000,
2451 NC, EXT_SIA_SUSPECT, ping_media);
2452 break;
2454 case EXT_SIA_SUSPECT:
2455 next_tick = de4x5_suspect_state(dev, 1000, EXT_SIA, ping_media, dc21040_autoconf);
2456 break;
2458 case NC:
2459 /* default to TP for all */
2460 reset_init_sia(dev, 0x8f01, 0xffff, 0x0000);
2461 if (lp->media != lp->c_media) {
2462 de4x5_dbg_media(dev);
2463 lp->c_media = lp->media;
2465 lp->media = INIT;
2466 lp->tx_enable = false;
2467 break;
2470 return next_tick;
2473 static int
2474 dc21040_state(struct net_device *dev, int csr13, int csr14, int csr15, int timeout,
2475 int next_state, int suspect_state,
2476 int (*fn)(struct net_device *, int))
2478 struct de4x5_private *lp = netdev_priv(dev);
2479 int next_tick = DE4X5_AUTOSENSE_MS;
2480 int linkBad;
2482 switch (lp->local_state) {
2483 case 0:
2484 reset_init_sia(dev, csr13, csr14, csr15);
2485 lp->local_state++;
2486 next_tick = 500;
2487 break;
2489 case 1:
2490 if (!lp->tx_enable) {
2491 linkBad = fn(dev, timeout);
2492 if (linkBad < 0) {
2493 next_tick = linkBad & ~TIMER_CB;
2494 } else {
2495 if (linkBad && (lp->autosense == AUTO)) {
2496 lp->local_state = 0;
2497 lp->media = next_state;
2498 } else {
2499 de4x5_init_connection(dev);
2502 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
2503 lp->media = suspect_state;
2504 next_tick = 3000;
2506 break;
2509 return next_tick;
2512 static int
2513 de4x5_suspect_state(struct net_device *dev, int timeout, int prev_state,
2514 int (*fn)(struct net_device *, int),
2515 int (*asfn)(struct net_device *))
2517 struct de4x5_private *lp = netdev_priv(dev);
2518 int next_tick = DE4X5_AUTOSENSE_MS;
2519 int linkBad;
2521 switch (lp->local_state) {
2522 case 1:
2523 if (lp->linkOK) {
2524 lp->media = prev_state;
2525 } else {
2526 lp->local_state++;
2527 next_tick = asfn(dev);
2529 break;
2531 case 2:
2532 linkBad = fn(dev, timeout);
2533 if (linkBad < 0) {
2534 next_tick = linkBad & ~TIMER_CB;
2535 } else if (!linkBad) {
2536 lp->local_state--;
2537 lp->media = prev_state;
2538 } else {
2539 lp->media = INIT;
2540 lp->tcount++;
2544 return next_tick;
2548 ** Autoconfigure the media when using the DC21041. AUI needs to be tested
2549 ** before BNC, because the BNC port will indicate activity if it's not
2550 ** terminated correctly. The only way to test for that is to place a loopback
2551 ** packet onto the network and watch for errors. Since we're messing with
2552 ** the interrupt mask register, disable the board interrupts and do not allow
2553 ** any more packets to be queued to the hardware. Re-enable everything only
2554 ** when the media is found.
2556 static int
2557 dc21041_autoconf(struct net_device *dev)
2559 struct de4x5_private *lp = netdev_priv(dev);
2560 u_long iobase = dev->base_addr;
2561 s32 sts, irqs, irq_mask, imr, omr;
2562 int next_tick = DE4X5_AUTOSENSE_MS;
2564 switch (lp->media) {
2565 case INIT:
2566 DISABLE_IRQs;
2567 lp->tx_enable = false;
2568 lp->timeout = -1;
2569 de4x5_save_skbs(dev); /* Save non transmitted skb's */
2570 if ((lp->autosense == AUTO) || (lp->autosense == TP_NW)) {
2571 lp->media = TP; /* On chip auto negotiation is broken */
2572 } else if (lp->autosense == TP) {
2573 lp->media = TP;
2574 } else if (lp->autosense == BNC) {
2575 lp->media = BNC;
2576 } else if (lp->autosense == AUI) {
2577 lp->media = AUI;
2578 } else {
2579 lp->media = NC;
2581 lp->local_state = 0;
2582 next_tick = dc21041_autoconf(dev);
2583 break;
2585 case TP_NW:
2586 if (lp->timeout < 0) {
2587 omr = inl(DE4X5_OMR);/* Set up full duplex for the autonegotiate */
2588 outl(omr | OMR_FDX, DE4X5_OMR);
2590 irqs = STS_LNF | STS_LNP;
2591 irq_mask = IMR_LFM | IMR_LPM;
2592 sts = test_media(dev, irqs, irq_mask, 0xef01, 0xffff, 0x0008, 2400);
2593 if (sts < 0) {
2594 next_tick = sts & ~TIMER_CB;
2595 } else {
2596 if (sts & STS_LNP) {
2597 lp->media = ANS;
2598 } else {
2599 lp->media = AUI;
2601 next_tick = dc21041_autoconf(dev);
2603 break;
2605 case ANS:
2606 if (!lp->tx_enable) {
2607 irqs = STS_LNP;
2608 irq_mask = IMR_LPM;
2609 sts = test_ans(dev, irqs, irq_mask, 3000);
2610 if (sts < 0) {
2611 next_tick = sts & ~TIMER_CB;
2612 } else {
2613 if (!(sts & STS_LNP) && (lp->autosense == AUTO)) {
2614 lp->media = TP;
2615 next_tick = dc21041_autoconf(dev);
2616 } else {
2617 lp->local_state = 1;
2618 de4x5_init_connection(dev);
2621 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
2622 lp->media = ANS_SUSPECT;
2623 next_tick = 3000;
2625 break;
2627 case ANS_SUSPECT:
2628 next_tick = de4x5_suspect_state(dev, 1000, ANS, test_tp, dc21041_autoconf);
2629 break;
2631 case TP:
2632 if (!lp->tx_enable) {
2633 if (lp->timeout < 0) {
2634 omr = inl(DE4X5_OMR); /* Set up half duplex for TP */
2635 outl(omr & ~OMR_FDX, DE4X5_OMR);
2637 irqs = STS_LNF | STS_LNP;
2638 irq_mask = IMR_LFM | IMR_LPM;
2639 sts = test_media(dev,irqs, irq_mask, 0xef01, 0xff3f, 0x0008, 2400);
2640 if (sts < 0) {
2641 next_tick = sts & ~TIMER_CB;
2642 } else {
2643 if (!(sts & STS_LNP) && (lp->autosense == AUTO)) {
2644 if (inl(DE4X5_SISR) & SISR_NRA) {
2645 lp->media = AUI; /* Non selected port activity */
2646 } else {
2647 lp->media = BNC;
2649 next_tick = dc21041_autoconf(dev);
2650 } else {
2651 lp->local_state = 1;
2652 de4x5_init_connection(dev);
2655 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
2656 lp->media = TP_SUSPECT;
2657 next_tick = 3000;
2659 break;
2661 case TP_SUSPECT:
2662 next_tick = de4x5_suspect_state(dev, 1000, TP, test_tp, dc21041_autoconf);
2663 break;
2665 case AUI:
2666 if (!lp->tx_enable) {
2667 if (lp->timeout < 0) {
2668 omr = inl(DE4X5_OMR); /* Set up half duplex for AUI */
2669 outl(omr & ~OMR_FDX, DE4X5_OMR);
2671 irqs = 0;
2672 irq_mask = 0;
2673 sts = test_media(dev,irqs, irq_mask, 0xef09, 0xf73d, 0x000e, 1000);
2674 if (sts < 0) {
2675 next_tick = sts & ~TIMER_CB;
2676 } else {
2677 if (!(inl(DE4X5_SISR) & SISR_SRA) && (lp->autosense == AUTO)) {
2678 lp->media = BNC;
2679 next_tick = dc21041_autoconf(dev);
2680 } else {
2681 lp->local_state = 1;
2682 de4x5_init_connection(dev);
2685 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
2686 lp->media = AUI_SUSPECT;
2687 next_tick = 3000;
2689 break;
2691 case AUI_SUSPECT:
2692 next_tick = de4x5_suspect_state(dev, 1000, AUI, ping_media, dc21041_autoconf);
2693 break;
2695 case BNC:
2696 switch (lp->local_state) {
2697 case 0:
2698 if (lp->timeout < 0) {
2699 omr = inl(DE4X5_OMR); /* Set up half duplex for BNC */
2700 outl(omr & ~OMR_FDX, DE4X5_OMR);
2702 irqs = 0;
2703 irq_mask = 0;
2704 sts = test_media(dev,irqs, irq_mask, 0xef09, 0xf73d, 0x0006, 1000);
2705 if (sts < 0) {
2706 next_tick = sts & ~TIMER_CB;
2707 } else {
2708 lp->local_state++; /* Ensure media connected */
2709 next_tick = dc21041_autoconf(dev);
2711 break;
2713 case 1:
2714 if (!lp->tx_enable) {
2715 if ((sts = ping_media(dev, 3000)) < 0) {
2716 next_tick = sts & ~TIMER_CB;
2717 } else {
2718 if (sts) {
2719 lp->local_state = 0;
2720 lp->media = NC;
2721 } else {
2722 de4x5_init_connection(dev);
2725 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
2726 lp->media = BNC_SUSPECT;
2727 next_tick = 3000;
2729 break;
2731 break;
2733 case BNC_SUSPECT:
2734 next_tick = de4x5_suspect_state(dev, 1000, BNC, ping_media, dc21041_autoconf);
2735 break;
2737 case NC:
2738 omr = inl(DE4X5_OMR); /* Set up full duplex for the autonegotiate */
2739 outl(omr | OMR_FDX, DE4X5_OMR);
2740 reset_init_sia(dev, 0xef01, 0xffff, 0x0008);/* Initialise the SIA */
2741 if (lp->media != lp->c_media) {
2742 de4x5_dbg_media(dev);
2743 lp->c_media = lp->media;
2745 lp->media = INIT;
2746 lp->tx_enable = false;
2747 break;
2750 return next_tick;
2754 ** Some autonegotiation chips are broken in that they do not return the
2755 ** acknowledge bit (anlpa & MII_ANLPA_ACK) in the link partner advertisement
2756 ** register, except at the first power up negotiation.
2758 static int
2759 dc21140m_autoconf(struct net_device *dev)
2761 struct de4x5_private *lp = netdev_priv(dev);
2762 int ana, anlpa, cap, cr, slnk, sr;
2763 int next_tick = DE4X5_AUTOSENSE_MS;
2764 u_long imr, omr, iobase = dev->base_addr;
2766 switch(lp->media) {
2767 case INIT:
2768 if (lp->timeout < 0) {
2769 DISABLE_IRQs;
2770 lp->tx_enable = false;
2771 lp->linkOK = 0;
2772 de4x5_save_skbs(dev); /* Save non transmitted skb's */
2774 if ((next_tick = de4x5_reset_phy(dev)) < 0) {
2775 next_tick &= ~TIMER_CB;
2776 } else {
2777 if (lp->useSROM) {
2778 if (srom_map_media(dev) < 0) {
2779 lp->tcount++;
2780 return next_tick;
2782 srom_exec(dev, lp->phy[lp->active].gep);
2783 if (lp->infoblock_media == ANS) {
2784 ana = lp->phy[lp->active].ana | MII_ANA_CSMA;
2785 mii_wr(ana, MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
2787 } else {
2788 lp->tmp = MII_SR_ASSC; /* Fake out the MII speed set */
2789 SET_10Mb;
2790 if (lp->autosense == _100Mb) {
2791 lp->media = _100Mb;
2792 } else if (lp->autosense == _10Mb) {
2793 lp->media = _10Mb;
2794 } else if ((lp->autosense == AUTO) &&
2795 ((sr=is_anc_capable(dev)) & MII_SR_ANC)) {
2796 ana = (((sr >> 6) & MII_ANA_TAF) | MII_ANA_CSMA);
2797 ana &= (lp->fdx ? ~0 : ~MII_ANA_FDAM);
2798 mii_wr(ana, MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
2799 lp->media = ANS;
2800 } else if (lp->autosense == AUTO) {
2801 lp->media = SPD_DET;
2802 } else if (is_spd_100(dev) && is_100_up(dev)) {
2803 lp->media = _100Mb;
2804 } else {
2805 lp->media = NC;
2808 lp->local_state = 0;
2809 next_tick = dc21140m_autoconf(dev);
2811 break;
2813 case ANS:
2814 switch (lp->local_state) {
2815 case 0:
2816 if (lp->timeout < 0) {
2817 mii_wr(MII_CR_ASSE | MII_CR_RAN, MII_CR, lp->phy[lp->active].addr, DE4X5_MII);
2819 cr = test_mii_reg(dev, MII_CR, MII_CR_RAN, false, 500);
2820 if (cr < 0) {
2821 next_tick = cr & ~TIMER_CB;
2822 } else {
2823 if (cr) {
2824 lp->local_state = 0;
2825 lp->media = SPD_DET;
2826 } else {
2827 lp->local_state++;
2829 next_tick = dc21140m_autoconf(dev);
2831 break;
2833 case 1:
2834 if ((sr=test_mii_reg(dev, MII_SR, MII_SR_ASSC, true, 2000)) < 0) {
2835 next_tick = sr & ~TIMER_CB;
2836 } else {
2837 lp->media = SPD_DET;
2838 lp->local_state = 0;
2839 if (sr) { /* Success! */
2840 lp->tmp = MII_SR_ASSC;
2841 anlpa = mii_rd(MII_ANLPA, lp->phy[lp->active].addr, DE4X5_MII);
2842 ana = mii_rd(MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
2843 if (!(anlpa & MII_ANLPA_RF) &&
2844 (cap = anlpa & MII_ANLPA_TAF & ana)) {
2845 if (cap & MII_ANA_100M) {
2846 lp->fdx = (ana & anlpa & MII_ANA_FDAM & MII_ANA_100M) != 0;
2847 lp->media = _100Mb;
2848 } else if (cap & MII_ANA_10M) {
2849 lp->fdx = (ana & anlpa & MII_ANA_FDAM & MII_ANA_10M) != 0;
2851 lp->media = _10Mb;
2854 } /* Auto Negotiation failed to finish */
2855 next_tick = dc21140m_autoconf(dev);
2856 } /* Auto Negotiation failed to start */
2857 break;
2859 break;
2861 case SPD_DET: /* Choose 10Mb/s or 100Mb/s */
2862 if (lp->timeout < 0) {
2863 lp->tmp = (lp->phy[lp->active].id ? MII_SR_LKS :
2864 (~gep_rd(dev) & GEP_LNP));
2865 SET_100Mb_PDET;
2867 if ((slnk = test_for_100Mb(dev, 6500)) < 0) {
2868 next_tick = slnk & ~TIMER_CB;
2869 } else {
2870 if (is_spd_100(dev) && is_100_up(dev)) {
2871 lp->media = _100Mb;
2872 } else if ((!is_spd_100(dev) && (is_10_up(dev) & lp->tmp))) {
2873 lp->media = _10Mb;
2874 } else {
2875 lp->media = NC;
2877 next_tick = dc21140m_autoconf(dev);
2879 break;
2881 case _100Mb: /* Set 100Mb/s */
2882 next_tick = 3000;
2883 if (!lp->tx_enable) {
2884 SET_100Mb;
2885 de4x5_init_connection(dev);
2886 } else {
2887 if (!lp->linkOK && (lp->autosense == AUTO)) {
2888 if (!is_100_up(dev) || (!lp->useSROM && !is_spd_100(dev))) {
2889 lp->media = INIT;
2890 lp->tcount++;
2891 next_tick = DE4X5_AUTOSENSE_MS;
2895 break;
2897 case BNC:
2898 case AUI:
2899 case _10Mb: /* Set 10Mb/s */
2900 next_tick = 3000;
2901 if (!lp->tx_enable) {
2902 SET_10Mb;
2903 de4x5_init_connection(dev);
2904 } else {
2905 if (!lp->linkOK && (lp->autosense == AUTO)) {
2906 if (!is_10_up(dev) || (!lp->useSROM && is_spd_100(dev))) {
2907 lp->media = INIT;
2908 lp->tcount++;
2909 next_tick = DE4X5_AUTOSENSE_MS;
2913 break;
2915 case NC:
2916 if (lp->media != lp->c_media) {
2917 de4x5_dbg_media(dev);
2918 lp->c_media = lp->media;
2920 lp->media = INIT;
2921 lp->tx_enable = false;
2922 break;
2925 return next_tick;
2929 ** This routine may be merged into dc21140m_autoconf() sometime as I'm
2930 ** changing how I figure out the media - but trying to keep it backwards
2931 ** compatible with the de500-xa and de500-aa.
