4 * Kernel internal timers, basic process system calls
6 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
22 #include <linux/kernel_stat.h>
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
28 #include <linux/swap.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/notifier.h>
31 #include <linux/thread_info.h>
32 #include <linux/time.h>
33 #include <linux/jiffies.h>
34 #include <linux/posix-timers.h>
35 #include <linux/cpu.h>
36 #include <linux/syscalls.h>
37 #include <linux/delay.h>
38 #include <linux/tick.h>
39 #include <linux/kallsyms.h>
41 #include <asm/uaccess.h>
42 #include <asm/unistd.h>
43 #include <asm/div64.h>
44 #include <asm/timex.h>
47 u64 jiffies_64 __cacheline_aligned_in_smp
= INITIAL_JIFFIES
;
49 EXPORT_SYMBOL(jiffies_64
);
52 * per-CPU timer vector definitions:
54 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
55 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
56 #define TVN_SIZE (1 << TVN_BITS)
57 #define TVR_SIZE (1 << TVR_BITS)
58 #define TVN_MASK (TVN_SIZE - 1)
59 #define TVR_MASK (TVR_SIZE - 1)
62 struct list_head vec
[TVN_SIZE
];
66 struct list_head vec
[TVR_SIZE
];
71 struct timer_list
*running_timer
;
72 unsigned long timer_jiffies
;
78 } ____cacheline_aligned
;
80 struct tvec_base boot_tvec_bases
;
81 EXPORT_SYMBOL(boot_tvec_bases
);
82 static DEFINE_PER_CPU(struct tvec_base
*, tvec_bases
) = &boot_tvec_bases
;
85 * Note that all tvec_bases are 2 byte aligned and lower bit of
86 * base in timer_list is guaranteed to be zero. Use the LSB for
87 * the new flag to indicate whether the timer is deferrable
89 #define TBASE_DEFERRABLE_FLAG (0x1)
91 /* Functions below help us manage 'deferrable' flag */
92 static inline unsigned int tbase_get_deferrable(struct tvec_base
*base
)
94 return ((unsigned int)(unsigned long)base
& TBASE_DEFERRABLE_FLAG
);
97 static inline struct tvec_base
*tbase_get_base(struct tvec_base
*base
)
99 return ((struct tvec_base
*)((unsigned long)base
& ~TBASE_DEFERRABLE_FLAG
));
102 static inline void timer_set_deferrable(struct timer_list
*timer
)
104 timer
->base
= ((struct tvec_base
*)((unsigned long)(timer
->base
) |
105 TBASE_DEFERRABLE_FLAG
));
109 timer_set_base(struct timer_list
*timer
, struct tvec_base
*new_base
)
111 timer
->base
= (struct tvec_base
*)((unsigned long)(new_base
) |
112 tbase_get_deferrable(timer
->base
));
115 static unsigned long round_jiffies_common(unsigned long j
, int cpu
,
119 unsigned long original
= j
;
122 * We don't want all cpus firing their timers at once hitting the
123 * same lock or cachelines, so we skew each extra cpu with an extra
124 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
126 * The skew is done by adding 3*cpunr, then round, then subtract this
127 * extra offset again.
134 * If the target jiffie is just after a whole second (which can happen
135 * due to delays of the timer irq, long irq off times etc etc) then
136 * we should round down to the whole second, not up. Use 1/4th second
137 * as cutoff for this rounding as an extreme upper bound for this.
138 * But never round down if @force_up is set.
140 if (rem
< HZ
/4 && !force_up
) /* round down */
145 /* now that we have rounded, subtract the extra skew again */
148 if (j
<= jiffies
) /* rounding ate our timeout entirely; */
154 * __round_jiffies - function to round jiffies to a full second
155 * @j: the time in (absolute) jiffies that should be rounded
156 * @cpu: the processor number on which the timeout will happen
158 * __round_jiffies() rounds an absolute time in the future (in jiffies)
159 * up or down to (approximately) full seconds. This is useful for timers
160 * for which the exact time they fire does not matter too much, as long as
161 * they fire approximately every X seconds.
