[PATCH] clocksource: Add verification (watchdog) helper
[linux-2.6/linux-2.6-openrd.git] / kernel / timer.c
blobb68a21a82e178f2acc8ba21a861da2c0d8b3d48e
1 /*
2 * linux/kernel/timer.c
4 * Kernel internal timers, kernel timekeeping, basic process system calls
6 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
22 #include <linux/kernel_stat.h>
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
27 #include <linux/mm.h>
28 #include <linux/swap.h>
29 #include <linux/notifier.h>
30 #include <linux/thread_info.h>
31 #include <linux/time.h>
32 #include <linux/jiffies.h>
33 #include <linux/posix-timers.h>
34 #include <linux/cpu.h>
35 #include <linux/syscalls.h>
36 #include <linux/delay.h>
38 #include <asm/uaccess.h>
39 #include <asm/unistd.h>
40 #include <asm/div64.h>
41 #include <asm/timex.h>
42 #include <asm/io.h>
44 u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
46 EXPORT_SYMBOL(jiffies_64);
49 * per-CPU timer vector definitions:
51 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
52 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
53 #define TVN_SIZE (1 << TVN_BITS)
54 #define TVR_SIZE (1 << TVR_BITS)
55 #define TVN_MASK (TVN_SIZE - 1)
56 #define TVR_MASK (TVR_SIZE - 1)
58 typedef struct tvec_s {
59 struct list_head vec[TVN_SIZE];
60 } tvec_t;
62 typedef struct tvec_root_s {
63 struct list_head vec[TVR_SIZE];
64 } tvec_root_t;
66 struct tvec_t_base_s {
67 spinlock_t lock;
68 struct timer_list *running_timer;
69 unsigned long timer_jiffies;
70 tvec_root_t tv1;
71 tvec_t tv2;
72 tvec_t tv3;
73 tvec_t tv4;
74 tvec_t tv5;
75 } ____cacheline_aligned_in_smp;
77 typedef struct tvec_t_base_s tvec_base_t;
79 tvec_base_t boot_tvec_bases;
80 EXPORT_SYMBOL(boot_tvec_bases);
81 static DEFINE_PER_CPU(tvec_base_t *, tvec_bases) = &boot_tvec_bases;
83 /**
84 * __round_jiffies - function to round jiffies to a full second
85 * @j: the time in (absolute) jiffies that should be rounded
86 * @cpu: the processor number on which the timeout will happen
88 * __round_jiffies() rounds an absolute time in the future (in jiffies)
89 * up or down to (approximately) full seconds. This is useful for timers
90 * for which the exact time they fire does not matter too much, as long as
91 * they fire approximately every X seconds.
93 * By rounding these timers to whole seconds, all such timers will fire
94 * at the same time, rather than at various times spread out. The goal
95 * of this is to have the CPU wake up less, which saves power.
97 * The exact rounding is skewed for each processor to avoid all
98 * processors firing at the exact same time, which could lead
99 * to lock contention or spurious cache line bouncing.
101 * The return value is the rounded version of the @j parameter.
103 unsigned long __round_jiffies(unsigned long j, int cpu)
105 int rem;
106 unsigned long original = j;
109 * We don't want all cpus firing their timers at once hitting the
110 * same lock or cachelines, so we skew each extra cpu with an extra
111 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
112 * already did this.
113 * The skew is done by adding 3*cpunr, then round, then subtract this
114 * extra offset again.
116 j += cpu * 3;
118 rem = j % HZ;
121 * If the target jiffie is just after a whole second (which can happen
122 * due to delays of the timer irq, long irq off times etc etc) then
123 * we should round down to the whole second, not up. Use 1/4th second
124 * as cutoff for this rounding as an extreme upper bound for this.
126 if (rem < HZ/4) /* round down */
127 j = j - rem;
128 else /* round up */
129 j = j - rem + HZ;
131 /* now that we have rounded, subtract the extra skew again */
132 j -= cpu * 3;
134 if (j <= jiffies) /* rounding ate our timeout entirely; */
135 return original;
136 return j;
138 EXPORT_SYMBOL_GPL(__round_jiffies);
141 * __round_jiffies_relative - function to round jiffies to a full second
142 * @j: the time in (relative) jiffies that should be rounded
143 * @cpu: the processor number on which the timeout will happen
145 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
146 * up or down to (approximately) full seconds. This is useful for timers
147 * for which the exact time they fire does not matter too much, as long as
148 * they fire approximately every X seconds.
150 * By rounding these timers to whole seconds, all such timers will fire
151 * at the same time, rather than at various times spread out. The goal
152 * of this is to have the CPU wake up less, which saves power.
154 * The exact rounding is skewed for each processor to avoid all
155 * processors firing at the exact same time, which could lead
156 * to lock contention or spurious cache line bouncing.
158 * The return value is the rounded version of the @j parameter.
160 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
163 * In theory the following code can skip a jiffy in case jiffies
164 * increments right between the addition and the later subtraction.
165 * However since the entire point of this function is to use approximate
166 * timeouts, it's entirely ok to not handle that.
168 return __round_jiffies(j + jiffies, cpu) - jiffies;
170 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
173 * round_jiffies - function to round jiffies to a full second
174 * @j: the time in (absolute) jiffies that should be rounded
176 * round_jiffies() rounds an absolute time in the future (in jiffies)
177 * up or down to (approximately) full seconds. This is useful for timers
178 * for which the exact time they fire does not matter too much, as long as
179 * they fire approximately every X seconds.
181 * By rounding these timers to whole seconds, all such timers will fire
182 * at the same time, rather than at various times spread out. The goal
183 * of this is to have the CPU wake up less, which saves power.
185 * The return value is the rounded version of the @j parameter.
187 unsigned long round_jiffies(unsigned long j)
189 return __round_jiffies(j, raw_smp_processor_id());
191 EXPORT_SYMBOL_GPL(round_jiffies);
194 * round_jiffies_relative - function to round jiffies to a full second
195 * @j: the time in (relative) jiffies that should be rounded
197 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
198 * up or down to (approximately) full seconds. This is useful for timers
199 * for which the exact time they fire does not matter too much, as long as
200 * they fire approximately every X seconds.
202 * By rounding these timers to whole seconds, all such timers will fire
203 * at the same time, rather than at various times spread out. The goal
204 * of this is to have the CPU wake up less, which saves power.
206 * The return value is the rounded version of the @j parameter.
