2 * Anticipatory & deadline i/o scheduler.
4 * Copyright (C) 2002 Jens Axboe <axboe@suse.de>
5 * Nick Piggin <nickpiggin@yahoo.com.au>
8 #include <linux/kernel.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/bio.h>
13 #include <linux/config.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/compiler.h>
18 #include <linux/hash.h>
19 #include <linux/rbtree.h>
20 #include <linux/interrupt.h>
26 * See Documentation/block/as-iosched.txt
30 * max time before a read is submitted.
32 #define default_read_expire (HZ / 8)
35 * ditto for writes, these limits are not hard, even
36 * if the disk is capable of satisfying them.
38 #define default_write_expire (HZ / 4)
41 * read_batch_expire describes how long we will allow a stream of reads to
42 * persist before looking to see whether it is time to switch over to writes.
44 #define default_read_batch_expire (HZ / 2)
47 * write_batch_expire describes how long we want a stream of writes to run for.
48 * This is not a hard limit, but a target we set for the auto-tuning thingy.
49 * See, the problem is: we can send a lot of writes to disk cache / TCQ in
50 * a short amount of time...
52 #define default_write_batch_expire (HZ / 8)
55 * max time we may wait to anticipate a read (default around 6ms)
57 #define default_antic_expire ((HZ / 150) ? HZ / 150 : 1)
60 * Keep track of up to 20ms thinktimes. We can go as big as we like here,
61 * however huge values tend to interfere and not decay fast enough. A program
62 * might be in a non-io phase of operation. Waiting on user input for example,
63 * or doing a lengthy computation. A small penalty can be justified there, and
64 * will still catch out those processes that constantly have large thinktimes.
66 #define MAX_THINKTIME (HZ/50UL)
68 /* Bits in as_io_context.state */
70 AS_TASK_RUNNING
=0, /* Process has not exited */
71 AS_TASK_IOSTARTED
, /* Process has started some IO */
72 AS_TASK_IORUNNING
, /* Process has completed some IO */
75 enum anticipation_status
{
76 ANTIC_OFF
=0, /* Not anticipating (normal operation) */
77 ANTIC_WAIT_REQ
, /* The last read has not yet completed */
78 ANTIC_WAIT_NEXT
, /* Currently anticipating a request vs
79 last read (which has completed) */
80 ANTIC_FINISHED
, /* Anticipating but have found a candidate
89 struct request_queue
*q
; /* the "owner" queue */
92 * requests (as_rq s) are present on both sort_list and fifo_list
94 struct rb_root sort_list
[2];
95 struct list_head fifo_list
[2];
97 struct as_rq
*next_arq
[2]; /* next in sort order */
98 sector_t last_sector
[2]; /* last REQ_SYNC & REQ_ASYNC sectors */
99 struct list_head
*hash
; /* request hash */
101 unsigned long exit_prob
; /* probability a task will exit while
103 unsigned long exit_no_coop
; /* probablility an exited task will
104 not be part of a later cooperating
106 unsigned long new_ttime_total
; /* mean thinktime on new proc */
107 unsigned long new_ttime_mean
;
108 u64 new_seek_total
; /* mean seek on new proc */
109 sector_t new_seek_mean
;
111 unsigned long current_batch_expires
;
112 unsigned long last_check_fifo
[2];
113 int changed_batch
; /* 1: waiting for old batch to end */
114 int new_batch
; /* 1: waiting on first read complete */
115 int batch_data_dir
; /* current batch REQ_SYNC / REQ_ASYNC */
116 int write_batch_count
; /* max # of reqs in a write batch */
117 int current_write_count
; /* how many requests left this batch */
118 int write_batch_idled
; /* has the write batch gone idle? */
121 enum anticipation_status antic_status
;
122 unsigned long antic_start
; /* jiffies: when it started */
123 struct timer_list antic_timer
; /* anticipatory scheduling timer */
124 struct work_struct antic_work
; /* Deferred unplugging */
125 struct io_context
*io_context
; /* Identify the expected process */
126 int ioc_finished
; /* IO associated with io_context is finished */
130 * settings that change how the i/o scheduler behaves
132 unsigned long fifo_expire
[2];
133 unsigned long batch_expire
[2];
134 unsigned long antic_expire
;
137 #define list_entry_fifo(ptr) list_entry((ptr), struct as_rq, fifo)
143 AS_RQ_NEW
=0, /* New - not referenced and not on any lists */
144 AS_RQ_QUEUED
, /* In the request queue. It belongs to the
146 AS_RQ_DISPATCHED
, /* On the dispatch list. It belongs to the
148 AS_RQ_PRESCHED
, /* Debug poisoning for requests being used */
151 AS_RQ_POSTSCHED
, /* when they shouldn't be */
156 * rbtree index, key is the starting offset
158 struct rb_node rb_node
;
161 struct request
*request
;
163 struct io_context
*io_context
; /* The submitting task */
166 * request hash, key is the ending offset (for back merge lookup)
168 struct list_head hash
;
169 unsigned int on_hash
;
174 struct list_head fifo
;
175 unsigned long expires
;
177 unsigned int is_sync
;
178 enum arq_state state
;
181 #define RQ_DATA(rq) ((struct as_rq *) (rq)->elevator_private)
183 static kmem_cache_t
*arq_pool
;
185 static void as_move_to_dispatch(struct as_data
*ad
, struct as_rq
*arq
);
186 static void as_antic_stop(struct as_data
*ad
);
189 * IO Context helper functions
192 /* Called to deallocate the as_io_context */
193 static void free_as_io_context(struct as_io_context
*aic
)
198 /* Called when the task exits */
199 static void exit_as_io_context(struct as_io_context
*aic
)
201 WARN_ON(!test_bit(AS_TASK_RUNNING
, &aic
->state
));
202 clear_bit(AS_TASK_RUNNING
, &aic
->state
);
205 static struct as_io_context
*alloc_as_io_context(void)
207 struct as_io_context
*ret
;
209 ret
= kmalloc(sizeof(*ret
), GFP_ATOMIC
);
211 ret
->dtor
= free_as_io_context
;
212 ret
->exit
= exit_as_io_context
;
213 ret
->state
= 1 << AS_TASK_RUNNING
;
214 atomic_set(&ret
->nr_queued
, 0);
215 atomic_set(&ret
->nr_dispatched
, 0);
216 spin_lock_init(&ret
->lock
);
217 ret
->ttime_total
= 0;
218 ret
->ttime_samples
= 0;
221 ret
->seek_samples
= 0;
229 * If the current task has no AS IO context then create one and initialise it.
230 * Then take a ref on the task's io context and return it.