163 * By rounding these timers to whole seconds, all such timers will fire
164 * at the same time, rather than at various times spread out. The goal
165 * of this is to have the CPU wake up less, which saves power.
167 * The exact rounding is skewed for each processor to avoid all
168 * processors firing at the exact same time, which could lead
169 * to lock contention or spurious cache line bouncing.
171 * The return value is the rounded version of the @j parameter.
173 unsigned long __round_jiffies(unsigned long j
, int cpu
)
175 return round_jiffies_common(j
, cpu
, false);
177 EXPORT_SYMBOL_GPL(__round_jiffies
);
180 * __round_jiffies_relative - function to round jiffies to a full second
181 * @j: the time in (relative) jiffies that should be rounded
182 * @cpu: the processor number on which the timeout will happen
184 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
185 * up or down to (approximately) full seconds. This is useful for timers
186 * for which the exact time they fire does not matter too much, as long as
187 * they fire approximately every X seconds.
189 * By rounding these timers to whole seconds, all such timers will fire
190 * at the same time, rather than at various times spread out. The goal
191 * of this is to have the CPU wake up less, which saves power.
193 * The exact rounding is skewed for each processor to avoid all
194 * processors firing at the exact same time, which could lead
195 * to lock contention or spurious cache line bouncing.
197 * The return value is the rounded version of the @j parameter.
199 unsigned long __round_jiffies_relative(unsigned long j
, int cpu
)
201 unsigned long j0
= jiffies
;
203 /* Use j0 because jiffies might change while we run */
204 return round_jiffies_common(j
+ j0
, cpu
, false) - j0
;
206 EXPORT_SYMBOL_GPL(__round_jiffies_relative
);
209 * round_jiffies - function to round jiffies to a full second
210 * @j: the time in (absolute) jiffies that should be rounded
212 * round_jiffies() rounds an absolute time in the future (in jiffies)
213 * up or down to (approximately) full seconds. This is useful for timers
214 * for which the exact time they fire does not matter too much, as long as
215 * they fire approximately every X seconds.
217 * By rounding these timers to whole seconds, all such timers will fire
218 * at the same time, rather than at various times spread out. The goal
219 * of this is to have the CPU wake up less, which saves power.
221 * The return value is the rounded version of the @j parameter.
223 unsigned long round_jiffies(unsigned long j
)
225 return round_jiffies_common(j
, raw_smp_processor_id(), false);
227 EXPORT_SYMBOL_GPL(round_jiffies
);
230 * round_jiffies_relative - function to round jiffies to a full second
231 * @j: the time in (relative) jiffies that should be rounded
233 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
234 * up or down to (approximately) full seconds. This is useful for timers
235 * for which the exact time they fire does not matter too much, as long as
236 * they fire approximately every X seconds.
238 * By rounding these timers to whole seconds, all such timers will fire
239 * at the same time, rather than at various times spread out. The goal
240 * of this is to have the CPU wake up less, which saves power.
242 * The return value is the rounded version of the @j parameter.
