crypto: hifn_795x - Fix request context corruption
[linux-2.6/linux-2.6-openrd.git] / drivers / crypto / hifn_795x.c
blob97a77d7baca4b4e9e14e84ba52b2d6d5908d82e9
1 /*
2 * 2007+ Copyright (c) Evgeniy Polyakov <johnpol@2ka.mipt.ru>
3 * All rights reserved.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/interrupt.h>
25 #include <linux/pci.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/mm.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/scatterlist.h>
31 #include <linux/highmem.h>
32 #include <linux/crypto.h>
33 #include <linux/hw_random.h>
34 #include <linux/ktime.h>
36 #include <crypto/algapi.h>
37 #include <crypto/des.h>
39 #include <asm/kmap_types.h>
41 #undef dprintk
43 #define HIFN_TEST
44 //#define HIFN_DEBUG
46 #ifdef HIFN_DEBUG
47 #define dprintk(f, a...) printk(f, ##a)
48 #else
49 #define dprintk(f, a...) do {} while (0)
50 #endif
52 static char hifn_pll_ref[sizeof("extNNN")] = "ext";
53 module_param_string(hifn_pll_ref, hifn_pll_ref, sizeof(hifn_pll_ref), 0444);
54 MODULE_PARM_DESC(hifn_pll_ref,
55 "PLL reference clock (pci[freq] or ext[freq], default ext)");
57 static atomic_t hifn_dev_number;
59 #define ACRYPTO_OP_DECRYPT 0
60 #define ACRYPTO_OP_ENCRYPT 1
61 #define ACRYPTO_OP_HMAC 2
62 #define ACRYPTO_OP_RNG 3
64 #define ACRYPTO_MODE_ECB 0
65 #define ACRYPTO_MODE_CBC 1
66 #define ACRYPTO_MODE_CFB 2
67 #define ACRYPTO_MODE_OFB 3
69 #define ACRYPTO_TYPE_AES_128 0
70 #define ACRYPTO_TYPE_AES_192 1
71 #define ACRYPTO_TYPE_AES_256 2
72 #define ACRYPTO_TYPE_3DES 3
73 #define ACRYPTO_TYPE_DES 4
75 #define PCI_VENDOR_ID_HIFN 0x13A3
76 #define PCI_DEVICE_ID_HIFN_7955 0x0020
77 #define PCI_DEVICE_ID_HIFN_7956 0x001d
79 /* I/O region sizes */
81 #define HIFN_BAR0_SIZE 0x1000
82 #define HIFN_BAR1_SIZE 0x2000
83 #define HIFN_BAR2_SIZE 0x8000
85 /* DMA registres */
87 #define HIFN_DMA_CRA 0x0C /* DMA Command Ring Address */
88 #define HIFN_DMA_SDRA 0x1C /* DMA Source Data Ring Address */
89 #define HIFN_DMA_RRA 0x2C /* DMA Result Ring Address */
90 #define HIFN_DMA_DDRA 0x3C /* DMA Destination Data Ring Address */
91 #define HIFN_DMA_STCTL 0x40 /* DMA Status and Control */
92 #define HIFN_DMA_INTREN 0x44 /* DMA Interrupt Enable */
93 #define HIFN_DMA_CFG1 0x48 /* DMA Configuration #1 */
94 #define HIFN_DMA_CFG2 0x6C /* DMA Configuration #2 */
95 #define HIFN_CHIP_ID 0x98 /* Chip ID */
98 * Processing Unit Registers (offset from BASEREG0)
100 #define HIFN_0_PUDATA 0x00 /* Processing Unit Data */
101 #define HIFN_0_PUCTRL 0x04 /* Processing Unit Control */
102 #define HIFN_0_PUISR 0x08 /* Processing Unit Interrupt Status */
103 #define HIFN_0_PUCNFG 0x0c /* Processing Unit Configuration */
104 #define HIFN_0_PUIER 0x10 /* Processing Unit Interrupt Enable */
105 #define HIFN_0_PUSTAT 0x14 /* Processing Unit Status/Chip ID */
106 #define HIFN_0_FIFOSTAT 0x18 /* FIFO Status */
107 #define HIFN_0_FIFOCNFG 0x1c /* FIFO Configuration */
108 #define HIFN_0_SPACESIZE 0x20 /* Register space size */
110 /* Processing Unit Control Register (HIFN_0_PUCTRL) */
111 #define HIFN_PUCTRL_CLRSRCFIFO 0x0010 /* clear source fifo */
112 #define HIFN_PUCTRL_STOP 0x0008 /* stop pu */
113 #define HIFN_PUCTRL_LOCKRAM 0x0004 /* lock ram */
114 #define HIFN_PUCTRL_DMAENA 0x0002 /* enable dma */
115 #define HIFN_PUCTRL_RESET 0x0001 /* Reset processing unit */
117 /* Processing Unit Interrupt Status Register (HIFN_0_PUISR) */
118 #define HIFN_PUISR_CMDINVAL 0x8000 /* Invalid command interrupt */
119 #define HIFN_PUISR_DATAERR 0x4000 /* Data error interrupt */
120 #define HIFN_PUISR_SRCFIFO 0x2000 /* Source FIFO ready interrupt */
121 #define HIFN_PUISR_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */
122 #define HIFN_PUISR_DSTOVER 0x0200 /* Destination overrun interrupt */
123 #define HIFN_PUISR_SRCCMD 0x0080 /* Source command interrupt */
124 #define HIFN_PUISR_SRCCTX 0x0040 /* Source context interrupt */
125 #define HIFN_PUISR_SRCDATA 0x0020 /* Source data interrupt */
126 #define HIFN_PUISR_DSTDATA 0x0010 /* Destination data interrupt */
127 #define HIFN_PUISR_DSTRESULT 0x0004 /* Destination result interrupt */
129 /* Processing Unit Configuration Register (HIFN_0_PUCNFG) */
130 #define HIFN_PUCNFG_DRAMMASK 0xe000 /* DRAM size mask */
131 #define HIFN_PUCNFG_DSZ_256K 0x0000 /* 256k dram */
132 #define HIFN_PUCNFG_DSZ_512K 0x2000 /* 512k dram */
133 #define HIFN_PUCNFG_DSZ_1M 0x4000 /* 1m dram */
134 #define HIFN_PUCNFG_DSZ_2M 0x6000 /* 2m dram */
135 #define HIFN_PUCNFG_DSZ_4M 0x8000 /* 4m dram */
136 #define HIFN_PUCNFG_DSZ_8M 0xa000 /* 8m dram */
137 #define HIFN_PUNCFG_DSZ_16M 0xc000 /* 16m dram */
138 #define HIFN_PUCNFG_DSZ_32M 0xe000 /* 32m dram */
139 #define HIFN_PUCNFG_DRAMREFRESH 0x1800 /* DRAM refresh rate mask */
140 #define HIFN_PUCNFG_DRFR_512 0x0000 /* 512 divisor of ECLK */
141 #define HIFN_PUCNFG_DRFR_256 0x0800 /* 256 divisor of ECLK */
142 #define HIFN_PUCNFG_DRFR_128 0x1000 /* 128 divisor of ECLK */
143 #define HIFN_PUCNFG_TCALLPHASES 0x0200 /* your guess is as good as mine... */
144 #define HIFN_PUCNFG_TCDRVTOTEM 0x0100 /* your guess is as good as mine... */
145 #define HIFN_PUCNFG_BIGENDIAN 0x0080 /* DMA big endian mode */
146 #define HIFN_PUCNFG_BUS32 0x0040 /* Bus width 32bits */
147 #define HIFN_PUCNFG_BUS16 0x0000 /* Bus width 16 bits */
148 #define HIFN_PUCNFG_CHIPID 0x0020 /* Allow chipid from PUSTAT */
149 #define HIFN_PUCNFG_DRAM 0x0010 /* Context RAM is DRAM */
150 #define HIFN_PUCNFG_SRAM 0x0000 /* Context RAM is SRAM */
151 #define HIFN_PUCNFG_COMPSING 0x0004 /* Enable single compression context */
152 #define HIFN_PUCNFG_ENCCNFG 0x0002 /* Encryption configuration */
154 /* Processing Unit Interrupt Enable Register (HIFN_0_PUIER) */
155 #define HIFN_PUIER_CMDINVAL 0x8000 /* Invalid command interrupt */
156 #define HIFN_PUIER_DATAERR 0x4000 /* Data error interrupt */
157 #define HIFN_PUIER_SRCFIFO 0x2000 /* Source FIFO ready interrupt */
158 #define HIFN_PUIER_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */
159 #define HIFN_PUIER_DSTOVER 0x0200 /* Destination overrun interrupt */
160 #define HIFN_PUIER_SRCCMD 0x0080 /* Source command interrupt */
161 #define HIFN_PUIER_SRCCTX 0x0040 /* Source context interrupt */
162 #define HIFN_PUIER_SRCDATA 0x0020 /* Source data interrupt */
163 #define HIFN_PUIER_DSTDATA 0x0010 /* Destination data interrupt */
164 #define HIFN_PUIER_DSTRESULT 0x0004 /* Destination result interrupt */
166 /* Processing Unit Status Register/Chip ID (HIFN_0_PUSTAT) */
167 #define HIFN_PUSTAT_CMDINVAL 0x8000 /* Invalid command interrupt */
168 #define HIFN_PUSTAT_DATAERR 0x4000 /* Data error interrupt */
169 #define HIFN_PUSTAT_SRCFIFO 0x2000 /* Source FIFO ready interrupt */
170 #define HIFN_PUSTAT_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */
171 #define HIFN_PUSTAT_DSTOVER 0x0200 /* Destination overrun interrupt */
172 #define HIFN_PUSTAT_SRCCMD 0x0080 /* Source command interrupt */
173 #define HIFN_PUSTAT_SRCCTX 0x0040 /* Source context interrupt */
174 #define HIFN_PUSTAT_SRCDATA 0x0020 /* Source data interrupt */
175 #define HIFN_PUSTAT_DSTDATA 0x0010 /* Destination data interrupt */
176 #define HIFN_PUSTAT_DSTRESULT 0x0004 /* Destination result interrupt */
177 #define HIFN_PUSTAT_CHIPREV 0x00ff /* Chip revision mask */
178 #define HIFN_PUSTAT_CHIPENA 0xff00 /* Chip enabled mask */
179 #define HIFN_PUSTAT_ENA_2 0x1100 /* Level 2 enabled */
180 #define HIFN_PUSTAT_ENA_1 0x1000 /* Level 1 enabled */
181 #define HIFN_PUSTAT_ENA_0 0x3000 /* Level 0 enabled */
182 #define HIFN_PUSTAT_REV_2 0x0020 /* 7751 PT6/2 */
183 #define HIFN_PUSTAT_REV_3 0x0030 /* 7751 PT6/3 */
185 /* FIFO Status Register (HIFN_0_FIFOSTAT) */
186 #define HIFN_FIFOSTAT_SRC 0x7f00 /* Source FIFO available */
187 #define HIFN_FIFOSTAT_DST 0x007f /* Destination FIFO available */
189 /* FIFO Configuration Register (HIFN_0_FIFOCNFG) */
190 #define HIFN_FIFOCNFG_THRESHOLD 0x0400 /* must be written as 1 */
193 * DMA Interface Registers (offset from BASEREG1)
195 #define HIFN_1_DMA_CRAR 0x0c /* DMA Command Ring Address */
196 #define HIFN_1_DMA_SRAR 0x1c /* DMA Source Ring Address */
197 #define HIFN_1_DMA_RRAR 0x2c /* DMA Result Ring Address */
198 #define HIFN_1_DMA_DRAR 0x3c /* DMA Destination Ring Address */
199 #define HIFN_1_DMA_CSR 0x40 /* DMA Status and Control */
200 #define HIFN_1_DMA_IER 0x44 /* DMA Interrupt Enable */
201 #define HIFN_1_DMA_CNFG 0x48 /* DMA Configuration */
202 #define HIFN_1_PLL 0x4c /* 795x: PLL config */
203 #define HIFN_1_7811_RNGENA 0x60 /* 7811: rng enable */
204 #define HIFN_1_7811_RNGCFG 0x64 /* 7811: rng config */
205 #define HIFN_1_7811_RNGDAT 0x68 /* 7811: rng data */
206 #define HIFN_1_7811_RNGSTS 0x6c /* 7811: rng status */
207 #define HIFN_1_7811_MIPSRST 0x94 /* 7811: MIPS reset */
208 #define HIFN_1_REVID 0x98 /* Revision ID */
209 #define HIFN_1_UNLOCK_SECRET1 0xf4
210 #define HIFN_1_UNLOCK_SECRET2 0xfc
211 #define HIFN_1_PUB_RESET 0x204 /* Public/RNG Reset */
212 #define HIFN_1_PUB_BASE 0x300 /* Public Base Address */
213 #define HIFN_1_PUB_OPLEN 0x304 /* Public Operand Length */
214 #define HIFN_1_PUB_OP 0x308 /* Public Operand */
215 #define HIFN_1_PUB_STATUS 0x30c /* Public Status */
216 #define HIFN_1_PUB_IEN 0x310 /* Public Interrupt enable */
217 #define HIFN_1_RNG_CONFIG 0x314 /* RNG config */
218 #define HIFN_1_RNG_DATA 0x318 /* RNG data */
219 #define HIFN_1_PUB_MEM 0x400 /* start of Public key memory */
220 #define HIFN_1_PUB_MEMEND 0xbff /* end of Public key memory */
222 /* DMA Status and Control Register (HIFN_1_DMA_CSR) */
223 #define HIFN_DMACSR_D_CTRLMASK 0xc0000000 /* Destinition Ring Control */
224 #define HIFN_DMACSR_D_CTRL_NOP 0x00000000 /* Dest. Control: no-op */
225 #define HIFN_DMACSR_D_CTRL_DIS 0x40000000 /* Dest. Control: disable */