232 static struct io_context
*as_get_io_context(void)
234 struct io_context
*ioc
= get_io_context(GFP_ATOMIC
);
235 if (ioc
&& !ioc
->aic
) {
236 ioc
->aic
= alloc_as_io_context();
245 static void as_put_io_context(struct as_rq
*arq
)
247 struct as_io_context
*aic
;
249 if (unlikely(!arq
->io_context
))
252 aic
= arq
->io_context
->aic
;
254 if (arq
->is_sync
== REQ_SYNC
&& aic
) {
255 spin_lock(&aic
->lock
);
256 set_bit(AS_TASK_IORUNNING
, &aic
->state
);
257 aic
->last_end_request
= jiffies
;
258 spin_unlock(&aic
->lock
);
261 put_io_context(arq
->io_context
);
265 * the back merge hash support functions
267 static const int as_hash_shift
= 6;
268 #define AS_HASH_BLOCK(sec) ((sec) >> 3)
269 #define AS_HASH_FN(sec) (hash_long(AS_HASH_BLOCK((sec)), as_hash_shift))
270 #define AS_HASH_ENTRIES (1 << as_hash_shift)
271 #define rq_hash_key(rq) ((rq)->sector + (rq)->nr_sectors)
272 #define list_entry_hash(ptr) list_entry((ptr), struct as_rq, hash)
274 static inline void __as_del_arq_hash(struct as_rq
*arq
)
277 list_del_init(&arq
->hash
);
280 static inline void as_del_arq_hash(struct as_rq
*arq
)
283 __as_del_arq_hash(arq
);
286 static void as_add_arq_hash(struct as_data
*ad
, struct as_rq
*arq
)
288 struct request
*rq
= arq
->request
;
290 BUG_ON(arq
->on_hash
);
293 list_add(&arq
->hash
, &ad
->hash
[AS_HASH_FN(rq_hash_key(rq
))]);
297 * move hot entry to front of chain
299 static inline void as_hot_arq_hash(struct as_data
*ad
, struct as_rq
*arq
)
301 struct request
*rq
= arq
->request
;
302 struct list_head
*head
= &ad
->hash
[AS_HASH_FN(rq_hash_key(rq
))];
309 if (arq
->hash
.prev
!= head
) {
310 list_del(&arq
->hash
);
311 list_add(&arq
->hash
, head
);
315 static struct request
*as_find_arq_hash(struct as_data
*ad
, sector_t offset
)
317 struct list_head
*hash_list
= &ad
->hash
[AS_HASH_FN(offset
)];
318 struct list_head
*entry
, *next
= hash_list
->next
;
320 while ((entry
= next
) != hash_list
) {
321 struct as_rq
*arq
= list_entry_hash(entry
);
322 struct request
*__rq
= arq
->request
;
326 BUG_ON(!arq
->on_hash
);
328 if (!rq_mergeable(__rq
)) {
329 as_del_arq_hash(arq
);
333 if (rq_hash_key(__rq
) == offset
)
341 * rb tree support functions
344 #define RB_EMPTY(root) ((root)->rb_node == NULL)
345 #define ON_RB(node) ((node)->rb_color != RB_NONE)
346 #define RB_CLEAR(node) ((node)->rb_color = RB_NONE)
347 #define rb_entry_arq(node) rb_entry((node), struct as_rq, rb_node)
348 #define ARQ_RB_ROOT(ad, arq) (&(ad)->sort_list[(arq)->is_sync])
349 #define rq_rb_key(rq) (rq)->sector
352 * as_find_first_arq finds the first (lowest sector numbered) request
353 * for the specified data_dir. Used to sweep back to the start of the disk
354 * (1-way elevator) after we process the last (highest sector) request.
356 static struct as_rq
*as_find_first_arq(struct as_data
*ad
, int data_dir
)
358 struct rb_node
*n
= ad
->sort_list
[data_dir
].rb_node
;
364 if (n
->rb_left
== NULL
)
365 return rb_entry_arq(n
);
372 * Add the request to the rb tree if it is unique. If there is an alias (an
373 * existing request against the same sector), which can happen when using
374 * direct IO, then return the alias.
376 static struct as_rq
*__as_add_arq_rb(struct as_data
*ad
, struct as_rq
*arq
)
378 struct rb_node
**p
= &ARQ_RB_ROOT(ad
, arq
)->rb_node
;
379 struct rb_node
*parent
= NULL
;
381 struct request
*rq
= arq
->request
;
383 arq
->rb_key
= rq_rb_key(rq
);
387 __arq
= rb_entry_arq(parent
);
389 if (arq
->rb_key
< __arq
->rb_key
)
391 else if (arq
->rb_key
> __arq
->rb_key
)
397 rb_link_node(&arq
->rb_node
, parent
, p
);
398 rb_insert_color(&arq
->rb_node
, ARQ_RB_ROOT(ad
, arq
));
403 static void as_add_arq_rb(struct as_data
*ad
, struct as_rq
*arq
)
407 while ((unlikely(alias
= __as_add_arq_rb(ad
, arq
)))) {
408 as_move_to_dispatch(ad
, alias
);
413 static inline void as_del_arq_rb(struct as_data
*ad
, struct as_rq
*arq
)
415 if (!ON_RB(&arq
->rb_node
)) {
420 rb_erase(&arq
->rb_node
, ARQ_RB_ROOT(ad
, arq
));
421 RB_CLEAR(&arq
->rb_node
);
424 static struct request
*
425 as_find_arq_rb(struct as_data
*ad
, sector_t sector
, int data_dir
)
427 struct rb_node
*n
= ad
->sort_list
[data_dir
].rb_node
;
431 arq
= rb_entry_arq(n
);
433 if (sector
< arq
->rb_key
)
435 else if (sector
> arq
->rb_key
)
445 * IO Scheduler proper
448 #define MAXBACK (1024 * 1024) /*
449 * Maximum distance the disk will go backward
453 #define BACK_PENALTY 2
456 * as_choose_req selects the preferred one of two requests of the same data_dir
457 * ignoring time - eg. timeouts, which is the job of as_dispatch_request
459 static struct as_rq
*
460 as_choose_req(struct as_data
*ad
, struct as_rq
*arq1
, struct as_rq
*arq2
)
463 sector_t last
, s1
, s2
, d1
, d2
;
464 int r1_wrap
=0, r2_wrap
=0; /* requests are behind the disk head */
465 const sector_t maxback
= MAXBACK
;
467 if (arq1
== NULL
|| arq1
== arq2
)
472 data_dir
= arq1
->is_sync
;
474 last
= ad
->last_sector
[data_dir
];
475 s1
= arq1
->request
->sector
;
476 s2
= arq2
->request
->sector
;
478 BUG_ON(data_dir
!= arq2
->is_sync
);
481 * Strict one way elevator _except_ in the case where we allow
482 * short backward seeks which are biased as twice the cost of a
483 * similar forward seek.
487 else if (s1
+maxback
>= last
)
488 d1
= (last
- s1
)*BACK_PENALTY
;
491 d1
= 0; /* shut up, gcc */
496 else if (s2
+maxback
>= last
)
497 d2
= (last
- s2
)*BACK_PENALTY
;
503 /* Found required data */
504 if (!r1_wrap
&& r2_wrap
)
506 else if (!r2_wrap
&& r1_wrap
)
508 else if (r1_wrap
&& r2_wrap
) {
509 /* both behind the head */
516 /* Both requests in front of the head */
530 * as_find_next_arq finds the next request after @prev in elevator order.
531 * this with as_choose_req form the basis for how the scheduler chooses
532 * what request to process next. Anticipation works on top of this.
534 static struct as_rq
*as_find_next_arq(struct as_data
*ad
, struct as_rq
*last
)
536 const int data_dir
= last
->is_sync
;
538 struct rb_node
*rbnext
= rb_next(&last
->rb_node
);
539 struct rb_node
*rbprev
= rb_prev(&last
->rb_node
);
540 struct as_rq
*arq_next
, *arq_prev
;
542 BUG_ON(!ON_RB(&last
->rb_node
));
545 arq_prev
= rb_entry_arq(rbprev
);
550 arq_next
= rb_entry_arq(rbnext
);
552 arq_next
= as_find_first_arq(ad
, data_dir
);
553 if (arq_next
== last
)
557 ret
= as_choose_req(ad
, arq_next
, arq_prev
);
563 * anticipatory scheduling functions follow
567 * as_antic_expired tells us when we have anticipated too long.