244 unsigned long round_jiffies_relative(unsigned long j
)
246 return __round_jiffies_relative(j
, raw_smp_processor_id());
248 EXPORT_SYMBOL_GPL(round_jiffies_relative
);
251 * __round_jiffies_up - function to round jiffies up to a full second
252 * @j: the time in (absolute) jiffies that should be rounded
253 * @cpu: the processor number on which the timeout will happen
255 * This is the same as __round_jiffies() except that it will never
256 * round down. This is useful for timeouts for which the exact time
257 * of firing does not matter too much, as long as they don't fire too
260 unsigned long __round_jiffies_up(unsigned long j
, int cpu
)
262 return round_jiffies_common(j
, cpu
, true);
264 EXPORT_SYMBOL_GPL(__round_jiffies_up
);
267 * __round_jiffies_up_relative - function to round jiffies up to a full second
268 * @j: the time in (relative) jiffies that should be rounded
269 * @cpu: the processor number on which the timeout will happen
271 * This is the same as __round_jiffies_relative() except that it will never
272 * round down. This is useful for timeouts for which the exact time
273 * of firing does not matter too much, as long as they don't fire too
276 unsigned long __round_jiffies_up_relative(unsigned long j
, int cpu
)
278 unsigned long j0
= jiffies
;
280 /* Use j0 because jiffies might change while we run */
281 return round_jiffies_common(j
+ j0
, cpu
, true) - j0
;
283 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative
);
286 * round_jiffies_up - function to round jiffies up to a full second
287 * @j: the time in (absolute) jiffies that should be rounded
289 * This is the same as round_jiffies() except that it will never
290 * round down. This is useful for timeouts for which the exact time
291 * of firing does not matter too much, as long as they don't fire too
294 unsigned long round_jiffies_up(unsigned long j
)
296 return round_jiffies_common(j
, raw_smp_processor_id(), true);
298 EXPORT_SYMBOL_GPL(round_jiffies_up
);
301 * round_jiffies_up_relative - function to round jiffies up to a full second
302 * @j: the time in (relative) jiffies that should be rounded
304 * This is the same as round_jiffies_relative() except that it will never
305 * round down. This is useful for timeouts for which the exact time
306 * of firing does not matter too much, as long as they don't fire too
309 unsigned long round_jiffies_up_relative(unsigned long j
)
311 return __round_jiffies_up_relative(j
, raw_smp_processor_id());
313 EXPORT_SYMBOL_GPL(round_jiffies_up_relative
);
316 static inline void set_running_timer(struct tvec_base
*base
,
317 struct timer_list
*timer
)
320 base
->running_timer
= timer
;
324 static void internal_add_timer(struct tvec_base
*base
, struct timer_list
*timer
)
326 unsigned long expires
= timer
->expires
;
327 unsigned long idx
= expires
- base
->timer_jiffies
;
328 struct list_head
*vec
;
330 if (idx
< TVR_SIZE
) {
331 int i
= expires
& TVR_MASK
;
332 vec
= base
->tv1
.vec
+ i
;
333 } else if (idx
< 1 << (TVR_BITS
+ TVN_BITS
)) {
334 int i
= (expires
>> TVR_BITS
) & TVN_MASK
;
335 vec
= base
->tv2
.vec
+ i
;
336 } else if (idx
< 1 << (TVR_BITS
+ 2 * TVN_BITS
)) {
337 int i
= (expires
>> (TVR_BITS
+ TVN_BITS
)) & TVN_MASK
;
338 vec
= base
->tv3
.vec
+ i
;
339 } else if (idx
< 1 << (TVR_BITS
+ 3 * TVN_BITS
)) {
340 int i
= (expires
>> (TVR_BITS
+ 2 * TVN_BITS
)) & TVN_MASK
;
341 vec
= base
->tv4
.vec
+ i
;
342 } else if ((signed long) idx
< 0) {
344 * Can happen if you add a timer with expires == jiffies,
345 * or you set a timer to go off in the past
347 vec
= base
->tv1
.vec
+ (base
->timer_jiffies
& TVR_MASK
);
350 /* If the timeout is larger than 0xffffffff on 64-bit
351 * architectures then we use the maximum timeout:
353 if (idx
> 0xffffffffUL
) {
355 expires
= idx
+ base
->timer_jiffies
;
357 i