2932 ** Whether it's BNC, AUI, SYM or MII is sorted out in the infoblock
2933 ** functions and set during de4x5_mac_port() and/or de4x5_reset_phy().
2934 ** This routine just has to figure out whether 10Mb/s or 100Mb/s is
2935 ** active.
2936 ** When autonegotiation is working, the ANS part searches the SROM for
2937 ** the highest common speed (TP) link that both can run and if that can
2938 ** be full duplex. That infoblock is executed and then the link speed set.
2940 ** Only _10Mb and _100Mb are tested here.
2942 static int
2943 dc2114x_autoconf(struct net_device *dev)
2945 struct de4x5_private *lp = netdev_priv(dev);
2946 u_long iobase = dev->base_addr;
2947 s32 cr, anlpa, ana, cap, irqs, irq_mask, imr, omr, slnk, sr, sts;
2948 int next_tick = DE4X5_AUTOSENSE_MS;
2950 switch (lp->media) {
2951 case INIT:
2952 if (lp->timeout < 0) {
2953 DISABLE_IRQs;
2954 lp->tx_enable = false;
2955 lp->linkOK = 0;
2956 lp->timeout = -1;
2957 de4x5_save_skbs(dev); /* Save non transmitted skb's */
2958 if (lp->params.autosense & ~AUTO) {
2959 srom_map_media(dev); /* Fixed media requested */
2960 if (lp->media != lp->params.autosense) {
2961 lp->tcount++;
2962 lp->media = INIT;
2963 return next_tick;
2965 lp->media = INIT;
2968 if ((next_tick = de4x5_reset_phy(dev)) < 0) {
2969 next_tick &= ~TIMER_CB;
2970 } else {
2971 if (lp->autosense == _100Mb) {
2972 lp->media = _100Mb;
2973 } else if (lp->autosense == _10Mb) {
2974 lp->media = _10Mb;
2975 } else if (lp->autosense == TP) {
2976 lp->media = TP;
2977 } else if (lp->autosense == BNC) {
2978 lp->media = BNC;
2979 } else if (lp->autosense == AUI) {
2980 lp->media = AUI;
2981 } else {
2982 lp->media = SPD_DET;
2983 if ((lp->infoblock_media == ANS) &&
2984 ((sr=is_anc_capable(dev)) & MII_SR_ANC)) {
2985 ana = (((sr >> 6) & MII_ANA_TAF) | MII_ANA_CSMA);
2986 ana &= (lp->fdx ? ~0 : ~MII_ANA_FDAM);
2987 mii_wr(ana, MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
2988 lp->media = ANS;
2991 lp->local_state = 0;
2992 next_tick = dc2114x_autoconf(dev);
2994 break;
2996 case ANS:
2997 switch (lp->local_state) {
2998 case 0:
2999 if (lp->timeout < 0) {
3000 mii_wr(MII_CR_ASSE | MII_CR_RAN, MII_CR, lp->phy[lp->active].addr, DE4X5_MII);
3002 cr = test_mii_reg(dev, MII_CR, MII_CR_RAN, false, 500);
3003 if (cr < 0) {
3004 next_tick = cr & ~TIMER_CB;
3005 } else {
3006 if (cr) {
3007 lp->local_state = 0;
3008 lp->media = SPD_DET;
3009 } else {
3010 lp->local_state++;
3012 next_tick = dc2114x_autoconf(dev);
3014 break;
3016 case 1:
3017 sr = test_mii_reg(dev, MII_SR, MII_SR_ASSC, true, 2000);
3018 if (sr < 0) {
3019 next_tick = sr & ~TIMER_CB;
3020 } else {
3021 lp->media = SPD_DET;
3022 lp->local_state = 0;
3023 if (sr) { /* Success! */
3024 lp->tmp = MII_SR_ASSC;
3025 anlpa = mii_rd(MII_ANLPA, lp->phy[lp->active].addr, DE4X5_MII);
3026 ana = mii_rd(MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
3027 if (!(anlpa & MII_ANLPA_RF) &&
3028 (cap = anlpa & MII_ANLPA_TAF & ana)) {
3029 if (cap & MII_ANA_100M) {
3030 lp->fdx = (ana & anlpa & MII_ANA_FDAM & MII_ANA_100M) != 0;
3031 lp->media = _100Mb;
3032 } else if (cap & MII_ANA_10M) {
3033 lp->fdx = (ana & anlpa & MII_ANA_FDAM & MII_ANA_10M) != 0;
3034 lp->media = _10Mb;
3037 } /* Auto Negotiation failed to finish */
3038 next_tick = dc2114x_autoconf(dev);
3039 } /* Auto Negotiation failed to start */
3040 break;
3042 break;
3044 case AUI:
3045 if (!lp->tx_enable) {
3046 if (lp->timeout < 0) {
3047 omr = inl(DE4X5_OMR); /* Set up half duplex for AUI */
3048 outl(omr & ~OMR_FDX, DE4X5_OMR);
3050 irqs = 0;
3051 irq_mask = 0;
3052 sts = test_media(dev,irqs, irq_mask, 0, 0, 0, 1000);
3053 if (sts < 0) {
3054 next_tick = sts & ~TIMER_CB;
3055 } else {
3056 if (!(inl(DE4X5_SISR) & SISR_SRA) && (lp->autosense == AUTO)) {
3057 lp->media = BNC;
3058 next_tick = dc2114x_autoconf(dev);
3059 } else {
3060 lp->local_state = 1;
3061 de4x5_init_connection(dev);
3064 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
3065 lp->media = AUI_SUSPECT;
3066 next_tick = 3000;
3068 break;
3070 case AUI_SUSPECT:
3071 next_tick = de4x5_suspect_state(dev, 1000, AUI, ping_media, dc2114x_autoconf);
3072 break;
3074 case BNC:
3075 switch (lp->local_state) {
3076 case 0:
3077 if (lp->timeout < 0) {
3078 omr = inl(DE4X5_OMR); /* Set up half duplex for BNC */
3079 outl(omr & ~OMR_FDX, DE4X5_OMR);
3081 irqs = 0;
3082 irq_mask = 0;
3083 sts = test_media(dev,irqs, irq_mask, 0, 0, 0, 1000);
3084 if (sts < 0) {
3085 next_tick = sts & ~TIMER_CB;
3086 } else {
3087 lp->local_state++; /* Ensure media connected */
3088 next_tick = dc2114x_autoconf(dev);
3090 break;
3092 case 1:
3093 if (!lp->tx_enable) {
3094 if ((sts = ping_media(dev, 3000)) < 0) {
3095 next_tick = sts & ~TIMER_CB;
3096 } else {
3097 if (sts) {
3098 lp->local_state = 0;
3099 lp->tcount++;
3100 lp->media = INIT;
3101 } else {
3102 de4x5_init_connection(dev);
3105 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
3106 lp->media = BNC_SUSPECT;
3107 next_tick = 3000;
3109 break;
3111 break;
3113 case BNC_SUSPECT:
3114 next_tick = de4x5_suspect_state(dev, 1000, BNC, ping_media, dc2114x_autoconf);
3115 break;
3117 case SPD_DET: /* Choose 10Mb/s or 100Mb/s */
3118 if (srom_map_media(dev) < 0) {
3119 lp->tcount++;
3120 lp->media = INIT;
3121 return next_tick;
3123 if (lp->media == _100Mb) {
3124 if ((slnk = test_for_100Mb(dev, 6500)) < 0) {
3125 lp->media = SPD_DET;
3126 return (slnk & ~TIMER_CB);
3128 } else {
3129 if (wait_for_link(dev) < 0) {
3130 lp->media = SPD_DET;
3131 return PDET_LINK_WAIT;
3134 if (lp->media == ANS) { /* Do MII parallel detection */
3135 if (is_spd_100(dev)) {
3136 lp->media = _100Mb;
3137 } else {
3138 lp->media = _10Mb;
3140 next_tick = dc2114x_autoconf(dev);
3141 } else if (((lp->media == _100Mb) && is_100_up(dev)) ||
3142 (((lp->media == _10Mb) || (lp->media == TP) ||
3143 (lp->media == BNC) || (lp->media == AUI)) &&
3144 is_10_up(dev))) {
3145 next_tick = dc2114x_autoconf(dev);
3146 } else {
3147 lp->tcount++;
3148 lp->media = INIT;
3150 break;
3152 case _10Mb:
3153 next_tick = 3000;
3154 if (!lp->tx_enable) {
3155 SET_10Mb;
3156 de4x5_init_connection(dev);
3157 } else {
3158 if (!lp->linkOK && (lp->autosense == AUTO)) {
3159 if (!is_10_up(dev) || (!lp->useSROM && is_spd_100(dev))) {
3160 lp->media = INIT;
3161 lp->tcount++;
3162 next_tick = DE4X5_AUTOSENSE_MS;
3166 break;
3168 case _100Mb:
3169 next_tick = 3000;
3170 if (!lp->tx_enable) {
3171 SET_100Mb;
3172 de4x5_init_connection(dev);
3173 } else {
3174 if (!lp->linkOK && (lp->autosense == AUTO)) {
3175 if (!is_100_up(dev) || (!lp->useSROM && !is_spd_100(dev))) {
3176 lp->media = INIT;
3177 lp->tcount++;
3178 next_tick = DE4X5_AUTOSENSE_MS;
3182 break;
3184 default:
3185 lp->tcount++;
3186 printk("Huh?: media:%02x\n", lp->media);
3187 lp->media = INIT;
3188 break;
3191 return next_tick;
3194 static int
3195 srom_autoconf(struct net_device *dev)
3197 struct de4x5_private *lp = netdev_priv(dev);
3199 return lp->infoleaf_fn(dev);
3203 ** This mapping keeps the original media codes and FDX flag unchanged.
3204 ** While it isn't strictly necessary, it helps me for the moment...
3205 ** The early return avoids a media state / SROM media space clash.
3207 static int
3208 srom_map_media(struct net_device *dev)
3210 struct de4x5_private *lp = netdev_priv(dev);
3212 lp->fdx = false;
3213 if (lp->infoblock_media == lp->media)
3214 return 0;
3216 switch(lp->infoblock_media) {
3217 case SROM_10BASETF:
3218 if (!lp->params.fdx) return -1;
3219 lp->fdx = true;
3220 case SROM_10BASET:
3221 if (lp->params.fdx && !lp->fdx) return -1;
3222 if ((lp->chipset == DC21140) || ((lp->chipset & ~0x00ff) == DC2114x)) {
3223 lp->media = _10Mb;
3224 } else {
3225 lp->media = TP;
3227 break;
3229 case SROM_10BASE2:
3230 lp->media = BNC;
3231 break;
3233 case SROM_10BASE5:
3234 lp->media = AUI;
3235 break;
3237 case SROM_100BASETF:
3238 if (!lp->params.fdx) return -1;
3239 lp->fdx = true;
3240 case SROM_100BASET:
3241 if (lp->params.fdx && !lp->fdx) return -1;
3242 lp->media = _100Mb;
3243 break;
3245 case SROM_100BASET4:
3246 lp->media = _100Mb;
3247 break;
3249 case SROM_100BASEFF:
3250 if (!lp->params.fdx) return -1;
3251 lp->fdx = true;
3252 case SROM_100BASEF:
3253 if (lp->params.fdx && !lp->fdx) return -1;
3254 lp->media = _100Mb;
3255 break;
3257 case ANS:
3258 lp->media = ANS;
3259 lp->fdx = lp->params.fdx;
3260 break;
3262 default:
3263 printk("%s: Bad media code [%d] detected in SROM!\n", dev->name,
3264 lp->infoblock_media);
3265 return -1;
3266 break;
3269 return 0;
3272 static void
3273 de4x5_init_connection(struct net_device *dev)
3275 struct de4x5_private *lp = netdev_priv(dev);
3276 u_long iobase = dev->base_addr;
3277 u_long flags = 0;
3279 if (lp->media != lp->c_media) {
3280 de4x5_dbg_media(dev);
3281 lp->c_media = lp->media; /* Stop scrolling media messages */
3284 spin_lock_irqsave(&lp->lock, flags);
3285 de4x5_rst_desc_ring(dev);
3286 de4x5_setup_intr(dev);
3287 lp->tx_enable = true;
3288 spin_unlock_irqrestore(&lp->lock, flags);
3289 outl(POLL_DEMAND, DE4X5_TPD);
3291 netif_wake_queue(dev);
3293 return;
3297 ** General PHY reset function. Some MII devices don't reset correctly
3298 ** since their MII address pins can float at voltages that are dependent
3299 ** on the signal pin use. Do a double reset to ensure a reset.