568 * The funny "absolute difference" math on the elapsed time is to handle
569 * jiffy wraps, and disks which have been idle for 0x80000000 jiffies.
571 static int as_antic_expired(struct as_data
*ad
)
575 delta_jif
= jiffies
- ad
->antic_start
;
576 if (unlikely(delta_jif
< 0))
577 delta_jif
= -delta_jif
;
578 if (delta_jif
< ad
->antic_expire
)
585 * as_antic_waitnext starts anticipating that a nice request will soon be
586 * submitted. See also as_antic_waitreq
588 static void as_antic_waitnext(struct as_data
*ad
)
590 unsigned long timeout
;
592 BUG_ON(ad
->antic_status
!= ANTIC_OFF
593 && ad
->antic_status
!= ANTIC_WAIT_REQ
);
595 timeout
= ad
->antic_start
+ ad
->antic_expire
;
597 mod_timer(&ad
->antic_timer
, timeout
);
599 ad
->antic_status
= ANTIC_WAIT_NEXT
;
603 * as_antic_waitreq starts anticipating. We don't start timing the anticipation
604 * until the request that we're anticipating on has finished. This means we
605 * are timing from when the candidate process wakes up hopefully.
607 static void as_antic_waitreq(struct as_data
*ad
)
609 BUG_ON(ad
->antic_status
== ANTIC_FINISHED
);
610 if (ad
->antic_status
== ANTIC_OFF
) {
611 if (!ad
->io_context
|| ad
->ioc_finished
)
612 as_antic_waitnext(ad
);
614 ad
->antic_status
= ANTIC_WAIT_REQ
;
619 * This is called directly by the functions in this file to stop anticipation.
620 * We kill the timer and schedule a call to the request_fn asap.
622 static void as_antic_stop(struct as_data
*ad
)
624 int status
= ad
->antic_status
;
626 if (status
== ANTIC_WAIT_REQ
|| status
== ANTIC_WAIT_NEXT
) {
627 if (status
== ANTIC_WAIT_NEXT
)
628 del_timer(&ad
->antic_timer
);
629 ad
->antic_status
= ANTIC_FINISHED
;
630 /* see as_work_handler */
631 kblockd_schedule_work(&ad
->antic_work
);
636 * as_antic_timeout is the timer function set by as_antic_waitnext.
638 static void as_antic_timeout(unsigned long data
)
640 struct request_queue
*q
= (struct request_queue
*)data
;
641 struct as_data
*ad
= q
->elevator
->elevator_data
;
644 spin_lock_irqsave(q
->queue_lock
, flags
);
645 if (ad
->antic_status
== ANTIC_WAIT_REQ
646 || ad
->antic_status
== ANTIC_WAIT_NEXT
) {
647 struct as_io_context
*aic
= ad
->io_context
->aic
;
649 ad
->antic_status
= ANTIC_FINISHED
;
650 kblockd_schedule_work(&ad
->antic_work
);
652 if (aic
->ttime_samples
== 0) {
653 /* process anticipated on has exited or timed out*/
654 ad
->exit_prob
= (7*ad
->exit_prob
+ 256)/8;
656 if (!test_bit(AS_TASK_RUNNING
, &aic
->state
)) {
657 /* process not "saved" by a cooperating request */
658 ad
->exit_no_coop
= (7*ad
->exit_no_coop
+ 256)/8;
661 spin_unlock_irqrestore(q
->queue_lock
, flags
);
664 static void as_update_thinktime(struct as_data
*ad
, struct as_io_context
*aic
,
667 /* fixed point: 1.0 == 1<<8 */
668 if (aic
->ttime_samples
== 0) {
669 ad
->new_ttime_total
= (7*ad
->new_ttime_total
+ 256*ttime
) / 8;
670 ad
->new_ttime_mean
= ad
->new_ttime_total
/ 256;
672 ad
->exit_prob
= (7*ad
->exit_prob
)/8;
674 aic
->ttime_samples
= (7*aic
->ttime_samples
+ 256) / 8;
675 aic
->ttime_total
= (7*aic
->ttime_total
+ 256*ttime
) / 8;
676 aic
->ttime_mean
= (aic
->ttime_total
+ 128) / aic
->ttime_samples
;
679 static void as_update_seekdist(struct as_data
*ad
, struct as_io_context
*aic
,
684 if (aic
->seek_samples
== 0) {
685 ad
->new_seek_total
= (7*ad
->new_seek_total
+ 256*(u64
)sdist
)/8;
686 ad
->new_seek_mean
= ad
->new_seek_total
/ 256;
690 * Don't allow the seek distance to get too large from the
691 * odd fragment, pagein, etc
693 if (aic
->seek_samples
<= 60) /* second&third seek */
694 sdist
= min(sdist
, (aic
->seek_mean
* 4) + 2*1024*1024);
696 sdist
= min(sdist
, (aic
->seek_mean
* 4) + 2*1024*64);
698 aic
->seek_samples
= (7*aic
->seek_samples
+ 256) / 8;
699 aic
->seek_total
= (7*aic
->seek_total
+ (u64
)256*sdist
) / 8;
700 total
= aic
->seek_total
+ (aic
->seek_samples
/2);
701 do_div(total
, aic
->seek_samples
);
702 aic
->seek_mean
= (sector_t
)total
;
706 * as_update_iohist keeps a decaying histogram of IO thinktimes, and
707 * updates @aic->ttime_mean based on that. It is called when a new
710 static void as_update_iohist(struct as_data
*ad
, struct as_io_context
*aic
,
713 struct as_rq
*arq
= RQ_DATA(rq
);
714 int data_dir
= arq
->is_sync
;
715 unsigned long thinktime
= 0;
721 if (data_dir
== REQ_SYNC
) {
722 unsigned long in_flight
= atomic_read(&aic
->nr_queued
)
723 + atomic_read(&aic
->nr_dispatched
);
724 spin_lock(&aic
->lock
);
725 if (test_bit(AS_TASK_IORUNNING
, &aic
->state
) ||
726 test_bit(AS_TASK_IOSTARTED
, &aic
->state
)) {
727 /* Calculate read -> read thinktime */
728 if (test_bit(AS_TASK_IORUNNING
, &aic
->state
)
730 thinktime
= jiffies
- aic
->last_end_request
;
731 thinktime
= min(thinktime
, MAX_THINKTIME
-1);
733 as_update_thinktime(ad
, aic
, thinktime
);
735 /* Calculate read -> read seek distance */
736 if (aic
->last_request_pos
< rq
->sector
)
737 seek_dist
= rq
->sector
- aic
->last_request_pos
;
739 seek_dist
= aic
->last_request_pos
- rq
->sector
;
740 as_update_seekdist(ad
, aic
, seek_dist
);
742 aic
->last_request_pos
= rq
->sector
+ rq
->nr_sectors
;
743 set_bit(AS_TASK_IOSTARTED
, &aic
->state
);
744 spin_unlock(&aic
->lock
);
749 * as_close_req decides if one request is considered "close" to the
750 * previous one issued.