= (expires
>> (TVR_BITS
+ 3 * TVN_BITS
)) & TVN_MASK
;
358 vec
= base
->tv5
.vec
+ i
;
363 list_add_tail(&timer
->entry
, vec
);
366 #ifdef CONFIG_TIMER_STATS
367 void __timer_stats_timer_set_start_info(struct timer_list
*timer
, void *addr
)
369 if (timer
->start_site
)
372 timer
->start_site
= addr
;
373 memcpy(timer
->start_comm
, current
->comm
, TASK_COMM_LEN
);
374 timer
->start_pid
= current
->pid
;
377 static void timer_stats_account_timer(struct timer_list
*timer
)
379 unsigned int flag
= 0;
381 if (unlikely(tbase_get_deferrable(timer
->base
)))
382 flag
|= TIMER_STATS_FLAG_DEFERRABLE
;
384 timer_stats_update_stats(timer
, timer
->start_pid
, timer
->start_site
,
385 timer
->function
, timer
->start_comm
, flag
);
389 static void timer_stats_account_timer(struct timer_list
*timer
) {}
392 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
394 static struct debug_obj_descr timer_debug_descr
;
397 * fixup_init is called when:
398 * - an active object is initialized
400 static int timer_fixup_init(void *addr
, enum debug_obj_state state
)
402 struct timer_list
*timer
= addr
;
405 case ODEBUG_STATE_ACTIVE
:
406 del_timer_sync(timer
);
407 debug_object_init(timer
, &timer_debug_descr
);
415 * fixup_activate is called when:
416 * - an active object is activated
417 * - an unknown object is activated (might be a statically initialized object)
419 static int timer_fixup_activate(void *addr
, enum debug_obj_state state
)
421 struct timer_list
*timer
= addr
;
425 case ODEBUG_STATE_NOTAVAILABLE
:
427 * This is not really a fixup. The timer was
428 * statically initialized. We just make sure that it
429 * is tracked in the object tracker.
431 if (timer
->entry
.next
== NULL
&&
432 timer
->entry
.prev
== TIMER_ENTRY_STATIC
) {
433 debug_object_init(timer
, &timer_debug_descr
);
434 debug_object_activate(timer
, &timer_debug_descr
);
441 case ODEBUG_STATE_ACTIVE
:
450 * fixup_free is called when:
451 * - an active object is freed
453 static int timer_fixup_free(void *addr
, enum debug_obj_state state
)
455 struct timer_list
*timer
= addr
;
458 case ODEBUG_STATE_ACTIVE
:
459 del_timer_sync(timer
);
460 debug_object_free(timer
, &timer_debug_descr
);
467 static struct debug_obj_descr timer_debug_descr
= {
468 .name
= "timer_list",
469 .fixup_init
= timer_fixup_init
,
470 .fixup_activate
= timer_fixup_activate
,
471 .fixup_free
= timer_fixup_free
,
474 static inline void debug_timer_init(struct timer_list
*timer
)
476 debug_object_init(timer
, &timer_debug_descr
);
479 static inline void debug_timer_activate(struct timer_list
*timer
)
481 debug_object_activate(timer
, &timer_debug_descr
);
484 static inline void debug_timer_deactivate(struct timer_list
*timer
)
486 debug_object_deactivate(timer
, &timer_debug_descr
);
489 static inline void debug_timer_free(struct timer_list
*timer
)
491 debug_object_free(timer
, &timer_debug_descr
);
494 static void __init_timer(struct timer_list
*timer
);
496 void init_timer_on_stack(struct timer_list
*timer
)
498 debug_object_init_on_stack(timer
, &timer_debug_descr
);
501 EXPORT_SYMBOL_GPL(init_timer_on_stack
);
503 void destroy_timer_on_stack(struct timer_list
*timer
)
505 debug_object_free(timer
, &timer_debug_descr
);
507 EXPORT_SYMBOL_GPL(destroy_timer_on_stack
);
510 static inline void debug_timer_init(struct timer_list
*timer
) { }
511 static inline void debug_timer_activate(struct timer_list
*timer
) { }
512 static inline void debug_timer_deactivate(struct timer_list
*timer
) { }
515 static void __init_timer(struct timer_list
*timer
)
517 timer
->entry
.next
= NULL
;
518 timer
->base
= __raw_get_cpu_var(tvec_bases
);
519 #ifdef CONFIG_TIMER_STATS
520 timer
->start_site
= NULL
;
521 timer
->start_pid
= -1;
522 memset(timer
->start_comm
, 0, TASK_COMM_LEN
);
527 * init_timer - initialize a timer.