208 unsigned long round_jiffies_relative(unsigned long j)
210 return __round_jiffies_relative(j, raw_smp_processor_id());
212 EXPORT_SYMBOL_GPL(round_jiffies_relative);
215 static inline void set_running_timer(tvec_base_t *base,
216 struct timer_list *timer)
218 #ifdef CONFIG_SMP
219 base->running_timer = timer;
220 #endif
223 static void internal_add_timer(tvec_base_t *base, struct timer_list *timer)
225 unsigned long expires = timer->expires;
226 unsigned long idx = expires - base->timer_jiffies;
227 struct list_head *vec;
229 if (idx < TVR_SIZE) {
230 int i = expires & TVR_MASK;
231 vec = base->tv1.vec + i;
232 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
233 int i = (expires >> TVR_BITS) & TVN_MASK;
234 vec = base->tv2.vec + i;
235 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
236 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
237 vec = base->tv3.vec + i;
238 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
239 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
240 vec = base->tv4.vec + i;
241 } else if ((signed long) idx < 0) {
243 * Can happen if you add a timer with expires == jiffies,
244 * or you set a timer to go off in the past
246 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
247 } else {
248 int i;
249 /* If the timeout is larger than 0xffffffff on 64-bit
250 * architectures then we use the maximum timeout:
252 if (idx > 0xffffffffUL) {
253 idx = 0xffffffffUL;
254 expires = idx + base->timer_jiffies;
256 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
257 vec = base->tv5.vec + i;
260 * Timers are FIFO:
262 list_add_tail(&timer->entry, vec);
266 * init_timer - initialize a timer.
267 * @timer: the timer to be initialized
269 * init_timer() must be done to a timer prior calling *any* of the
270 * other timer functions.
272 void fastcall init_timer(struct timer_list *timer)
274 timer->entry.next = NULL;
275 timer->base = __raw_get_cpu_var(tvec_bases);
277 EXPORT_SYMBOL(init_timer);
279 static inline void detach_timer(struct timer_list *timer,
280 int clear_pending)
282 struct list_head *entry = &timer->entry;
284 __list_del(entry->prev, entry->next);
285 if (clear_pending)
286 entry->next = NULL;
287 entry->prev = LIST_POISON2;
291 * We are using hashed locking: holding per_cpu(tvec_bases).lock
292 * means that all timers which are tied to this base via timer->base are
293 * locked, and the base itself is locked too.
295 * So __run_timers/migrate_timers can safely modify all timers which could
296 * be found on ->tvX lists.
298 * When the timer's base is locked, and the timer removed from list, it is
299 * possible to set timer->base = NULL and drop the lock: the timer remains
300 * locked.
302 static tvec_base_t *lock_timer_base(struct timer_list *timer,
303 unsigned long *flags)
304 __acquires(timer->base->lock)
306 tvec_base_t *base;
308 for (;;) {
309 base = timer->base;
310 if (likely(base != NULL)) {
311 spin_lock_irqsave(&base->lock, *flags);
312 if (likely(base == timer->base))
313 return base;
314 /* The timer has migrated to another CPU */
315 spin_unlock_irqrestore(&base->lock, *flags);
317 cpu_relax();
321 int __mod_timer(struct timer_list *timer, unsigned long expires)
323 tvec_base_t *base, *new_base;
324 unsigned long flags;
325 int ret = 0;
327 BUG_ON(!timer->function);
329 base = lock_timer_base(timer, &flags);
331 if (timer_pending(timer)) {
332 detach_timer(timer, 0);
333 ret = 1;
336 new_base = __get_cpu_var(tvec_bases);
338 if (base != new_base) {
340 * We are trying to schedule the timer on the local CPU.
341 * However we can't change timer's base while it is running,
342 * otherwise del_timer_sync() can't detect that the timer's
343 * handler yet has not finished. This also guarantees that
344 * the timer is serialized wrt itself.
346 if (likely(base->running_timer != timer)) {
347 /* See the comment in lock_timer_base() */
348 timer->base = NULL;
349 spin_unlock(&base->lock);
350 base = new_base;
351 spin_lock(&base->lock);
352 timer->base = base;
356 timer->expires = expires;
357 internal_add_timer(base, timer);
358 spin_unlock_irqrestore(&base->lock, flags);
360 return ret;
363 EXPORT_SYMBOL(__mod_timer);
366 * add_timer_on - start a timer on a particular CPU
367 * @timer: the timer to be added
368 * @cpu: the CPU to start it on
370 * This is not very scalable on SMP. Double adds are not possible.
372 void add_timer_on(struct timer_list *timer, int cpu)
374 tvec_base_t *base = per_cpu(tvec_bases, cpu);
375 unsigned long flags;
377 BUG_ON(timer_pending(timer) || !timer->function);
378 spin_lock_irqsave(&base->lock, flags);
379 timer->base = base;
380 internal_add_timer(base, timer);
381 spin_unlock_irqrestore(&base->lock, flags);
386 * mod_timer - modify a timer's timeout
387 * @timer: the timer to be modified
388 * @expires: new timeout in jiffies
390 * mod_timer() is a more efficient way to update the expire field of an
391 * active timer (if the timer is inactive it will be activated)
393 * mod_timer(timer, expires) is equivalent to:
395 * del_timer(timer); timer->expires = expires; add_timer(timer);
397 * Note that if there are multiple unserialized concurrent users of the
398 * same timer, then mod_timer() is the only safe way to modify the timeout,
399 * since add_timer() cannot modify an already running timer.
401 * The function returns whether it has modified a pending timer or not.
402 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
403 * active timer returns 1.)
405 int mod_timer(struct timer_list *timer, unsigned long expires)
407 BUG_ON(!timer->function);
410 * This is a common optimization triggered by the
411 * networking code - if the timer is re-modified
412 * to be the same thing then just return:
414 if (timer->expires == expires && timer_pending(timer))
415 return 1;
417 return __mod_timer(timer, expires);
420 EXPORT_SYMBOL(mod_timer);
423 * del_timer - deactive a timer.
424 * @timer: the timer to be deactivated
426 * del_timer() deactivates a timer - this works on both active and inactive
427 * timers.
429 * The function returns whether it has deactivated a pending timer or not.
430 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
431 * active timer returns 1.)
433 int del_timer(struct timer_list *timer)
435 tvec_base_t *base;
436 unsigned long flags;
437 int ret = 0;
439 if (timer_pending(timer)) {
440 base = lock_timer_base(timer, &flags);
441 if (timer_pending(timer)) {
442 detach_timer(timer, 1);
443 ret = 1;
445 spin_unlock_irqrestore(&base->lock, flags);
448 return ret;
451 EXPORT_SYMBOL(del_timer);
453 #ifdef CONFIG_SMP
455 * try_to_del_timer_sync - Try to deactivate a timer
456 * @timer: timer do del
458 * This function tries to deactivate a timer. Upon successful (ret >= 0)
459 * exit the timer is not queued and the handler is not running on any CPU.
461 * It must not be called from interrupt contexts.
463 int try_to_del_timer_sync(struct timer_list *timer)
465 tvec_base_t *base;
466 unsigned long flags;
467 int ret = -1;
469 base = lock_timer_base(timer, &flags);
471 if (base->running_timer == timer)
472 goto out;
474 ret = 0;
475 if (timer_pending(timer)) {
476 detach_timer(timer, 1);
477 ret = 1;
479 out:
480 spin_unlock_irqrestore(&base->lock, flags);
482 return ret;
486 * del_timer_sync - deactivate a timer and wait for the handler to finish.