752 static int as_close_req(struct as_data
*ad
, struct as_io_context
*aic
,
755 unsigned long delay
; /* milliseconds */
756 sector_t last
= ad
->last_sector
[ad
->batch_data_dir
];
757 sector_t next
= arq
->request
->sector
;
758 sector_t delta
; /* acceptable close offset (in sectors) */
761 if (ad
->antic_status
== ANTIC_OFF
|| !ad
->ioc_finished
)
764 delay
= ((jiffies
- ad
->antic_start
) * 1000) / HZ
;
768 else if (delay
<= 20 && delay
<= ad
->antic_expire
)
769 delta
= 8192 << delay
;
773 if ((last
<= next
+ (delta
>>1)) && (next
<= last
+ delta
))
781 if (aic
->seek_samples
== 0) {
783 * Process has just started IO. Use past statistics to
784 * gauge success possibility
786 if (ad
->new_seek_mean
> s
) {
787 /* this request is better than what we're expecting */
792 if (aic
->seek_mean
> s
) {
793 /* this request is better than what we're expecting */
802 * as_can_break_anticipation returns true if we have been anticipating this
805 * It also returns true if the process against which we are anticipating
806 * submits a write - that's presumably an fsync, O_SYNC write, etc. We want to
807 * dispatch it ASAP, because we know that application will not be submitting
810 * If the task which has submitted the request has exited, break anticipation.
812 * If this task has queued some other IO, do not enter enticipation.
814 static int as_can_break_anticipation(struct as_data
*ad
, struct as_rq
*arq
)
816 struct io_context
*ioc
;
817 struct as_io_context
*aic
;
819 ioc
= ad
->io_context
;
822 if (arq
&& ioc
== arq
->io_context
) {
823 /* request from same process */
827 if (ad
->ioc_finished
&& as_antic_expired(ad
)) {
829 * In this situation status should really be FINISHED,
830 * however the timer hasn't had the chance to run yet.
839 if (atomic_read(&aic
->nr_queued
) > 0) {
840 /* process has more requests queued */
844 if (atomic_read(&aic
->nr_dispatched
) > 0) {
845 /* process has more requests dispatched */
849 if (arq
&& arq
->is_sync
== REQ_SYNC
&& as_close_req(ad
, aic
, arq
)) {
851 * Found a close request that is not one of ours.
853 * This makes close requests from another process update
854 * our IO history. Is generally useful when there are
855 * two or more cooperating processes working in the same
858 if (!test_bit(AS_TASK_RUNNING
, &aic
->state
)) {
859 if (aic
->ttime_samples
== 0)
860 ad
->exit_prob
= (7*ad
->exit_prob
+ 256)/8;
862 ad
->exit_no_coop
= (7*ad
->exit_no_coop
)/8;
865 as_update_iohist(ad
, aic
, arq
->request
);
869 if (!test_bit(AS_TASK_RUNNING
, &aic
->state
)) {
870 /* process anticipated on has exited */
871 if (aic
->ttime_samples
== 0)
872 ad
->exit_prob
= (7*ad
->exit_prob
+ 256)/8;
874 if (ad
->exit_no_coop
> 128)
878 if (aic
->ttime_samples
== 0) {
879 if (ad
->new_ttime_mean
> ad
->antic_expire
)
881 if (ad
->exit_prob
* ad
->exit_no_coop
> 128*256)
883 } else if (aic
->ttime_mean
> ad
->antic_expire
) {
884 /* the process thinks too much between requests */
892 * as_can_anticipate indicates weather we should either run arq
893 * or keep anticipating a better request.
895 static int as_can_anticipate(struct as_data
*ad
, struct as_rq
*arq
)
899 * Last request submitted was a write
903 if (ad
->antic_status
== ANTIC_FINISHED
)
905 * Don't restart if we have just finished. Run the next request
909 if (as_can_break_anticipation(ad
, arq
))
911 * This request is a good candidate. Don't keep anticipating,
917 * OK from here, we haven't finished, and don't have a decent request!
918 * Status is either ANTIC_OFF so start waiting,
919 * ANTIC_WAIT_REQ so continue waiting for request to finish
920 * or ANTIC_WAIT_NEXT so continue waiting for an acceptable request.
927 * as_update_arq must be called whenever a request (arq) is added to
928 * the sort_list. This function keeps caches up to date, and checks if the
929 * request might be one we are "anticipating"
931 static void as_update_arq(struct as_data
*ad
, struct as_rq
*arq
)
933 const int data_dir
= arq
->is_sync
;
935 /* keep the next_arq cache up to date */
936 ad
->next_arq
[data_dir
] = as_choose_req(ad
, arq
, ad
->next_arq
[data_dir
]);
939 * have we been anticipating this request?
940 * or does it come from the same process as the one we are anticipating
943 if (ad
->antic_status
== ANTIC_WAIT_REQ
944 || ad
->antic_status
== ANTIC_WAIT_NEXT
) {
945 if (as_can_break_anticipation(ad
, arq
))
951 * Gathers timings and resizes the write batch automatically
953 static void update_write_batch(struct as_data
*ad
)
955 unsigned long batch
= ad
->batch_expire
[REQ_ASYNC
];
958 write_time
= (jiffies
- ad
->current_batch_expires
) + batch
;
962 if (write_time
> batch
&& !ad
->write_batch_idled
) {
963 if (write_time
> batch
* 3)
964 ad
->write_batch_count
/= 2;
966 ad
->write_batch_count
--;
967 } else if (write_time
< batch
&& ad
->current_write_count
== 0) {
968 if (batch
> write_time
* 3)
969 ad
->write_batch_count
*= 2;
971 ad
->write_batch_count
++;
974 if (ad
->write_batch_count
< 1)
975 ad
->write_batch_count
= 1;
979 * as_completed_request is to be called when a request has completed and
980 * returned something to the requesting process, be it an error or data.
982 static void as_completed_request(request_queue_t
*q
, struct request
*rq
)
984 struct as_data
*ad
= q
->elevator
->elevator_data
;
985 struct as_rq
*arq
= RQ_DATA(rq
);
987 WARN_ON(!list_empty(&rq
->queuelist
));
989 if (arq
->state
!= AS_RQ_REMOVED
) {
990 printk("arq->state %d\n", arq
->state
);
995 if (ad
->changed_batch
&& ad
->nr_dispatched
== 1) {
996 kblockd_schedule_work(&ad
->antic_work
);
997 ad
->changed_batch
= 0;
999 if (ad
->batch_data_dir
== REQ_SYNC
)
1002 WARN_ON(ad
->nr_dispatched
== 0);
1003 ad
->nr_dispatched
--;
1006 * Start counting the batch from when a request of that direction is
1007 * actually serviced. This should help devices with big TCQ windows
1008 * and writeback caches
1010 if (ad
->new_batch
&& ad
->batch_data_dir
== arq
->is_sync
) {
1011 update_write_batch(ad
);
1012 ad
->current_batch_expires
= jiffies
+
1013 ad
->batch_expire
[REQ_SYNC
];
1017 if (ad
->io_context
== arq
->io_context
&& ad
->io_context
) {
1018 ad
->antic_start
= jiffies
;
1019 ad
->ioc_finished
= 1;
1020 if (ad
->antic_status
== ANTIC_WAIT_REQ
) {
1022 * We were waiting on this request, now anticipate
1025 as_antic_waitnext(ad
);
1029 as_put_io_context(arq
);
1031 arq
->state
= AS_RQ_POSTSCHED
;
1035 * as_remove_queued_request removes a request from the pre dispatch queue
1036 * without updating refcounts. It is expected the caller will drop the
1037 * reference unless it replaces the request at somepart of the elevator
1038 * (ie. the dispatch queue)
1040 static void as_remove_queued_request(request_queue_t
*q
, struct request
*rq
)
1042 struct as_rq
*arq
= RQ_DATA(rq
);
1043 const int data_dir
= arq
->is_sync
;
1044 struct as_data
*ad
= q
->elevator
->elevator_data
;
1046 WARN_ON(arq
->state
!= AS_RQ_QUEUED
);
1048 if (arq
->io_context
&& arq
->io_context
->aic
) {
1049 BUG_ON(!atomic_read(&arq
->io_context
->aic
->nr_queued
));
1050 atomic_dec(&arq
->io_context
->aic
->nr_queued
);
1054 * Update the "next_arq" cache if we are about to remove its
1057 if (ad
->next_arq
[data_dir
] == arq
)
1058 ad
->next_arq
[data_dir
] = as_find_next_arq(ad
, arq
);
1060 list_del_init(&arq
->fifo
);
1061 as_del_arq_hash(arq
);
1062 as_del_arq_rb(ad
, arq
);
1066 * as_fifo_expired returns 0 if there are no expired reads on the fifo,
1067 * 1 otherwise. It is ratelimited so that we only perform the check once per
1068 * `fifo_expire' interval. Otherwise a large number of expired requests
1069 * would create a hopeless seekstorm.