3301 static int
3302 de4x5_reset_phy(struct net_device *dev)
3304 struct de4x5_private *lp = netdev_priv(dev);
3305 u_long iobase = dev->base_addr;
3306 int next_tick = 0;
3308 if ((lp->useSROM) || (lp->phy[lp->active].id)) {
3309 if (lp->timeout < 0) {
3310 if (lp->useSROM) {
3311 if (lp->phy[lp->active].rst) {
3312 srom_exec(dev, lp->phy[lp->active].rst);
3313 srom_exec(dev, lp->phy[lp->active].rst);
3314 } else if (lp->rst) { /* Type 5 infoblock reset */
3315 srom_exec(dev, lp->rst);
3316 srom_exec(dev, lp->rst);
3318 } else {
3319 PHY_HARD_RESET;
3321 if (lp->useMII) {
3322 mii_wr(MII_CR_RST, MII_CR, lp->phy[lp->active].addr, DE4X5_MII);
3325 if (lp->useMII) {
3326 next_tick = test_mii_reg(dev, MII_CR, MII_CR_RST, false, 500);
3328 } else if (lp->chipset == DC21140) {
3329 PHY_HARD_RESET;
3332 return next_tick;
3335 static int
3336 test_media(struct net_device *dev, s32 irqs, s32 irq_mask, s32 csr13, s32 csr14, s32 csr15, s32 msec)
3338 struct de4x5_private *lp = netdev_priv(dev);
3339 u_long iobase = dev->base_addr;
3340 s32 sts, csr12;
3342 if (lp->timeout < 0) {
3343 lp->timeout = msec/100;
3344 if (!lp->useSROM) { /* Already done if by SROM, else dc2104[01] */
3345 reset_init_sia(dev, csr13, csr14, csr15);
3348 /* set up the interrupt mask */
3349 outl(irq_mask, DE4X5_IMR);
3351 /* clear all pending interrupts */
3352 sts = inl(DE4X5_STS);
3353 outl(sts, DE4X5_STS);
3355 /* clear csr12 NRA and SRA bits */
3356 if ((lp->chipset == DC21041) || lp->useSROM) {
3357 csr12 = inl(DE4X5_SISR);
3358 outl(csr12, DE4X5_SISR);
3362 sts = inl(DE4X5_STS) & ~TIMER_CB;
3364 if (!(sts & irqs) && --lp->timeout) {
3365 sts = 100 | TIMER_CB;
3366 } else {
3367 lp->timeout = -1;
3370 return sts;
3373 static int
3374 test_tp(struct net_device *dev, s32 msec)
3376 struct de4x5_private *lp = netdev_priv(dev);
3377 u_long iobase = dev->base_addr;
3378 int sisr;
3380 if (lp->timeout < 0) {
3381 lp->timeout = msec/100;
3384 sisr = (inl(DE4X5_SISR) & ~TIMER_CB) & (SISR_LKF | SISR_NCR);
3386 if (sisr && --lp->timeout) {
3387 sisr = 100 | TIMER_CB;
3388 } else {
3389 lp->timeout = -1;
3392 return sisr;
3396 ** Samples the 100Mb Link State Signal. The sample interval is important
3397 ** because too fast a rate can give erroneous results and confuse the
3398 ** speed sense algorithm.
3400 #define SAMPLE_INTERVAL 500 /* ms */
3401 #define SAMPLE_DELAY 2000 /* ms */
3402 static int
3403 test_for_100Mb(struct net_device *dev, int msec)
3405 struct de4x5_private *lp = netdev_priv(dev);
3406 int gep = 0, ret = ((lp->chipset & ~0x00ff)==DC2114x? -1 :GEP_SLNK);
3408 if (lp->timeout < 0) {
3409 if ((msec/SAMPLE_INTERVAL) <= 0) return 0;
3410 if (msec > SAMPLE_DELAY) {
3411 lp->timeout = (msec - SAMPLE_DELAY)/SAMPLE_INTERVAL;
3412 gep = SAMPLE_DELAY | TIMER_CB;
3413 return gep;
3414 } else {
3415 lp->timeout = msec/SAMPLE_INTERVAL;
3419 if (lp->phy[lp->active].id || lp->useSROM) {
3420 gep = is_100_up(dev) | is_spd_100(dev);
3421 } else {
3422 gep = (~gep_rd(dev) & (GEP_SLNK | GEP_LNP));
3424 if (!(gep & ret) && --lp->timeout) {
3425 gep = SAMPLE_INTERVAL | TIMER_CB;
3426 } else {
3427 lp->timeout = -1;
3430 return gep;
3433 static int
3434 wait_for_link(struct net_device *dev)
3436 struct de4x5_private *lp = netdev_priv(dev);
3438 if (lp->timeout < 0) {
3439 lp->timeout = 1;
3442 if (lp->timeout--) {
3443 return TIMER_CB;
3444 } else {
3445 lp->timeout = -1;
3448 return 0;
3455 static int
3456 test_mii_reg(struct net_device *dev, int reg, int mask, bool pol, long msec)
3458 struct de4x5_private *lp = netdev_priv(dev);
3459 int test;
3460 u_long iobase = dev->base_addr;
3462 if (lp->timeout < 0) {
3463 lp->timeout = msec/100;
3466 reg = mii_rd((u_char)reg, lp->phy[lp->active].addr, DE4X5_MII) & mask;
3467 test = (reg ^ (pol ? ~0 : 0)) & mask;
3469 if (test && --lp->timeout) {
3470 reg = 100 | TIMER_CB;
3471 } else {
3472 lp->timeout = -1;
3475 return reg;
3478 static int
3479 is_spd_100(struct net_device *dev)
3481 struct de4x5_private *lp = netdev_priv(dev);
3482 u_long iobase = dev->base_addr;
3483 int spd;
3485 if (lp->useMII) {
3486 spd = mii_rd(lp->phy[lp->active].spd.reg, lp->phy[lp->active].addr, DE4X5_MII);
3487 spd = ~(spd ^ lp->phy[lp->active].spd.value);
3488 spd &= lp->phy[lp->active].spd.mask;
3489 } else if (!lp->useSROM) { /* de500-xa */
3490 spd = ((~gep_rd(dev)) & GEP_SLNK);
3491 } else {
3492 if ((lp->ibn == 2) || !lp->asBitValid)
3493 return ((lp->chipset == DC21143)?(~inl(DE4X5_SISR)&SISR_LS100):0);
3495 spd = (lp->asBitValid & (lp->asPolarity ^ (gep_rd(dev) & lp->asBit))) |
3496 (lp->linkOK & ~lp->asBitValid);
3499 return spd;
3502 static int
3503 is_100_up(struct net_device *dev)
3505 struct de4x5_private *lp = netdev_priv(dev);
3506 u_long iobase = dev->base_addr;
3508 if (lp->useMII) {
3509 /* Double read for sticky bits & temporary drops */
3510 mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII);
3511 return (mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII) & MII_SR_LKS);
3512 } else if (!lp->useSROM) { /* de500-xa */
3513 return ((~gep_rd(dev)) & GEP_SLNK);
3514 } else {
3515 if ((lp->ibn == 2) || !lp->asBitValid)
3516 return ((lp->chipset == DC21143)?(~inl(DE4X5_SISR)&SISR_LS100):0);
3518 return ((lp->asBitValid&(lp->asPolarity^(gep_rd(dev)&lp->asBit))) |
3519 (lp->linkOK & ~lp->asBitValid));
3523 static int
3524 is_10_up(struct net_device *dev)
3526 struct de4x5_private *lp = netdev_priv(dev);
3527 u_long iobase = dev->base_addr;
3529 if (lp->useMII) {
3530 /* Double read for sticky bits & temporary drops */
3531 mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII);
3532 return (mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII) & MII_SR_LKS);
3533 } else if (!lp->useSROM) { /* de500-xa */
3534 return ((~gep_rd(dev)) & GEP_LNP);
3535 } else {
3536 if ((lp->ibn == 2) || !lp->asBitValid)
3537 return (((lp->chipset & ~0x00ff) == DC2114x) ?
3538 (~inl(DE4X5_SISR)&SISR_LS10):
3541 return ((lp->asBitValid&(lp->asPolarity^(gep_rd(dev)&lp->asBit))) |
3542 (lp->linkOK & ~lp->asBitValid));
3546 static int
3547 is_anc_capable(struct net_device *dev)
3549 struct de4x5_private *lp = netdev_priv(dev);
3550 u_long iobase = dev->base_addr;
3552 if (lp->phy[lp->active].id && (!lp->useSROM || lp->useMII)) {
3553 return (mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII));
3554 } else if ((lp->chipset & ~0x00ff) == DC2114x) {
3555 return (inl(DE4X5_SISR) & SISR_LPN) >> 12;
3556 } else {
3557 return 0;
3562 ** Send a packet onto the media and watch for send errors that indicate the
3563 ** media is bad or unconnected.
3565 static int
3566 ping_media(struct net_device *dev, int msec)
3568 struct de4x5_private *lp = netdev_priv(dev);
3569 u_long iobase = dev->base_addr;
3570 int sisr;
3572 if (lp->timeout < 0) {
3573 lp->timeout = msec/100;
3575 lp->tmp = lp->tx_new; /* Remember the ring position */
3576 load_packet(dev, lp->frame, TD_LS | TD_FS | sizeof(lp->frame), (struct sk_buff *)1);
3577 lp->tx_new = (++lp->tx_new) % lp->txRingSize;
3578 outl(POLL_DEMAND, DE4X5_TPD);
3581 sisr = inl(DE4X5_SISR);
3583 if ((!(sisr & SISR_NCR)) &&
3584 ((s32)le32_to_cpu(lp->tx_ring[lp->tmp].status) < 0) &&
3585 (--lp->timeout)) {
3586 sisr = 100 | TIMER_CB;
3587 } else {
3588 if ((!(sisr & SISR_NCR)) &&
3589 !(le32_to_cpu(lp->tx_ring[lp->tmp].status) & (T_OWN | TD_ES)) &&
3590 lp->timeout) {
3591 sisr = 0;
3592 } else {
3593 sisr = 1;
3595 lp->timeout = -1;
3598 return sisr;
3602 ** This function does 2 things: on Intels it kmalloc's another buffer to
3603 ** replace the one about to be passed up. On Alpha's it kmallocs a buffer
3604 ** into which the packet is copied.
3606 static struct sk_buff *
3607 de4x5_alloc_rx_buff(struct net_device *dev, int index, int len)
3609 struct de4x5_private *lp = netdev_priv(dev);
3610 struct sk_buff *p;
3612 #if !defined(__alpha__) && !defined(__powerpc__) && !defined(CONFIG_SPARC) && !defined(DE4X5_DO_MEMCPY)
3613 struct sk_buff *ret;
3614 u_long i=0, tmp;
3616 p = dev_alloc_skb(IEEE802_3_SZ + DE4X5_ALIGN + 2);
3617 if (!p) return NULL;
3619 tmp = virt_to_bus(p->data);
3620 i = ((tmp + DE4X5_ALIGN) & ~DE4X5_ALIGN) - tmp;
3621 skb_reserve(p, i);
3622 lp->rx_ring[index].buf = cpu_to_le32(tmp + i);
3624 ret = lp->rx_skb[index];
3625 lp->rx_skb[index] = p;
3627 if ((u_long) ret > 1) {
3628 skb_put(ret, len);
3631 return ret;
3633 #else
3634 if (lp->state != OPEN) return (struct sk_buff *)1; /* Fake out the open */
3636 p = dev_alloc_skb(len + 2);
3637 if (!p) return NULL;
3639 skb_reserve(p, 2); /* Align */
3640 if (index < lp->rx_old) { /* Wrapped buffer */
3641 short tlen = (lp->rxRingSize - lp->rx_old) * RX_BUFF_SZ;
3642 memcpy(skb_put(p,tlen),lp->rx_bufs + lp->rx_old * RX_BUFF_SZ,tlen);
3643 memcpy(skb_put(p,len-tlen),lp->rx_bufs,len-tlen);
3644 } else { /* Linear buffer */
3645 memcpy(skb_put(p,len),lp->rx_bufs + lp->rx_old * RX_BUFF_SZ,len);
3648 return p;
3649 #endif
3652 static void
3653 de4x5_free_rx_buffs(struct net_device *dev)
3655 struct de4x5_private *lp = netdev_priv(dev);
3656 int i;
3658 for (i=0; i<lp->rxRingSize; i++) {
3659 if ((u_long) lp->rx_skb[i] > 1) {
3660 dev_kfree_skb(lp->rx_skb[i]);
3662 lp->rx_ring[i].status = 0;
3663 lp->rx_skb[i] = (struct sk_buff *)1; /* Dummy entry */
3666 return;
3669 static void
3670 de4x5_free_tx_buffs(struct net_device *dev)
3672 struct de4x5_private *lp = netdev_priv(dev);
3673 int i;
3675 for (i=0; i<lp->txRingSize; i++) {
3676 if (lp->tx_skb[i])
3677 de4x5_free_tx_buff(lp, i);
3678 lp->tx_ring[i].status = 0;
3681 /* Unload the locally queued packets */
3682 while (lp->cache.skb) {
3683 dev_kfree_skb(de4x5_get_cache(dev));
3686 return;
3690 ** When a user pulls a connection, the DECchip can end up in a
3691 ** 'running - waiting for end of transmission' state. This means that we
3692 ** have to perform a chip soft reset to ensure that we can synchronize
3693 ** the hardware and software and make any media probes using a loopback
3694 ** packet meaningful.