487 * @timer: the timer to be deactivated
489 * This function only differs from del_timer() on SMP: besides deactivating
490 * the timer it also makes sure the handler has finished executing on other
491 * CPUs.
493 * Synchronization rules: Callers must prevent restarting of the timer,
494 * otherwise this function is meaningless. It must not be called from
495 * interrupt contexts. The caller must not hold locks which would prevent
496 * completion of the timer's handler. The timer's handler must not call
497 * add_timer_on(). Upon exit the timer is not queued and the handler is
498 * not running on any CPU.
500 * The function returns whether it has deactivated a pending timer or not.
502 int del_timer_sync(struct timer_list *timer)
504 for (;;) {
505 int ret = try_to_del_timer_sync(timer);
506 if (ret >= 0)
507 return ret;
508 cpu_relax();
512 EXPORT_SYMBOL(del_timer_sync);
513 #endif
515 static int cascade(tvec_base_t *base, tvec_t *tv, int index)
517 /* cascade all the timers from tv up one level */
518 struct timer_list *timer, *tmp;
519 struct list_head tv_list;
521 list_replace_init(tv->vec + index, &tv_list);
524 * We are removing _all_ timers from the list, so we
525 * don't have to detach them individually.
527 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
528 BUG_ON(timer->base != base);
529 internal_add_timer(base, timer);
532 return index;
535 #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
538 * __run_timers - run all expired timers (if any) on this CPU.
539 * @base: the timer vector to be processed.
541 * This function cascades all vectors and executes all expired timer
542 * vectors.
544 static inline void __run_timers(tvec_base_t *base)
546 struct timer_list *timer;
548 spin_lock_irq(&base->lock);
549 while (time_after_eq(jiffies, base->timer_jiffies)) {
550 struct list_head work_list;
551 struct list_head *head = &work_list;
552 int index = base->timer_jiffies & TVR_MASK;
555 * Cascade timers:
557 if (!index &&
558 (!cascade(base, &base->tv2, INDEX(0))) &&
559 (!cascade(base, &base->tv3, INDEX(1))) &&
560 !cascade(base, &base->tv4, INDEX(2)))
561 cascade(base, &base->tv5, INDEX(3));
562 ++base->timer_jiffies;
563 list_replace_init(base->tv1.vec + index, &work_list);
564 while (!list_empty(head)) {
565 void (*fn)(unsigned long);
566 unsigned long data;
568 timer = list_entry(head->next,struct timer_list,entry);
569 fn = timer->function;
570 data = timer->data;
572 set_running_timer(base, timer);
573 detach_timer(timer, 1);
574 spin_unlock_irq(&base->lock);
576 int preempt_count = preempt_count();
577 fn(data);
578 if (preempt_count != preempt_count()) {
579 printk(KERN_WARNING "huh, entered %p "
580 "with preempt_count %08x, exited"
581 " with %08x?\n",
582 fn, preempt_count,
583 preempt_count());
584 BUG();
587 spin_lock_irq(&base->lock);
590 set_running_timer(base, NULL);
591 spin_unlock_irq(&base->lock);
594 #ifdef CONFIG_NO_IDLE_HZ
596 * Find out when the next timer event is due to happen. This
597 * is used on S/390 to stop all activity when a cpus is idle.
598 * This functions needs to be called disabled.
600 unsigned long next_timer_interrupt(void)
602 tvec_base_t *base;
603 struct list_head *list;
604 struct timer_list *nte;
605 unsigned long expires;
606 unsigned long hr_expires = MAX_JIFFY_OFFSET;
607 ktime_t hr_delta;
608 tvec_t *varray[4];
609 int i, j;
611 hr_delta = hrtimer_get_next_event();
612 if (hr_delta.tv64 != KTIME_MAX) {
613 struct timespec tsdelta;
614 tsdelta = ktime_to_timespec(hr_delta);
615 hr_expires = timespec_to_jiffies(&tsdelta);
616 if (hr_expires < 3)
617 return hr_expires + jiffies;
619 hr_expires += jiffies;
621 base = __get_cpu_var(tvec_bases);
622 spin_lock(&base->lock);
623 expires = base->timer_jiffies + (LONG_MAX >> 1);
624 list = NULL;
626 /* Look for timer events in tv1. */
627 j = base->timer_jiffies & TVR_MASK;
628 do {
629 list_for_each_entry(nte, base->tv1.vec + j, entry) {
630 expires = nte->expires;
631 if (j < (base->timer_jiffies & TVR_MASK))
632 list = base->tv2.vec + (INDEX(0));
633 goto found;
635 j = (j + 1) & TVR_MASK;
636 } while (j != (base->timer_jiffies & TVR_MASK));
638 /* Check tv2-tv5. */
639 varray[0] = &base->tv2;
640 varray[1] = &base->tv3;
641 varray[2] = &base->tv4;
642 varray[3] = &base->tv5;
643 for (i = 0; i < 4; i++) {
644 j = INDEX(i);
645 do {
646 if (list_empty(varray[i]->vec + j)) {
647 j = (j + 1) & TVN_MASK;
648 continue;
650 list_for_each_entry(nte, varray[i]->vec + j, entry)
651 if (time_before(nte->expires, expires))
652 expires = nte->expires;
653 if (j < (INDEX(i)) && i < 3)
654 list = varray[i + 1]->vec + (INDEX(i + 1));
655 goto found;
656 } while (j != (INDEX(i)));
658 found:
659 if (list) {
661 * The search wrapped. We need to look at the next list
662 * from next tv element that would cascade into tv element
663 * where we found the timer element.
665 list_for_each_entry(nte, list, entry) {
666 if (time_before(nte->expires, expires))
667 expires = nte->expires;
670 spin_unlock(&base->lock);
673 * It can happen that other CPUs service timer IRQs and increment
674 * jiffies, but we have not yet got a local timer tick to process
675 * the timer wheels. In that case, the expiry time can be before
676 * jiffies, but since the high-resolution timer here is relative to
677 * jiffies, the default expression when high-resolution timers are
678 * not active,
680 * time_before(MAX_JIFFY_OFFSET + jiffies, expires)
682 * would falsely evaluate to true. If that is the case, just
683 * return jiffies so that we can immediately fire the local timer
685 if (time_before(expires, jiffies))
686 return jiffies;
688 if (time_before(hr_expires, expires))
689 return hr_expires;
691 return expires;
693 #endif
695 /******************************************************************/
698 * The current time
699 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
700 * for sub jiffie times) to get to monotonic time. Monotonic is pegged
701 * at zero at system boot time, so wall_to_monotonic will be negative,
702 * however, we will ALWAYS keep the tv_nsec part positive so we can use
703 * the usual normalization.