1071 * See as_antic_expired comment.
1073 static int as_fifo_expired(struct as_data
*ad
, int adir
)
1078 delta_jif
= jiffies
- ad
->last_check_fifo
[adir
];
1079 if (unlikely(delta_jif
< 0))
1080 delta_jif
= -delta_jif
;
1081 if (delta_jif
< ad
->fifo_expire
[adir
])
1084 ad
->last_check_fifo
[adir
] = jiffies
;
1086 if (list_empty(&ad
->fifo_list
[adir
]))
1089 arq
= list_entry_fifo(ad
->fifo_list
[adir
].next
);
1091 return time_after(jiffies
, arq
->expires
);
1095 * as_batch_expired returns true if the current batch has expired. A batch
1096 * is a set of reads or a set of writes.
1098 static inline int as_batch_expired(struct as_data
*ad
)
1100 if (ad
->changed_batch
|| ad
->new_batch
)
1103 if (ad
->batch_data_dir
== REQ_SYNC
)
1104 /* TODO! add a check so a complete fifo gets written? */
1105 return time_after(jiffies
, ad
->current_batch_expires
);
1107 return time_after(jiffies
, ad
->current_batch_expires
)
1108 || ad
->current_write_count
== 0;
1112 * move an entry to dispatch queue
1114 static void as_move_to_dispatch(struct as_data
*ad
, struct as_rq
*arq
)
1116 struct request
*rq
= arq
->request
;
1117 const int data_dir
= arq
->is_sync
;
1119 BUG_ON(!ON_RB(&arq
->rb_node
));
1122 ad
->antic_status
= ANTIC_OFF
;
1125 * This has to be set in order to be correctly updated by
1128 ad
->last_sector
[data_dir
] = rq
->sector
+ rq
->nr_sectors
;
1130 if (data_dir
== REQ_SYNC
) {
1131 /* In case we have to anticipate after this */
1132 copy_io_context(&ad
->io_context
, &arq
->io_context
);
1134 if (ad
->io_context
) {
1135 put_io_context(ad
->io_context
);
1136 ad
->io_context
= NULL
;
1139 if (ad
->current_write_count
!= 0)
1140 ad
->current_write_count
--;
1142 ad
->ioc_finished
= 0;
1144 ad
->next_arq
[data_dir
] = as_find_next_arq(ad
, arq
);
1147 * take it off the sort and fifo list, add to dispatch queue
1149 as_remove_queued_request(ad
->q
, rq
);
1150 WARN_ON(arq
->state
!= AS_RQ_QUEUED
);
1152 elv_dispatch_sort(ad
->q
, rq
);
1154 arq
->state
= AS_RQ_DISPATCHED
;
1155 if (arq
->io_context
&& arq
->io_context
->aic
)
1156 atomic_inc(&arq
->io_context
->aic
->nr_dispatched
);
1157 ad
->nr_dispatched
++;
1161 * as_dispatch_request selects the best request according to
1162 * read/write expire, batch expire, etc, and moves it to the dispatch
1163 * queue. Returns 1 if a request was found, 0 otherwise.
1165 static int as_dispatch_request(request_queue_t
*q
, int force
)
1167 struct as_data
*ad
= q
->elevator
->elevator_data
;
1169 const int reads
= !list_empty(&ad
->fifo_list
[REQ_SYNC
]);
1170 const int writes
= !list_empty(&ad
->fifo_list
[REQ_ASYNC
]);
1172 if (unlikely(force
)) {
1174 * Forced dispatch, accounting is useless. Reset
1175 * accounting states and dump fifo_lists. Note that
1176 * batch_data_dir is reset to REQ_SYNC to avoid
1177 * screwing write batch accounting as write batch
1178 * accounting occurs on W->R transition.
1182 ad
->batch_data_dir
= REQ_SYNC
;
1183 ad
->changed_batch
= 0;
1186 while (ad
->next_arq
[REQ_SYNC
]) {
1187 as_move_to_dispatch(ad
, ad
->next_arq
[REQ_SYNC
]);
1190 ad
->last_check_fifo
[REQ_SYNC
] = jiffies
;
1192 while (ad
->next_arq
[REQ_ASYNC
]) {
1193 as_move_to_dispatch(ad
, ad
->next_arq
[REQ_ASYNC
]);
1196 ad
->last_check_fifo
[REQ_ASYNC
] = jiffies
;
1201 /* Signal that the write batch was uncontended, so we can't time it */
1202 if (ad
->batch_data_dir
== REQ_ASYNC
&& !reads
) {
1203 if (ad
->current_write_count
== 0 || !writes
)
1204 ad
->write_batch_idled
= 1;
1207 if (!(reads
|| writes
)
1208 || ad
->antic_status
== ANTIC_WAIT_REQ
1209 || ad
->antic_status
== ANTIC_WAIT_NEXT
1210 || ad
->changed_batch
)
1213 if (!(reads
&& writes
&& as_batch_expired(ad
))) {
1215 * batch is still running or no reads or no writes
1217 arq
= ad
->next_arq
[ad
->batch_data_dir
];
1219 if (ad
->batch_data_dir
== REQ_SYNC
&& ad
->antic_expire
) {
1220 if (as_fifo_expired(ad
, REQ_SYNC
))
1223 if (as_can_anticipate(ad
, arq
)) {
1224 as_antic_waitreq(ad
);
1230 /* we have a "next request" */
1231 if (reads
&& !writes
)
1232 ad
->current_batch_expires
=
1233 jiffies
+ ad
->batch_expire
[REQ_SYNC
];
1234 goto dispatch_request
;
1239 * at this point we are not running a batch. select the appropriate
1240 * data direction (read / write)
1244 BUG_ON(RB_EMPTY(&ad
->sort_list
[REQ_SYNC
]));
1246 if (writes
&& ad
->batch_data_dir
== REQ_SYNC
)
1248 * Last batch was a read, switch to writes
1250 goto dispatch_writes
;
1252 if (ad
->batch_data_dir
== REQ_ASYNC
) {
1253 WARN_ON(ad
->new_batch
);
1254 ad
->changed_batch
= 1;
1256 ad
->batch_data_dir
= REQ_SYNC
;
1257 arq
= list_entry_fifo(ad
->fifo_list
[ad
->batch_data_dir
].next
);
1258 ad
->last_check_fifo
[ad
->batch_data_dir
] = jiffies
;
1259 goto dispatch_request
;
1263 * the last batch was a read
1268 BUG_ON(RB_EMPTY(&ad
->sort_list
[REQ_ASYNC
]));
1270 if (ad
->batch_data_dir
== REQ_SYNC
) {
1271 ad
->changed_batch
= 1;
1274 * new_batch might be 1 when the queue runs out of
1275 * reads. A subsequent submission of a write might
1276 * cause a change of batch before the read is finished.