3696 static void
3697 de4x5_save_skbs(struct net_device *dev)
3699 struct de4x5_private *lp = netdev_priv(dev);
3700 u_long iobase = dev->base_addr;
3701 s32 omr;
3703 if (!lp->cache.save_cnt) {
3704 STOP_DE4X5;
3705 de4x5_tx(dev); /* Flush any sent skb's */
3706 de4x5_free_tx_buffs(dev);
3707 de4x5_cache_state(dev, DE4X5_SAVE_STATE);
3708 de4x5_sw_reset(dev);
3709 de4x5_cache_state(dev, DE4X5_RESTORE_STATE);
3710 lp->cache.save_cnt++;
3711 START_DE4X5;
3714 return;
3717 static void
3718 de4x5_rst_desc_ring(struct net_device *dev)
3720 struct de4x5_private *lp = netdev_priv(dev);
3721 u_long iobase = dev->base_addr;
3722 int i;
3723 s32 omr;
3725 if (lp->cache.save_cnt) {
3726 STOP_DE4X5;
3727 outl(lp->dma_rings, DE4X5_RRBA);
3728 outl(lp->dma_rings + NUM_RX_DESC * sizeof(struct de4x5_desc),
3729 DE4X5_TRBA);
3731 lp->rx_new = lp->rx_old = 0;
3732 lp->tx_new = lp->tx_old = 0;
3734 for (i = 0; i < lp->rxRingSize; i++) {
3735 lp->rx_ring[i].status = cpu_to_le32(R_OWN);
3738 for (i = 0; i < lp->txRingSize; i++) {
3739 lp->tx_ring[i].status = cpu_to_le32(0);
3742 barrier();
3743 lp->cache.save_cnt--;
3744 START_DE4X5;
3747 return;
3750 static void
3751 de4x5_cache_state(struct net_device *dev, int flag)
3753 struct de4x5_private *lp = netdev_priv(dev);
3754 u_long iobase = dev->base_addr;
3756 switch(flag) {
3757 case DE4X5_SAVE_STATE:
3758 lp->cache.csr0 = inl(DE4X5_BMR);
3759 lp->cache.csr6 = (inl(DE4X5_OMR) & ~(OMR_ST | OMR_SR));
3760 lp->cache.csr7 = inl(DE4X5_IMR);
3761 break;
3763 case DE4X5_RESTORE_STATE:
3764 outl(lp->cache.csr0, DE4X5_BMR);
3765 outl(lp->cache.csr6, DE4X5_OMR);
3766 outl(lp->cache.csr7, DE4X5_IMR);
3767 if (lp->chipset == DC21140) {
3768 gep_wr(lp->cache.gepc, dev);
3769 gep_wr(lp->cache.gep, dev);
3770 } else {
3771 reset_init_sia(dev, lp->cache.csr13, lp->cache.csr14,
3772 lp->cache.csr15);
3774 break;
3777 return;
3780 static void
3781 de4x5_put_cache(struct net_device *dev, struct sk_buff *skb)
3783 struct de4x5_private *lp = netdev_priv(dev);
3784 struct sk_buff *p;
3786 if (lp->cache.skb) {
3787 for (p=lp->cache.skb; p->next; p=p->next);
3788 p->next = skb;
3789 } else {
3790 lp->cache.skb = skb;
3792 skb->next = NULL;
3794 return;
3797 static void
3798 de4x5_putb_cache(struct net_device *dev, struct sk_buff *skb)
3800 struct de4x5_private *lp = netdev_priv(dev);
3801 struct sk_buff *p = lp->cache.skb;
3803 lp->cache.skb = skb;
3804 skb->next = p;
3806 return;
3809 static struct sk_buff *
3810 de4x5_get_cache(struct net_device *dev)
3812 struct de4x5_private *lp = netdev_priv(dev);
3813 struct sk_buff *p = lp->cache.skb;
3815 if (p) {
3816 lp->cache.skb = p->next;
3817 p->next = NULL;
3820 return p;
3824 ** Check the Auto Negotiation State. Return OK when a link pass interrupt
3825 ** is received and the auto-negotiation status is NWAY OK.
3827 static int
3828 test_ans(struct net_device *dev, s32 irqs, s32 irq_mask, s32 msec)
3830 struct de4x5_private *lp = netdev_priv(dev);
3831 u_long iobase = dev->base_addr;
3832 s32 sts, ans;
3834 if (lp->timeout < 0) {
3835 lp->timeout = msec/100;
3836 outl(irq_mask, DE4X5_IMR);
3838 /* clear all pending interrupts */
3839 sts = inl(DE4X5_STS);
3840 outl(sts, DE4X5_STS);
3843 ans = inl(DE4X5_SISR) & SISR_ANS;
3844 sts = inl(DE4X5_STS) & ~TIMER_CB;
3846 if (!(sts & irqs) && (ans ^ ANS_NWOK) && --lp->timeout) {
3847 sts = 100 | TIMER_CB;
3848 } else {
3849 lp->timeout = -1;
3852 return sts;
3855 static void
3856 de4x5_setup_intr(struct net_device *dev)
3858 struct de4x5_private *lp = netdev_priv(dev);
3859 u_long iobase = dev->base_addr;
3860 s32 imr, sts;
3862 if (inl(DE4X5_OMR) & OMR_SR) { /* Only unmask if TX/RX is enabled */
3863 imr = 0;
3864 UNMASK_IRQs;
3865 sts = inl(DE4X5_STS); /* Reset any pending (stale) interrupts */
3866 outl(sts, DE4X5_STS);
3867 ENABLE_IRQs;
3870 return;
3876 static void
3877 reset_init_sia(struct net_device *dev, s32 csr13, s32 csr14, s32 csr15)
3879 struct de4x5_private *lp = netdev_priv(dev);
3880 u_long iobase = dev->base_addr;
3882 RESET_SIA;
3883 if (lp->useSROM) {
3884 if (lp->ibn == 3) {
3885 srom_exec(dev, lp->phy[lp->active].rst);
3886 srom_exec(dev, lp->phy[lp->active].gep);
3887 outl(1, DE4X5_SICR);
3888 return;
3889 } else {
3890 csr15 = lp->cache.csr15;
3891 csr14 = lp->cache.csr14;
3892 csr13 = lp->cache.csr13;
3893 outl(csr15 | lp->cache.gepc, DE4X5_SIGR);
3894 outl(csr15 | lp->cache.gep, DE4X5_SIGR);
3896 } else {
3897 outl(csr15, DE4X5_SIGR);
3899 outl(csr14, DE4X5_STRR);
3900 outl(csr13, DE4X5_SICR);
3902 mdelay(10);
3904 return;
3908 ** Create a loopback ethernet packet
3910 static void
3911 create_packet(struct net_device *dev, char *frame, int len)
3913 int i;
3914 char *buf = frame;
3916 for (i=0; i<ETH_ALEN; i++) { /* Use this source address */
3917 *buf++ = dev->dev_addr[i];
3919 for (i=0; i<ETH_ALEN; i++) { /* Use this destination address */
3920 *buf++ = dev->dev_addr[i];
3923 *buf++ = 0; /* Packet length (2 bytes) */
3924 *buf++ = 1;
3926 return;
3930 ** Look for a particular board name in the EISA configuration space
3932 static int
3933 EISA_signature(char *name, struct device *device)
3935 int i, status = 0, siglen = ARRAY_SIZE(de4x5_signatures);
3936 struct eisa_device *edev;
3938 *name = '\0';
3939 edev = to_eisa_device (device);
3940 i = edev->id.driver_data;
3942 if (i >= 0 && i < siglen) {
3943 strcpy (name, de4x5_signatures[i]);
3944 status = 1;
3947 return status; /* return the device name string */
3951 ** Look for a particular board name in the PCI configuration space
3953 static int
3954 PCI_signature(char *name, struct de4x5_private *lp)
3956 int i, status = 0, siglen = ARRAY_SIZE(de4x5_signatures);
3958 if (lp->chipset == DC21040) {
3959 strcpy(name, "DE434/5");
3960 return status;
3961 } else { /* Search for a DEC name in the SROM */
3962 int i = *((char *)&lp->srom + 19) * 3;
3963 strncpy(name, (char *)&lp->srom + 26 + i, 8);
3965 name[8] = '\0';
3966 for (i=0; i<siglen; i++) {
3967 if (strstr(name,de4x5_signatures[i])!=NULL) break;
3969 if (i == siglen) {
3970 if (dec_only) {
3971 *name = '\0';
3972 } else { /* Use chip name to avoid confusion */
3973 strcpy(name, (((lp->chipset == DC21040) ? "DC21040" :
3974 ((lp->chipset == DC21041) ? "DC21041" :
3975 ((lp->chipset == DC21140) ? "DC21140" :
3976 ((lp->chipset == DC21142) ? "DC21142" :
3977 ((lp->chipset == DC21143) ? "DC21143" : "UNKNOWN"
3978 )))))));
3980 if (lp->chipset != DC21041) {
3981 lp->useSROM = true; /* card is not recognisably DEC */
3983 } else if ((lp->chipset & ~0x00ff) == DC2114x) {
3984 lp->useSROM = true;
3987 return status;
3991 ** Set up the Ethernet PROM counter to the start of the Ethernet address on
3992 ** the DC21040, else read the SROM for the other chips.
3993 ** The SROM may not be present in a multi-MAC card, so first read the
3994 ** MAC address and check for a bad address. If there is a bad one then exit
3995 ** immediately with the prior srom contents intact (the h/w address will
3996 ** be fixed up later).
3998 static void
3999 DevicePresent(struct net_device *dev, u_long aprom_addr)
4001 int i, j=0;
4002 struct de4x5_private *lp = netdev_priv(dev);
4004 if (lp->chipset == DC21040) {
4005 if (lp->bus == EISA) {
4006 enet_addr_rst(aprom_addr); /* Reset Ethernet Address ROM Pointer */
4007 } else {
4008 outl(0, aprom_addr); /* Reset Ethernet Address ROM Pointer */
4010 } else { /* Read new srom */
4011 u_short tmp;
4012 __le16 *p = (__le16 *)((char *)&lp->srom + SROM_HWADD);
4013 for (i=0; i<(ETH_ALEN>>1); i++) {
4014 tmp = srom_rd(aprom_addr, (SROM_HWADD>>1) + i);
4015 j += tmp; /* for check for 0:0:0:0:0:0 or ff:ff:ff:ff:ff:ff */
4016 *p = cpu_to_le16(tmp);
4018 if (j == 0 || j == 3 * 0xffff) {
4019 /* could get 0 only from all-0 and 3 * 0xffff only from all-1 */
4020 return;
4023 p = (__le16 *)&lp->srom;
4024 for (i=0; i<(sizeof(struct de4x5_srom)>>1); i++) {
4025 tmp = srom_rd(aprom_addr, i);
4026 *p++ = cpu_to_le16(tmp);
4028 de4x5_dbg_srom((struct de4x5_srom *)&lp->srom);
4031 return;
4035 ** Since the write on the Enet PROM register doesn't seem to reset the PROM
4036 ** pointer correctly (at least on my DE425 EISA card), this routine should do
4037 ** it...from depca.c.
4039 static void
4040 enet_addr_rst(u_long aprom_addr)
4042 union {
4043 struct {
4044 u32 a;
4045 u32 b;
4046 } llsig;
4047 char Sig[sizeof(u32) << 1];
4048 } dev;
4049 short sigLength=0;
4050 s8 data;
4051 int i, j;
4053 dev.llsig.a = ETH_PROM_SIG;
4054 dev.llsig.b = ETH_PROM_SIG;
4055 sigLength = sizeof(u32) << 1;
4057 for (i=0,j=0;j<sigLength && i<PROBE_LENGTH+sigLength-1;i++) {
4058 data = inb(aprom_addr);
4059 if (dev.Sig[j] == data) { /* track signature */
4060 j++;
4061 } else { /* lost signature; begin search again */
4062 if (data == dev.Sig[0]) { /* rare case.... */
4063 j=1;
4064 } else {
4065 j=0;
4070 return;
4074 ** For the bad status case and no SROM, then add one to the previous
4075 ** address. However, need to add one backwards in case we have 0xff
4076 ** as one or more of the bytes. Only the last 3 bytes should be checked
4077 ** as the first three are invariant - assigned to an organisation.
4079 static int
4080 get_hw_addr(struct net_device *dev)
4082 u_long iobase = dev->base_addr;
4083 int broken, i, k, tmp, status = 0;
4084 u_short j,chksum;
4085 struct de4x5_private *lp = netdev_priv(dev);
4087 broken = de4x5_bad_srom(lp);
4089 for (i=0,k=0,j=0;j<3;j++) {
4090 k <<= 1;
4091 if (k > 0xffff) k-=0xffff;
4093 if (lp->bus == PCI) {
4094 if (lp->chipset == DC21040) {
4095 while ((tmp = inl(DE4X5_APROM)) < 0);
4096 k += (u_char) tmp;
4097 dev->dev_addr[i++] = (u_char) tmp;
4098 while ((tmp = inl(DE4X5_APROM)) < 0);
4099 k += (u_short) (tmp << 8);
4100 dev->dev_addr[i++] = (u_char) tmp;
4101 } else if (!broken) {
4102 dev->dev_addr[i] = (u_char) lp->srom.ieee_addr[i]; i++;
4103 dev->dev_addr[i] = (u_char) lp->srom.ieee_addr[i]; i++;
4104 } else if ((broken == SMC) || (broken == ACCTON)) {
4105 dev->dev_addr[i] = *((u_char *)&lp->srom + i); i++;
4106 dev->dev_addr[i] = *((u_char *)&lp->srom + i); i++;
4108 } else {
4109 k += (u_char) (tmp = inb(EISA_APROM));
4110 dev->dev_addr[i++] = (u_char) tmp;
4111 k += (u_short) ((tmp = inb(EISA_APROM)) << 8);
4112 dev->dev_addr[i++] = (u_char) tmp;
4115 if (k > 0xffff) k-=0xffff;
4117 if (k == 0xffff) k=0;
4119 if (lp->bus == PCI) {
4120 if (lp->chipset == DC21040) {
4121 while ((tmp = inl(DE4X5_APROM)) < 0);
4122 chksum = (u_char) tmp;
4123 while ((tmp = inl(DE4X5_APROM)) < 0);
4124 chksum |= (u_short) (tmp << 8);
4125 if ((k != chksum) && (dec_only)) status = -1;
4127 } else {
4128 chksum = (u_char) inb(EISA_APROM);
4129 chksum |= (u_short) (inb(EISA_APROM) << 8);
4130 if ((k != chksum) && (dec_only)) status = -1;
4133 /* If possible, try to fix a broken card - SMC only so far */
4134 srom_repair(dev, broken);
4136 #ifdef CONFIG_PPC_PMAC
4138 ** If the address starts with 00 a0, we have to bit-reverse
4139 ** each byte of the address.