226 #define HIFN_DMACSR_D_CTRL_ENA 0x80000000 /* Dest. Control: enable */
227 #define HIFN_DMACSR_D_ABORT 0x20000000 /* Destinition Ring PCIAbort */
228 #define HIFN_DMACSR_D_DONE 0x10000000 /* Destinition Ring Done */
229 #define HIFN_DMACSR_D_LAST 0x08000000 /* Destinition Ring Last */
230 #define HIFN_DMACSR_D_WAIT 0x04000000 /* Destinition Ring Waiting */
231 #define HIFN_DMACSR_D_OVER 0x02000000 /* Destinition Ring Overflow */
232 #define HIFN_DMACSR_R_CTRL 0x00c00000 /* Result Ring Control */
233 #define HIFN_DMACSR_R_CTRL_NOP 0x00000000 /* Result Control: no-op */
234 #define HIFN_DMACSR_R_CTRL_DIS 0x00400000 /* Result Control: disable */
235 #define HIFN_DMACSR_R_CTRL_ENA 0x00800000 /* Result Control: enable */
236 #define HIFN_DMACSR_R_ABORT 0x00200000 /* Result Ring PCI Abort */
237 #define HIFN_DMACSR_R_DONE 0x00100000 /* Result Ring Done */
238 #define HIFN_DMACSR_R_LAST 0x00080000 /* Result Ring Last */
239 #define HIFN_DMACSR_R_WAIT 0x00040000 /* Result Ring Waiting */
240 #define HIFN_DMACSR_R_OVER 0x00020000 /* Result Ring Overflow */
241 #define HIFN_DMACSR_S_CTRL 0x0000c000 /* Source Ring Control */
242 #define HIFN_DMACSR_S_CTRL_NOP 0x00000000 /* Source Control: no-op */
243 #define HIFN_DMACSR_S_CTRL_DIS 0x00004000 /* Source Control: disable */
244 #define HIFN_DMACSR_S_CTRL_ENA 0x00008000 /* Source Control: enable */
245 #define HIFN_DMACSR_S_ABORT 0x00002000 /* Source Ring PCI Abort */
246 #define HIFN_DMACSR_S_DONE 0x00001000 /* Source Ring Done */
247 #define HIFN_DMACSR_S_LAST 0x00000800 /* Source Ring Last */
248 #define HIFN_DMACSR_S_WAIT 0x00000400 /* Source Ring Waiting */
249 #define HIFN_DMACSR_ILLW 0x00000200 /* Illegal write (7811 only) */
250 #define HIFN_DMACSR_ILLR 0x00000100 /* Illegal read (7811 only) */
251 #define HIFN_DMACSR_C_CTRL 0x000000c0 /* Command Ring Control */
252 #define HIFN_DMACSR_C_CTRL_NOP 0x00000000 /* Command Control: no-op */
253 #define HIFN_DMACSR_C_CTRL_DIS 0x00000040 /* Command Control: disable */
254 #define HIFN_DMACSR_C_CTRL_ENA 0x00000080 /* Command Control: enable */
255 #define HIFN_DMACSR_C_ABORT 0x00000020 /* Command Ring PCI Abort */
256 #define HIFN_DMACSR_C_DONE 0x00000010 /* Command Ring Done */
257 #define HIFN_DMACSR_C_LAST 0x00000008 /* Command Ring Last */
258 #define HIFN_DMACSR_C_WAIT 0x00000004 /* Command Ring Waiting */
259 #define HIFN_DMACSR_PUBDONE 0x00000002 /* Public op done (7951 only) */
260 #define HIFN_DMACSR_ENGINE 0x00000001 /* Command Ring Engine IRQ */
262 /* DMA Interrupt Enable Register (HIFN_1_DMA_IER) */
263 #define HIFN_DMAIER_D_ABORT 0x20000000 /* Destination Ring PCIAbort */
264 #define HIFN_DMAIER_D_DONE 0x10000000 /* Destination Ring Done */
265 #define HIFN_DMAIER_D_LAST 0x08000000 /* Destination Ring Last */
266 #define HIFN_DMAIER_D_WAIT 0x04000000 /* Destination Ring Waiting */
267 #define HIFN_DMAIER_D_OVER 0x02000000 /* Destination Ring Overflow */
268 #define HIFN_DMAIER_R_ABORT 0x00200000 /* Result Ring PCI Abort */
269 #define HIFN_DMAIER_R_DONE 0x00100000 /* Result Ring Done */
270 #define HIFN_DMAIER_R_LAST 0x00080000 /* Result Ring Last */
271 #define HIFN_DMAIER_R_WAIT 0x00040000 /* Result Ring Waiting */
272 #define HIFN_DMAIER_R_OVER 0x00020000 /* Result Ring Overflow */
273 #define HIFN_DMAIER_S_ABORT 0x00002000 /* Source Ring PCI Abort */
274 #define HIFN_DMAIER_S_DONE 0x00001000 /* Source Ring Done */
275 #define HIFN_DMAIER_S_LAST 0x00000800 /* Source Ring Last */
276 #define HIFN_DMAIER_S_WAIT 0x00000400 /* Source Ring Waiting */
277 #define HIFN_DMAIER_ILLW 0x00000200 /* Illegal write (7811 only) */
278 #define HIFN_DMAIER_ILLR 0x00000100 /* Illegal read (7811 only) */
279 #define HIFN_DMAIER_C_ABORT 0x00000020 /* Command Ring PCI Abort */
280 #define HIFN_DMAIER_C_DONE 0x00000010 /* Command Ring Done */
281 #define HIFN_DMAIER_C_LAST 0x00000008 /* Command Ring Last */
282 #define HIFN_DMAIER_C_WAIT 0x00000004 /* Command Ring Waiting */
283 #define HIFN_DMAIER_PUBDONE 0x00000002 /* public op done (7951 only) */
284 #define HIFN_DMAIER_ENGINE 0x00000001 /* Engine IRQ */
286 /* DMA Configuration Register (HIFN_1_DMA_CNFG) */
287 #define HIFN_DMACNFG_BIGENDIAN 0x10000000 /* big endian mode */
288 #define HIFN_DMACNFG_POLLFREQ 0x00ff0000 /* Poll frequency mask */
289 #define HIFN_DMACNFG_UNLOCK 0x00000800
290 #define HIFN_DMACNFG_POLLINVAL 0x00000700 /* Invalid Poll Scalar */
291 #define HIFN_DMACNFG_LAST 0x00000010 /* Host control LAST bit */
292 #define HIFN_DMACNFG_MODE 0x00000004 /* DMA mode */
293 #define HIFN_DMACNFG_DMARESET 0x00000002 /* DMA Reset # */
294 #define HIFN_DMACNFG_MSTRESET 0x00000001 /* Master Reset # */
296 /* PLL configuration register */
297 #define HIFN_PLL_REF_CLK_HBI 0x00000000 /* HBI reference clock */
298 #define HIFN_PLL_REF_CLK_PLL 0x00000001 /* PLL reference clock */
299 #define HIFN_PLL_BP 0x00000002 /* Reference clock bypass */
300 #define HIFN_PLL_PK_CLK_HBI 0x00000000 /* PK engine HBI clock */
301 #define HIFN_PLL_PK_CLK_PLL 0x00000008 /* PK engine PLL clock */
302 #define HIFN_PLL_PE_CLK_HBI 0x00000000 /* PE engine HBI clock */
303 #define HIFN_PLL_PE_CLK_PLL 0x00000010 /* PE engine PLL clock */
304 #define HIFN_PLL_RESERVED_1 0x00000400 /* Reserved bit, must be 1 */
305 #define HIFN_PLL_ND_SHIFT 11 /* Clock multiplier shift */
306 #define HIFN_PLL_ND_MULT_2 0x00000000 /* PLL clock multiplier 2 */
307 #define HIFN_PLL_ND_MULT_4 0x00000800 /* PLL clock multiplier 4 */
308 #define HIFN_PLL_ND_MULT_6 0x00001000 /* PLL clock multiplier 6 */
309 #define HIFN_PLL_ND_MULT_8 0x00001800 /* PLL clock multiplier 8 */
310 #define HIFN_PLL_ND_MULT_10 0x00002000 /* PLL clock multiplier 10 */
311 #define HIFN_PLL_ND_MULT_12 0x00002800 /* PLL clock multiplier 12 */
312 #define HIFN_PLL_IS_1_8 0x00000000 /* charge pump (mult. 1-8) */
313 #define HIFN_PLL_IS_9_12 0x00010000 /* charge pump (mult. 9-12) */
315 #define HIFN_PLL_FCK_MAX 266 /* Maximum PLL frequency */
317 /* Public key reset register (HIFN_1_PUB_RESET) */
318 #define HIFN_PUBRST_RESET 0x00000001 /* reset public/rng unit */
320 /* Public base address register (HIFN_1_PUB_BASE) */
321 #define HIFN_PUBBASE_ADDR 0x00003fff /* base address */
323 /* Public operand length register (HIFN_1_PUB_OPLEN) */
324 #define HIFN_PUBOPLEN_MOD_M 0x0000007f /* modulus length mask */
325 #define HIFN_PUBOPLEN_MOD_S 0 /* modulus length shift */
326 #define HIFN_PUBOPLEN_EXP_M 0x0003ff80 /* exponent length mask */
327 #define HIFN_PUBOPLEN_EXP_S 7 /* exponent lenght shift */
328 #define HIFN_PUBOPLEN_RED_M 0x003c0000 /* reducend length mask */
329 #define HIFN_PUBOPLEN_RED_S 18 /* reducend length shift */
331 /* Public operation register (HIFN_1_PUB_OP) */
332 #define HIFN_PUBOP_AOFFSET_M 0x0000007f /* A offset mask */
333 #define HIFN_PUBOP_AOFFSET_S 0 /* A offset shift */
334 #define HIFN_PUBOP_BOFFSET_M 0x00000f80 /* B offset mask */
335 #define HIFN_PUBOP_BOFFSET_S 7 /* B offset shift */
336 #define HIFN_PUBOP_MOFFSET_M 0x0003f000 /* M offset mask */
337 #define HIFN_PUBOP_MOFFSET_S 12 /* M offset shift */
338 #define HIFN_PUBOP_OP_MASK 0x003c0000 /* Opcode: */
339 #define HIFN_PUBOP_OP_NOP 0x00000000 /* NOP */
340 #define HIFN_PUBOP_OP_ADD 0x00040000 /* ADD */
341 #define HIFN_PUBOP_OP_ADDC 0x00080000 /* ADD w/carry */
342 #define HIFN_PUBOP_OP_SUB 0x000c0000 /* SUB */
343 #define HIFN_PUBOP_OP_SUBC 0x00100000 /* SUB w/carry */
344 #define HIFN_PUBOP_OP_MODADD 0x00140000 /* Modular ADD */
345 #define HIFN_PUBOP_OP_MODSUB 0x00180000 /* Modular SUB */
346 #define HIFN_PUBOP_OP_INCA 0x001c0000 /* INC A */
347 #define HIFN_PUBOP_OP_DECA 0x00200000 /* DEC A */
348 #define HIFN_PUBOP_OP_MULT 0x00240000 /* MULT */
349 #define HIFN_PUBOP_OP_MODMULT 0x00280000 /* Modular MULT */
350 #define HIFN_PUBOP_OP_MODRED 0x002c0000 /* Modular RED */
351 #define HIFN_PUBOP_OP_MODEXP 0x00300000 /* Modular EXP */
353 /* Public status register (HIFN_1_PUB_STATUS) */
354 #define HIFN_PUBSTS_DONE 0x00000001 /* operation done */
355 #define HIFN_PUBSTS_CARRY 0x00000002 /* carry */
357 /* Public interrupt enable register (HIFN_1_PUB_IEN) */
358 #define HIFN_PUBIEN_DONE 0x00000001 /* operation done interrupt */
360 /* Random number generator config register (HIFN_1_RNG_CONFIG) */
361 #define HIFN_RNGCFG_ENA 0x00000001 /* enable rng */
363 #define HIFN_NAMESIZE 32
364 #define HIFN_MAX_RESULT_ORDER 5
366 #define HIFN_D_CMD_RSIZE 24*4
367 #define HIFN_D_SRC_RSIZE 80*4
368 #define HIFN_D_DST_RSIZE 80*4
369 #define HIFN_D_RES_RSIZE 24*4
371 #define HIFN_D_DST_DALIGN 4
373 #define HIFN_QUEUE_LENGTH HIFN_D_CMD_RSIZE-1
375 #define AES_MIN_KEY_SIZE 16
376 #define AES_MAX_KEY_SIZE 32
378 #define HIFN_DES_KEY_LENGTH 8
379 #define HIFN_3DES_KEY_LENGTH 24
380 #define HIFN_MAX_CRYPT_KEY_LENGTH AES_MAX_KEY_SIZE
381 #define HIFN_IV_LENGTH 8
382 #define HIFN_AES_IV_LENGTH 16
383 #define HIFN_MAX_IV_LENGTH HIFN_AES_IV_LENGTH
385 #define HIFN_MAC_KEY_LENGTH 64
386 #define HIFN_MD5_LENGTH 16
387 #define HIFN_SHA1_LENGTH 20
388 #define HIFN_MAC_TRUNC_LENGTH 12
390 #define HIFN_MAX_COMMAND (8 + 8 + 8 + 64 + 260)
391 #define HIFN_MAX_RESULT (8 + 4 + 4 + 20 + 4)
392 #define HIFN_USED_RESULT 12
394 struct hifn_desc
396 volatile __le32 l;
397 volatile __le32 p;
400 struct hifn_dma {
401 struct hifn_desc cmdr[HIFN_D_CMD_RSIZE+1];
402 struct hifn_desc srcr[HIFN_D_SRC_RSIZE+1];
403 struct hifn_desc dstr[HIFN_D_DST_RSIZE+1];
404 struct hifn_desc resr[HIFN_D_RES_RSIZE+1];
406 u8 command_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_COMMAND];
407 u8 result_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_RESULT];
409 u64 test_src, test_dst;
412 * Our current positions for insertion and removal from the descriptor
413 * rings.