1280 ad
->batch_data_dir
= REQ_ASYNC
;
1281 ad
->current_write_count
= ad
->write_batch_count
;
1282 ad
->write_batch_idled
= 0;
1283 arq
= ad
->next_arq
[ad
->batch_data_dir
];
1284 goto dispatch_request
;
1292 * If a request has expired, service it.
1295 if (as_fifo_expired(ad
, ad
->batch_data_dir
)) {
1297 arq
= list_entry_fifo(ad
->fifo_list
[ad
->batch_data_dir
].next
);
1298 BUG_ON(arq
== NULL
);
1301 if (ad
->changed_batch
) {
1302 WARN_ON(ad
->new_batch
);
1304 if (ad
->nr_dispatched
)
1307 if (ad
->batch_data_dir
== REQ_ASYNC
)
1308 ad
->current_batch_expires
= jiffies
+
1309 ad
->batch_expire
[REQ_ASYNC
];
1313 ad
->changed_batch
= 0;
1317 * arq is the selected appropriate request.
1319 as_move_to_dispatch(ad
, arq
);
1325 * add arq to rbtree and fifo
1327 static void as_add_request(request_queue_t
*q
, struct request
*rq
)
1329 struct as_data
*ad
= q
->elevator
->elevator_data
;
1330 struct as_rq
*arq
= RQ_DATA(rq
);
1333 arq
->state
= AS_RQ_NEW
;
1335 if (rq_data_dir(arq
->request
) == READ
1336 || current
->flags
&PF_SYNCWRITE
)
1340 data_dir
= arq
->is_sync
;
1342 arq
->io_context
= as_get_io_context();
1344 if (arq
->io_context
) {
1345 as_update_iohist(ad
, arq
->io_context
->aic
, arq
->request
);
1346 atomic_inc(&arq
->io_context
->aic
->nr_queued
);
1349 as_add_arq_rb(ad
, arq
);
1350 if (rq_mergeable(arq
->request
))
1351 as_add_arq_hash(ad
, arq
);
1354 * set expire time (only used for reads) and add to fifo list
1356 arq
->expires
= jiffies
+ ad
->fifo_expire
[data_dir
];
1357 list_add_tail(&arq
->fifo
, &ad
->fifo_list
[data_dir
]);
1359 as_update_arq(ad
, arq
); /* keep state machine up to date */
1360 arq
->state
= AS_RQ_QUEUED
;
1363 static void as_activate_request(request_queue_t
*q
, struct request
*rq
)
1365 struct as_rq
*arq
= RQ_DATA(rq
);
1367 WARN_ON(arq
->state
!= AS_RQ_DISPATCHED
);
1368 arq
->state
= AS_RQ_REMOVED
;
1369 if (arq
->io_context
&& arq
->io_context
->aic
)
1370 atomic_dec(&arq
->io_context
->aic
->nr_dispatched
);
1373 static void as_deactivate_request(request_queue_t
*q
, struct request
*rq
)
1375 struct as_rq
*arq
= RQ_DATA(rq
);
1377 WARN_ON(arq
->state
!= AS_RQ_REMOVED
);
1378 arq
->state
= AS_RQ_DISPATCHED
;
1379 if (arq
->io_context
&& arq
->io_context
->aic
)
1380 atomic_inc(&arq
->io_context
->aic
->nr_dispatched
);
1384 * as_queue_empty tells us if there are requests left in the device. It may
1385 * not be the case that a driver can get the next request even if the queue
1386 * is not empty - it is used in the block layer to check for plugging and
1387 * merging opportunities
1389 static int as_queue_empty(request_queue_t
*q
)
1391 struct as_data
*ad
= q
->elevator
->elevator_data
;
1393 return list_empty(&ad
->fifo_list
[REQ_ASYNC
])
1394 && list_empty(&ad
->fifo_list
[REQ_SYNC
]);
1397 static struct request
*as_former_request(request_queue_t
*q
,
1400 struct as_rq
*arq
= RQ_DATA(rq
);
1401 struct rb_node
*rbprev
= rb_prev(&arq
->rb_node
);
1402 struct request
*ret
= NULL
;
1405 ret
= rb_entry_arq(rbprev
)->request
;
1410 static struct request
*as_latter_request(request_queue_t
*q
,
1413 struct as_rq
*arq
= RQ_DATA(rq
);
1414 struct rb_node
*rbnext
= rb_next(&arq
->rb_node
);
1415 struct request
*ret
= NULL
;
1418 ret
= rb_entry_arq(rbnext
)->request
;
1424 as_merge(request_queue_t
*q
, struct request
**req
, struct bio
*bio
)
1426 struct as_data
*ad
= q
->elevator
->elevator_data
;
1427 sector_t rb_key
= bio
->bi_sector
+ bio_sectors(bio
);
1428 struct request
*__rq
;
1432 * see if the merge hash can satisfy a back merge
1434 __rq
= as_find_arq_hash(ad
, bio
->bi_sector
);
1436 BUG_ON(__rq
->sector
+ __rq
->nr_sectors
!= bio
->bi_sector
);
1438 if (elv_rq_merge_ok(__rq
, bio
)) {
1439 ret
= ELEVATOR_BACK_MERGE
;
1445 * check for front merge
1447 __rq
= as_find_arq_rb(ad
, rb_key
, bio_data_dir(bio
));
1449 BUG_ON(rb_key
!= rq_rb_key(__rq
));
1451 if (elv_rq_merge_ok(__rq
, bio
)) {
1452 ret
= ELEVATOR_FRONT_MERGE
;
1457 return ELEVATOR_NO_MERGE
;
1460 if (rq_mergeable(__rq
))
1461 as_hot_arq_hash(ad
, RQ_DATA(__rq
));
1467 static void as_merged_request(request_queue_t
*q
, struct request
*req
)
1469 struct as_data
*ad
= q
->elevator
->elevator_data
;
1470 struct as_rq
*arq
= RQ_DATA(req
);
1473 * hash always needs to be repositioned, key is end sector
1475 as_del_arq_hash(arq
);
1476 as_add_arq_hash(ad
, arq
);
1479 * if the merge was a front merge, we need to reposition request
1481 if (rq_rb_key(req
) != arq
->rb_key
) {
1482 as_del_arq_rb(ad
, arq
);
1483 as_add_arq_rb(ad
, arq
);
1485 * Note! At this stage of this and the next function, our next
1486 * request may not be optimal - eg the request may have "grown"
1487 * behind the disk head. We currently don't bother adjusting.