4141 if ( machine_is(powermac) &&
4142 (dev->dev_addr[0] == 0) &&
4143 (dev->dev_addr[1] == 0xa0) )
4145 for (i = 0; i < ETH_ALEN; ++i)
4147 int x = dev->dev_addr[i];
4148 x = ((x & 0xf) << 4) + ((x & 0xf0) >> 4);
4149 x = ((x & 0x33) << 2) + ((x & 0xcc) >> 2);
4150 dev->dev_addr[i] = ((x & 0x55) << 1) + ((x & 0xaa) >> 1);
4153 #endif /* CONFIG_PPC_PMAC */
4155 /* Test for a bad enet address */
4156 status = test_bad_enet(dev, status);
4158 return status;
4162 ** Test for enet addresses in the first 32 bytes. The built-in strncmp
4163 ** didn't seem to work here...?
4165 static int
4166 de4x5_bad_srom(struct de4x5_private *lp)
4168 int i, status = 0;
4170 for (i = 0; i < ARRAY_SIZE(enet_det); i++) {
4171 if (!de4x5_strncmp((char *)&lp->srom, (char *)&enet_det[i], 3) &&
4172 !de4x5_strncmp((char *)&lp->srom+0x10, (char *)&enet_det[i], 3)) {
4173 if (i == 0) {
4174 status = SMC;
4175 } else if (i == 1) {
4176 status = ACCTON;
4178 break;
4182 return status;
4185 static int
4186 de4x5_strncmp(char *a, char *b, int n)
4188 int ret=0;
4190 for (;n && !ret; n--) {
4191 ret = *a++ - *b++;
4194 return ret;
4197 static void
4198 srom_repair(struct net_device *dev, int card)
4200 struct de4x5_private *lp = netdev_priv(dev);
4202 switch(card) {
4203 case SMC:
4204 memset((char *)&lp->srom, 0, sizeof(struct de4x5_srom));
4205 memcpy(lp->srom.ieee_addr, (char *)dev->dev_addr, ETH_ALEN);
4206 memcpy(lp->srom.info, (char *)&srom_repair_info[SMC-1], 100);
4207 lp->useSROM = true;
4208 break;
4211 return;
4215 ** Assume that the irq's do not follow the PCI spec - this is seems
4216 ** to be true so far (2 for 2).
4218 static int
4219 test_bad_enet(struct net_device *dev, int status)
4221 struct de4x5_private *lp = netdev_priv(dev);
4222 int i, tmp;
4224 for (tmp=0,i=0; i<ETH_ALEN; i++) tmp += (u_char)dev->dev_addr[i];
4225 if ((tmp == 0) || (tmp == 0x5fa)) {
4226 if ((lp->chipset == last.chipset) &&
4227 (lp->bus_num == last.bus) && (lp->bus_num > 0)) {
4228 for (i=0; i<ETH_ALEN; i++) dev->dev_addr[i] = last.addr[i];
4229 for (i=ETH_ALEN-1; i>2; --i) {
4230 dev->dev_addr[i] += 1;
4231 if (dev->dev_addr[i] != 0) break;
4233 for (i=0; i<ETH_ALEN; i++) last.addr[i] = dev->dev_addr[i];
4234 if (!an_exception(lp)) {
4235 dev->irq = last.irq;
4238 status = 0;
4240 } else if (!status) {
4241 last.chipset = lp->chipset;
4242 last.bus = lp->bus_num;
4243 last.irq = dev->irq;
4244 for (i=0; i<ETH_ALEN; i++) last.addr[i] = dev->dev_addr[i];
4247 return status;
4251 ** List of board exceptions with correctly wired IRQs
4253 static int
4254 an_exception(struct de4x5_private *lp)
4256 if ((*(u_short *)lp->srom.sub_vendor_id == 0x00c0) &&
4257 (*(u_short *)lp->srom.sub_system_id == 0x95e0)) {
4258 return -1;
4261 return 0;
4265 ** SROM Read
4267 static short
4268 srom_rd(u_long addr, u_char offset)
4270 sendto_srom(SROM_RD | SROM_SR, addr);
4272 srom_latch(SROM_RD | SROM_SR | DT_CS, addr);
4273 srom_command(SROM_RD | SROM_SR | DT_IN | DT_CS, addr);
4274 srom_address(SROM_RD | SROM_SR | DT_CS, addr, offset);
4276 return srom_data(SROM_RD | SROM_SR | DT_CS, addr);
4279 static void
4280 srom_latch(u_int command, u_long addr)
4282 sendto_srom(command, addr);
4283 sendto_srom(command | DT_CLK, addr);
4284 sendto_srom(command, addr);
4286 return;
4289 static void
4290 srom_command(u_int command, u_long addr)
4292 srom_latch(command, addr);
4293 srom_latch(command, addr);
4294 srom_latch((command & 0x0000ff00) | DT_CS, addr);
4296 return;
4299 static void
4300 srom_address(u_int command, u_long addr, u_char offset)
4302 int i, a;
4304 a = offset << 2;
4305 for (i=0; i<6; i++, a <<= 1) {
4306 srom_latch(command | ((a & 0x80) ? DT_IN : 0), addr);
4308 udelay(1);
4310 i = (getfrom_srom(addr) >> 3) & 0x01;
4312 return;
4315 static short
4316 srom_data(u_int command, u_long addr)
4318 int i;
4319 short word = 0;
4320 s32 tmp;
4322 for (i=0; i<16; i++) {
4323 sendto_srom(command | DT_CLK, addr);
4324 tmp = getfrom_srom(addr);
4325 sendto_srom(command, addr);
4327 word = (word << 1) | ((tmp >> 3) & 0x01);
4330 sendto_srom(command & 0x0000ff00, addr);
4332 return word;
4336 static void
4337 srom_busy(u_int command, u_long addr)
4339 sendto_srom((command & 0x0000ff00) | DT_CS, addr);
4341 while (!((getfrom_srom(addr) >> 3) & 0x01)) {
4342 mdelay(1);
4345 sendto_srom(command & 0x0000ff00, addr);
4347 return;
4351 static void
4352 sendto_srom(u_int command, u_long addr)
4354 outl(command, addr);
4355 udelay(1);
4357 return;
4360 static int
4361 getfrom_srom(u_long addr)
4363 s32 tmp;
4365 tmp = inl(addr);
4366 udelay(1);
4368 return tmp;
4371 static int
4372 srom_infoleaf_info(struct net_device *dev)
4374 struct de4x5_private *lp = netdev_priv(dev);
4375 int i, count;
4376 u_char *p;
4378 /* Find the infoleaf decoder function that matches this chipset */
4379 for (i=0; i<INFOLEAF_SIZE; i++) {
4380 if (lp->chipset == infoleaf_array[i].chipset) break;
4382 if (i == INFOLEAF_SIZE) {
4383 lp->useSROM = false;
4384 printk("%s: Cannot find correct chipset for SROM decoding!\n",
4385 dev->name);
4386 return -ENXIO;
4389 lp->infoleaf_fn = infoleaf_array[i].fn;
4391 /* Find the information offset that this function should use */
4392 count = *((u_char *)&lp->srom + 19);
4393 p = (u_char *)&lp->srom + 26;
4395 if (count > 1) {
4396 for (i=count; i; --i, p+=3) {
4397 if (lp->device == *p) break;
4399 if (i == 0) {
4400 lp->useSROM = false;
4401 printk("%s: Cannot find correct PCI device [%d] for SROM decoding!\n",
4402 dev->name, lp->device);
4403 return -ENXIO;
4407 lp->infoleaf_offset = get_unaligned_le16(p + 1);
4409 return 0;
4413 ** This routine loads any type 1 or 3 MII info into the mii device
4414 ** struct and executes any type 5 code to reset PHY devices for this
4415 ** controller.
4416 ** The info for the MII devices will be valid since the index used
4417 ** will follow the discovery process from MII address 1-31 then 0.
4419 static void
4420 srom_init(struct net_device *dev)
4422 struct de4x5_private *lp = netdev_priv(dev);
4423 u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset;
4424 u_char count;
4426 p+=2;
4427 if (lp->chipset == DC21140) {
4428 lp->cache.gepc = (*p++ | GEP_CTRL);
4429 gep_wr(lp->cache.gepc, dev);
4432 /* Block count */
4433 count = *p++;
4435 /* Jump the infoblocks to find types */
4436 for (;count; --count) {
4437 if (*p < 128) {
4438 p += COMPACT_LEN;
4439 } else if (*(p+1) == 5) {
4440 type5_infoblock(dev, 1, p);
4441 p += ((*p & BLOCK_LEN) + 1);
4442 } else if (*(p+1) == 4) {
4443 p += ((*p & BLOCK_LEN) + 1);
4444 } else if (*(p+1) == 3) {
4445 type3_infoblock(dev, 1, p);
4446 p += ((*p & BLOCK_LEN) + 1);
4447 } else if (*(p+1) == 2) {
4448 p += ((*p & BLOCK_LEN) + 1);
4449 } else if (*(p+1) == 1) {
4450 type1_infoblock(dev, 1, p);
4451 p += ((*p & BLOCK_LEN) + 1);
4452 } else {
4453 p += ((*p & BLOCK_LEN) + 1);
4457 return;
4461 ** A generic routine that writes GEP control, data and reset information
4462 ** to the GEP register (21140) or csr15 GEP portion (2114[23]).
4464 static void
4465 srom_exec(struct net_device *dev, u_char *p)
4467 struct de4x5_private *lp = netdev_priv(dev);
4468 u_long iobase = dev->base_addr;
4469 u_char count = (p ? *p++ : 0);
4470 u_short *w = (u_short *)p;
4472 if (((lp->ibn != 1) && (lp->ibn != 3) && (lp->ibn != 5)) || !count) return;
4474 if (lp->chipset != DC21140) RESET_SIA;
4476 while (count--) {
4477 gep_wr(((lp->chipset==DC21140) && (lp->ibn!=5) ?
4478 *p++ : get_unaligned_le16(w++)), dev);
4479 mdelay(2); /* 2ms per action */
4482 if (lp->chipset != DC21140) {
4483 outl(lp->cache.csr14, DE4X5_STRR);
4484 outl(lp->cache.csr13, DE4X5_SICR);
4487 return;
4491 ** Basically this function is a NOP since it will never be called,
4492 ** unless I implement the DC21041 SROM functions. There's no need
4493 ** since the existing code will be satisfactory for all boards.
4495 static int
4496 dc21041_infoleaf(struct net_device *dev)
4498 return DE4X5_AUTOSENSE_MS;
4501 static int
4502 dc21140_infoleaf(struct net_device *dev)
4504 struct de4x5_private *lp = netdev_priv(dev);
4505 u_char count = 0;
4506 u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset;
4507 int next_tick = DE4X5_AUTOSENSE_MS;
4509 /* Read the connection type */
4510 p+=2;
4512 /* GEP control */
4513 lp->cache.gepc = (*p++ | GEP_CTRL);
4515 /* Block count */
4516 count = *p++;
4518 /* Recursively figure out the info blocks */
4519 if (*p < 128) {
4520 next_tick = dc_infoblock[COMPACT](dev, count, p);
4521 } else {
4522 next_tick = dc_infoblock[*(p+1)](dev, count, p);
4525 if (lp->tcount == count) {
4526 lp->media = NC;
4527 if (lp->media != lp->c_media) {
4528 de4x5_dbg_media(dev);
4529 lp->c_media = lp->media;
4531 lp->media = INIT;
4532 lp->tcount = 0;
4533 lp->tx_enable = false;
4536 return next_tick & ~TIMER_CB;
4539 static int
4540 dc21142_infoleaf(struct net_device *dev)
4542 struct de4x5_private *lp = netdev_priv(dev);
4543 u_char count = 0;
4544 u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset;
4545 int next_tick = DE4X5_AUTOSENSE_MS;
4547 /* Read the connection type */
4548 p+=2;
4550 /* Block count */
4551 count = *p++;
4553 /* Recursively figure out the info blocks */
4554 if (*p < 128) {
4555 next_tick = dc_infoblock[COMPACT](dev, count, p);
4556 } else {
4557 next_tick = dc_infoblock[*(p+1)](dev, count, p);
4560 if (lp->tcount == count) {
4561 lp->media = NC;
4562 if (lp->media != lp->c_media) {
4563 de4x5_dbg_media(dev);
4564 lp->c_media = lp->media;
4566 lp->media = INIT;
4567 lp->tcount = 0;
4568 lp->tx_enable = false;
4571 return next_tick & ~TIMER_CB;
4574 static int
4575 dc21143_infoleaf(struct net_device *dev)
4577 struct de4x5_private *lp = netdev_priv(dev);
4578 u_char count = 0;
4579 u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset;
4580 int next_tick = DE4X5_AUTOSENSE_MS;
4582 /* Read the connection type */
4583 p+=2;
4585 /* Block count */
4586 count = *p++;
4588 /* Recursively figure out the info blocks */
4589 if (*p < 128) {
4590 next_tick = dc_infoblock[COMPACT](dev, count, p);
4591 } else {
4592 next_tick = dc_infoblock[*(p+1)](dev, count, p);
4594 if (lp->tcount == count) {
4595 lp->media = NC;
4596 if (lp->media != lp->c_media) {
4597 de4x5_dbg_media(dev);
4598 lp->c_media = lp->media;
4600 lp->media = INIT;
4601 lp->tcount = 0;
4602 lp->tx_enable = false;
4605 return next_tick & ~TIMER_CB;
4609 ** The compact infoblock is only designed for DC21140[A] chips, so
4610 ** we'll reuse the dc21140m_autoconf function. Non MII media only.