415 volatile int cmdi, srci, dsti, resi;
416 volatile int cmdu, srcu, dstu, resu;
417 int cmdk, srck, dstk, resk;
420 #define HIFN_FLAG_CMD_BUSY (1<<0)
421 #define HIFN_FLAG_SRC_BUSY (1<<1)
422 #define HIFN_FLAG_DST_BUSY (1<<2)
423 #define HIFN_FLAG_RES_BUSY (1<<3)
424 #define HIFN_FLAG_OLD_KEY (1<<4)
426 #define HIFN_DEFAULT_ACTIVE_NUM 5
428 struct hifn_device
430 char name[HIFN_NAMESIZE];
432 int irq;
434 struct pci_dev *pdev;
435 void __iomem *bar[3];
437 unsigned long result_mem;
438 dma_addr_t dst;
440 void *desc_virt;
441 dma_addr_t desc_dma;
443 u32 dmareg;
445 void *sa[HIFN_D_RES_RSIZE];
447 spinlock_t lock;
449 void *priv;
451 u32 flags;
452 int active, started;
453 struct delayed_work work;
454 unsigned long reset;
455 unsigned long success;
456 unsigned long prev_success;
458 u8 snum;
460 struct tasklet_struct tasklet;
462 struct crypto_queue queue;
463 struct list_head alg_list;
465 unsigned int pk_clk_freq;
467 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
468 unsigned int rng_wait_time;
469 ktime_t rngtime;
470 struct hwrng rng;
471 #endif
474 #define HIFN_D_LENGTH 0x0000ffff
475 #define HIFN_D_NOINVALID 0x01000000
476 #define HIFN_D_MASKDONEIRQ 0x02000000
477 #define HIFN_D_DESTOVER 0x04000000
478 #define HIFN_D_OVER 0x08000000
479 #define HIFN_D_LAST 0x20000000
480 #define HIFN_D_JUMP 0x40000000
481 #define HIFN_D_VALID 0x80000000
483 struct hifn_base_command
485 volatile __le16 masks;
486 volatile __le16 session_num;
487 volatile __le16 total_source_count;
488 volatile __le16 total_dest_count;
491 #define HIFN_BASE_CMD_COMP 0x0100 /* enable compression engine */
492 #define HIFN_BASE_CMD_PAD 0x0200 /* enable padding engine */
493 #define HIFN_BASE_CMD_MAC 0x0400 /* enable MAC engine */
494 #define HIFN_BASE_CMD_CRYPT 0x0800 /* enable crypt engine */
495 #define HIFN_BASE_CMD_DECODE 0x2000
496 #define HIFN_BASE_CMD_SRCLEN_M 0xc000
497 #define HIFN_BASE_CMD_SRCLEN_S 14
498 #define HIFN_BASE_CMD_DSTLEN_M 0x3000
499 #define HIFN_BASE_CMD_DSTLEN_S 12
500 #define HIFN_BASE_CMD_LENMASK_HI 0x30000
501 #define HIFN_BASE_CMD_LENMASK_LO 0x0ffff
504 * Structure to help build up the command data structure.
506 struct hifn_crypt_command
508 volatile __le16 masks;
509 volatile __le16 header_skip;
510 volatile __le16 source_count;
511 volatile __le16 reserved;
514 #define HIFN_CRYPT_CMD_ALG_MASK 0x0003 /* algorithm: */
515 #define HIFN_CRYPT_CMD_ALG_DES 0x0000 /* DES */
516 #define HIFN_CRYPT_CMD_ALG_3DES 0x0001 /* 3DES */
517 #define HIFN_CRYPT_CMD_ALG_RC4 0x0002 /* RC4 */
518 #define HIFN_CRYPT_CMD_ALG_AES 0x0003 /* AES */
519 #define HIFN_CRYPT_CMD_MODE_MASK 0x0018 /* Encrypt mode: */
520 #define HIFN_CRYPT_CMD_MODE_ECB 0x0000 /* ECB */
521 #define HIFN_CRYPT_CMD_MODE_CBC 0x0008 /* CBC */
522 #define HIFN_CRYPT_CMD_MODE_CFB 0x0010 /* CFB */
523 #define HIFN_CRYPT_CMD_MODE_OFB 0x0018 /* OFB */
524 #define HIFN_CRYPT_CMD_CLR_CTX 0x0040 /* clear context */
525 #define HIFN_CRYPT_CMD_KSZ_MASK 0x0600 /* AES key size: */
526 #define HIFN_CRYPT_CMD_KSZ_128 0x0000 /* 128 bit */
527 #define HIFN_CRYPT_CMD_KSZ_192 0x0200 /* 192 bit */
528 #define HIFN_CRYPT_CMD_KSZ_256 0x0400 /* 256 bit */
529 #define HIFN_CRYPT_CMD_NEW_KEY 0x0800 /* expect new key */
530 #define HIFN_CRYPT_CMD_NEW_IV 0x1000 /* expect new iv */
531 #define HIFN_CRYPT_CMD_SRCLEN_M 0xc000
532 #define HIFN_CRYPT_CMD_SRCLEN_S 14
535 * Structure to help build up the command data structure.
537 struct hifn_mac_command
539 volatile __le16 masks;
540 volatile __le16 header_skip;
541 volatile __le16 source_count;
542 volatile __le16 reserved;
545 #define HIFN_MAC_CMD_ALG_MASK 0x0001
546 #define HIFN_MAC_CMD_ALG_SHA1 0x0000
547 #define HIFN_MAC_CMD_ALG_MD5 0x0001
548 #define HIFN_MAC_CMD_MODE_MASK 0x000c
549 #define HIFN_MAC_CMD_MODE_HMAC 0x0000
550 #define HIFN_MAC_CMD_MODE_SSL_MAC 0x0004
551 #define HIFN_MAC_CMD_MODE_HASH 0x0008
552 #define HIFN_MAC_CMD_MODE_FULL 0x0004
553 #define HIFN_MAC_CMD_TRUNC 0x0010
554 #define HIFN_MAC_CMD_RESULT 0x0020
555 #define HIFN_MAC_CMD_APPEND 0x0040
556 #define HIFN_MAC_CMD_SRCLEN_M 0xc000
557 #define HIFN_MAC_CMD_SRCLEN_S 14
560 * MAC POS IPsec initiates authentication after encryption on encodes
561 * and before decryption on decodes.
563 #define HIFN_MAC_CMD_POS_IPSEC 0x0200
564 #define HIFN_MAC_CMD_NEW_KEY 0x0800
566 struct hifn_comp_command
568 volatile __le16 masks;
569 volatile __le16 header_skip;
570 volatile __le16 source_count;
571 volatile __le16 reserved;
574 #define HIFN_COMP_CMD_SRCLEN_M 0xc000
575 #define HIFN_COMP_CMD_SRCLEN_S 14
576 #define HIFN_COMP_CMD_ONE 0x0100 /* must be one */
577 #define HIFN_COMP_CMD_CLEARHIST 0x0010 /* clear history */
578 #define HIFN_COMP_CMD_UPDATEHIST 0x0008 /* update history */
579 #define HIFN_COMP_CMD_LZS_STRIP0 0x0004 /* LZS: strip zero */
580 #define HIFN_COMP_CMD_MPPC_RESTART 0x0004 /* MPPC: restart */
581 #define HIFN_COMP_CMD_ALG_MASK 0x0001 /* compression mode: */
582 #define HIFN_COMP_CMD_ALG_MPPC 0x0001 /* MPPC */
583 #define HIFN_COMP_CMD_ALG_LZS 0x0000 /* LZS */
585 struct hifn_base_result
587 volatile __le16 flags;
588 volatile __le16 session;
589 volatile __le16 src_cnt; /* 15:0 of source count */
590 volatile __le16 dst_cnt; /* 15:0 of dest count */
593 #define HIFN_BASE_RES_DSTOVERRUN 0x0200 /* destination overrun */
594 #define HIFN_BASE_RES_SRCLEN_M 0xc000 /* 17:16 of source count */
595 #define HIFN_BASE_RES_SRCLEN_S 14
596 #define HIFN_BASE_RES_DSTLEN_M 0x3000 /* 17:16 of dest count */
597 #define HIFN_BASE_RES_DSTLEN_S 12
599 struct hifn_comp_result
601 volatile __le16 flags;
602 volatile __le16 crc;
605 #define HIFN_COMP_RES_LCB_M 0xff00 /* longitudinal check byte */
606 #define HIFN_COMP_RES_LCB_S 8
607 #define HIFN_COMP_RES_RESTART 0x0004 /* MPPC: restart */
608 #define HIFN_COMP_RES_ENDMARKER 0x0002 /* LZS: end marker seen */
609 #define HIFN_COMP_RES_SRC_NOTZERO 0x0001 /* source expired */
611 struct hifn_mac_result
613 volatile __le16 flags;
614 volatile __le16 reserved;
615 /* followed by 0, 6, 8, or 10 u16's of the MAC, then crypt */
618 #define HIFN_MAC_RES_MISCOMPARE 0x0002 /* compare failed */
619 #define HIFN_MAC_RES_SRC_NOTZERO 0x0001 /* source expired */
621 struct hifn_crypt_result
623 volatile __le16 flags;
624 volatile __le16 reserved;
627 #define HIFN_CRYPT_RES_SRC_NOTZERO 0x0001 /* source expired */
629 #ifndef HIFN_POLL_FREQUENCY
630 #define HIFN_POLL_FREQUENCY 0x1
631 #endif
633 #ifndef HIFN_POLL_SCALAR
634 #define HIFN_POLL_SCALAR 0x0
635 #endif
637 #define HIFN_MAX_SEGLEN 0xffff /* maximum dma segment len */
638 #define HIFN_MAX_DMALEN 0x3ffff /* maximum dma length */
640 struct hifn_crypto_alg
642 struct list_head entry;
643 struct crypto_alg alg;
644 struct hifn_device *dev;
647 #define ASYNC_SCATTERLIST_CACHE 16
649 #define ASYNC_FLAGS_MISALIGNED (1<<0)
651 struct ablkcipher_walk
653 struct scatterlist cache[ASYNC_SCATTERLIST_CACHE];
654 u32 flags;
655 int num;
658 struct hifn_context
660 u8 key[HIFN_MAX_CRYPT_KEY_LENGTH];
661 struct hifn_device *dev;
662 unsigned int keysize;
665 struct hifn_request_context
667 u8 *iv;
668 unsigned int ivsize;
669 u8 op, type, mode, unused;
670 struct ablkcipher_walk walk;
673 #define crypto_alg_to_hifn(a) container_of(a, struct hifn_crypto_alg, alg)
675 static inline u32 hifn_read_0(struct hifn_device *dev, u32 reg)
677 u32 ret;
679 ret = readl(dev->bar[0] + reg);
681 return ret;
684 static inline u32 hifn_read_1(struct hifn_device *dev, u32 reg)
686 u32 ret;
688 ret = readl(dev->bar[1] + reg);
690 return ret;
693 static inline void hifn_write_0(struct hifn_device *dev, u32 reg, u32 val)
695 writel((__force u32)cpu_to_le32(val), dev->bar[0] + reg);
698 static inline void hifn_write_1(struct hifn_device *dev, u32 reg, u32 val)
700 writel((__force u32)cpu_to_le32(val), dev->bar[1] + reg);
703 static void hifn_wait_puc(struct hifn_device *dev)
705 int i;
706 u32 ret;
708 for (i=10000; i > 0; --i) {
709 ret = hifn_read_0(dev, HIFN_0_PUCTRL);
710 if (!(ret & HIFN_PUCTRL_RESET))
711 break;
713 udelay(1);
716 if (!i)
717 dprintk("%s: Failed to reset PUC unit.\n", dev->name);
720 static void hifn_reset_puc(struct hifn_device *dev)
722 hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
723 hifn_wait_puc(dev);
726 static void hifn_stop_device(struct hifn_device *dev)
728 hifn_write_1(dev, HIFN_1_DMA_CSR,
729 HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
730 HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS);
731 hifn_write_0(dev, HIFN_0_PUIER, 0);
732 hifn_write_1(dev, HIFN_1_DMA_IER, 0);
735 static void hifn_reset_dma(struct hifn_device *dev, int full)
737 hifn_stop_device(dev);
740 * Setting poll frequency and others to 0.
742 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
743 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
744 mdelay(1);
747 * Reset DMA.
749 if (full) {
750 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE);
751 mdelay(1);
752 } else {
753 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE |
754 HIFN_DMACNFG_MSTRESET);
755 hifn_reset_puc(dev);
758 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
759 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
761 hifn_reset_puc(dev);
764 static u32 hifn_next_signature(u_int32_t a, u_int cnt)
766 int i;
767 u32 v;
769 for (i = 0; i < cnt; i++) {
771 /* get the parity */
772 v = a & 0x80080125;
773 v ^= v >> 16;
774 v ^= v >> 8;
775 v ^= v >> 4;
776 v ^= v >> 2;
777 v ^= v >> 1;
779 a = (v & 1) ^ (a << 1);
782 return a;
785 static struct pci2id {
786 u_short pci_vendor;
787 u_short pci_prod;
788 char card_id[13];
789 } pci2id[] = {
791 PCI_VENDOR_ID_HIFN,
792 PCI_DEVICE_ID_HIFN_7955,
793 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
794 0x00, 0x00, 0x00, 0x00, 0x00 }
797 PCI_VENDOR_ID_HIFN,
798 PCI_DEVICE_ID_HIFN_7956,
799 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
800 0x00, 0x00, 0x00, 0x00, 0x00 }
804 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
805 static int hifn_rng_data_present(struct hwrng *rng, int wait)
807 struct hifn_device *dev = (struct hifn_device *)rng->priv;
808 s64 nsec;
810 nsec = ktime_to_ns(ktime_sub(ktime_get(), dev->rngtime));
811 nsec -= dev->rng_wait_time;
812 if (nsec <= 0)
813 return 1;
814 if (!wait)
815 return 0;
816 ndelay(nsec);
817 return 1;
820 static int hifn_rng_data_read(struct hwrng *rng, u32 *data)
822 struct hifn_device *dev = (struct hifn_device *)rng->priv;
824 *data = hifn_read_1(dev, HIFN_1_RNG_DATA);
825 dev->rngtime = ktime_get();
826 return 4;
829 static int hifn_register_rng(struct hifn_device *dev)
832 * We must wait at least 256 Pk_clk cycles between two reads of the rng.