705 struct timespec xtime __attribute__ ((aligned (16)));
706 struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
708 EXPORT_SYMBOL(xtime);
711 /* XXX - all of this timekeeping code should be later moved to time.c */
712 #include <linux/clocksource.h>
713 static struct clocksource *clock; /* pointer to current clocksource */
715 #ifdef CONFIG_GENERIC_TIME
717 * __get_nsec_offset - Returns nanoseconds since last call to periodic_hook
719 * private function, must hold xtime_lock lock when being
720 * called. Returns the number of nanoseconds since the
721 * last call to update_wall_time() (adjusted by NTP scaling)
723 static inline s64 __get_nsec_offset(void)
725 cycle_t cycle_now, cycle_delta;
726 s64 ns_offset;
728 /* read clocksource: */
729 cycle_now = clocksource_read(clock);
731 /* calculate the delta since the last update_wall_time: */
732 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
734 /* convert to nanoseconds: */
735 ns_offset = cyc2ns(clock, cycle_delta);
737 return ns_offset;
741 * __get_realtime_clock_ts - Returns the time of day in a timespec
742 * @ts: pointer to the timespec to be set
744 * Returns the time of day in a timespec. Used by
745 * do_gettimeofday() and get_realtime_clock_ts().
747 static inline void __get_realtime_clock_ts(struct timespec *ts)
749 unsigned long seq;
750 s64 nsecs;
752 do {
753 seq = read_seqbegin(&xtime_lock);
755 *ts = xtime;
756 nsecs = __get_nsec_offset();
758 } while (read_seqretry(&xtime_lock, seq));
760 timespec_add_ns(ts, nsecs);
764 * getnstimeofday - Returns the time of day in a timespec
765 * @ts: pointer to the timespec to be set
767 * Returns the time of day in a timespec.
769 void getnstimeofday(struct timespec *ts)
771 __get_realtime_clock_ts(ts);
774 EXPORT_SYMBOL(getnstimeofday);
777 * do_gettimeofday - Returns the time of day in a timeval
778 * @tv: pointer to the timeval to be set
780 * NOTE: Users should be converted to using get_realtime_clock_ts()
782 void do_gettimeofday(struct timeval *tv)
784 struct timespec now;
786 __get_realtime_clock_ts(&now);
787 tv->tv_sec = now.tv_sec;
788 tv->tv_usec = now.tv_nsec/1000;
791 EXPORT_SYMBOL(do_gettimeofday);
793 * do_settimeofday - Sets the time of day
794 * @tv: pointer to the timespec variable containing the new time
796 * Sets the time of day to the new time and update NTP and notify hrtimers
798 int do_settimeofday(struct timespec *tv)
800 unsigned long flags;
801 time_t wtm_sec, sec = tv->tv_sec;
802 long wtm_nsec, nsec = tv->tv_nsec;
804 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
805 return -EINVAL;
807 write_seqlock_irqsave(&xtime_lock, flags);
809 nsec -= __get_nsec_offset();
811 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
812 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
814 set_normalized_timespec(&xtime, sec, nsec);
815 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
817 clock->error = 0;
818 ntp_clear();
820 write_sequnlock_irqrestore(&xtime_lock, flags);
822 /* signal hrtimers about time change */
823 clock_was_set();
825 return 0;
828 EXPORT_SYMBOL(do_settimeofday);
831 * change_clocksource - Swaps clocksources if a new one is available
833 * Accumulates current time interval and initializes new clocksource
835 static void change_clocksource(void)
837 struct clocksource *new;
838 cycle_t now;
839 u64 nsec;
841 new = clocksource_get_next();
843 if (clock == new)
844 return;
846 now = clocksource_read(new);
847 nsec = __get_nsec_offset();
848 timespec_add_ns(&xtime, nsec);
850 clock = new;
851 clock->cycle_last = now;
853 clock->error = 0;
854 clock->xtime_nsec = 0;
855 clocksource_calculate_interval(clock, NTP_INTERVAL_LENGTH);
857 printk(KERN_INFO "Time: %s clocksource has been installed.\n",
858 clock->name);
860 #else
861 static inline void change_clocksource(void) { }
862 #endif
865 * timeofday_is_continuous - check to see if timekeeping is free running
867 int timekeeping_is_continuous(void)
869 unsigned long seq;
870 int ret;
872 do {
873 seq = read_seqbegin(&xtime_lock);
875 ret = clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
877 } while (read_seqretry(&xtime_lock, seq));
879 return ret;
883 * read_persistent_clock - Return time in seconds from the persistent clock.
885 * Weak dummy function for arches that do not yet support it.
886 * Returns seconds from epoch using the battery backed persistent clock.
887 * Returns zero if unsupported.
889 * XXX - Do be sure to remove it once all arches implement it.
891 unsigned long __attribute__((weak)) read_persistent_clock(void)
893 return 0;
897 * timekeeping_init - Initializes the clocksource and common timekeeping values
899 void __init timekeeping_init(void)
901 unsigned long flags;
902 unsigned long sec = read_persistent_clock();
904 write_seqlock_irqsave(&xtime_lock, flags);
906 ntp_clear();
908 clock = clocksource_get_next();
909 clocksource_calculate_interval(clock, NTP_INTERVAL_LENGTH);
910 clock->cycle_last = clocksource_read(clock);
912 xtime.tv_sec = sec;
913 xtime.tv_nsec = 0;
914 set_normalized_timespec(&wall_to_monotonic,
915 -xtime.tv_sec, -xtime.tv_nsec);
917 write_sequnlock_irqrestore(&xtime_lock, flags);
921 /* flag for if timekeeping is suspended */
922 static int timekeeping_suspended;
923 /* time in seconds when suspend began */
924 static unsigned long timekeeping_suspend_time;
927 * timekeeping_resume - Resumes the generic timekeeping subsystem.
928 * @dev: unused
930 * This is for the generic clocksource timekeeping.
931 * xtime/wall_to_monotonic/jiffies/etc are
932 * still managed by arch specific suspend/resume code.
934 static int timekeeping_resume(struct sys_device *dev)
936 unsigned long flags;
937 unsigned long now = read_persistent_clock();
939 write_seqlock_irqsave(&xtime_lock, flags);
941 if (now && (now > timekeeping_suspend_time)) {
942 unsigned long sleep_length = now - timekeeping_suspend_time;
944 xtime.tv_sec += sleep_length;
945 wall_to_monotonic.tv_sec -= sleep_length;
947 /* re-base the last cycle value */
948 clock->cycle_last = clocksource_read(clock);
949 clock->error = 0;
950 timekeeping_suspended = 0;
951 write_sequnlock_irqrestore(&xtime_lock, flags);
953 touch_softlockup_watchdog();
954 hrtimer_notify_resume();
956 return 0;
959 static int timekeeping_suspend(struct sys_device *dev, pm_message_t state)
961 unsigned long flags;
963 write_seqlock_irqsave(&xtime_lock, flags);
964 timekeeping_suspended = 1;
965 timekeeping_suspend_time = read_persistent_clock();
966 write_sequnlock_irqrestore(&xtime_lock, flags);
967 return 0;
970 /* sysfs resume/suspend bits for timekeeping */
971 static struct sysdev_class timekeeping_sysclass = {
972 .resume = timekeeping_resume,
973 .suspend = timekeeping_suspend,
974 set_kset_name("timekeeping"),
977 static struct sys_device device_timer = {
978 .id = 0,
979 .cls = &timekeeping_sysclass,
982 static int __init timekeeping_init_device(void)
984 int error = sysdev_class_register(&timekeeping_sysclass);
985 if (!error)
986 error = sysdev_register(&device_timer);
987 return error;
990 device_initcall(timekeeping_init_device);
993 * If the error is already larger, we look ahead even further
994 * to compensate for late or lost adjustments.