4612 static int
4613 compact_infoblock(struct net_device *dev, u_char count, u_char *p)
4615 struct de4x5_private *lp = netdev_priv(dev);
4616 u_char flags, csr6;
4618 /* Recursively figure out the info blocks */
4619 if (--count > lp->tcount) {
4620 if (*(p+COMPACT_LEN) < 128) {
4621 return dc_infoblock[COMPACT](dev, count, p+COMPACT_LEN);
4622 } else {
4623 return dc_infoblock[*(p+COMPACT_LEN+1)](dev, count, p+COMPACT_LEN);
4627 if ((lp->media == INIT) && (lp->timeout < 0)) {
4628 lp->ibn = COMPACT;
4629 lp->active = 0;
4630 gep_wr(lp->cache.gepc, dev);
4631 lp->infoblock_media = (*p++) & COMPACT_MC;
4632 lp->cache.gep = *p++;
4633 csr6 = *p++;
4634 flags = *p++;
4636 lp->asBitValid = (flags & 0x80) ? 0 : -1;
4637 lp->defMedium = (flags & 0x40) ? -1 : 0;
4638 lp->asBit = 1 << ((csr6 >> 1) & 0x07);
4639 lp->asPolarity = ((csr6 & 0x80) ? -1 : 0) & lp->asBit;
4640 lp->infoblock_csr6 = OMR_DEF | ((csr6 & 0x71) << 18);
4641 lp->useMII = false;
4643 de4x5_switch_mac_port(dev);
4646 return dc21140m_autoconf(dev);
4650 ** This block describes non MII media for the DC21140[A] only.
4652 static int
4653 type0_infoblock(struct net_device *dev, u_char count, u_char *p)
4655 struct de4x5_private *lp = netdev_priv(dev);
4656 u_char flags, csr6, len = (*p & BLOCK_LEN)+1;
4658 /* Recursively figure out the info blocks */
4659 if (--count > lp->tcount) {
4660 if (*(p+len) < 128) {
4661 return dc_infoblock[COMPACT](dev, count, p+len);
4662 } else {
4663 return dc_infoblock[*(p+len+1)](dev, count, p+len);
4667 if ((lp->media == INIT) && (lp->timeout < 0)) {
4668 lp->ibn = 0;
4669 lp->active = 0;
4670 gep_wr(lp->cache.gepc, dev);
4671 p+=2;
4672 lp->infoblock_media = (*p++) & BLOCK0_MC;
4673 lp->cache.gep = *p++;
4674 csr6 = *p++;
4675 flags = *p++;
4677 lp->asBitValid = (flags & 0x80) ? 0 : -1;
4678 lp->defMedium = (flags & 0x40) ? -1 : 0;
4679 lp->asBit = 1 << ((csr6 >> 1) & 0x07);
4680 lp->asPolarity = ((csr6 & 0x80) ? -1 : 0) & lp->asBit;
4681 lp->infoblock_csr6 = OMR_DEF | ((csr6 & 0x71) << 18);
4682 lp->useMII = false;
4684 de4x5_switch_mac_port(dev);
4687 return dc21140m_autoconf(dev);
4690 /* These functions are under construction! */
4692 static int
4693 type1_infoblock(struct net_device *dev, u_char count, u_char *p)
4695 struct de4x5_private *lp = netdev_priv(dev);
4696 u_char len = (*p & BLOCK_LEN)+1;
4698 /* Recursively figure out the info blocks */
4699 if (--count > lp->tcount) {
4700 if (*(p+len) < 128) {
4701 return dc_infoblock[COMPACT](dev, count, p+len);
4702 } else {
4703 return dc_infoblock[*(p+len+1)](dev, count, p+len);
4707 p += 2;
4708 if (lp->state == INITIALISED) {
4709 lp->ibn = 1;
4710 lp->active = *p++;
4711 lp->phy[lp->active].gep = (*p ? p : NULL); p += (*p + 1);
4712 lp->phy[lp->active].rst = (*p ? p : NULL); p += (*p + 1);
4713 lp->phy[lp->active].mc = get_unaligned_le16(p); p += 2;
4714 lp->phy[lp->active].ana = get_unaligned_le16(p); p += 2;
4715 lp->phy[lp->active].fdx = get_unaligned_le16(p); p += 2;
4716 lp->phy[lp->active].ttm = get_unaligned_le16(p);
4717 return 0;
4718 } else if ((lp->media == INIT) && (lp->timeout < 0)) {
4719 lp->ibn = 1;
4720 lp->active = *p;
4721 lp->infoblock_csr6 = OMR_MII_100;
4722 lp->useMII = true;
4723 lp->infoblock_media = ANS;
4725 de4x5_switch_mac_port(dev);
4728 return dc21140m_autoconf(dev);
4731 static int
4732 type2_infoblock(struct net_device *dev, u_char count, u_char *p)
4734 struct de4x5_private *lp = netdev_priv(dev);
4735 u_char len = (*p & BLOCK_LEN)+1;
4737 /* Recursively figure out the info blocks */
4738 if (--count > lp->tcount) {
4739 if (*(p+len) < 128) {
4740 return dc_infoblock[COMPACT](dev, count, p+len);
4741 } else {
4742 return dc_infoblock[*(p+len+1)](dev, count, p+len);
4746 if ((lp->media == INIT) && (lp->timeout < 0)) {
4747 lp->ibn = 2;
4748 lp->active = 0;
4749 p += 2;
4750 lp->infoblock_media = (*p) & MEDIA_CODE;
4752 if ((*p++) & EXT_FIELD) {
4753 lp->cache.csr13 = get_unaligned_le16(p); p += 2;
4754 lp->cache.csr14 = get_unaligned_le16(p); p += 2;
4755 lp->cache.csr15 = get_unaligned_le16(p); p += 2;
4756 } else {
4757 lp->cache.csr13 = CSR13;
4758 lp->cache.csr14 = CSR14;
4759 lp->cache.csr15 = CSR15;
4761 lp->cache.gepc = ((s32)(get_unaligned_le16(p)) << 16); p += 2;
4762 lp->cache.gep = ((s32)(get_unaligned_le16(p)) << 16);
4763 lp->infoblock_csr6 = OMR_SIA;
4764 lp->useMII = false;
4766 de4x5_switch_mac_port(dev);
4769 return dc2114x_autoconf(dev);
4772 static int
4773 type3_infoblock(struct net_device *dev, u_char count, u_char *p)
4775 struct de4x5_private *lp = netdev_priv(dev);
4776 u_char len = (*p & BLOCK_LEN)+1;
4778 /* Recursively figure out the info blocks */
4779 if (--count > lp->tcount) {
4780 if (*(p+len) < 128) {
4781 return dc_infoblock[COMPACT](dev, count, p+len);
4782 } else {
4783 return dc_infoblock[*(p+len+1)](dev, count, p+len);
4787 p += 2;
4788 if (lp->state == INITIALISED) {
4789 lp->ibn = 3;
4790 lp->active = *p++;
4791 if (MOTO_SROM_BUG) lp->active = 0;
4792 lp->phy[lp->active].gep = (*p ? p : NULL); p += (2 * (*p) + 1);
4793 lp->phy[lp->active].rst = (*p ? p : NULL); p += (2 * (*p) + 1);
4794 lp->phy[lp->active].mc = get_unaligned_le16(p); p += 2;
4795 lp->phy[lp->active].ana = get_unaligned_le16(p); p += 2;
4796 lp->phy[lp->active].fdx = get_unaligned_le16(p); p += 2;
4797 lp->phy[lp->active].ttm = get_unaligned_le16(p); p += 2;
4798 lp->phy[lp->active].mci = *p;
4799 return 0;
4800 } else if ((lp->media == INIT) && (lp->timeout < 0)) {
4801 lp->ibn = 3;
4802 lp->active = *p;
4803 if (MOTO_SROM_BUG) lp->active = 0;
4804 lp->infoblock_csr6 = OMR_MII_100;
4805 lp->useMII = true;
4806 lp->infoblock_media = ANS;
4808 de4x5_switch_mac_port(dev);
4811 return dc2114x_autoconf(dev);
4814 static int
4815 type4_infoblock(struct net_device *dev, u_char count, u_char *p)
4817 struct de4x5_private *lp = netdev_priv(dev);
4818 u_char flags, csr6, len = (*p & BLOCK_LEN)+1;
4820 /* Recursively figure out the info blocks */
4821 if (--count > lp->tcount) {
4822 if (*(p+len) < 128) {
4823 return dc_infoblock[COMPACT](dev, count, p+len);
4824 } else {
4825 return dc_infoblock[*(p+len+1)](dev, count, p+len);
4829 if ((lp->media == INIT) && (lp->timeout < 0)) {
4830 lp->ibn = 4;
4831 lp->active = 0;
4832 p+=2;
4833 lp->infoblock_media = (*p++) & MEDIA_CODE;
4834 lp->cache.csr13 = CSR13; /* Hard coded defaults */
4835 lp->cache.csr14 = CSR14;
4836 lp->cache.csr15 = CSR15;
4837 lp->cache.gepc = ((s32)(get_unaligned_le16(p)) << 16); p += 2;
4838 lp->cache.gep = ((s32)(get_unaligned_le16(p)) << 16); p += 2;
4839 csr6 = *p++;
4840 flags = *p++;
4842 lp->asBitValid = (flags & 0x80) ? 0 : -1;
4843 lp->defMedium = (flags & 0x40) ? -1 : 0;
4844 lp->asBit = 1 << ((csr6 >> 1) & 0x07);
4845 lp->asPolarity = ((csr6 & 0x80) ? -1 : 0) & lp->asBit;
4846 lp->infoblock_csr6 = OMR_DEF | ((csr6 & 0x71) << 18);
4847 lp->useMII = false;
4849 de4x5_switch_mac_port(dev);
4852 return dc2114x_autoconf(dev);
4856 ** This block type provides information for resetting external devices
4857 ** (chips) through the General Purpose Register.
4859 static int
4860 type5_infoblock(struct net_device *dev, u_char count, u_char *p)
4862 struct de4x5_private *lp = netdev_priv(dev);
4863 u_char len = (*p & BLOCK_LEN)+1;
4865 /* Recursively figure out the info blocks */
4866 if (--count > lp->tcount) {
4867 if (*(p+len) < 128) {
4868 return dc_infoblock[COMPACT](dev, count, p+len);
4869 } else {
4870 return dc_infoblock[*(p+len+1)](dev, count, p+len);
4874 /* Must be initializing to run this code */
4875 if ((lp->state == INITIALISED) || (lp->media == INIT)) {
4876 p+=2;
4877 lp->rst = p;
4878 srom_exec(dev, lp->rst);
4881 return DE4X5_AUTOSENSE_MS;
4885 ** MII Read/Write
4888 static int
4889 mii_rd(u_char phyreg, u_char phyaddr, u_long ioaddr)
4891 mii_wdata(MII_PREAMBLE, 2, ioaddr); /* Start of 34 bit preamble... */
4892 mii_wdata(MII_PREAMBLE, 32, ioaddr); /* ...continued */
4893 mii_wdata(MII_STRD, 4, ioaddr); /* SFD and Read operation */
4894 mii_address(phyaddr, ioaddr); /* PHY address to be accessed */
4895 mii_address(phyreg, ioaddr); /* PHY Register to read */
4896 mii_ta(MII_STRD, ioaddr); /* Turn around time - 2 MDC */
4898 return mii_rdata(ioaddr); /* Read data */
4901 static void
4902 mii_wr(int data, u_char phyreg, u_char phyaddr, u_long ioaddr)
4904 mii_wdata(MII_PREAMBLE, 2, ioaddr); /* Start of 34 bit preamble... */
4905 mii_wdata(MII_PREAMBLE, 32, ioaddr); /* ...continued */
4906 mii_wdata(MII_STWR, 4, ioaddr); /* SFD and Write operation */
4907 mii_address(phyaddr, ioaddr); /* PHY address to be accessed */
4908 mii_address(phyreg, ioaddr); /* PHY Register to write */
4909 mii_ta(MII_STWR, ioaddr); /* Turn around time - 2 MDC */
4910 data = mii_swap(data, 16); /* Swap data bit ordering */
4911 mii_wdata(data, 16, ioaddr); /* Write data */
4913 return;
4916 static int
4917 mii_rdata(u_long ioaddr)
4919 int i;
4920 s32 tmp = 0;
4922 for (i=0; i<16; i++) {
4923 tmp <<= 1;
4924 tmp |= getfrom_mii(MII_MRD | MII_RD, ioaddr);
4927 return tmp;
4930 static void
4931 mii_wdata(int data, int len, u_long ioaddr)
4933 int i;
4935 for (i=0; i<len; i++) {
4936 sendto_mii(MII_MWR | MII_WR, data, ioaddr);
4937 data >>= 1;
4940 return;
4943 static void
4944 mii_address(u_char addr, u_long ioaddr)
4946 int i;
4948 addr = mii_swap(addr, 5);
4949 for (i=0; i<5; i++) {
4950 sendto_mii(MII_MWR | MII_WR, addr, ioaddr);
4951 addr >>= 1;
4954 return;
4957 static void
4958 mii_ta(u_long rw, u_long ioaddr)
4960 if (rw == MII_STWR) {
4961 sendto_mii(MII_MWR | MII_WR, 1, ioaddr);
4962 sendto_mii(MII_MWR | MII_WR, 0, ioaddr);
4963 } else {
4964 getfrom_mii(MII_MRD | MII_RD, ioaddr); /* Tri-state MDIO */
4967 return;
4970 static int
4971 mii_swap(int data, int len)
4973 int i, tmp = 0;
4975 for (i=0; i<len; i++) {
4976 tmp <<= 1;
4977 tmp |= (data & 1);
4978 data >>= 1;
4981 return tmp;
4984 static void
4985 sendto_mii(u32 command, int data, u_long ioaddr)
4987 u32 j;
4989 j = (data & 1) << 17;
4990 outl(command | j, ioaddr);
4991 udelay(1);
4992 outl(command | MII_MDC | j, ioaddr);
4993 udelay(1);
4995 return;
4998 static int
4999 getfrom_mii(u32 command, u_long ioaddr)
5001 outl(command, ioaddr);
5002 udelay(1);
5003 outl(command | MII_MDC, ioaddr);
5004 udelay(1);
5006 return ((inl(ioaddr) >> 19) & 1);
5010 ** Here's 3 ways to calculate the OUI from the ID registers.