834 dev->rng_wait_time = DIV_ROUND_UP(NSEC_PER_SEC, dev->pk_clk_freq) *
835 256;
837 dev->rng.name = dev->name;
838 dev->rng.data_present = hifn_rng_data_present,
839 dev->rng.data_read = hifn_rng_data_read,
840 dev->rng.priv = (unsigned long)dev;
842 return hwrng_register(&dev->rng);
845 static void hifn_unregister_rng(struct hifn_device *dev)
847 hwrng_unregister(&dev->rng);
849 #else
850 #define hifn_register_rng(dev) 0
851 #define hifn_unregister_rng(dev)
852 #endif
854 static int hifn_init_pubrng(struct hifn_device *dev)
856 int i;
858 hifn_write_1(dev, HIFN_1_PUB_RESET, hifn_read_1(dev, HIFN_1_PUB_RESET) |
859 HIFN_PUBRST_RESET);
861 for (i=100; i > 0; --i) {
862 mdelay(1);
864 if ((hifn_read_1(dev, HIFN_1_PUB_RESET) & HIFN_PUBRST_RESET) == 0)
865 break;
868 if (!i)
869 dprintk("Chip %s: Failed to initialise public key engine.\n",
870 dev->name);
871 else {
872 hifn_write_1(dev, HIFN_1_PUB_IEN, HIFN_PUBIEN_DONE);
873 dev->dmareg |= HIFN_DMAIER_PUBDONE;
874 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
876 dprintk("Chip %s: Public key engine has been sucessfully "
877 "initialised.\n", dev->name);
881 * Enable RNG engine.
884 hifn_write_1(dev, HIFN_1_RNG_CONFIG,
885 hifn_read_1(dev, HIFN_1_RNG_CONFIG) | HIFN_RNGCFG_ENA);
886 dprintk("Chip %s: RNG engine has been successfully initialised.\n",
887 dev->name);
889 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
890 /* First value must be discarded */
891 hifn_read_1(dev, HIFN_1_RNG_DATA);
892 dev->rngtime = ktime_get();
893 #endif
894 return 0;
897 static int hifn_enable_crypto(struct hifn_device *dev)
899 u32 dmacfg, addr;
900 char *offtbl = NULL;
901 int i;
903 for (i = 0; i < ARRAY_SIZE(pci2id); i++) {
904 if (pci2id[i].pci_vendor == dev->pdev->vendor &&
905 pci2id[i].pci_prod == dev->pdev->device) {
906 offtbl = pci2id[i].card_id;
907 break;
911 if (offtbl == NULL) {
912 dprintk("Chip %s: Unknown card!\n", dev->name);
913 return -ENODEV;
916 dmacfg = hifn_read_1(dev, HIFN_1_DMA_CNFG);
918 hifn_write_1(dev, HIFN_1_DMA_CNFG,
919 HIFN_DMACNFG_UNLOCK | HIFN_DMACNFG_MSTRESET |
920 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
921 mdelay(1);
922 addr = hifn_read_1(dev, HIFN_1_UNLOCK_SECRET1);
923 mdelay(1);
924 hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, 0);
925 mdelay(1);
927 for (i=0; i<12; ++i) {
928 addr = hifn_next_signature(addr, offtbl[i] + 0x101);
929 hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, addr);
931 mdelay(1);
933 hifn_write_1(dev, HIFN_1_DMA_CNFG, dmacfg);
935 dprintk("Chip %s: %s.\n", dev->name, pci_name(dev->pdev));
937 return 0;
940 static void hifn_init_dma(struct hifn_device *dev)
942 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
943 u32 dptr = dev->desc_dma;
944 int i;
946 for (i=0; i<HIFN_D_CMD_RSIZE; ++i)
947 dma->cmdr[i].p = __cpu_to_le32(dptr +
948 offsetof(struct hifn_dma, command_bufs[i][0]));
949 for (i=0; i<HIFN_D_RES_RSIZE; ++i)
950 dma->resr[i].p = __cpu_to_le32(dptr +
951 offsetof(struct hifn_dma, result_bufs[i][0]));
954 * Setup LAST descriptors.
956 dma->cmdr[HIFN_D_CMD_RSIZE].p = __cpu_to_le32(dptr +
957 offsetof(struct hifn_dma, cmdr[0]));
958 dma->srcr[HIFN_D_SRC_RSIZE].p = __cpu_to_le32(dptr +
959 offsetof(struct hifn_dma, srcr[0]));
960 dma->dstr[HIFN_D_DST_RSIZE].p = __cpu_to_le32(dptr +
961 offsetof(struct hifn_dma, dstr[0]));
962 dma->resr[HIFN_D_RES_RSIZE].p = __cpu_to_le32(dptr +
963 offsetof(struct hifn_dma, resr[0]));
965 dma->cmdu = dma->srcu = dma->dstu = dma->resu = 0;
966 dma->cmdi = dma->srci = dma->dsti = dma->resi = 0;
967 dma->cmdk = dma->srck = dma->dstk = dma->resk = 0;
971 * Initialize the PLL. We need to know the frequency of the reference clock
972 * to calculate the optimal multiplier. For PCI we assume 66MHz, since that
973 * allows us to operate without the risk of overclocking the chip. If it
974 * actually uses 33MHz, the chip will operate at half the speed, this can be
975 * overriden by specifying the frequency as module parameter (pci33).
977 * Unfortunately the PCI clock is not very suitable since the HIFN needs a
978 * stable clock and the PCI clock frequency may vary, so the default is the
979 * external clock. There is no way to find out its frequency, we default to
980 * 66MHz since according to Mike Ham of HiFn, almost every board in existence
981 * has an external crystal populated at 66MHz.
983 static void hifn_init_pll(struct hifn_device *dev)
985 unsigned int freq, m;
986 u32 pllcfg;
988 pllcfg = HIFN_1_PLL | HIFN_PLL_RESERVED_1;
990 if (strncmp(hifn_pll_ref, "ext", 3) == 0)
991 pllcfg |= HIFN_PLL_REF_CLK_PLL;
992 else
993 pllcfg |= HIFN_PLL_REF_CLK_HBI;
995 if (hifn_pll_ref[3] != '\0')
996 freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
997 else {
998 freq = 66;
999 printk(KERN_INFO "hifn795x: assuming %uMHz clock speed, "
1000 "override with hifn_pll_ref=%.3s<frequency>\n",
1001 freq, hifn_pll_ref);
1004 m = HIFN_PLL_FCK_MAX / freq;
1006 pllcfg |= (m / 2 - 1) << HIFN_PLL_ND_SHIFT;
1007 if (m <= 8)
1008 pllcfg |= HIFN_PLL_IS_1_8;
1009 else
1010 pllcfg |= HIFN_PLL_IS_9_12;
1012 /* Select clock source and enable clock bypass */
1013 hifn_write_1(dev, HIFN_1_PLL, pllcfg |
1014 HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI | HIFN_PLL_BP);
1016 /* Let the chip lock to the input clock */
1017 mdelay(10);
1019 /* Disable clock bypass */
1020 hifn_write_1(dev, HIFN_1_PLL, pllcfg |
1021 HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI);
1023 /* Switch the engines to the PLL */
1024 hifn_write_1(dev, HIFN_1_PLL, pllcfg |
1025 HIFN_PLL_PK_CLK_PLL | HIFN_PLL_PE_CLK_PLL);
1028 * The Fpk_clk runs at half the total speed. Its frequency is needed to
1029 * calculate the minimum time between two reads of the rng. Since 33MHz
1030 * is actually 33.333... we overestimate the frequency here, resulting
1031 * in slightly larger intervals.
1033 dev->pk_clk_freq = 1000000 * (freq + 1) * m / 2;
1036 static void hifn_init_registers(struct hifn_device *dev)
1038 u32 dptr = dev->desc_dma;
1040 /* Initialization magic... */
1041 hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
1042 hifn_write_0(dev, HIFN_0_FIFOCNFG, HIFN_FIFOCNFG_THRESHOLD);
1043 hifn_write_0(dev, HIFN_0_PUIER, HIFN_PUIER_DSTOVER);
1045 /* write all 4 ring address registers */
1046 hifn_write_1(dev, HIFN_1_DMA_CRAR, dptr +
1047 offsetof(struct hifn_dma, cmdr[0]));
1048 hifn_write_1(dev, HIFN_1_DMA_SRAR, dptr +
1049 offsetof(struct hifn_dma, srcr[0]));
1050 hifn_write_1(dev, HIFN_1_DMA_DRAR, dptr +
1051 offsetof(struct hifn_dma, dstr[0]));
1052 hifn_write_1(dev, HIFN_1_DMA_RRAR, dptr +
1053 offsetof(struct hifn_dma, resr[0]));
1055 mdelay(2);
1056 #if 0
1057 hifn_write_1(dev, HIFN_1_DMA_CSR,
1058 HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
1059 HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS |
1060 HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
1061 HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
1062 HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
1063 HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
1064 HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
1065 HIFN_DMACSR_S_WAIT |
1066 HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1067 HIFN_DMACSR_C_WAIT |
1068 HIFN_DMACSR_ENGINE |
1069 HIFN_DMACSR_PUBDONE);
1070 #else
1071 hifn_write_1(dev, HIFN_1_DMA_CSR,
1072 HIFN_DMACSR_C_CTRL_ENA | HIFN_DMACSR_S_CTRL_ENA |
1073 HIFN_DMACSR_D_CTRL_ENA | HIFN_DMACSR_R_CTRL_ENA |
1074 HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
1075 HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
1076 HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
1077 HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
1078 HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
1079 HIFN_DMACSR_S_WAIT |
1080 HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1081 HIFN_DMACSR_C_WAIT |
1082 HIFN_DMACSR_ENGINE |
1083 HIFN_DMACSR_PUBDONE);
1084 #endif
1085 hifn_read_1(dev, HIFN_1_DMA_CSR);
1087 dev->dmareg |= HIFN_DMAIER_R_DONE | HIFN_DMAIER_C_ABORT |
1088 HIFN_DMAIER_D_OVER | HIFN_DMAIER_R_OVER |
1089 HIFN_DMAIER_S_ABORT | HIFN_DMAIER_D_ABORT | HIFN_DMAIER_R_ABORT |
1090 HIFN_DMAIER_ENGINE;
1091 dev->dmareg &= ~HIFN_DMAIER_C_WAIT;
1093 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1094 hifn_read_1(dev, HIFN_1_DMA_IER);
1095 #if 0
1096 hifn_write_0(dev, HIFN_0_PUCNFG, HIFN_PUCNFG_ENCCNFG |
1097 HIFN_PUCNFG_DRFR_128 | HIFN_PUCNFG_TCALLPHASES |
1098 HIFN_PUCNFG_TCDRVTOTEM | HIFN_PUCNFG_BUS32 |
1099 HIFN_PUCNFG_DRAM);
1100 #else
1101 hifn_write_0(dev, HIFN_0_PUCNFG, 0x10342);
1102 #endif
1103 hifn_init_pll(dev);
1105 hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1106 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
1107 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE | HIFN_DMACNFG_LAST |
1108 ((HIFN_POLL_FREQUENCY << 16 ) & HIFN_DMACNFG_POLLFREQ) |
1109 ((HIFN_POLL_SCALAR << 8) & HIFN_DMACNFG_POLLINVAL));
1112 static int hifn_setup_base_command(struct hifn_device *dev, u8 *buf,
1113 unsigned dlen, unsigned slen, u16 mask, u8 snum)
1115 struct hifn_base_command *base_cmd;
1116 u8 *buf_pos = buf;
1118 base_cmd = (struct hifn_base_command *)buf_pos;
1119 base_cmd->masks = __cpu_to_le16(mask);
1120 base_cmd->total_source_count =
1121 __cpu_to_le16(slen & HIFN_BASE_CMD_LENMASK_LO);
1122 base_cmd->total_dest_count =
1123 __cpu_to_le16(dlen & HIFN_BASE_CMD_LENMASK_LO);
1125 dlen >>= 16;
1126 slen >>= 16;
1127 base_cmd->session_num = __cpu_to_le16(snum |
1128 ((slen << HIFN_BASE_CMD_SRCLEN_S) & HIFN_BASE_CMD_SRCLEN_M) |
1129 ((dlen << HIFN_BASE_CMD_DSTLEN_S) & HIFN_BASE_CMD_DSTLEN_M));
1131 return sizeof(struct hifn_base_command);
1134 static int hifn_setup_crypto_command(struct hifn_device *dev,
1135 u8 *buf, unsigned dlen, unsigned slen,
1136 u8 *key, int keylen, u8 *iv, int ivsize, u16 mode)
1138 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1139 struct hifn_crypt_command *cry_cmd;
1140 u8 *buf_pos = buf;
1141 u16 cmd_len;
1143 cry_cmd = (struct hifn_crypt_command *)buf_pos;
1145 cry_cmd->source_count = __cpu_to_le16(dlen & 0xffff);