1492 static void as_merged_requests(request_queue_t
*q
, struct request
*req
,
1493 struct request
*next
)
1495 struct as_data
*ad
= q
->elevator
->elevator_data
;
1496 struct as_rq
*arq
= RQ_DATA(req
);
1497 struct as_rq
*anext
= RQ_DATA(next
);
1503 * reposition arq (this is the merged request) in hash, and in rbtree
1504 * in case of a front merge
1506 as_del_arq_hash(arq
);
1507 as_add_arq_hash(ad
, arq
);
1509 if (rq_rb_key(req
) != arq
->rb_key
) {
1510 as_del_arq_rb(ad
, arq
);
1511 as_add_arq_rb(ad
, arq
);
1515 * if anext expires before arq, assign its expire time to arq
1516 * and move into anext position (anext will be deleted) in fifo
1518 if (!list_empty(&arq
->fifo
) && !list_empty(&anext
->fifo
)) {
1519 if (time_before(anext
->expires
, arq
->expires
)) {
1520 list_move(&arq
->fifo
, &anext
->fifo
);
1521 arq
->expires
= anext
->expires
;
1523 * Don't copy here but swap, because when anext is
1524 * removed below, it must contain the unused context
1526 swap_io_context(&arq
->io_context
, &anext
->io_context
);
1531 * kill knowledge of next, this one is a goner
1533 as_remove_queued_request(q
, next
);
1534 as_put_io_context(anext
);
1536 anext
->state
= AS_RQ_MERGED
;
1540 * This is executed in a "deferred" process context, by kblockd. It calls the
1541 * driver's request_fn so the driver can submit that request.
1543 * IMPORTANT! This guy will reenter the elevator, so set up all queue global
1544 * state before calling, and don't rely on any state over calls.
1546 * FIXME! dispatch queue is not a queue at all!
1548 static void as_work_handler(void *data
)
1550 struct request_queue
*q
= data
;
1551 unsigned long flags
;
1553 spin_lock_irqsave(q
->queue_lock
, flags
);
1554 if (!as_queue_empty(q
))
1556 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1559 static void as_put_request(request_queue_t
*q
, struct request
*rq
)
1561 struct as_data
*ad
= q
->elevator
->elevator_data
;
1562 struct as_rq
*arq
= RQ_DATA(rq
);
1569 if (unlikely(arq
->state
!= AS_RQ_POSTSCHED
&&
1570 arq
->state
!= AS_RQ_PRESCHED
&&
1571 arq
->state
!= AS_RQ_MERGED
)) {
1572 printk("arq->state %d\n", arq
->state
);
1576 mempool_free(arq
, ad
->arq_pool
);
1577 rq
->elevator_private
= NULL
;
1580 static int as_set_request(request_queue_t
*q
, struct request
*rq
,
1581 struct bio
*bio
, gfp_t gfp_mask
)
1583 struct as_data
*ad
= q
->elevator
->elevator_data
;
1584 struct as_rq
*arq
= mempool_alloc(ad
->arq_pool
, gfp_mask
);
1587 memset(arq
, 0, sizeof(*arq
));
1588 RB_CLEAR(&arq
->rb_node
);
1590 arq
->state
= AS_RQ_PRESCHED
;
1591 arq
->io_context
= NULL
;
1592 INIT_LIST_HEAD(&arq
->hash
);
1594 INIT_LIST_HEAD(&arq
->fifo
);
1595 rq
->elevator_private
= arq
;
1602 static int as_may_queue(request_queue_t
*q
, int rw
, struct bio
*bio
)
1604 int ret
= ELV_MQUEUE_MAY
;
1605 struct as_data
*ad
= q
->elevator
->elevator_data
;
1606 struct io_context
*ioc
;
1607 if (ad
->antic_status
== ANTIC_WAIT_REQ
||
1608 ad
->antic_status
== ANTIC_WAIT_NEXT
) {
1609 ioc
= as_get_io_context();
1610 if (ad
->io_context
== ioc
)
1611 ret
= ELV_MQUEUE_MUST
;
1612 put_io_context(ioc
);
1618 static void as_exit_queue(elevator_t
*e
)
1620 struct as_data
*ad
= e
->elevator_data
;
1622 del_timer_sync(&ad
->antic_timer
);
1625 BUG_ON(!list_empty(&ad
->fifo_list
[REQ_SYNC
]));
1626 BUG_ON(!list_empty(&ad
->fifo_list
[REQ_ASYNC
]));
1628 mempool_destroy(ad
->arq_pool
);
1629 put_io_context(ad
->io_context
);
1635 * initialize elevator private data (as_data), and alloc a arq for
1636 * each request on the free lists
1638 static int as_init_queue(request_queue_t
*q
, elevator_t
*e
)
1646 ad
= kmalloc_node(sizeof(*ad
), GFP_KERNEL
, q
->node
);
1649 memset(ad
, 0, sizeof(*ad
));
1651 ad
->q
= q
; /* Identify what queue the data belongs to */
1653 ad
->hash
= kmalloc_node(sizeof(struct list_head
)*AS_HASH_ENTRIES
,
1654 GFP_KERNEL
, q
->node
);
1660 ad
->arq_pool
= mempool_create_node(BLKDEV_MIN_RQ
, mempool_alloc_slab
,
1661 mempool_free_slab
, arq_pool
, q
->node
);
1662 if (!ad
->arq_pool
) {
1668 /* anticipatory scheduling helpers */
1669 ad
->antic_timer
.function
= as_antic_timeout
;
1670 ad
->antic_timer
.data
= (unsigned long)q
;
1671 init_timer(&ad
->antic_timer
);
1672 INIT_WORK(&ad
->antic_work
, as_work_handler
, q
);
1674 for (i
= 0; i
< AS_HASH_ENTRIES
; i
++)
1675 INIT_LIST_HEAD(&ad
->hash
[i
]);
1677 INIT_LIST_HEAD(&ad
->fifo_list
[REQ_SYNC
]);
1678 INIT_LIST_HEAD(&ad
->fifo_list
[REQ_ASYNC
]);
1679 ad
->sort_list
[REQ_SYNC
] = RB_ROOT
;
1680 ad
->sort_list
[REQ_ASYNC
] = RB_ROOT
;
1681 ad
->fifo_expire
[REQ_SYNC
] = default_read_expire
;
1682 ad
->fifo_expire
[REQ_ASYNC
] = default_write_expire
;
1683 ad
->antic_expire
= default_antic_expire
;
1684 ad
->batch_expire
[REQ_SYNC
] = default_read_batch_expire
;
1685 ad
->batch_expire
[REQ_ASYNC
] = default_write_batch_expire
;
1686 e
->elevator_data
= ad
;
1688 ad
->current_batch_expires
= jiffies
+ ad
->batch_expire
[REQ_SYNC
];
1689 ad
->write_batch_count
= ad
->batch_expire
[REQ_ASYNC
] / 10;
1690 if (ad
->write_batch_count
< 2)
1691 ad
->write_batch_count
= 2;
1699 struct as_fs_entry
{
1700 struct attribute attr
;
1701 ssize_t (*show
)(struct as_data
*, char *);
1702 ssize_t (*store
)(struct as_data
*, const char *, size_t);
1706 as_var_show(unsigned int var
, char *page
)
1708 return sprintf(page
, "%d\n", var
);
1712 as_var_store(unsigned long *var
, const char *page
, size_t count
)
1714 char *p
= (char *) page
;
1716 *var
= simple_strtoul(p
, &p
, 10);
1720 static ssize_t
as_est_show(struct as_data
*ad
, char *page