528 * @timer: the timer to be initialized
530 * init_timer() must be done to a timer prior calling *any* of the
531 * other timer functions.
533 void init_timer(struct timer_list
*timer
)
535 debug_timer_init(timer
);
538 EXPORT_SYMBOL(init_timer
);
540 void init_timer_deferrable(struct timer_list
*timer
)
543 timer_set_deferrable(timer
);
545 EXPORT_SYMBOL(init_timer_deferrable
);
547 static inline void detach_timer(struct timer_list
*timer
,
550 struct list_head
*entry
= &timer
->entry
;
552 debug_timer_deactivate(timer
);
554 __list_del(entry
->prev
, entry
->next
);
557 entry
->prev
= LIST_POISON2
;
561 * We are using hashed locking: holding per_cpu(tvec_bases).lock
562 * means that all timers which are tied to this base via timer->base are
563 * locked, and the base itself is locked too.
565 * So __run_timers/migrate_timers can safely modify all timers which could
566 * be found on ->tvX lists.
568 * When the timer's base is locked, and the timer removed from list, it is
569 * possible to set timer->base = NULL and drop the lock: the timer remains
572 static struct tvec_base
*lock_timer_base(struct timer_list
*timer
,
573 unsigned long *flags
)
574 __acquires(timer
->base
->lock
)
576 struct tvec_base
*base
;
579 struct tvec_base
*prelock_base
= timer
->base
;
580 base
= tbase_get_base(prelock_base
);
581 if (likely(base
!= NULL
)) {
582 spin_lock_irqsave(&base
->lock
, *flags
);
583 if (likely(prelock_base
== timer
->base
))
585 /* The timer has migrated to another CPU */
586 spin_unlock_irqrestore(&base
->lock
, *flags
);
592 int __mod_timer(struct timer_list
*timer
, unsigned long expires
)
594 struct tvec_base
*base
, *new_base
;
598 timer_stats_timer_set_start_info(timer
);
599 BUG_ON(!timer
->function
);
601 base
= lock_timer_base(timer
, &flags
);
603 if (timer_pending(timer
)) {
604 detach_timer(timer
, 0);
608 debug_timer_activate(timer
);
610 new_base
= __get_cpu_var(tvec_bases
);
612 if (base
!= new_base
) {
614 * We are trying to schedule the timer on the local CPU.
615 * However we can't change timer's base while it is running,
616 * otherwise del_timer_sync() can't detect that the timer's
617 * handler yet has not finished. This also guarantees that
618 * the timer is serialized wrt itself.
620 if (likely(base
->running_timer
!= timer
)) {
621 /* See the comment in lock_timer_base() */
622 timer_set_base(timer
, NULL
);
623 spin_unlock(&base
->lock
);
625 spin_lock(&base
->lock
);
626 timer_set_base(timer
, base
);
630 timer
->expires
= expires
;
631 internal_add_timer(base
, timer
);
632 spin_unlock_irqrestore(&base
->lock
, flags
);
637 EXPORT_SYMBOL(__mod_timer
);
640 * add_timer_on - start a timer on a particular CPU
641 * @timer: the timer to be added
642 * @cpu: the CPU to start it on
644 * This is not very scalable on SMP. Double adds are not possible.