1146 dlen >>= 16;
1147 cry_cmd->masks = __cpu_to_le16(mode |
1148 ((dlen << HIFN_CRYPT_CMD_SRCLEN_S) &
1149 HIFN_CRYPT_CMD_SRCLEN_M));
1150 cry_cmd->header_skip = 0;
1151 cry_cmd->reserved = 0;
1153 buf_pos += sizeof(struct hifn_crypt_command);
1155 dma->cmdu++;
1156 if (dma->cmdu > 1) {
1157 dev->dmareg |= HIFN_DMAIER_C_WAIT;
1158 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1161 if (keylen) {
1162 memcpy(buf_pos, key, keylen);
1163 buf_pos += keylen;
1165 if (ivsize) {
1166 memcpy(buf_pos, iv, ivsize);
1167 buf_pos += ivsize;
1170 cmd_len = buf_pos - buf;
1172 return cmd_len;
1175 static int hifn_setup_cmd_desc(struct hifn_device *dev,
1176 struct hifn_context *ctx, struct hifn_request_context *rctx,
1177 void *priv, unsigned int nbytes)
1179 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1180 int cmd_len, sa_idx;
1181 u8 *buf, *buf_pos;
1182 u16 mask;
1184 sa_idx = dma->cmdi;
1185 buf_pos = buf = dma->command_bufs[dma->cmdi];
1187 mask = 0;
1188 switch (rctx->op) {
1189 case ACRYPTO_OP_DECRYPT:
1190 mask = HIFN_BASE_CMD_CRYPT | HIFN_BASE_CMD_DECODE;
1191 break;
1192 case ACRYPTO_OP_ENCRYPT:
1193 mask = HIFN_BASE_CMD_CRYPT;
1194 break;
1195 case ACRYPTO_OP_HMAC:
1196 mask = HIFN_BASE_CMD_MAC;
1197 break;
1198 default:
1199 goto err_out;
1202 buf_pos += hifn_setup_base_command(dev, buf_pos, nbytes,
1203 nbytes, mask, dev->snum);
1205 if (rctx->op == ACRYPTO_OP_ENCRYPT || rctx->op == ACRYPTO_OP_DECRYPT) {
1206 u16 md = 0;
1208 if (ctx->keysize)
1209 md |= HIFN_CRYPT_CMD_NEW_KEY;
1210 if (rctx->iv && rctx->mode != ACRYPTO_MODE_ECB)
1211 md |= HIFN_CRYPT_CMD_NEW_IV;
1213 switch (rctx->mode) {
1214 case ACRYPTO_MODE_ECB:
1215 md |= HIFN_CRYPT_CMD_MODE_ECB;
1216 break;
1217 case ACRYPTO_MODE_CBC:
1218 md |= HIFN_CRYPT_CMD_MODE_CBC;
1219 break;
1220 case ACRYPTO_MODE_CFB:
1221 md |= HIFN_CRYPT_CMD_MODE_CFB;
1222 break;
1223 case ACRYPTO_MODE_OFB:
1224 md |= HIFN_CRYPT_CMD_MODE_OFB;
1225 break;
1226 default:
1227 goto err_out;
1230 switch (rctx->type) {
1231 case ACRYPTO_TYPE_AES_128:
1232 if (ctx->keysize != 16)
1233 goto err_out;
1234 md |= HIFN_CRYPT_CMD_KSZ_128 |
1235 HIFN_CRYPT_CMD_ALG_AES;
1236 break;
1237 case ACRYPTO_TYPE_AES_192:
1238 if (ctx->keysize != 24)
1239 goto err_out;
1240 md |= HIFN_CRYPT_CMD_KSZ_192 |
1241 HIFN_CRYPT_CMD_ALG_AES;
1242 break;
1243 case ACRYPTO_TYPE_AES_256:
1244 if (ctx->keysize != 32)
1245 goto err_out;
1246 md |= HIFN_CRYPT_CMD_KSZ_256 |
1247 HIFN_CRYPT_CMD_ALG_AES;
1248 break;
1249 case ACRYPTO_TYPE_3DES:
1250 if (ctx->keysize != 24)
1251 goto err_out;
1252 md |= HIFN_CRYPT_CMD_ALG_3DES;
1253 break;
1254 case ACRYPTO_TYPE_DES:
1255 if (ctx->keysize != 8)
1256 goto err_out;
1257 md |= HIFN_CRYPT_CMD_ALG_DES;
1258 break;
1259 default:
1260 goto err_out;
1263 buf_pos += hifn_setup_crypto_command(dev, buf_pos,
1264 nbytes, nbytes, ctx->key, ctx->keysize,
1265 rctx->iv, rctx->ivsize, md);
1268 dev->sa[sa_idx] = priv;
1270 cmd_len = buf_pos - buf;
1271 dma->cmdr[dma->cmdi].l = __cpu_to_le32(cmd_len | HIFN_D_VALID |
1272 HIFN_D_LAST | HIFN_D_MASKDONEIRQ);
1274 if (++dma->cmdi == HIFN_D_CMD_RSIZE) {
1275 dma->cmdr[dma->cmdi].l = __cpu_to_le32(
1276 HIFN_D_VALID | HIFN_D_LAST |
1277 HIFN_D_MASKDONEIRQ | HIFN_D_JUMP);
1278 dma->cmdi = 0;
1279 } else
1280 dma->cmdr[dma->cmdi-1].l |= __cpu_to_le32(HIFN_D_VALID);
1282 if (!(dev->flags & HIFN_FLAG_CMD_BUSY)) {
1283 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_C_CTRL_ENA);
1284 dev->flags |= HIFN_FLAG_CMD_BUSY;
1286 return 0;
1288 err_out:
1289 return -EINVAL;
1292 static int hifn_setup_src_desc(struct hifn_device *dev, struct page *page,
1293 unsigned int offset, unsigned int size, int last)
1295 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1296 int idx;
1297 dma_addr_t addr;
1299 addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_TODEVICE);
1301 idx = dma->srci;
1303 dma->srcr[idx].p = __cpu_to_le32(addr);
1304 dma->srcr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
1305 HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1307 if (++idx == HIFN_D_SRC_RSIZE) {
1308 dma->srcr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1309 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1310 (last ? HIFN_D_LAST : 0));
1311 idx = 0;
1314 dma->srci = idx;
1315 dma->srcu++;
1317 if (!(dev->flags & HIFN_FLAG_SRC_BUSY)) {
1318 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_S_CTRL_ENA);
1319 dev->flags |= HIFN_FLAG_SRC_BUSY;
1322 return size;
1325 static void hifn_setup_res_desc(struct hifn_device *dev)
1327 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1329 dma->resr[dma->resi].l = __cpu_to_le32(HIFN_USED_RESULT |
1330 HIFN_D_VALID | HIFN_D_LAST);
1332 * dma->resr[dma->resi].l = __cpu_to_le32(HIFN_MAX_RESULT | HIFN_D_VALID |
1333 * HIFN_D_LAST);
1336 if (++dma->resi == HIFN_D_RES_RSIZE) {
1337 dma->resr[HIFN_D_RES_RSIZE].l = __cpu_to_le32(HIFN_D_VALID |
1338 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ | HIFN_D_LAST);
1339 dma->resi = 0;
1342 dma->resu++;
1344 if (!(dev->flags & HIFN_FLAG_RES_BUSY)) {
1345 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_R_CTRL_ENA);
1346 dev->flags |= HIFN_FLAG_RES_BUSY;
1350 static void hifn_setup_dst_desc(struct hifn_device *dev, struct page *page,
1351 unsigned offset, unsigned size, int last)
1353 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1354 int idx;
1355 dma_addr_t addr;
1357 addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_FROMDEVICE);
1359 idx = dma->dsti;
1360 dma->dstr[idx].p = __cpu_to_le32(addr);
1361 dma->dstr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
1362 HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1364 if (++idx == HIFN_D_DST_RSIZE) {
1365 dma->dstr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1366 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1367 (last ? HIFN_D_LAST : 0));
1368 idx = 0;
1370 dma->dsti = idx;
1371 dma->dstu++;
1373 if (!(dev->flags & HIFN_FLAG_DST_BUSY)) {
1374 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_D_CTRL_ENA);
1375 dev->flags |= HIFN_FLAG_DST_BUSY;
1379 static int hifn_setup_dma(struct hifn_device *dev,
1380 struct hifn_context *ctx, struct hifn_request_context *rctx,
1381 struct scatterlist *src, struct scatterlist *dst,
1382 unsigned int nbytes, void *priv)
1384 struct scatterlist *t;
1385 struct page *spage, *dpage;
1386 unsigned int soff, doff;
1387 unsigned int n, len;
1389 n = nbytes;
1390 while (n) {
1391 spage = sg_page(src);
1392 soff = src->offset;
1393 len = min(src->length, n);
1395 dprintk("%s: spage: %p, soffset: %u, nbytes: %u, "
1396 "priv: %p, rctx: %p.\n",
1397 dev->name, spage, soff, nbytes, priv, rctx);
1398 hifn_setup_src_desc(dev, spage, soff, len, n - len == 0);
1400 src++;
1401 n -= len;
1404 t = &rctx->walk.cache[0];
1405 n = nbytes;
1406 while (n) {
1407 if (t->length && rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1408 dpage = sg_page(t);
1409 doff = 0;
1410 len = t->length;
1411 } else {
1412 dpage = sg_page(dst);
1413 doff = dst->offset;
1414 len = dst->length;
1416 len = min(len, n);
1418 dprintk("%s: dpage: %p, doffset: %u, nbytes: %u, "
1419 "priv: %p, rctx: %p.\n",
1420 dev->name, dpage, doff, nbytes, priv, rctx);
1421 hifn_setup_dst_desc(dev, dpage, doff, len, n - len == 0);
1423 dst++;
1424 t++;
1425 n -= len;
1428 hifn_setup_cmd_desc(dev, ctx, rctx, priv, nbytes);
1429 hifn_setup_res_desc(dev);
1430 return 0;
1433 static int ablkcipher_walk_init(struct ablkcipher_walk *w,
1434 int num, gfp_t gfp_flags)
1436 int i;
1438 num = min(ASYNC_SCATTERLIST_CACHE, num);
1439 sg_init_table(w->cache, num);
1441 w->num = 0;
1442 for (i=0; i<num; ++i) {
1443 struct page *page = alloc_page(gfp_flags);
1444 struct scatterlist *s;
1446 if (!page)
1447 break;
1449 s = &w->cache[i];
1451 sg_set_page(s, page, PAGE_SIZE, 0);
1452 w->num++;
1455 return i;
1458 static void ablkcipher_walk_exit(struct ablkcipher_walk *w)
1460 int i;
1462 for (i=0; i<w->num; ++i) {
1463 struct scatterlist *s = &w->cache[i];
1465 __free_page(sg_page(s));
1467 s->length = 0;
1470 w->num = 0;
1473 static int ablkcipher_add(unsigned int *drestp, struct scatterlist *dst,
1474 unsigned int size, unsigned int *nbytesp)
1476 unsigned int copy, drest = *drestp, nbytes = *nbytesp;
1477 int idx = 0;
1479 if (drest < size || size > nbytes)
1480 return -EINVAL;
1482 while (size) {
1483 copy = min(drest, min(size, dst->length));
1485 size -= copy;
1486 drest -= copy;
1487 nbytes -= copy;
1489 dprintk("%s: copy: %u, size: %u, drest: %u, nbytes: %u.\n",
1490 __func__, copy, size, drest, nbytes);
1492 dst++;
1493 idx++;
1496 *nbytesp = nbytes;
1497 *drestp = drest;
1499 return idx;
1502 static int ablkcipher_walk(struct ablkcipher_request *req,
1503 struct ablkcipher_walk *w)
1505 struct scatterlist *dst, *t;
1506 unsigned int nbytes = req->nbytes, offset, copy, diff;
1507 int idx, tidx, err;
1509 tidx = idx = 0;
1510 offset = 0;
1511 while (nbytes) {
1512 if (idx >= w->num && (w->flags & ASYNC_FLAGS_MISALIGNED))
1513 return -EINVAL;
1515 dst = &req->dst[idx];
1517 dprintk("\n%s: dlen: %u, doff: %u, offset: %u, nbytes: %u.\n",
1518 __func__, dst->length, dst->offset, offset, nbytes);
1520 if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1521 !IS_ALIGNED(dst->length, HIFN_D_DST_DALIGN) ||
1522 offset) {
1523 unsigned slen = min(dst->length - offset, nbytes);
1524 unsigned dlen = PAGE_SIZE;
1526 t = &w->cache[idx];
1528 err = ablkcipher_add(&dlen, dst, slen, &nbytes);
1529 if (err < 0)
1530 return err;
1532 idx += err;
1534 copy = slen & ~(HIFN_D_DST_DALIGN - 1);
1535 diff = slen & (HIFN_D_DST_DALIGN - 1);
1537 if (dlen < nbytes) {
1539 * Destination page does not have enough space
1540 * to put there additional blocksized chunk,
1541 * so we mark that page as containing only
1542 * blocksize aligned chunks:
1543 * t->length = (slen & ~(HIFN_D_DST_DALIGN - 1));
1544 * and increase number of bytes to be processed
1545 * in next chunk:
1546 * nbytes += diff;
1548 nbytes += diff;
1551 * Temporary of course...
1552 * Kick author if you will catch this one.