)
1724 pos
+= sprintf(page
+pos
, "%lu %% exit probability\n",
1725 100*ad
->exit_prob
/256);
1726 pos
+= sprintf(page
+pos
, "%lu %% probability of exiting without a "
1727 "cooperating process submitting IO\n",
1728 100*ad
->exit_no_coop
/256);
1729 pos
+= sprintf(page
+pos
, "%lu ms new thinktime\n", ad
->new_ttime_mean
);
1730 pos
+= sprintf(page
+pos
, "%llu sectors new seek distance\n",
1731 (unsigned long long)ad
->new_seek_mean
);
1736 #define SHOW_FUNCTION(__FUNC, __VAR) \
1737 static ssize_t __FUNC(struct as_data *ad, char *page) \
1739 return as_var_show(jiffies_to_msecs((__VAR)), (page)); \
1741 SHOW_FUNCTION(as_readexpire_show
, ad
->fifo_expire
[REQ_SYNC
]);
1742 SHOW_FUNCTION(as_writeexpire_show
, ad
->fifo_expire
[REQ_ASYNC
]);
1743 SHOW_FUNCTION(as_anticexpire_show
, ad
->antic_expire
);
1744 SHOW_FUNCTION(as_read_batchexpire_show
, ad
->batch_expire
[REQ_SYNC
]);
1745 SHOW_FUNCTION(as_write_batchexpire_show
, ad
->batch_expire
[REQ_ASYNC
]);
1746 #undef SHOW_FUNCTION
1748 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \
1749 static ssize_t __FUNC(struct as_data *ad, const char *page, size_t count) \
1751 int ret = as_var_store(__PTR, (page), count); \
1752 if (*(__PTR) < (MIN)) \
1754 else if (*(__PTR) > (MAX)) \
1756 *(__PTR) = msecs_to_jiffies(*(__PTR)); \
1759 STORE_FUNCTION(as_readexpire_store
, &ad
->fifo_expire
[REQ_SYNC
], 0, INT_MAX
);
1760 STORE_FUNCTION(as_writeexpire_store
, &ad
->fifo_expire
[REQ_ASYNC
], 0, INT_MAX
);
1761 STORE_FUNCTION(as_anticexpire_store
, &ad
->antic_expire
, 0, INT_MAX
);
1762 STORE_FUNCTION(as_read_batchexpire_store
,
1763 &ad
->batch_expire
[REQ_SYNC
], 0, INT_MAX
);
1764 STORE_FUNCTION(as_write_batchexpire_store
,
1765 &ad
->batch_expire
[REQ_ASYNC
], 0, INT_MAX
);
1766 #undef STORE_FUNCTION
1768 static struct as_fs_entry as_est_entry
= {
1769 .attr
= {.name
= "est_time", .mode
= S_IRUGO
},
1770 .show
= as_est_show
,
1772 static struct as_fs_entry as_readexpire_entry
= {
1773 .attr
= {.name
= "read_expire", .mode
= S_IRUGO
| S_IWUSR
},
1774 .show
= as_readexpire_show
,
1775 .store
= as_readexpire_store
,
1777 static struct as_fs_entry as_writeexpire_entry
= {
1778 .attr
= {.name
= "write_expire", .mode
= S_IRUGO
| S_IWUSR
},
1779 .show
= as_writeexpire_show
,
1780 .store
= as_writeexpire_store
,
1782 static struct as_fs_entry as_anticexpire_entry
= {
1783 .attr
= {.name
= "antic_expire", .mode
= S_IRUGO
| S_IWUSR
},
1784 .show
= as_anticexpire_show
,
1785 .store
= as_anticexpire_store
,
1787 static struct as_fs_entry as_read_batchexpire_entry
= {
1788 .attr
= {.name
= "read_batch_expire", .mode
= S_IRUGO
| S_IWUSR
},
1789 .show
= as_read_batchexpire_show
,
1790 .store
= as_read_batchexpire_store
,
1792 static struct as_fs_entry as_write_batchexpire_entry
= {
1793 .attr
= {.name
= "write_batch_expire", .mode
= S_IRUGO
| S_IWUSR
},
1794 .show
= as_write_batchexpire_show
,
1795 .store
= as_write_batchexpire_store
,
1798 static struct attribute
*default_attrs
[] = {
1800 &as_readexpire_entry
.attr
,
1801 &as_writeexpire_entry
.attr
,
1802 &as_anticexpire_entry
.attr
,
1803 &as_read_batchexpire_entry
.attr
,
1804 &as_write_batchexpire_entry
.attr
,
1808 #define to_as(atr) container_of((atr), struct as_fs_entry, attr)
1811 as_attr_show(struct kobject
*kobj
, struct attribute
*attr
, char *page
)
1813 elevator_t
*e
= container_of(kobj
, elevator_t
, kobj
);
1814 struct as_fs_entry
*entry
= to_as(attr
);
1819 return entry
->show(e
->elevator_data
, page
);
1823 as_attr_store(struct kobject
*kobj
, struct attribute
*attr
,
1824 const char *page
, size_t length
)
1826 elevator_t
*e
= container_of(kobj
, elevator_t
, kobj
);
1827 struct as_fs_entry
*entry
= to_as(attr
);
1832 return entry
->store(e
->elevator_data
, page
, length
);
1835 static struct sysfs_ops as_sysfs_ops
= {
1836 .show
= as_attr_show
,
1837 .store
= as_attr_store
,
1840 static struct kobj_type as_ktype
= {
1841 .sysfs_ops
= &as_sysfs_ops
,
1842 .default_attrs
= default_attrs
,
1845 static struct elevator_type iosched_as
= {
1847 .elevator_merge_fn
= as_merge
,
1848 .elevator_merged_fn
= as_merged_request
,
1849 .elevator_merge_req_fn
= as_merged_requests
,
1850 .elevator_dispatch_fn
= as_dispatch_request
,
1851 .elevator_add_req_fn
= as_add_request
,
1852 .elevator_activate_req_fn
= as_activate_request
,
1853 .elevator_deactivate_req_fn
= as_deactivate_request
,
1854 .elevator_queue_empty_fn
= as_queue_empty
,
1855 .elevator_completed_req_fn
= as_completed_request
,
1856 .elevator_former_req_fn
= as_former_request
,
1857 .elevator_latter_req_fn
= as_latter_request
,
1858 .elevator_set_req_fn
= as_set_request
,
1859 .elevator_put_req_fn
= as_put_request
,
1860 .elevator_may_queue_fn
= as_may_queue
,
1861 .elevator_init_fn
= as_init_queue
,
1862 .elevator_exit_fn
= as_exit_queue
,
1865 .elevator_ktype
= &as_ktype
,
1866 .elevator_name
= "anticipatory",
1867 .elevator_owner
= THIS_MODULE
,
1870 static int __init
as_init(void)
1874 arq_pool
= kmem_cache_create("as_arq", sizeof(struct as_rq
),
1879 ret
= elv_register(&iosched_as
);
1882 * don't allow AS to get unregistered, since we would have
1883 * to browse all tasks in the system and release their
1884 * as_io_context first
1886 __module_get(THIS_MODULE
);
1890 kmem_cache_destroy(arq_pool
);
1894 static void __exit
as_exit(void)
1896 elv_unregister(&iosched_as
);
1897 kmem_cache_destroy(arq_pool
);
1900 module_init(as_init
);
1901 module_exit(as_exit
);
1903 MODULE_AUTHOR("Nick Piggin");
1904 MODULE_LICENSE("GPL");
1905 MODULE_DESCRIPTION("anticipatory IO scheduler");