646 void add_timer_on(struct timer_list
*timer
, int cpu
)
648 struct tvec_base
*base
= per_cpu(tvec_bases
, cpu
);
651 timer_stats_timer_set_start_info(timer
);
652 BUG_ON(timer_pending(timer
) || !timer
->function
);
653 spin_lock_irqsave(&base
->lock
, flags
);
654 timer_set_base(timer
, base
);
655 debug_timer_activate(timer
);
656 internal_add_timer(base
, timer
);
658 * Check whether the other CPU is idle and needs to be
659 * triggered to reevaluate the timer wheel when nohz is
660 * active. We are protected against the other CPU fiddling
661 * with the timer by holding the timer base lock. This also
662 * makes sure that a CPU on the way to idle can not evaluate
665 wake_up_idle_cpu(cpu
);
666 spin_unlock_irqrestore(&base
->lock
, flags
);
670 * mod_timer - modify a timer's timeout
671 * @timer: the timer to be modified
672 * @expires: new timeout in jiffies
674 * mod_timer() is a more efficient way to update the expire field of an
675 * active timer (if the timer is inactive it will be activated)
677 * mod_timer(timer, expires) is equivalent to:
679 * del_timer(timer); timer->expires = expires; add_timer(timer);
681 * Note that if there are multiple unserialized concurrent users of the
682 * same timer, then mod_timer() is the only safe way to modify the timeout,
683 * since add_timer() cannot modify an already running timer.
685 * The function returns whether it has modified a pending timer or not.
686 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
687 * active timer returns 1.)
689 int mod_timer(struct timer_list
*timer
, unsigned long expires
)
691 BUG_ON(!timer
->function
);
693 timer_stats_timer_set_start_info(timer
);
695 * This is a common optimization triggered by the
696 * networking code - if the timer is re-modified
697 * to be the same thing then just return:
699 if (timer
->expires
== expires
&& timer_pending(timer
))
702 return __mod_timer(timer
, expires
);
705 EXPORT_SYMBOL(mod_timer
);
708 * del_timer - deactive a timer.
709 * @timer: the timer to be deactivated
711 * del_timer() deactivates a timer - this works on both active and inactive
714 * The function returns whether it has deactivated a pending timer or not.
715 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
716 * active timer returns 1.)
718 int del_timer(struct timer_list
*timer
)
720 struct tvec_base
*base
;
724 timer_stats_timer_clear_start_info(timer
);
725 if (timer_pending(timer
)) {
726 base
= lock_timer_base(timer
, &flags
);
727 if (timer_pending(timer
)) {
728 detach_timer(timer
, 1);
731 spin_unlock_irqrestore(&base
->lock
, flags
);
737 EXPORT_SYMBOL(del_timer
);
741 * try_to_del_timer_sync - Try to deactivate a timer
742 * @timer: timer do del
744 * This function tries to deactivate a timer. Upon successful (ret >= 0)
745 * exit the timer is not queued and the handler is not running on any CPU.
747 * It must not be called from interrupt contexts.
749 int try_to_del_timer_sync(struct timer_list
*timer
)
751 struct tvec_base
*base
;
755 base
= lock_timer_base(timer
, &flags
);
757 if (base
->running_timer
== timer
)
761 if (timer_pending(timer
)) {
762 detach_timer(timer
, 1);
766 spin_unlock_irqrestore(&base
->lock
, flags
);
771 EXPORT_SYMBOL(try_to_del_timer_sync
);
774 * del_timer_sync - deactivate a timer and wait for the handler to finish.
775 * @timer: the timer to be deactivated
777 * This function only differs from del_timer() on SMP: besides deactivating
778 * the timer it also makes sure the handler has finished executing on other
781 * Synchronization rules: Callers must prevent restarting of the timer,
782 * otherwise this function is meaningless. It must not be called from
783 * interrupt contexts. The caller must not hold locks which would prevent
784 * completion of the timer's handler. The timer's handler must not call
785 * add_timer_on(). Upon exit the timer is not queued and the handler is
786 * not running on any CPU.
788 * The function returns whether it has deactivated a pending timer or not.
790 int del_timer_sync(struct timer_list
*timer
)
793 int ret
= try_to_del_timer_sync(timer
);
800 EXPORT_SYMBOL(del_timer_sync
);
803 static int cascade(struct tvec_base
*base
, struct tvec
*tv
, int index
)
805 /* cascade all the timers from tv up one level */
806 struct timer_list
*timer
, *tmp
;
807 struct list_head tv_list
;
809 list_replace_init(tv
->vec
+ index
, &tv_list
);
812 * We are removing _all_ timers from the list, so we
813 * don't have to detach them individually.