1554 printk(KERN_ERR "%s: dlen: %u, nbytes: %u,"
1555 "slen: %u, offset: %u.\n",
1556 __func__, dlen, nbytes, slen, offset);
1557 printk(KERN_ERR "%s: please contact author to fix this "
1558 "issue, generally you should not catch "
1559 "this path under any condition but who "
1560 "knows how did you use crypto code.\n"
1561 "Thank you.\n", __func__);
1562 BUG();
1563 } else {
1564 copy += diff + nbytes;
1566 dst = &req->dst[idx];
1568 err = ablkcipher_add(&dlen, dst, nbytes, &nbytes);
1569 if (err < 0)
1570 return err;
1572 idx += err;
1575 t->length = copy;
1576 t->offset = offset;
1577 } else {
1578 nbytes -= min(dst->length, nbytes);
1579 idx++;
1582 tidx++;
1585 return tidx;
1588 static int hifn_setup_session(struct ablkcipher_request *req)
1590 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1591 struct hifn_request_context *rctx = ablkcipher_request_ctx(req);
1592 struct hifn_device *dev = ctx->dev;
1593 unsigned long dlen, flags;
1594 unsigned int nbytes = req->nbytes, idx = 0;
1595 int err = -EINVAL, sg_num;
1596 struct scatterlist *dst;
1598 if (rctx->iv && !rctx->ivsize && rctx->mode != ACRYPTO_MODE_ECB)
1599 goto err_out_exit;
1601 rctx->walk.flags = 0;
1603 while (nbytes) {
1604 dst = &req->dst[idx];
1605 dlen = min(dst->length, nbytes);
1607 if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1608 !IS_ALIGNED(dlen, HIFN_D_DST_DALIGN))
1609 rctx->walk.flags |= ASYNC_FLAGS_MISALIGNED;
1611 nbytes -= dlen;
1612 idx++;
1615 if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1616 err = ablkcipher_walk_init(&rctx->walk, idx, GFP_ATOMIC);
1617 if (err < 0)
1618 return err;
1621 sg_num = ablkcipher_walk(req, &rctx->walk);
1622 if (sg_num < 0) {
1623 err = sg_num;
1624 goto err_out_exit;
1627 spin_lock_irqsave(&dev->lock, flags);
1628 if (dev->started + sg_num > HIFN_QUEUE_LENGTH) {
1629 err = -EAGAIN;
1630 goto err_out;
1633 dev->snum++;
1634 dev->started++;
1636 err = hifn_setup_dma(dev, ctx, rctx, req->src, req->dst, req->nbytes, req);
1637 if (err)
1638 goto err_out;
1640 dev->active = HIFN_DEFAULT_ACTIVE_NUM;
1641 spin_unlock_irqrestore(&dev->lock, flags);
1643 return 0;
1645 err_out:
1646 spin_unlock_irqrestore(&dev->lock, flags);
1647 err_out_exit:
1648 if (err)
1649 dprintk("%s: iv: %p [%d], key: %p [%d], mode: %u, op: %u, "
1650 "type: %u, err: %d.\n",
1651 dev->name, rctx->iv, rctx->ivsize,
1652 ctx->key, ctx->keysize,
1653 rctx->mode, rctx->op, rctx->type, err);
1655 return err;
1658 static int hifn_test(struct hifn_device *dev, int encdec, u8 snum)
1660 int n, err;
1661 u8 src[16];
1662 struct hifn_context ctx;
1663 struct hifn_request_context rctx;
1664 u8 fips_aes_ecb_from_zero[16] = {
1665 0x66, 0xE9, 0x4B, 0xD4,
1666 0xEF, 0x8A, 0x2C, 0x3B,
1667 0x88, 0x4C, 0xFA, 0x59,
1668 0xCA, 0x34, 0x2B, 0x2E};
1669 struct scatterlist sg;
1671 memset(src, 0, sizeof(src));
1672 memset(ctx.key, 0, sizeof(ctx.key));
1674 ctx.dev = dev;
1675 ctx.keysize = 16;
1676 rctx.ivsize = 0;
1677 rctx.iv = NULL;
1678 rctx.op = (encdec)?ACRYPTO_OP_ENCRYPT:ACRYPTO_OP_DECRYPT;
1679 rctx.mode = ACRYPTO_MODE_ECB;
1680 rctx.type = ACRYPTO_TYPE_AES_128;
1681 rctx.walk.cache[0].length = 0;
1683 sg_init_one(&sg, &src, sizeof(src));
1685 err = hifn_setup_dma(dev, &ctx, &rctx, &sg, &sg, sizeof(src), NULL);
1686 if (err)
1687 goto err_out;
1689 msleep(200);
1691 dprintk("%s: decoded: ", dev->name);
1692 for (n=0; n<sizeof(src); ++n)
1693 dprintk("%02x ", src[n]);
1694 dprintk("\n");
1695 dprintk("%s: FIPS : ", dev->name);
1696 for (n=0; n<sizeof(fips_aes_ecb_from_zero); ++n)
1697 dprintk("%02x ", fips_aes_ecb_from_zero[n]);
1698 dprintk("\n");
1700 if (!memcmp(src, fips_aes_ecb_from_zero, sizeof(fips_aes_ecb_from_zero))) {
1701 printk(KERN_INFO "%s: AES 128 ECB test has been successfully "
1702 "passed.\n", dev->name);
1703 return 0;
1706 err_out:
1707 printk(KERN_INFO "%s: AES 128 ECB test has been failed.\n", dev->name);
1708 return -1;
1711 static int hifn_start_device(struct hifn_device *dev)
1713 int err;
1715 hifn_reset_dma(dev, 1);
1717 err = hifn_enable_crypto(dev);
1718 if (err)
1719 return err;
1721 hifn_reset_puc(dev);
1723 hifn_init_dma(dev);
1725 hifn_init_registers(dev);
1727 hifn_init_pubrng(dev);
1729 return 0;
1732 static int ablkcipher_get(void *saddr, unsigned int *srestp, unsigned int offset,
1733 struct scatterlist *dst, unsigned int size, unsigned int *nbytesp)
1735 unsigned int srest = *srestp, nbytes = *nbytesp, copy;
1736 void *daddr;
1737 int idx = 0;
1739 if (srest < size || size > nbytes)
1740 return -EINVAL;
1742 while (size) {
1743 copy = min(srest, min(dst->length, size));
1745 daddr = kmap_atomic(sg_page(dst), KM_IRQ0);
1746 memcpy(daddr + dst->offset + offset, saddr, copy);
1747 kunmap_atomic(daddr, KM_IRQ0);
1749 nbytes -= copy;
1750 size -= copy;
1751 srest -= copy;
1752 saddr += copy;
1753 offset = 0;
1755 dprintk("%s: copy: %u, size: %u, srest: %u, nbytes: %u.\n",
1756 __func__, copy, size, srest, nbytes);
1758 dst++;
1759 idx++;
1762 *nbytesp = nbytes;
1763 *srestp = srest;
1765 return idx;
1768 static void hifn_process_ready(struct ablkcipher_request *req, int error)
1770 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1771 struct hifn_request_context *rctx = ablkcipher_request_ctx(req);
1772 struct hifn_device *dev;
1774 dprintk("%s: req: %p, ctx: %p rctx: %p.\n", __func__, req, ctx, rctx);
1776 dev = ctx->dev;
1777 dprintk("%s: req: %p, started: %d.\n", __func__, req, dev->started);
1779 if (--dev->started < 0)
1780 BUG();
1782 if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1783 unsigned int nbytes = req->nbytes;
1784 int idx = 0, err;
1785 struct scatterlist *dst, *t;
1786 void *saddr;
1788 while (nbytes) {
1789 t = &rctx->walk.cache[idx];
1790 dst = &req->dst[idx];
1792 dprintk("\n%s: sg_page(t): %p, t->length: %u, "
1793 "sg_page(dst): %p, dst->length: %u, "
1794 "nbytes: %u.\n",
1795 __func__, sg_page(t), t->length,
1796 sg_page(dst), dst->length, nbytes);
1798 if (!t->length) {
1799 nbytes -= min(dst->length, nbytes);
1800 idx++;
1801 continue;
1804 saddr = kmap_atomic(sg_page(t), KM_IRQ1);
1806 err = ablkcipher_get(saddr, &t->length, t->offset,
1807 dst, nbytes, &nbytes);
1808 if (err < 0) {
1809 kunmap_atomic(saddr, KM_IRQ1);
1810 break;
1813 idx += err;
1814 kunmap_atomic(saddr, KM_IRQ1);
1817 ablkcipher_walk_exit(&rctx->walk);
1820 req->base.complete(&req->base, error);
1823 static void hifn_check_for_completion(struct hifn_device *dev, int error)
1825 int i;
1826 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1828 for (i=0; i<HIFN_D_RES_RSIZE; ++i) {
1829 struct hifn_desc *d = &dma->resr[i];
1831 if (!(d->l & __cpu_to_le32(HIFN_D_VALID)) && dev->sa[i]) {
1832 dev->success++;
1833 dev->reset = 0;
1834 hifn_process_ready(dev->sa[i], error);
1835 dev->sa[i] = NULL;
1838 if (d->l & __cpu_to_le32(HIFN_D_DESTOVER | HIFN_D_OVER))
1839 if (printk_ratelimit())
1840 printk("%s: overflow detected [d: %u, o: %u] "
1841 "at %d resr: l: %08x, p: %08x.\n",
1842 dev->name,
1843 !!(d->l & __cpu_to_le32(HIFN_D_DESTOVER)),
1844 !!(d->l & __cpu_to_le32(HIFN_D_OVER)),
1845 i, d->l, d->p);
1849 static void hifn_clear_rings(struct hifn_device *dev)
1851 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1852 int i, u;
1854 dprintk("%s: ring cleanup 1: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1855 "k: %d.%d.%d.%d.\n",
1856 dev->name,
1857 dma->cmdi, dma->srci, dma->dsti, dma->resi,
1858 dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1859 dma->cmdk, dma->srck, dma->dstk, dma->resk);
1861 i = dma->resk; u = dma->resu;
1862 while (u != 0) {
1863 if (dma->resr[i].l & __cpu_to_le32(HIFN_D_VALID))
1864 break;
1866 if (i != HIFN_D_RES_RSIZE)
1867 u--;
1869 if (++i == (HIFN_D_RES_RSIZE + 1))
1870 i = 0;
1872 dma->resk = i; dma->resu = u;
1874 i = dma->srck; u = dma->srcu;
1875 while (u != 0) {
1876 if (i == HIFN_D_SRC_RSIZE)
1877 i = 0;
1878 if (dma->srcr[i].l & __cpu_to_le32(HIFN_D_VALID))
1879 break;
1880 i++, u--;
1882 dma->srck = i; dma->srcu = u;
1884 i = dma->cmdk; u = dma->cmdu;
1885 while (u != 0) {
1886 if (dma->cmdr[i].l & __cpu_to_le32(HIFN_D_VALID))
1887 break;
1888 if (i != HIFN_D_CMD_RSIZE)
1889 u--;
1890 if (++i == (HIFN_D_CMD_RSIZE + 1))
1891 i = 0;
1893 dma->cmdk = i; dma->cmdu = u;
1895 i = dma->dstk; u = dma->dstu;
1896 while (u != 0) {
1897 if (i == HIFN_D_DST_RSIZE)
1898 i = 0;
1899 if (dma->dstr[i].l & __cpu_to_le32(HIFN_D_VALID))
1900 break;
1901 i++, u--;
1903 dma->dstk = i; dma->dstu = u;
1905 dprintk("%s: ring cleanup 2: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1906 "k: %d.%d.%d.%d.\n",
1907 dev->name,
1908 dma->cmdi, dma->srci, dma->dsti, dma->resi,
1909 dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1910 dma->cmdk, dma->srck, dma->dstk, dma->resk);
1913 static void hifn_work(struct work_struct *work)
1915 struct delayed_work *dw = container_of(work, struct delayed_work, work);
1916 struct hifn_device *dev = container_of(dw, struct hifn_device, work);
1917 unsigned long flags;
1918 int reset = 0;
1919 u32 r = 0;
1921 spin_lock_irqsave(&dev->lock, flags);
1922 if (dev->active == 0) {
1923 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1925 if (dma->cmdu == 0 && (dev->flags & HIFN_FLAG_CMD_BUSY)) {
1926 dev->flags &= ~HIFN_FLAG_CMD_BUSY;
1927 r |= HIFN_DMACSR_C_CTRL_DIS;
1929 if (dma->srcu == 0 && (dev->flags & HIFN_FLAG_SRC_BUSY)) {
1930 dev->flags &= ~HIFN_FLAG_SRC_BUSY;
1931 r |= HIFN_DMACSR_S_CTRL_DIS;
1933 if (dma->dstu == 0 && (dev->flags & HIFN_FLAG_DST_BUSY)) {
1934 dev->flags &= ~HIFN_FLAG_DST_BUSY;
1935 r |= HIFN_DMACSR_D_CTRL_DIS;
1937 if (dma->resu == 0 && (dev->flags & HIFN_FLAG_RES_BUSY)) {
1938 dev->flags &= ~HIFN_FLAG_RES_BUSY;
1939 r |= HIFN_DMACSR_R_CTRL_DIS;
1941 if (r)
1942 hifn_write_1(dev, HIFN_1_DMA_CSR, r);
1943 } else
1944 dev->active--;
1946 if (dev->prev_success == dev->success && dev->started)
1947 reset = 1;
1948 dev->prev_success = dev->success;
1949 spin_unlock_irqrestore(&dev->lock, flags);
1951 if (reset) {
1952 dprintk("%s: r: %08x, active: %d, started: %d, "
1953 "success: %lu: reset: %d.\n",
1954 dev->name, r, dev->active, dev->started,
1955 dev->success, reset);
1957 if (++dev->reset >= 5) {
1958 dprintk("%s: really hard reset.\n", dev->name);
1959 hifn_reset_dma(dev, 1);
1960 hifn_stop_device(dev);
1961 hifn_start_device(dev);
1962 dev->reset = 0;
1965 spin_lock_irqsave(&dev->lock, flags);
1966 hifn_check_for_completion(dev, -EBUSY);
1967 hifn_clear_rings(dev);
1968 dev->started = 0;
1969 spin_unlock_irqrestore(&dev->lock, flags);
1972 schedule_delayed_work(&dev->work, HZ);
1975 static irqreturn_t hifn_interrupt(int irq, void *data)
1977 struct hifn_device *dev = (struct hifn_device *)data;
1978 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1979 u32 dmacsr, restart;
1981 dmacsr = hifn_read_1(dev, HIFN_1_DMA_CSR);
1983 dprintk("%s: 1 dmacsr: %08x, dmareg: %08x, res: %08x [%d], "
1984 "i: %d.%d.%d.%d, u: %d.%d.%d.%d.\n",
1985 dev->name, dmacsr, dev->dmareg, dmacsr & dev->dmareg, dma->cmdi,
1986 dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1987 dma->cmdi, dma->srci, dma->dsti, dma->resi);
1989 if ((dmacsr & dev->dmareg) == 0)
1990 return IRQ_NONE;
1992 hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & dev->dmareg);
1994 if (dmacsr & HIFN_DMACSR_ENGINE)
1995 hifn_write_0(dev, HIFN_0_PUISR, hifn_read_0(dev, HIFN_0_PUISR));
1996 if (dmacsr & HIFN_DMACSR_PUBDONE)
1997 hifn_write_1(dev, HIFN_1_PUB_STATUS,
1998 hifn_read_1(dev, HIFN_1_PUB_STATUS) | HIFN_PUBSTS_DONE);
2000 restart = dmacsr & (HIFN_DMACSR_R_OVER | HIFN_DMACSR_D_OVER);
2001 if (restart) {
2002 u32 puisr = hifn_read_0(dev, HIFN_0_PUISR);
2004 if (printk_ratelimit())
2005 printk("%s: overflow: r: %d, d: %d, puisr: %08x, d: %u.\n",
2006 dev->name, !!(dmacsr & HIFN_DMACSR_R_OVER),
2007 !!(dmacsr & HIFN_DMACSR_D_OVER),
2008 puisr, !!(puisr & HIFN_PUISR_DSTOVER));
2009 if (!!(puisr & HIFN_PUISR_DSTOVER))
2010 hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
2011 hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & (HIFN_DMACSR_R_OVER |
2012 HIFN_DMACSR_D_OVER));
2015 restart = dmacsr & (HIFN_DMACSR_C_ABORT | HIFN_DMACSR_S_ABORT |
2016 HIFN_DMACSR_D_ABORT | HIFN_DMACSR_R_ABORT);
2017 if (restart) {
2018 if (printk_ratelimit())
2019 printk("%s: abort: c: %d, s: %d, d: %d, r: %d.\n",