996 static __always_inline int clocksource_bigadjust(s64 error, s64 *interval,
997 s64 *offset)
999 s64 tick_error, i;
1000 u32 look_ahead, adj;
1001 s32 error2, mult;
1004 * Use the current error value to determine how much to look ahead.
1005 * The larger the error the slower we adjust for it to avoid problems
1006 * with losing too many ticks, otherwise we would overadjust and
1007 * produce an even larger error. The smaller the adjustment the
1008 * faster we try to adjust for it, as lost ticks can do less harm
1009 * here. This is tuned so that an error of about 1 msec is adusted
1010 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
1012 error2 = clock->error >> (TICK_LENGTH_SHIFT + 22 - 2 * SHIFT_HZ);
1013 error2 = abs(error2);
1014 for (look_ahead = 0; error2 > 0; look_ahead++)
1015 error2 >>= 2;
1018 * Now calculate the error in (1 << look_ahead) ticks, but first
1019 * remove the single look ahead already included in the error.
1021 tick_error = current_tick_length() >>
1022 (TICK_LENGTH_SHIFT - clock->shift + 1);
1023 tick_error -= clock->xtime_interval >> 1;
1024 error = ((error - tick_error) >> look_ahead) + tick_error;
1026 /* Finally calculate the adjustment shift value. */
1027 i = *interval;
1028 mult = 1;
1029 if (error < 0) {
1030 error = -error;
1031 *interval = -*interval;
1032 *offset = -*offset;
1033 mult = -1;
1035 for (adj = 0; error > i; adj++)
1036 error >>= 1;
1038 *interval <<= adj;
1039 *offset <<= adj;
1040 return mult << adj;
1044 * Adjust the multiplier to reduce the error value,
1045 * this is optimized for the most common adjustments of -1,0,1,
1046 * for other values we can do a bit more work.
1048 static void clocksource_adjust(struct clocksource *clock, s64 offset)
1050 s64 error, interval = clock->cycle_interval;
1051 int adj;
1053 error = clock->error >> (TICK_LENGTH_SHIFT - clock->shift - 1);
1054 if (error > interval) {
1055 error >>= 2;
1056 if (likely(error <= interval))
1057 adj = 1;
1058 else
1059 adj = clocksource_bigadjust(error, &interval, &offset);
1060 } else if (error < -interval) {
1061 error >>= 2;
1062 if (likely(error >= -interval)) {
1063 adj = -1;
1064 interval = -interval;
1065 offset = -offset;
1066 } else
1067 adj = clocksource_bigadjust(error, &interval, &offset);
1068 } else
1069 return;
1071 clock->mult += adj;
1072 clock->xtime_interval += interval;
1073 clock->xtime_nsec -= offset;
1074 clock->error -= (interval - offset) <<
1075 (TICK_LENGTH_SHIFT - clock->shift);
1079 * update_wall_time - Uses the current clocksource to increment the wall time
1081 * Called from the timer interrupt, must hold a write on xtime_lock.
1083 static void update_wall_time(void)
1085 cycle_t offset;
1087 /* Make sure we're fully resumed: */
1088 if (unlikely(timekeeping_suspended))
1089 return;
1091 #ifdef CONFIG_GENERIC_TIME
1092 offset = (clocksource_read(clock) - clock->cycle_last) & clock->mask;
1093 #else
1094 offset = clock->cycle_interval;
1095 #endif
1096 clock->xtime_nsec += (s64)xtime.tv_nsec << clock->shift;
1098 /* normally this loop will run just once, however in the
1099 * case of lost or late ticks, it will accumulate correctly.
1101 while (offset >= clock->cycle_interval) {
1102 /* accumulate one interval */
1103 clock->xtime_nsec += clock->xtime_interval;
1104 clock->cycle_last += clock->cycle_interval;
1105 offset -= clock->cycle_interval;
1107 if (clock->xtime_nsec >= (u64)NSEC_PER_SEC << clock->shift) {
1108 clock->xtime_nsec -= (u64)NSEC_PER_SEC << clock->shift;
1109 xtime.tv_sec++;
1110 second_overflow();
1113 /* interpolator bits */
1114 time_interpolator_update(clock->xtime_interval
1115 >> clock->shift);
1117 /* accumulate error between NTP and clock interval */
1118 clock->error += current_tick_length();
1119 clock->error -= clock->xtime_interval << (TICK_LENGTH_SHIFT - clock->shift);
1122 /* correct the clock when NTP error is too big */
1123 clocksource_adjust(clock, offset);
1125 /* store full nanoseconds into xtime */
1126 xtime.tv_nsec = (s64)clock->xtime_nsec >> clock->shift;
1127 clock->xtime_nsec -= (s64)xtime.tv_nsec << clock->shift;
1129 /* check to see if there is a new clocksource to use */
1130 change_clocksource();
1134 * Called from the timer interrupt handler to charge one tick to the current
1135 * process. user_tick is 1 if the tick is user time, 0 for system.
1137 void update_process_times(int user_tick)
1139 struct task_struct *p = current;
1140 int cpu = smp_processor_id();
1142 /* Note: this timer irq context must be accounted for as well. */
1143 if (user_tick)
1144 account_user_time(p, jiffies_to_cputime(1));
1145 else
1146 account_system_time(p, HARDIRQ_OFFSET, jiffies_to_cputime(1));
1147 run_local_timers();
1148 if (rcu_pending(cpu))
1149 rcu_check_callbacks(cpu, user_tick);
1150 scheduler_tick();
1151 run_posix_cpu_timers(p);
1155 * Nr of active tasks - counted in fixed-point numbers
1157 static unsigned long count_active_tasks(void)
1159 return nr_active() * FIXED_1;
1163 * Hmm.. Changed this, as the GNU make sources (load.c) seems to
1164 * imply that avenrun[] is the standard name for this kind of thing.
1165 * Nothing else seems to be standardized: the fractional size etc
1166 * all seem to differ on different machines.
1168 * Requires xtime_lock to access.
1170 unsigned long avenrun[3];
1172 EXPORT_SYMBOL(avenrun);
1175 * calc_load - given tick count, update the avenrun load estimates.
1176 * This is called while holding a write_lock on xtime_lock.