5012 static int
5013 mii_get_oui(u_char phyaddr, u_long ioaddr)
5016 union {
5017 u_short reg;
5018 u_char breg[2];
5019 } a;
5020 int i, r2, r3, ret=0;*/
5021 int r2, r3;
5023 /* Read r2 and r3 */
5024 r2 = mii_rd(MII_ID0, phyaddr, ioaddr);
5025 r3 = mii_rd(MII_ID1, phyaddr, ioaddr);
5026 /* SEEQ and Cypress way * /
5027 / * Shuffle r2 and r3 * /
5028 a.reg=0;
5029 r3 = ((r3>>10)|(r2<<6))&0x0ff;
5030 r2 = ((r2>>2)&0x3fff);
5032 / * Bit reverse r3 * /
5033 for (i=0;i<8;i++) {
5034 ret<<=1;
5035 ret |= (r3&1);
5036 r3>>=1;
5039 / * Bit reverse r2 * /
5040 for (i=0;i<16;i++) {
5041 a.reg<<=1;
5042 a.reg |= (r2&1);
5043 r2>>=1;
5046 / * Swap r2 bytes * /
5047 i=a.breg[0];
5048 a.breg[0]=a.breg[1];
5049 a.breg[1]=i;
5051 return ((a.reg<<8)|ret); */ /* SEEQ and Cypress way */
5052 /* return ((r2<<6)|(u_int)(r3>>10)); */ /* NATIONAL and BROADCOM way */
5053 return r2; /* (I did it) My way */
5057 ** The SROM spec forces us to search addresses [1-31 0]. Bummer.
5059 static int
5060 mii_get_phy(struct net_device *dev)
5062 struct de4x5_private *lp = netdev_priv(dev);
5063 u_long iobase = dev->base_addr;
5064 int i, j, k, n, limit=ARRAY_SIZE(phy_info);
5065 int id;
5067 lp->active = 0;
5068 lp->useMII = true;
5070 /* Search the MII address space for possible PHY devices */
5071 for (n=0, lp->mii_cnt=0, i=1; !((i==1) && (n==1)); i=(i+1)%DE4X5_MAX_MII) {
5072 lp->phy[lp->active].addr = i;
5073 if (i==0) n++; /* Count cycles */
5074 while (de4x5_reset_phy(dev)<0) udelay(100);/* Wait for reset */
5075 id = mii_get_oui(i, DE4X5_MII);
5076 if ((id == 0) || (id == 65535)) continue; /* Valid ID? */
5077 for (j=0; j<limit; j++) { /* Search PHY table */
5078 if (id != phy_info[j].id) continue; /* ID match? */
5079 for (k=0; lp->phy[k].id && (k < DE4X5_MAX_PHY); k++);
5080 if (k < DE4X5_MAX_PHY) {
5081 memcpy((char *)&lp->phy[k],
5082 (char *)&phy_info[j], sizeof(struct phy_table));
5083 lp->phy[k].addr = i;
5084 lp->mii_cnt++;
5085 lp->active++;
5086 } else {
5087 goto purgatory; /* Stop the search */
5089 break;
5091 if ((j == limit) && (i < DE4X5_MAX_MII)) {
5092 for (k=0; lp->phy[k].id && (k < DE4X5_MAX_PHY); k++);
5093 lp->phy[k].addr = i;
5094 lp->phy[k].id = id;
5095 lp->phy[k].spd.reg = GENERIC_REG; /* ANLPA register */
5096 lp->phy[k].spd.mask = GENERIC_MASK; /* 100Mb/s technologies */
5097 lp->phy[k].spd.value = GENERIC_VALUE; /* TX & T4, H/F Duplex */
5098 lp->mii_cnt++;
5099 lp->active++;
5100 printk("%s: Using generic MII device control. If the board doesn't operate, \nplease mail the following dump to the author:\n", dev->name);
5101 j = de4x5_debug;
5102 de4x5_debug |= DEBUG_MII;
5103 de4x5_dbg_mii(dev, k);
5104 de4x5_debug = j;
5105 printk("\n");
5108 purgatory:
5109 lp->active = 0;
5110 if (lp->phy[0].id) { /* Reset the PHY devices */
5111 for (k=0; lp->phy[k].id && (k < DE4X5_MAX_PHY); k++) { /*For each PHY*/
5112 mii_wr(MII_CR_RST, MII_CR, lp->phy[k].addr, DE4X5_MII);
5113 while (mii_rd(MII_CR, lp->phy[k].addr, DE4X5_MII) & MII_CR_RST);
5115 de4x5_dbg_mii(dev, k);
5118 if (!lp->mii_cnt) lp->useMII = false;
5120 return lp->mii_cnt;
5123 static char *
5124 build_setup_frame(struct net_device *dev, int mode)
5126 struct de4x5_private *lp = netdev_priv(dev);
5127 int i;
5128 char *pa = lp->setup_frame;
5130 /* Initialise the setup frame */
5131 if (mode == ALL) {
5132 memset(lp->setup_frame, 0, SETUP_FRAME_LEN);
5135 if (lp->setup_f == HASH_PERF) {
5136 for (pa=lp->setup_frame+IMPERF_PA_OFFSET, i=0; i<ETH_ALEN; i++) {
5137 *(pa + i) = dev->dev_addr[i]; /* Host address */
5138 if (i & 0x01) pa += 2;
5140 *(lp->setup_frame + (HASH_TABLE_LEN >> 3) - 3) = 0x80;
5141 } else {
5142 for (i=0; i<ETH_ALEN; i++) { /* Host address */
5143 *(pa + (i&1)) = dev->dev_addr[i];
5144 if (i & 0x01) pa += 4;
5146 for (i=0; i<ETH_ALEN; i++) { /* Broadcast address */
5147 *(pa + (i&1)) = (char) 0xff;
5148 if (i & 0x01) pa += 4;
5152 return pa; /* Points to the next entry */
5155 static void
5156 disable_ast(struct net_device *dev)
5158 struct de4x5_private *lp = netdev_priv(dev);
5159 del_timer_sync(&lp->timer);
5162 static long
5163 de4x5_switch_mac_port(struct net_device *dev)
5165 struct de4x5_private *lp = netdev_priv(dev);
5166 u_long iobase = dev->base_addr;
5167 s32 omr;
5169 STOP_DE4X5;
5171 /* Assert the OMR_PS bit in CSR6 */
5172 omr = (inl(DE4X5_OMR) & ~(OMR_PS | OMR_HBD | OMR_TTM | OMR_PCS | OMR_SCR |
5173 OMR_FDX));
5174 omr |= lp->infoblock_csr6;
5175 if (omr & OMR_PS) omr |= OMR_HBD;
5176 outl(omr, DE4X5_OMR);
5178 /* Soft Reset */
5179 RESET_DE4X5;
5181 /* Restore the GEP - especially for COMPACT and Type 0 Infoblocks */
5182 if (lp->chipset == DC21140) {
5183 gep_wr(lp->cache.gepc, dev);
5184 gep_wr(lp->cache.gep, dev);
5185 } else if ((lp->chipset & ~0x0ff) == DC2114x) {
5186 reset_init_sia(dev, lp->cache.csr13, lp->cache.csr14, lp->cache.csr15);
5189 /* Restore CSR6 */
5190 outl(omr, DE4X5_OMR);
5192 /* Reset CSR8 */
5193 inl(DE4X5_MFC);
5195 return omr;
5198 static void
5199 gep_wr(s32 data, struct net_device *dev)
5201 struct de4x5_private *lp = netdev_priv(dev);
5202 u_long iobase = dev->base_addr;
5204 if (lp->chipset == DC21140) {
5205 outl(data, DE4X5_GEP);
5206 } else if ((lp->chipset & ~0x00ff) == DC2114x) {
5207 outl((data<<16) | lp->cache.csr15, DE4X5_SIGR);
5210 return;
5213 static int
5214 gep_rd(struct net_device *dev)
5216 struct de4x5_private *lp = netdev_priv(dev);
5217 u_long iobase = dev->base_addr;
5219 if (lp->chipset == DC21140) {
5220 return inl(DE4X5_GEP);
5221 } else if ((lp->chipset & ~0x00ff) == DC2114x) {
5222 return (inl(DE4X5_SIGR) & 0x000fffff);
5225 return 0;
5228 static void
5229 yawn(struct net_device *dev, int state)
5231 struct de4x5_private *lp = netdev_priv(dev);
5232 u_long iobase = dev->base_addr;
5234 if ((lp->chipset == DC21040) || (lp->chipset == DC21140)) return;
5236 if(lp->bus == EISA) {
5237 switch(state) {
5238 case WAKEUP:
5239 outb(WAKEUP, PCI_CFPM);
5240 mdelay(10);
5241 break;
5243 case SNOOZE:
5244 outb(SNOOZE, PCI_CFPM);
5245 break;
5247 case SLEEP:
5248 outl(0, DE4X5_SICR);
5249 outb(SLEEP, PCI_CFPM);
5250 break;
5252 } else {
5253 struct pci_dev *pdev = to_pci_dev (lp->gendev);
5254 switch(state) {
5255 case WAKEUP:
5256 pci_write_config_byte(pdev, PCI_CFDA_PSM, WAKEUP);
5257 mdelay(10);
5258 break;
5260 case SNOOZE:
5261 pci_write_config_byte(pdev, PCI_CFDA_PSM, SNOOZE);
5262 break;
5264 case SLEEP:
5265 outl(0, DE4X5_SICR);
5266 pci_write_config_byte(pdev, PCI_CFDA_PSM, SLEEP);
5267 break;
5271 return;
5274 static void
5275 de4x5_parse_params(struct net_device *dev)
5277 struct de4x5_private *lp = netdev_priv(dev);
5278 char *p, *q, t;
5280 lp->params.fdx = 0;
5281 lp->params.autosense = AUTO;
5283 if (args == NULL) return;
5285 if ((p = strstr(args, dev->name))) {
5286 if (!(q = strstr(p+strlen(dev->name), "eth"))) q = p + strlen(p);
5287 t = *q;
5288 *q = '\0';
5290 if (strstr(p, "fdx") || strstr(p, "FDX")) lp->params.fdx = 1;
5292 if (strstr(p, "autosense") || strstr(p, "AUTOSENSE")) {
5293 if (strstr(p, "TP")) {
5294 lp->params.autosense = TP;
5295 } else if (strstr(p, "TP_NW")) {
5296 lp->params.autosense = TP_NW;
5297 } else if (strstr(p, "BNC")) {
5298 lp->params.autosense = BNC;
5299 } else if (strstr(p, "AUI")) {
5300 lp->params.autosense = AUI;
5301 } else if (strstr(p, "BNC_AUI")) {
5302 lp->params.autosense = BNC;
5303 } else if (strstr(p, "10Mb")) {
5304 lp->params.autosense = _10Mb;
5305 } else if (strstr(p, "100Mb")) {
5306 lp->params.autosense = _100Mb;
5307 } else if (strstr(p, "AUTO")) {
5308 lp->params.autosense = AUTO;
5311 *q = t;
5314 return;
5317 static void
5318 de4x5_dbg_open(struct net_device *dev)
5320 struct de4x5_private *lp = netdev_priv(dev);
5321 int i;
5323 if (de4x5_debug & DEBUG_OPEN) {
5324 printk("%s: de4x5 opening with irq %d\n",dev->name,dev->irq);
5325 printk("\tphysical address: ");
5326 for (i=0;i<6;i++) {
5327 printk("%2.2x:",(short)dev->dev_addr[i]);
5329 printk("\n");
5330 printk("Descriptor head addresses:\n");
5331 printk("\t0x%8.8lx 0x%8.8lx\n",(u_long)lp->rx_ring,(u_long)lp->tx_ring);
5332 printk("Descriptor addresses:\nRX: ");
5333 for (i=0;i<lp->rxRingSize-1;i++){
5334 if (i < 3) {
5335 printk("0x%8.8lx ",(u_long)&lp->rx_ring[i].status);
5338 printk("...0x%8.8lx\n",(u_long)&lp->rx_ring[i].status);
5339 printk("TX: ");
5340 for (i=0;i<lp->txRingSize-1;i++){
5341 if (i < 3) {
5342 printk("0x%8.8lx ", (u_long)&lp->tx_ring[i].status);
5345 printk("...0x%8.8lx\n", (u_long)&lp->tx_ring[i].status);
5346 printk("Descriptor buffers:\nRX: ");
5347 for (i=0;i<lp->rxRingSize-1;i++){
5348 if (i < 3) {
5349 printk("0x%8.8x ",le32_to_cpu(lp->rx_ring[i].buf));
5352 printk("...0x%8.8x\n",le32_to_cpu(lp->rx_ring[i].buf));
5353 printk("TX: ");
5354 for (i=0;i<lp->txRingSize-1;i++){
5355 if (i < 3) {
5356 printk("0x%8.8x ", le32_to_cpu(lp->tx_ring[i].buf));
5359 printk("...0x%8.8x\n", le32_to_cpu(lp->tx_ring[i].buf));
5360 printk("Ring size: \nRX: %d\nTX: %d\n",
5361 (short)lp->rxRingSize,
5362 (short)lp->txRingSize);
5365 return;
5368 static void
5369 de4x5_dbg_mii(struct net_device *dev, int k)
5371 struct de4x5_private *lp = netdev_priv(dev);
5372 u_long iobase = dev->base_addr;
5374 if (de4x5_debug & DEBUG_MII) {
5375 printk("\nMII device address: %d\n", lp->phy[k].addr);
5376 printk("MII CR: %x\n",mii_rd(MII_CR,lp->phy[k].addr,DE4X5_MII));
5377 printk("MII SR: %x\n",mii_rd(MII_SR,lp->phy[k].addr,DE4X5_MII));
5378 printk("MII ID0: %x\n",mii_rd(MII_ID0,lp->phy[k].addr,DE4X5_MII));
5379 printk("MII ID1: %x\n",mii_rd(MII_ID1,lp->phy[k].addr,DE4X5_MII));
5380 if (lp->phy[k].id != BROADCOM_T4) {
5381 printk("MII ANA: %x\n",mii_rd(0x04,lp->phy[k].addr,DE4X5_MII));
5382 printk("MII ANC: %x\n",mii_rd(0x05,lp->phy[k].addr,DE4X5_MII));
5384 printk("MII 16: %x\n",mii_rd(0x10,lp->phy[k].addr,DE4X5_MII));
5385 if (lp->phy[k].id != BROADCOM_T4) {
5386 printk("MII 17: %x\n",mii_rd(0x11,lp->phy[k].addr,DE4X5_MII));
5387 printk("MII 18: %x\n",mii_rd(0x12,lp->phy[k].addr,DE4X5_MII));
5388 } else {
5389 printk("MII 20: %x\n",mii_rd(0x14,lp->phy[k].addr,DE4X5_MII));
5393 return;
5396 static void
5397 de4x5_dbg_media(struct net_device *dev)
5399 struct de4x5_private *lp = netdev_priv(dev);
5401 if (lp->media != lp->c_media) {
5402 if (de4x5_debug & DEBUG_MEDIA) {
5403 printk("%s: media is %s%s\n", dev->name,
5404 (lp->media == NC ? "unconnected, link down or incompatible connection" :
5405 (lp->media == TP ? "TP" :
5406 (lp->media == ANS ? "TP/Nway" :
5407 (lp->media == BNC ? "BNC" :
5408 (lp->media == AUI ? "AUI" :
5409 (lp->media == BNC_AUI ? "BNC/AUI" :
5410 (lp->media == EXT_SIA ? "EXT SIA" :
5411 (lp->media == _100Mb ? "100Mb/s" :
5412 (lp->media == _10Mb ? "10Mb/s" :
5413 "???"