2020 dev->name, !!(dmacsr & HIFN_DMACSR_C_ABORT),
2021 !!(dmacsr & HIFN_DMACSR_S_ABORT),
2022 !!(dmacsr & HIFN_DMACSR_D_ABORT),
2023 !!(dmacsr & HIFN_DMACSR_R_ABORT));
2024 hifn_reset_dma(dev, 1);
2025 hifn_init_dma(dev);
2026 hifn_init_registers(dev);
2029 if ((dmacsr & HIFN_DMACSR_C_WAIT) && (dma->cmdu == 0)) {
2030 dprintk("%s: wait on command.\n", dev->name);
2031 dev->dmareg &= ~(HIFN_DMAIER_C_WAIT);
2032 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
2035 tasklet_schedule(&dev->tasklet);
2036 hifn_clear_rings(dev);
2038 return IRQ_HANDLED;
2041 static void hifn_flush(struct hifn_device *dev)
2043 unsigned long flags;
2044 struct crypto_async_request *async_req;
2045 struct hifn_context *ctx;
2046 struct ablkcipher_request *req;
2047 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
2048 int i;
2050 spin_lock_irqsave(&dev->lock, flags);
2051 for (i=0; i<HIFN_D_RES_RSIZE; ++i) {
2052 struct hifn_desc *d = &dma->resr[i];
2054 if (dev->sa[i]) {
2055 hifn_process_ready(dev->sa[i],
2056 (d->l & __cpu_to_le32(HIFN_D_VALID))?-ENODEV:0);
2060 while ((async_req = crypto_dequeue_request(&dev->queue))) {
2061 ctx = crypto_tfm_ctx(async_req->tfm);
2062 req = container_of(async_req, struct ablkcipher_request, base);
2064 hifn_process_ready(req, -ENODEV);
2066 spin_unlock_irqrestore(&dev->lock, flags);
2069 static int hifn_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
2070 unsigned int len)
2072 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
2073 struct hifn_context *ctx = crypto_tfm_ctx(tfm);
2074 struct hifn_device *dev = ctx->dev;
2076 if (len > HIFN_MAX_CRYPT_KEY_LENGTH) {
2077 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
2078 return -1;
2081 if (len == HIFN_DES_KEY_LENGTH) {
2082 u32 tmp[DES_EXPKEY_WORDS];
2083 int ret = des_ekey(tmp, key);
2085 if (unlikely(ret == 0) && (tfm->crt_flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
2086 tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
2087 return -EINVAL;
2091 dev->flags &= ~HIFN_FLAG_OLD_KEY;
2093 memcpy(ctx->key, key, len);
2094 ctx->keysize = len;
2096 return 0;
2099 static int hifn_handle_req(struct ablkcipher_request *req)
2101 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2102 struct hifn_device *dev = ctx->dev;
2103 int err = -EAGAIN;
2105 if (dev->started + DIV_ROUND_UP(req->nbytes, PAGE_SIZE) <= HIFN_QUEUE_LENGTH)
2106 err = hifn_setup_session(req);
2108 if (err == -EAGAIN) {
2109 unsigned long flags;
2111 spin_lock_irqsave(&dev->lock, flags);
2112 err = ablkcipher_enqueue_request(&dev->queue, req);
2113 spin_unlock_irqrestore(&dev->lock, flags);
2116 return err;
2119 static int hifn_setup_crypto_req(struct ablkcipher_request *req, u8 op,
2120 u8 type, u8 mode)
2122 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2123 struct hifn_request_context *rctx = ablkcipher_request_ctx(req);
2124 unsigned ivsize;
2126 ivsize = crypto_ablkcipher_ivsize(crypto_ablkcipher_reqtfm(req));
2128 if (req->info && mode != ACRYPTO_MODE_ECB) {
2129 if (type == ACRYPTO_TYPE_AES_128)
2130 ivsize = HIFN_AES_IV_LENGTH;
2131 else if (type == ACRYPTO_TYPE_DES)
2132 ivsize = HIFN_DES_KEY_LENGTH;
2133 else if (type == ACRYPTO_TYPE_3DES)
2134 ivsize = HIFN_3DES_KEY_LENGTH;
2137 if (ctx->keysize != 16 && type == ACRYPTO_TYPE_AES_128) {
2138 if (ctx->keysize == 24)
2139 type = ACRYPTO_TYPE_AES_192;
2140 else if (ctx->keysize == 32)
2141 type = ACRYPTO_TYPE_AES_256;
2144 rctx->op = op;
2145 rctx->mode = mode;
2146 rctx->type = type;
2147 rctx->iv = req->info;
2148 rctx->ivsize = ivsize;
2151 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2152 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2153 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2156 return hifn_handle_req(req);
2159 static int hifn_process_queue(struct hifn_device *dev)
2161 struct crypto_async_request *async_req;
2162 struct hifn_context *ctx;
2163 struct ablkcipher_request *req;
2164 unsigned long flags;
2165 int err = 0;
2167 while (dev->started < HIFN_QUEUE_LENGTH) {
2168 spin_lock_irqsave(&dev->lock, flags);
2169 async_req = crypto_dequeue_request(&dev->queue);
2170 spin_unlock_irqrestore(&dev->lock, flags);
2172 if (!async_req)
2173 break;
2175 ctx = crypto_tfm_ctx(async_req->tfm);
2176 req = container_of(async_req, struct ablkcipher_request, base);
2178 err = hifn_handle_req(req);
2179 if (err)
2180 break;
2183 return err;
2186 static int hifn_setup_crypto(struct ablkcipher_request *req, u8 op,
2187 u8 type, u8 mode)
2189 int err;
2190 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2191 struct hifn_device *dev = ctx->dev;
2193 err = hifn_setup_crypto_req(req, op, type, mode);
2194 if (err)
2195 return err;
2197 if (dev->started < HIFN_QUEUE_LENGTH && dev->queue.qlen)
2198 hifn_process_queue(dev);
2200 return -EINPROGRESS;
2204 * AES ecryption functions.
2206 static inline int hifn_encrypt_aes_ecb(struct ablkcipher_request *req)
2208 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2209 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2211 static inline int hifn_encrypt_aes_cbc(struct ablkcipher_request *req)
2213 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2214 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2216 static inline int hifn_encrypt_aes_cfb(struct ablkcipher_request *req)
2218 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2219 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
2221 static inline int hifn_encrypt_aes_ofb(struct ablkcipher_request *req)
2223 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2224 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
2228 * AES decryption functions.
2230 static inline int hifn_decrypt_aes_ecb(struct ablkcipher_request *req)
2232 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2233 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2235 static inline int hifn_decrypt_aes_cbc(struct ablkcipher_request *req)
2237 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2238 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2240 static inline int hifn_decrypt_aes_cfb(struct ablkcipher_request *req)
2242 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2243 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
2245 static inline int hifn_decrypt_aes_ofb(struct ablkcipher_request *req)
2247 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2248 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
2252 * DES ecryption functions.
2254 static inline int hifn_encrypt_des_ecb(struct ablkcipher_request *req)
2256 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2257 ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2259 static inline int hifn_encrypt_des_cbc(struct ablkcipher_request *req)
2261 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2262 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2264 static inline int hifn_encrypt_des_cfb(struct ablkcipher_request *req)
2266 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2267 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
2269 static inline int hifn_encrypt_des_ofb(struct ablkcipher_request *req)
2271 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2272 ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
2276 * DES decryption functions.
2278 static inline int hifn_decrypt_des_ecb(struct ablkcipher_request *req)
2280 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2281 ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2283 static inline int hifn_decrypt_des_cbc(struct ablkcipher_request *req)
2285 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2286 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2288 static inline int hifn_decrypt_des_cfb(struct ablkcipher_request *req)
2290 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2291 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
2293 static inline int hifn_decrypt_des_ofb(struct ablkcipher_request *req)
2295 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2296 ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
2300 * 3DES ecryption functions.
2302 static inline int hifn_encrypt_3des_ecb(struct ablkcipher_request *req)
2304 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2305 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2307 static inline int hifn_encrypt_3des_cbc(struct ablkcipher_request *req)
2309 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2310 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2312 static inline int hifn_encrypt_3des_cfb(struct ablkcipher_request *req)
2314 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2315 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
2317 static inline int hifn_encrypt_3des_ofb(struct ablkcipher_request *req)
2319 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2320 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
2324 * 3DES decryption functions.
2326 static inline int hifn_decrypt_3des_ecb(struct ablkcipher_request *req)
2328 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2329 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2331 static inline int hifn_decrypt_3des_cbc(struct ablkcipher_request *req)
2333 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2334 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2336 static inline int hifn_decrypt_3des_cfb(struct ablkcipher_request *req)
2338 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2339 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
2341 static inline int hifn_decrypt_3des_ofb(struct ablkcipher_request *req)
2343 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2344 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
2347 struct hifn_alg_template
2349 char name[CRYPTO_MAX_ALG_NAME];
2350 char drv_name[CRYPTO_MAX_ALG_NAME];
2351 unsigned int bsize;
2352 struct ablkcipher_alg ablkcipher;
2355 static struct hifn_alg_template hifn_alg_templates[] = {
2357 * 3DES ECB, CBC, CFB and OFB modes.
2360 .name = "cfb(des3_ede)", .drv_name = "cfb-3des", .bsize = 8,
2361 .ablkcipher = {
2362 .min_keysize = HIFN_3DES_KEY_LENGTH,
2363 .max_keysize = HIFN_3DES_KEY_LENGTH,
2364 .setkey = hifn_setkey,
2365 .encrypt = hifn_encrypt_3des_cfb,
2366 .decrypt = hifn_decrypt_3des_cfb,
2370 .name = "ofb(des3_ede)", .drv_name = "ofb-3des", .bsize = 8,
2371 .ablkcipher = {
2372 .min_keysize = HIFN_3DES_KEY_LENGTH,
2373 .max_keysize = HIFN_3DES_KEY_LENGTH,
2374 .setkey = hifn_setkey,
2375 .encrypt = hifn_encrypt_3des_ofb,
2376 .decrypt = hifn_decrypt_3des_ofb,
2380 .name = "cbc(des3_ede)", .drv_name = "cbc-3des", .bsize = 8,
2381 .ablkcipher = {
2382 .ivsize = HIFN_IV_LENGTH,
2383 .min_keysize = HIFN_3DES_KEY_LENGTH,
2384 .max_keysize = HIFN_3DES_KEY_LENGTH,
2385 .setkey = hifn_setkey,
2386 .encrypt = hifn_encrypt_3des_cbc,
2387 .decrypt = hifn_decrypt_3des_cbc,
2391 .name = "ecb(des3_ede)", .drv_name = "ecb-3des", .bsize = 8,
2392 .ablkcipher = {
2393 .min_keysize = HIFN_3DES_KEY_LENGTH,
2394 .max_keysize = HIFN_3DES_KEY_LENGTH,
2395 .setkey = hifn_setkey,
2396 .encrypt = hifn_encrypt_3des_ecb,
2397 .decrypt = hifn_decrypt_3des_ecb,
2402 * DES ECB, CBC, CFB and OFB modes.
2405 .name = "cfb(des)", .drv_name = "cfb-des", .bsize = 8,
2406 .ablkcipher = {
2407 .min_keysize = HIFN_DES_KEY_LENGTH,
2408 .max_keysize = HIFN_DES_KEY_LENGTH,
2409 .setkey = hifn_setkey,
2410 .encrypt = hifn_encrypt_des_cfb,
2411 .decrypt = hifn_decrypt_des_cfb,
2415 .name = "ofb(des)", .drv_name = "ofb-des", .bsize = 8,
2416 .ablkcipher = {
2417 .min_keysize = HIFN_DES_KEY_LENGTH,
2418 .max_keysize = HIFN_DES_KEY_LENGTH,
2419 .setkey = hifn_setkey,
2420 .encrypt = hifn_encrypt_des_ofb,
2421 .decrypt = hifn_decrypt_des_ofb,
2425 .name = "cbc(des)", .drv_name = "cbc-des", .bsize = 8,
2426 .ablkcipher = {
2427 .ivsize = HIFN_IV_LENGTH,
2428 .min_keysize = HIFN_DES_KEY_LENGTH,
2429 .max_keysize = HIFN_DES_KEY_LENGTH,
2430 .setkey = hifn_setkey,
2431 .encrypt = hifn_encrypt_des_cbc,
2432 .decrypt = hifn_decrypt_des_cbc,
2436 .name = "ecb(des)", .drv_name = "ecb-des", .bsize = 8,
2437 .ablkcipher = {
2438 .min_keysize = HIFN_DES_KEY_LENGTH,
2439 .max_keysize = HIFN_DES_KEY_LENGTH,
2440 .setkey = hifn_setkey,
2441 .encrypt = hifn_encrypt_des_ecb,
2442 .decrypt = hifn_decrypt_des_ecb,
2447 * AES ECB, CBC, CFB and OFB modes.