1178 static inline void calc_load(unsigned long ticks)
1180 unsigned long active_tasks; /* fixed-point */
1181 static int count = LOAD_FREQ;
1183 count -= ticks;
1184 if (unlikely(count < 0)) {
1185 active_tasks = count_active_tasks();
1186 do {
1187 CALC_LOAD(avenrun[0], EXP_1, active_tasks);
1188 CALC_LOAD(avenrun[1], EXP_5, active_tasks);
1189 CALC_LOAD(avenrun[2], EXP_15, active_tasks);
1190 count += LOAD_FREQ;
1191 } while (count < 0);
1196 * This read-write spinlock protects us from races in SMP while
1197 * playing with xtime and avenrun.
1199 __attribute__((weak)) __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
1201 EXPORT_SYMBOL(xtime_lock);
1204 * This function runs timers and the timer-tq in bottom half context.
1206 static void run_timer_softirq(struct softirq_action *h)
1208 tvec_base_t *base = __get_cpu_var(tvec_bases);
1210 hrtimer_run_queues();
1211 if (time_after_eq(jiffies, base->timer_jiffies))
1212 __run_timers(base);
1216 * Called by the local, per-CPU timer interrupt on SMP.
1218 void run_local_timers(void)
1220 raise_softirq(TIMER_SOFTIRQ);
1221 softlockup_tick();
1225 * Called by the timer interrupt. xtime_lock must already be taken
1226 * by the timer IRQ!
1228 static inline void update_times(unsigned long ticks)
1230 update_wall_time();
1231 calc_load(ticks);
1235 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1236 * without sampling the sequence number in xtime_lock.
1237 * jiffies is defined in the linker script...
1240 void do_timer(unsigned long ticks)
1242 jiffies_64 += ticks;
1243 update_times(ticks);
1246 #ifdef __ARCH_WANT_SYS_ALARM
1249 * For backwards compatibility? This can be done in libc so Alpha
1250 * and all newer ports shouldn't need it.
1252 asmlinkage unsigned long sys_alarm(unsigned int seconds)
1254 return alarm_setitimer(seconds);
1257 #endif
1259 #ifndef __alpha__
1262 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1263 * should be moved into arch/i386 instead?
1267 * sys_getpid - return the thread group id of the current process
1269 * Note, despite the name, this returns the tgid not the pid. The tgid and
1270 * the pid are identical unless CLONE_THREAD was specified on clone() in
1271 * which case the tgid is the same in all threads of the same group.
1273 * This is SMP safe as current->tgid does not change.
1275 asmlinkage long sys_getpid(void)
1277 return current->tgid;
1281 * Accessing ->real_parent is not SMP-safe, it could
1282 * change from under us. However, we can use a stale
1283 * value of ->real_parent under rcu_read_lock(), see
1284 * release_task()->call_rcu(delayed_put_task_struct).
1286 asmlinkage long sys_getppid(void)
1288 int pid;
1290 rcu_read_lock();
1291 pid = rcu_dereference(current->real_parent)->tgid;
1292 rcu_read_unlock();
1294 return pid;
1297 asmlinkage long sys_getuid(void)
1299 /* Only we change this so SMP safe */
1300 return current->uid;
1303 asmlinkage long sys_geteuid(void)
1305 /* Only we change this so SMP safe */
1306 return current->euid;
1309 asmlinkage long sys_getgid(void)
1311 /* Only we change this so SMP safe */
1312 return current->gid;
1315 asmlinkage long sys_getegid(void)
1317 /* Only we change this so SMP safe */
1318 return current->egid;
1321 #endif
1323 static void process_timeout(unsigned long __data)
1325 wake_up_process((struct task_struct *)__data);
1329 * schedule_timeout - sleep until timeout
1330 * @timeout: timeout value in jiffies
1332 * Make the current task sleep until @timeout jiffies have
1333 * elapsed. The routine will return immediately unless
1334 * the current task state has been set (see set_current_state()).
1336 * You can set the task state as follows -
1338 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1339 * pass before the routine returns. The routine will return 0
1341 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1342 * delivered to the current task. In this case the remaining time
1343 * in jiffies will be returned, or 0 if the timer expired in time
1345 * The current task state is guaranteed to be TASK_RUNNING when this
1346 * routine returns.
1348 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1349 * the CPU away without a bound on the timeout. In this case the return
1350 * value will be %MAX_SCHEDULE_TIMEOUT.
1352 * In all cases the return value is guaranteed to be non-negative.
1354 fastcall signed long __sched schedule_timeout(signed long timeout)
1356 struct timer_list timer;
1357 unsigned long expire;
1359 switch (timeout)
1361 case MAX_SCHEDULE_TIMEOUT:
1363 * These two special cases are useful to be comfortable
1364 * in the caller. Nothing more. We could take
1365 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1366 * but I' d like to return a valid offset (>=0) to allow
1367 * the caller to do everything it want with the retval.
1369 schedule();
1370 goto out;
1371 default:
1373 * Another bit of PARANOID. Note that the retval will be
1374 * 0 since no piece of kernel is supposed to do a check
1375 * for a negative retval of schedule_timeout() (since it
1376 * should never happens anyway). You just have the printk()
1377 * that will tell you if something is gone wrong and where.
1379 if (timeout < 0) {
1380 printk(KERN_ERR "schedule_timeout: wrong timeout "
1381 "value %lx\n", timeout);
1382 dump_stack();
1383 current->state = TASK_RUNNING;
1384 goto out;
1388 expire = timeout + jiffies;
1390 setup_timer(&timer, process_timeout, (unsigned long)current);
1391 __mod_timer(&timer, expire);
1392 schedule();
1393 del_singleshot_timer_sync(&timer);
1395 timeout = expire - jiffies;
1397 out:
1398 return timeout < 0 ? 0 : timeout;
1400 EXPORT_SYMBOL(schedule_timeout);
1403 * We can use __set_current_state() here because schedule_timeout() calls
1404 * schedule() unconditionally.
1406 signed long __sched schedule_timeout_interruptible(signed long timeout)
1408 __set_current_state(TASK_INTERRUPTIBLE);
1409 return schedule_timeout(timeout);
1411 EXPORT_SYMBOL(schedule_timeout_interruptible);
1413 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1415 __set_current_state(TASK_UNINTERRUPTIBLE);
1416 return schedule_timeout(timeout);
1418 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1420 /* Thread ID - the internal kernel "pid" */
1421 asmlinkage long sys_gettid(void)
1423 return current->pid;
1427 * do_sysinfo - fill in sysinfo struct
1428 * @info: pointer to buffer to fill
1430 int do_sysinfo(struct sysinfo *info)
1432 unsigned long mem_total, sav_total;
1433 unsigned int mem_unit, bitcount;
1434 unsigned long seq;
1436 memset(info, 0, sizeof(struct sysinfo));
1438 do {
1439 struct timespec tp;
1440 seq = read_seqbegin(&xtime_lock);
1443 * This is annoying. The below is the same thing
1444 * posix_get_clock_monotonic() does, but it wants to
1445 * take the lock which we want to cover the loads stuff
1446 * too.