5414 ))))))))), (lp->fdx?" full duplex.":"."));
5416 lp->c_media = lp->media;
5419 return;
5422 static void
5423 de4x5_dbg_srom(struct de4x5_srom *p)
5425 int i;
5426 DECLARE_MAC_BUF(mac);
5428 if (de4x5_debug & DEBUG_SROM) {
5429 printk("Sub-system Vendor ID: %04x\n", *((u_short *)p->sub_vendor_id));
5430 printk("Sub-system ID: %04x\n", *((u_short *)p->sub_system_id));
5431 printk("ID Block CRC: %02x\n", (u_char)(p->id_block_crc));
5432 printk("SROM version: %02x\n", (u_char)(p->version));
5433 printk("# controllers: %02x\n", (u_char)(p->num_controllers));
5435 printk("Hardware Address: %s\n", print_mac(mac, p->ieee_addr));
5436 printk("CRC checksum: %04x\n", (u_short)(p->chksum));
5437 for (i=0; i<64; i++) {
5438 printk("%3d %04x\n", i<<1, (u_short)*((u_short *)p+i));
5442 return;
5445 static void
5446 de4x5_dbg_rx(struct sk_buff *skb, int len)
5448 int i, j;
5449 DECLARE_MAC_BUF(mac);
5450 DECLARE_MAC_BUF(mac2);
5452 if (de4x5_debug & DEBUG_RX) {
5453 printk("R: %s <- %s len/SAP:%02x%02x [%d]\n",
5454 print_mac(mac, skb->data), print_mac(mac2, &skb->data[6]),
5455 (u_char)skb->data[12],
5456 (u_char)skb->data[13],
5457 len);
5458 for (j=0; len>0;j+=16, len-=16) {
5459 printk(" %03x: ",j);
5460 for (i=0; i<16 && i<len; i++) {
5461 printk("%02x ",(u_char)skb->data[i+j]);
5463 printk("\n");
5467 return;
5471 ** Perform IOCTL call functions here. Some are privileged operations and the
5472 ** effective uid is checked in those cases. In the normal course of events
5473 ** this function is only used for my testing.
5475 static int
5476 de4x5_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5478 struct de4x5_private *lp = netdev_priv(dev);
5479 struct de4x5_ioctl *ioc = (struct de4x5_ioctl *) &rq->ifr_ifru;
5480 u_long iobase = dev->base_addr;
5481 int i, j, status = 0;
5482 s32 omr;
5483 union {
5484 u8 addr[144];
5485 u16 sval[72];
5486 u32 lval[36];
5487 } tmp;
5488 u_long flags = 0;
5490 switch(ioc->cmd) {
5491 case DE4X5_GET_HWADDR: /* Get the hardware address */
5492 ioc->len = ETH_ALEN;
5493 for (i=0; i<ETH_ALEN; i++) {
5494 tmp.addr[i] = dev->dev_addr[i];
5496 if (copy_to_user(ioc->data, tmp.addr, ioc->len)) return -EFAULT;
5497 break;
5499 case DE4X5_SET_HWADDR: /* Set the hardware address */
5500 if (!capable(CAP_NET_ADMIN)) return -EPERM;
5501 if (copy_from_user(tmp.addr, ioc->data, ETH_ALEN)) return -EFAULT;
5502 if (netif_queue_stopped(dev))
5503 return -EBUSY;
5504 netif_stop_queue(dev);
5505 for (i=0; i<ETH_ALEN; i++) {
5506 dev->dev_addr[i] = tmp.addr[i];
5508 build_setup_frame(dev, PHYS_ADDR_ONLY);
5509 /* Set up the descriptor and give ownership to the card */
5510 load_packet(dev, lp->setup_frame, TD_IC | PERFECT_F | TD_SET |
5511 SETUP_FRAME_LEN, (struct sk_buff *)1);
5512 lp->tx_new = (++lp->tx_new) % lp->txRingSize;
5513 outl(POLL_DEMAND, DE4X5_TPD); /* Start the TX */
5514 netif_wake_queue(dev); /* Unlock the TX ring */
5515 break;
5517 case DE4X5_SAY_BOO: /* Say "Boo!" to the kernel log file */
5518 if (!capable(CAP_NET_ADMIN)) return -EPERM;
5519 printk("%s: Boo!\n", dev->name);
5520 break;
5522 case DE4X5_MCA_EN: /* Enable pass all multicast addressing */
5523 if (!capable(CAP_NET_ADMIN)) return -EPERM;
5524 omr = inl(DE4X5_OMR);
5525 omr |= OMR_PM;
5526 outl(omr, DE4X5_OMR);
5527 break;
5529 case DE4X5_GET_STATS: /* Get the driver statistics */
5531 struct pkt_stats statbuf;
5532 ioc->len = sizeof(statbuf);
5533 spin_lock_irqsave(&lp->lock, flags);
5534 memcpy(&statbuf, &lp->pktStats, ioc->len);
5535 spin_unlock_irqrestore(&lp->lock, flags);
5536 if (copy_to_user(ioc->data, &statbuf, ioc->len))
5537 return -EFAULT;
5538 break;
5540 case DE4X5_CLR_STATS: /* Zero out the driver statistics */
5541 if (!capable(CAP_NET_ADMIN)) return -EPERM;
5542 spin_lock_irqsave(&lp->lock, flags);
5543 memset(&lp->pktStats, 0, sizeof(lp->pktStats));
5544 spin_unlock_irqrestore(&lp->lock, flags);
5545 break;
5547 case DE4X5_GET_OMR: /* Get the OMR Register contents */
5548 tmp.addr[0] = inl(DE4X5_OMR);
5549 if (copy_to_user(ioc->data, tmp.addr, 1)) return -EFAULT;
5550 break;
5552 case DE4X5_SET_OMR: /* Set the OMR Register contents */
5553 if (!capable(CAP_NET_ADMIN)) return -EPERM;
5554 if (copy_from_user(tmp.addr, ioc->data, 1)) return -EFAULT;
5555 outl(tmp.addr[0], DE4X5_OMR);
5556 break;
5558 case DE4X5_GET_REG: /* Get the DE4X5 Registers */
5559 j = 0;
5560 tmp.lval[0] = inl(DE4X5_STS); j+=4;
5561 tmp.lval[1] = inl(DE4X5_BMR); j+=4;
5562 tmp.lval[2] = inl(DE4X5_IMR); j+=4;
5563 tmp.lval[3] = inl(DE4X5_OMR); j+=4;
5564 tmp.lval[4] = inl(DE4X5_SISR); j+=4;
5565 tmp.lval[5] = inl(DE4X5_SICR); j+=4;
5566 tmp.lval[6] = inl(DE4X5_STRR); j+=4;
5567 tmp.lval[7] = inl(DE4X5_SIGR); j+=4;
5568 ioc->len = j;
5569 if (copy_to_user(ioc->data, tmp.addr, ioc->len)) return -EFAULT;
5570 break;
5572 #define DE4X5_DUMP 0x0f /* Dump the DE4X5 Status */
5574 case DE4X5_DUMP:
5575 j = 0;
5576 tmp.addr[j++] = dev->irq;
5577 for (i=0; i<ETH_ALEN; i++) {
5578 tmp.addr[j++] = dev->dev_addr[i];
5580 tmp.addr[j++] = lp->rxRingSize;
5581 tmp.lval[j>>2] = (long)lp->rx_ring; j+=4;
5582 tmp.lval[j>>2] = (long)lp->tx_ring; j+=4;
5584 for (i=0;i<lp->rxRingSize-1;i++){
5585 if (i < 3) {
5586 tmp.lval[j>>2] = (long)&lp->rx_ring[i].status; j+=4;
5589 tmp.lval[j>>2] = (long)&lp->rx_ring[i].status; j+=4;
5590 for (i=0;i<lp->txRingSize-1;i++){
5591 if (i < 3) {
5592 tmp.lval[j>>2] = (long)&lp->tx_ring[i].status; j+=4;
5595 tmp.lval[j>>2] = (long)&lp->tx_ring[i].status; j+=4;
5597 for (i=0;i<lp->rxRingSize-1;i++){
5598 if (i < 3) {
5599 tmp.lval[j>>2] = (s32)le32_to_cpu(lp->rx_ring[i].buf); j+=4;
5602 tmp.lval[j>>2] = (s32)le32_to_cpu(lp->rx_ring[i].buf); j+=4;
5603 for (i=0;i<lp->txRingSize-1;i++){
5604 if (i < 3) {
5605 tmp.lval[j>>2] = (s32)le32_to_cpu(lp->tx_ring[i].buf); j+=4;
5608 tmp.lval[j>>2] = (s32)le32_to_cpu(lp->tx_ring[i].buf); j+=4;
5610 for (i=0;i<lp->rxRingSize;i++){
5611 tmp.lval[j>>2] = le32_to_cpu(lp->rx_ring[i].status); j+=4;
5613 for (i=0;i<lp->txRingSize;i++){
5614 tmp.lval[j>>2] = le32_to_cpu(lp->tx_ring[i].status); j+=4;
5617 tmp.lval[j>>2] = inl(DE4X5_BMR); j+=4;
5618 tmp.lval[j>>2] = inl(DE4X5_TPD); j+=4;
5619 tmp.lval[j>>2] = inl(DE4X5_RPD); j+=4;
5620 tmp.lval[j>>2] = inl(DE4X5_RRBA); j+=4;
5621 tmp.lval[j>>2] = inl(DE4X5_TRBA); j+=4;
5622 tmp.lval[j>>2] = inl(DE4X5_STS); j+=4;
5623 tmp.lval[j>>2] = inl(DE4X5_OMR); j+=4;
5624 tmp.lval[j>>2] = inl(DE4X5_IMR); j+=4;
5625 tmp.lval[j>>2] = lp->chipset; j+=4;
5626 if (lp->chipset == DC21140) {
5627 tmp.lval[j>>2] = gep_rd(dev); j+=4;
5628 } else {
5629 tmp.lval[j>>2] = inl(DE4X5_SISR); j+=4;
5630 tmp.lval[j>>2] = inl(DE4X5_SICR); j+=4;
5631 tmp.lval[j>>2] = inl(DE4X5_STRR); j+=4;
5632 tmp.lval[j>>2] = inl(DE4X5_SIGR); j+=4;
5634 tmp.lval[j>>2] = lp->phy[lp->active].id; j+=4;
5635 if (lp->phy[lp->active].id && (!lp->useSROM || lp->useMII)) {
5636 tmp.lval[j>>2] = lp->active; j+=4;
5637 tmp.lval[j>>2]=mii_rd(MII_CR,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5638 tmp.lval[j>>2]=mii_rd(MII_SR,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5639 tmp.lval[j>>2]=mii_rd(MII_ID0,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5640 tmp.lval[j>>2]=mii_rd(MII_ID1,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5641 if (lp->phy[lp->active].id != BROADCOM_T4) {
5642 tmp.lval[j>>2]=mii_rd(MII_ANA,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5643 tmp.lval[j>>2]=mii_rd(MII_ANLPA,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5645 tmp.lval[j>>2]=mii_rd(0x10,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5646 if (lp->phy[lp->active].id != BROADCOM_T4) {
5647 tmp.lval[j>>2]=mii_rd(0x11,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5648 tmp.lval[j>>2]=mii_rd(0x12,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5649 } else {
5650 tmp.lval[j>>2]=mii_rd(0x14,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5654 tmp.addr[j++] = lp->txRingSize;
5655 tmp.addr[j++] = netif_queue_stopped(dev);
5657 ioc->len = j;
5658 if (copy_to_user(ioc->data, tmp.addr, ioc->len)) return -EFAULT;
5659 break;
5662 default:
5663 return -EOPNOTSUPP;
5666 return status;
5669 static int __init de4x5_module_init (void)
5671 int err = 0;
5673 #ifdef CONFIG_PCI
5674 err = pci_register_driver(&de4x5_pci_driver);
5675 #endif
5676 #ifdef CONFIG_EISA
5677 err |= eisa_driver_register (&de4x5_eisa_driver);
5678 #endif
5680 return err;
5683 static void __exit de4x5_module_exit (void)
5685 #ifdef CONFIG_PCI
5686 pci_unregister_driver (&de4x5_pci_driver);
5687 #endif
5688 #ifdef CONFIG_EISA
5689 eisa_driver_unregister (&de4x5_eisa_driver);
5690 #endif
5693 module_init (de4x5_module_init);
5694 module_exit (de4x5_module_exit);