2450 .name = "ecb(aes)", .drv_name = "ecb-aes", .bsize = 16,
2451 .ablkcipher = {
2452 .min_keysize = AES_MIN_KEY_SIZE,
2453 .max_keysize = AES_MAX_KEY_SIZE,
2454 .setkey = hifn_setkey,
2455 .encrypt = hifn_encrypt_aes_ecb,
2456 .decrypt = hifn_decrypt_aes_ecb,
2460 .name = "cbc(aes)", .drv_name = "cbc-aes", .bsize = 16,
2461 .ablkcipher = {
2462 .ivsize = HIFN_AES_IV_LENGTH,
2463 .min_keysize = AES_MIN_KEY_SIZE,
2464 .max_keysize = AES_MAX_KEY_SIZE,
2465 .setkey = hifn_setkey,
2466 .encrypt = hifn_encrypt_aes_cbc,
2467 .decrypt = hifn_decrypt_aes_cbc,
2471 .name = "cfb(aes)", .drv_name = "cfb-aes", .bsize = 16,
2472 .ablkcipher = {
2473 .min_keysize = AES_MIN_KEY_SIZE,
2474 .max_keysize = AES_MAX_KEY_SIZE,
2475 .setkey = hifn_setkey,
2476 .encrypt = hifn_encrypt_aes_cfb,
2477 .decrypt = hifn_decrypt_aes_cfb,
2481 .name = "ofb(aes)", .drv_name = "ofb-aes", .bsize = 16,
2482 .ablkcipher = {
2483 .min_keysize = AES_MIN_KEY_SIZE,
2484 .max_keysize = AES_MAX_KEY_SIZE,
2485 .setkey = hifn_setkey,
2486 .encrypt = hifn_encrypt_aes_ofb,
2487 .decrypt = hifn_decrypt_aes_ofb,
2492 static int hifn_cra_init(struct crypto_tfm *tfm)
2494 struct crypto_alg *alg = tfm->__crt_alg;
2495 struct hifn_crypto_alg *ha = crypto_alg_to_hifn(alg);
2496 struct hifn_context *ctx = crypto_tfm_ctx(tfm);
2498 ctx->dev = ha->dev;
2499 tfm->crt_ablkcipher.reqsize = sizeof(struct hifn_request_context);
2500 return 0;
2503 static int hifn_alg_alloc(struct hifn_device *dev, struct hifn_alg_template *t)
2505 struct hifn_crypto_alg *alg;
2506 int err;
2508 alg = kzalloc(sizeof(struct hifn_crypto_alg), GFP_KERNEL);
2509 if (!alg)
2510 return -ENOMEM;
2512 snprintf(alg->alg.cra_name, CRYPTO_MAX_ALG_NAME, "%s", t->name);
2513 snprintf(alg->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-%s",
2514 t->drv_name, dev->name);
2516 alg->alg.cra_priority = 300;
2517 alg->alg.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC;
2518 alg->alg.cra_blocksize = t->bsize;
2519 alg->alg.cra_ctxsize = sizeof(struct hifn_context);
2520 alg->alg.cra_alignmask = 0;
2521 alg->alg.cra_type = &crypto_ablkcipher_type;
2522 alg->alg.cra_module = THIS_MODULE;
2523 alg->alg.cra_u.ablkcipher = t->ablkcipher;
2524 alg->alg.cra_init = hifn_cra_init;
2526 alg->dev = dev;
2528 list_add_tail(&alg->entry, &dev->alg_list);
2530 err = crypto_register_alg(&alg->alg);
2531 if (err) {
2532 list_del(&alg->entry);
2533 kfree(alg);
2536 return err;
2539 static void hifn_unregister_alg(struct hifn_device *dev)
2541 struct hifn_crypto_alg *a, *n;
2543 list_for_each_entry_safe(a, n, &dev->alg_list, entry) {
2544 list_del(&a->entry);
2545 crypto_unregister_alg(&a->alg);
2546 kfree(a);
2550 static int hifn_register_alg(struct hifn_device *dev)
2552 int i, err;
2554 for (i=0; i<ARRAY_SIZE(hifn_alg_templates); ++i) {
2555 err = hifn_alg_alloc(dev, &hifn_alg_templates[i]);
2556 if (err)
2557 goto err_out_exit;
2560 return 0;
2562 err_out_exit:
2563 hifn_unregister_alg(dev);
2564 return err;
2567 static void hifn_tasklet_callback(unsigned long data)
2569 struct hifn_device *dev = (struct hifn_device *)data;
2572 * This is ok to call this without lock being held,
2573 * althogh it modifies some parameters used in parallel,
2574 * (like dev->success), but they are used in process
2575 * context or update is atomic (like setting dev->sa[i] to NULL).
2577 hifn_check_for_completion(dev, 0);
2580 static int hifn_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2582 int err, i;
2583 struct hifn_device *dev;
2584 char name[8];
2586 err = pci_enable_device(pdev);
2587 if (err)
2588 return err;
2589 pci_set_master(pdev);
2591 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
2592 if (err)
2593 goto err_out_disable_pci_device;
2595 snprintf(name, sizeof(name), "hifn%d",
2596 atomic_inc_return(&hifn_dev_number)-1);
2598 err = pci_request_regions(pdev, name);
2599 if (err)
2600 goto err_out_disable_pci_device;
2602 if (pci_resource_len(pdev, 0) < HIFN_BAR0_SIZE ||
2603 pci_resource_len(pdev, 1) < HIFN_BAR1_SIZE ||
2604 pci_resource_len(pdev, 2) < HIFN_BAR2_SIZE) {
2605 dprintk("%s: Broken hardware - I/O regions are too small.\n",
2606 pci_name(pdev));
2607 err = -ENODEV;
2608 goto err_out_free_regions;
2611 dev = kzalloc(sizeof(struct hifn_device) + sizeof(struct crypto_alg),
2612 GFP_KERNEL);
2613 if (!dev) {
2614 err = -ENOMEM;
2615 goto err_out_free_regions;
2618 INIT_LIST_HEAD(&dev->alg_list);
2620 snprintf(dev->name, sizeof(dev->name), "%s", name);
2621 spin_lock_init(&dev->lock);
2623 for (i=0; i<3; ++i) {
2624 unsigned long addr, size;
2626 addr = pci_resource_start(pdev, i);
2627 size = pci_resource_len(pdev, i);
2629 dev->bar[i] = ioremap_nocache(addr, size);
2630 if (!dev->bar[i])
2631 goto err_out_unmap_bars;
2634 dev->result_mem = __get_free_pages(GFP_KERNEL, HIFN_MAX_RESULT_ORDER);
2635 if (!dev->result_mem) {
2636 dprintk("Failed to allocate %d pages for result_mem.\n",
2637 HIFN_MAX_RESULT_ORDER);
2638 goto err_out_unmap_bars;
2640 memset((void *)dev->result_mem, 0, PAGE_SIZE*(1<<HIFN_MAX_RESULT_ORDER));
2642 dev->dst = pci_map_single(pdev, (void *)dev->result_mem,
2643 PAGE_SIZE << HIFN_MAX_RESULT_ORDER, PCI_DMA_FROMDEVICE);
2645 dev->desc_virt = pci_alloc_consistent(pdev, sizeof(struct hifn_dma),
2646 &dev->desc_dma);
2647 if (!dev->desc_virt) {
2648 dprintk("Failed to allocate descriptor rings.\n");
2649 goto err_out_free_result_pages;
2651 memset(dev->desc_virt, 0, sizeof(struct hifn_dma));
2653 dev->pdev = pdev;
2654 dev->irq = pdev->irq;
2656 for (i=0; i<HIFN_D_RES_RSIZE; ++i)
2657 dev->sa[i] = NULL;
2659 pci_set_drvdata(pdev, dev);
2661 tasklet_init(&dev->tasklet, hifn_tasklet_callback, (unsigned long)dev);
2663 crypto_init_queue(&dev->queue, 1);
2665 err = request_irq(dev->irq, hifn_interrupt, IRQF_SHARED, dev->name, dev);
2666 if (err) {
2667 dprintk("Failed to request IRQ%d: err: %d.\n", dev->irq, err);
2668 dev->irq = 0;
2669 goto err_out_free_desc;
2672 err = hifn_start_device(dev);
2673 if (err)
2674 goto err_out_free_irq;
2676 err = hifn_test(dev, 1, 0);
2677 if (err)
2678 goto err_out_stop_device;
2680 err = hifn_register_rng(dev);
2681 if (err)
2682 goto err_out_stop_device;
2684 err = hifn_register_alg(dev);
2685 if (err)
2686 goto err_out_unregister_rng;
2688 INIT_DELAYED_WORK(&dev->work, hifn_work);
2689 schedule_delayed_work(&dev->work, HZ);
2691 dprintk("HIFN crypto accelerator card at %s has been "
2692 "successfully registered as %s.\n",
2693 pci_name(pdev), dev->name);
2695 return 0;
2697 err_out_unregister_rng:
2698 hifn_unregister_rng(dev);
2699 err_out_stop_device:
2700 hifn_reset_dma(dev, 1);
2701 hifn_stop_device(dev);
2702 err_out_free_irq:
2703 free_irq(dev->irq, dev->name);
2704 tasklet_kill(&dev->tasklet);
2705 err_out_free_desc:
2706 pci_free_consistent(pdev, sizeof(struct hifn_dma),
2707 dev->desc_virt, dev->desc_dma);
2709 err_out_free_result_pages:
2710 pci_unmap_single(pdev, dev->dst, PAGE_SIZE << HIFN_MAX_RESULT_ORDER,
2711 PCI_DMA_FROMDEVICE);
2712 free_pages(dev->result_mem, HIFN_MAX_RESULT_ORDER);
2714 err_out_unmap_bars:
2715 for (i=0; i<3; ++i)
2716 if (dev->bar[i])
2717 iounmap(dev->bar[i]);
2719 err_out_free_regions:
2720 pci_release_regions(pdev);
2722 err_out_disable_pci_device:
2723 pci_disable_device(pdev);
2725 return err;
2728 static void hifn_remove(struct pci_dev *pdev)
2730 int i;
2731 struct hifn_device *dev;
2733 dev = pci_get_drvdata(pdev);
2735 if (dev) {
2736 cancel_delayed_work(&dev->work);
2737 flush_scheduled_work();
2739 hifn_unregister_rng(dev);
2740 hifn_unregister_alg(dev);
2741 hifn_reset_dma(dev, 1);
2742 hifn_stop_device(dev);
2744 free_irq(dev->irq, dev->name);
2745 tasklet_kill(&dev->tasklet);
2747 hifn_flush(dev);
2749 pci_free_consistent(pdev, sizeof(struct hifn_dma),
2750 dev->desc_virt, dev->desc_dma);
2751 pci_unmap_single(pdev, dev->dst,
2752 PAGE_SIZE << HIFN_MAX_RESULT_ORDER,
2753 PCI_DMA_FROMDEVICE);
2754 free_pages(dev->result_mem, HIFN_MAX_RESULT_ORDER);
2755 for (i=0; i<3; ++i)
2756 if (dev->bar[i])
2757 iounmap(dev->bar[i]);
2759 kfree(dev);
2762 pci_release_regions(pdev);
2763 pci_disable_device(pdev);
2766 static struct pci_device_id hifn_pci_tbl[] = {
2767 { PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7955) },
2768 { PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7956) },
2769 { 0 }
2771 MODULE_DEVICE_TABLE(pci, hifn_pci_tbl);
2773 static struct pci_driver hifn_pci_driver = {
2774 .name = "hifn795x",
2775 .id_table = hifn_pci_tbl,
2776 .probe = hifn_probe,
2777 .remove = __devexit_p(hifn_remove),
2780 static int __devinit hifn_init(void)
2782 unsigned int freq;
2783 int err;
2785 if (sizeof(dma_addr_t) > 4) {
2786 printk(KERN_INFO "HIFN supports only 32-bit addresses.\n");
2787 return -EINVAL;
2790 if (strncmp(hifn_pll_ref, "ext", 3) &&
2791 strncmp(hifn_pll_ref, "pci", 3)) {
2792 printk(KERN_ERR "hifn795x: invalid hifn_pll_ref clock, "
2793 "must be pci or ext");
2794 return -EINVAL;
2798 * For the 7955/7956 the reference clock frequency must be in the
2799 * range of 20MHz-100MHz. For the 7954 the upper bound is 66.67MHz,
2800 * but this chip is currently not supported.
2802 if (hifn_pll_ref[3] != '\0') {
2803 freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
2804 if (freq < 20 || freq > 100) {
2805 printk(KERN_ERR "hifn795x: invalid hifn_pll_ref "
2806 "frequency, must be in the range "
2807 "of 20-100");
2808 return -EINVAL;
2812 err = pci_register_driver(&hifn_pci_driver);
2813 if (err < 0) {
2814 dprintk("Failed to register PCI driver for %s device.\n",
2815 hifn_pci_driver.name);
2816 return -ENODEV;
2819 printk(KERN_INFO "Driver for HIFN 795x crypto accelerator chip "
2820 "has been successfully registered.\n");
2822 return 0;
2825 static void __devexit hifn_fini(void)
2827 pci_unregister_driver(&hifn_pci_driver);
2829 printk(KERN_INFO "Driver for HIFN 795x crypto accelerator chip "
2830 "has been successfully unregistered.\n");
2833 module_init(hifn_init);
2834 module_exit(hifn_fini);
2836 MODULE_LICENSE("GPL");
2837 MODULE_AUTHOR("Evgeniy Polyakov <johnpol@2ka.mipt.ru>");
2838 MODULE_DESCRIPTION("Driver for HIFN 795x crypto accelerator chip.");