1449 getnstimeofday(&tp);
1450 tp.tv_sec += wall_to_monotonic.tv_sec;
1451 tp.tv_nsec += wall_to_monotonic.tv_nsec;
1452 if (tp.tv_nsec - NSEC_PER_SEC >= 0) {
1453 tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC;
1454 tp.tv_sec++;
1456 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1458 info->loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT);
1459 info->loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT);
1460 info->loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT);
1462 info->procs = nr_threads;
1463 } while (read_seqretry(&xtime_lock, seq));
1465 si_meminfo(info);
1466 si_swapinfo(info);
1469 * If the sum of all the available memory (i.e. ram + swap)
1470 * is less than can be stored in a 32 bit unsigned long then
1471 * we can be binary compatible with 2.2.x kernels. If not,
1472 * well, in that case 2.2.x was broken anyways...
1474 * -Erik Andersen <andersee@debian.org>
1477 mem_total = info->totalram + info->totalswap;
1478 if (mem_total < info->totalram || mem_total < info->totalswap)
1479 goto out;
1480 bitcount = 0;
1481 mem_unit = info->mem_unit;
1482 while (mem_unit > 1) {
1483 bitcount++;
1484 mem_unit >>= 1;
1485 sav_total = mem_total;
1486 mem_total <<= 1;
1487 if (mem_total < sav_total)
1488 goto out;
1492 * If mem_total did not overflow, multiply all memory values by
1493 * info->mem_unit and set it to 1. This leaves things compatible
1494 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1495 * kernels...
1498 info->mem_unit = 1;
1499 info->totalram <<= bitcount;
1500 info->freeram <<= bitcount;
1501 info->sharedram <<= bitcount;
1502 info->bufferram <<= bitcount;
1503 info->totalswap <<= bitcount;
1504 info->freeswap <<= bitcount;
1505 info->totalhigh <<= bitcount;
1506 info->freehigh <<= bitcount;
1508 out:
1509 return 0;
1512 asmlinkage long sys_sysinfo(struct sysinfo __user *info)
1514 struct sysinfo val;
1516 do_sysinfo(&val);
1518 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1519 return -EFAULT;
1521 return 0;
1525 * lockdep: we want to track each per-CPU base as a separate lock-class,
1526 * but timer-bases are kmalloc()-ed, so we need to attach separate
1527 * keys to them:
1529 static struct lock_class_key base_lock_keys[NR_CPUS];
1531 static int __devinit init_timers_cpu(int cpu)
1533 int j;
1534 tvec_base_t *base;
1535 static char __devinitdata tvec_base_done[NR_CPUS];
1537 if (!tvec_base_done[cpu]) {
1538 static char boot_done;
1540 if (boot_done) {
1542 * The APs use this path later in boot
1544 base = kmalloc_node(sizeof(*base), GFP_KERNEL,
1545 cpu_to_node(cpu));
1546 if (!base)
1547 return -ENOMEM;
1548 memset(base, 0, sizeof(*base));
1549 per_cpu(tvec_bases, cpu) = base;
1550 } else {
1552 * This is for the boot CPU - we use compile-time
1553 * static initialisation because per-cpu memory isn't
1554 * ready yet and because the memory allocators are not
1555 * initialised either.
1557 boot_done = 1;
1558 base = &boot_tvec_bases;
1560 tvec_base_done[cpu] = 1;
1561 } else {
1562 base = per_cpu(tvec_bases, cpu);
1565 spin_lock_init(&base->lock);
1566 lockdep_set_class(&base->lock, base_lock_keys + cpu);
1568 for (j = 0; j < TVN_SIZE; j++) {
1569 INIT_LIST_HEAD(base->tv5.vec + j);
1570 INIT_LIST_HEAD(base->tv4.vec + j);
1571 INIT_LIST_HEAD(base->tv3.vec + j);
1572 INIT_LIST_HEAD(base->tv2.vec + j);
1574 for (j = 0; j < TVR_SIZE; j++)
1575 INIT_LIST_HEAD(base->tv1.vec + j);
1577 base->timer_jiffies = jiffies;
1578 return 0;
1581 #ifdef CONFIG_HOTPLUG_CPU
1582 static void migrate_timer_list(tvec_base_t *new_base, struct list_head *head)
1584 struct timer_list *timer;
1586 while (!list_empty(head)) {
1587 timer = list_entry(head->next, struct timer_list, entry);
1588 detach_timer(timer, 0);
1589 timer->base = new_base;
1590 internal_add_timer(new_base, timer);
1594 static void __devinit migrate_timers(int cpu)
1596 tvec_base_t *old_base;
1597 tvec_base_t *new_base;
1598 int i;
1600 BUG_ON(cpu_online(cpu));
1601 old_base = per_cpu(tvec_bases, cpu);
1602 new_base = get_cpu_var(tvec_bases);
1604 local_irq_disable();
1605 spin_lock(&new_base->lock);
1606 spin_lock(&old_base->lock);
1608 BUG_ON(old_base->running_timer);
1610 for (i = 0; i < TVR_SIZE; i++)
1611 migrate_timer_list(new_base, old_base->tv1.vec + i);
1612 for (i = 0; i < TVN_SIZE; i++) {
1613 migrate_timer_list(new_base, old_base->tv2.vec + i);
1614 migrate_timer_list(new_base, old_base->tv3.vec + i);
1615 migrate_timer_list(new_base, old_base->tv4.vec + i);
1616 migrate_timer_list(new_base, old_base->tv5.vec + i);
1619 spin_unlock(&old_base->lock);
1620 spin_unlock(&new_base->lock);
1621 local_irq_enable();
1622 put_cpu_var(tvec_bases);
1624 #endif /* CONFIG_HOTPLUG_CPU */
1626 static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1627 unsigned long action, void *hcpu)
1629 long cpu = (long)hcpu;
1630 switch(action) {
1631 case CPU_UP_PREPARE:
1632 if (init_timers_cpu(cpu) < 0)
1633 return NOTIFY_BAD;
1634 break;
1635 #ifdef CONFIG_HOTPLUG_CPU
1636 case CPU_DEAD:
1637 migrate_timers(cpu);
1638 break;
1639 #endif
1640 default:
1641 break;
1643 return NOTIFY_OK;
1646 static struct notifier_block __cpuinitdata timers_nb = {
1647 .notifier_call = timer_cpu_notify,
1651 void __init init_timers(void)
1653 int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1654 (void *)(long)smp_processor_id());
1656 BUG_ON(err == NOTIFY_BAD);
1657 register_cpu_notifier(&timers_nb);
1658 open_softirq(TIMER_SOFTIRQ, run_timer_softirq, NULL);
1661 #ifdef CONFIG_TIME_INTERPOLATION
1663 struct time_interpolator *time_interpolator __read_mostly;
1664 static struct time_interpolator *time_interpolator_list __read_mostly;
1665 static DEFINE_SPINLOCK(time_interpolator_lock);
1667 static inline cycles_t time_interpolator_get_cycles(unsigned int src)
1669 unsigned long (*x)(void);
1671 switch (src)
1673 case TIME_SOURCE_FUNCTION:
1674 x = time_interpolator->addr;
1675 return x();
1677 case TIME_SOURCE_MMIO64 :
1678 return readq_relaxed((void __iomem *)time_interpolator->addr);
1680 case TIME_SOURCE_MMIO32 :
1681 return readl_relaxed((void __iomem *)time_interpolator->addr);
1683 default: return get_cycles();
1687 static inline u64 time_interpolator_get_counter(int writelock)
1689 unsigned int src = time_interpolator->source;
1691 if (time_interpolator->jitter)
1693 cycles_t lcycle;
1694 cycles_t now;
1696 do {
1697 lcycle = time_interpolator->last_cycle;
1698 now = time_interpolator_get_cycles(src);
1699 if (lcycle && time_after(lcycle, now))
1700 return lcycle;
1702 /* When holding the xtime write lock, there's no need
1703 * to add the overhead of the cmpxchg. Readers are
1704 * force to retry until the write lock is released.
1706 if (writelock) {
1707 time_interpolator->last_cycle = now;
1708 return now;
1710 /* Keep track of the last timer value returned. The use of cmpxchg here
1711 * will cause contention in an SMP environment.
1713 } while (unlikely(cmpxchg(&time_interpolator->last_cycle, lcycle, now) != lcycle));
1714 return now;
1716 else
1717 return time_interpolator_get_cycles(src);
1720 void time_interpolator_reset(void)
1722 time_interpolator->offset = 0;
1723 time_interpolator->last_counter = time_interpolator_get_counter(1);
1726 #define GET_TI_NSECS(count,i) (((((count) - i->last_counter) & (i)->mask) * (i)->nsec_per_cyc) >> (i)->shift)
1728 unsigned long time_interpolator_get_offset(void)
1730 /* If we do not have a time interpolator set up then just return zero */
1731 if (!time_interpolator)
1732 return 0;
1734 return time_interpolator->offset +
1735 GET_TI_NSECS(time_interpolator_get_counter(0), time_interpolator);
1738 #define INTERPOLATOR_ADJUST 65536
1739 #define INTERPOLATOR_MAX_SKIP 10*INTERPOLATOR_ADJUST
1741 void time_interpolator_update(long delta_nsec)
1743 u64 counter;
1744 unsigned long offset;
1746 /* If there is no time interpolator set up then do nothing */
1747 if (!time_interpolator)
1748 return;
1751 * The interpolator compensates for late ticks by accumulating the late
1752 * time in time_interpolator->offset. A tick earlier than expected will
1753 * lead to a reset of the offset and a corresponding jump of the clock
1754 * forward. Again this only works if the interpolator clock is running
1755 * slightly slower than the regular clock and the tuning logic insures
1756 * that.
1759 counter = time_interpolator_get_counter(1);
1760 offset = time_interpolator->offset +
1761 GET_TI_NSECS(counter, time_interpolator);
1763 if (delta_nsec < 0 || (unsigned long) delta_nsec < offset)
1764 time_interpolator->offset = offset - delta_nsec;
1765 else {
1766 time_interpolator->skips++;
1767 time_interpolator->ns_skipped += delta_nsec - offset;
1768 time_interpolator->offset = 0;
1770 time_interpolator->last_counter = counter;
1772 /* Tuning logic for time interpolator invoked every minute or so.
1773 * Decrease interpolator clock speed if no skips occurred and an offset is carried.
1774 * Increase interpolator clock speed if we skip too much time.
1776 if (jiffies % INTERPOLATOR_ADJUST == 0)
1778 if (time_interpolator->skips == 0 && time_interpolator->offset > tick_nsec)
1779 time_interpolator->nsec_per_cyc--;
1780 if (time_interpolator->ns_skipped > INTERPOLATOR_MAX_SKIP && time_interpolator->offset == 0)
1781 time_interpolator->nsec_per_cyc++;
1782 time_interpolator->skips = 0;
1783 time_interpolator->ns_skipped = 0;
1787 static inline int
1788 is_better_time_interpolator(struct time_interpolator *new)
1790 if (!time_interpolator)
1791 return 1;
1792 return new->frequency > 2*time_interpolator->frequency ||
1793 (unsigned long)new->drift < (unsigned long)time_interpolator->drift;
1796 void
1797 register_time_interpolator(struct time_interpolator *ti)
1799 unsigned long flags;
1801 /* Sanity check */
1802 BUG_ON(ti->frequency == 0 || ti->mask == 0);
1804 ti->nsec_per_cyc = ((u64)NSEC_PER_SEC << ti->shift) / ti->frequency;
1805 spin_lock(&time_interpolator_lock);
1806 write_seqlock_irqsave(&xtime_lock, flags);
1807 if (is_better_time_interpolator(ti)) {
1808 time_interpolator = ti;
1809 time_interpolator_reset();
1811 write_sequnlock_irqrestore(&xtime_lock, flags);
1813 ti->next = time_interpolator_list;
1814 time_interpolator_list = ti;
1815 spin_unlock(&time_interpolator_lock);
1818 void
1819 unregister_time_interpolator(struct time_interpolator *ti)
1821 struct time_interpolator *curr, **prev;
1822 unsigned long flags;
1824 spin_lock(&time_interpolator_lock);
1825 prev = &time_interpolator_list;
1826 for (curr = *prev; curr; curr = curr->next) {
1827 if (curr == ti) {
1828 *prev = curr->next;
1829 break;
1831 prev = &curr->next;
1834 write_seqlock_irqsave(&xtime_lock, flags);
1835 if (ti == time_interpolator) {
1836 /* we lost the best time-interpolator: */
1837 time_interpolator = NULL;
1838 /* find the next-best interpolator */
1839 for (curr = time_interpolator_list; curr; curr = curr->next)
1840 if (is_better_time_interpolator(curr))
1841 time_interpolator = curr;
1842 time_interpolator_reset();
1844 write_sequnlock_irqrestore(&xtime_lock, flags);
1845 spin_unlock(&time_interpolator_lock);
1847 #endif /* CONFIG_TIME_INTERPOLATION */
1850 * msleep - sleep safely even with waitqueue interruptions
1851 * @msecs: Time in milliseconds to sleep for
1853 void msleep(unsigned int msecs)
1855 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1857 while (timeout)
1858 timeout = schedule_timeout_uninterruptible(timeout);
1861 EXPORT_SYMBOL(msleep);
1864 * msleep_interruptible - sleep waiting for signals
1865 * @msecs: Time in milliseconds to sleep for
1867 unsigned long msleep_interruptible(unsigned int msecs)
1869 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1871 while (timeout && !signal_pending(current))
1872 timeout = schedule_timeout_interruptible(timeout);
1873 return jiffies_to_msecs(timeout);
1876 EXPORT_SYMBOL(msleep_interruptible);