815 list_for_each_entry_safe(timer
, tmp
, &tv_list
, entry
) {
816 BUG_ON(tbase_get_base(timer
->base
) != base
);
817 internal_add_timer(base
, timer
);
823 #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
826 * __run_timers - run all expired timers (if any) on this CPU.
827 * @base: the timer vector to be processed.
829 * This function cascades all vectors and executes all expired timer
832 static inline void __run_timers(struct tvec_base
*base
)
834 struct timer_list
*timer
;
836 spin_lock_irq(&base
->lock
);
837 while (time_after_eq(jiffies
, base
->timer_jiffies
)) {
838 struct list_head work_list
;
839 struct list_head
*head
= &work_list
;
840 int index
= base
->timer_jiffies
& TVR_MASK
;
846 (!cascade(base
, &base
->tv2
, INDEX(0))) &&
847 (!cascade(base
, &base
->tv3
, INDEX(1))) &&
848 !cascade(base
, &base
->tv4
, INDEX(2)))
849 cascade(base
, &base
->tv5
, INDEX(3));
850 ++base
->timer_jiffies
;
851 list_replace_init(base
->tv1
.vec
+ index
, &work_list
);
852 while (!list_empty(head
)) {
853 void (*fn
)(unsigned long);
856 timer
= list_first_entry(head
, struct timer_list
,entry
);
857 fn
= timer
->function
;
860 timer_stats_account_timer(timer
);
862 set_running_timer(base
, timer
);
863 detach_timer(timer
, 1);
864 spin_unlock_irq(&base
->lock
);
866 int preempt_count
= preempt_count();
868 if (preempt_count
!= preempt_count()) {
869 printk(KERN_ERR
"huh, entered %p "
870 "with preempt_count %08x, exited"
877 spin_lock_irq(&base
->lock
);
880 set_running_timer(base
, NULL
);
881 spin_unlock_irq(&base
->lock
);
886 * Find out when the next timer event is due to happen. This
887 * is used on S/390 to stop all activity when a cpus is idle.
888 * This functions needs to be called disabled.
890 static unsigned long __next_timer_interrupt(struct tvec_base
*base
)
892 unsigned long timer_jiffies
= base
->timer_jiffies
;
893 unsigned long expires
= timer_jiffies
+ NEXT_TIMER_MAX_DELTA
;
894 int index
, slot
, array
, found
= 0;
895 struct timer_list
*nte
;
896 struct tvec
*varray
[4];
898 /* Look for timer events in tv1. */
899 index
= slot
= timer_jiffies
& TVR_MASK
;
901 list_for_each_entry(nte
, base
->tv1
.vec
+ slot
, entry
) {
902 if (tbase_get_deferrable(nte
->base
))
906 expires
= nte
->expires
;
907 /* Look at the cascade bucket(s)? */
908 if (!index
|| slot
< index
)
912 slot
= (slot
+ 1) & TVR_MASK
;
913 } while (slot
!= index
);
916 /* Calculate the next cascade event */
918 timer_jiffies
+= TVR_SIZE
- index
;
919 timer_jiffies
>>= TVR_BITS
;
922 varray
[0] = &base
->tv2
;
923 varray
[1] = &base
->tv3
;
924 varray
[2] = &base
->tv4
;
925 varray
[3] = &base
->tv5
;
927 for (array
= 0; array
< 4; array
++) {
928 struct tvec
*varp
= varray
[array
];
930 index
= slot
= timer_jiffies
& TVN_MASK
;
932 list_for_each_entry(nte
, varp
->vec
+ slot
, entry
) {
934 if (time_before(nte
->expires
, expires
))
935 expires
= nte
->expires
;
938 * Do we still search for the first timer or are
939 * we looking up the cascade buckets ?
942 /* Look at the cascade bucket(s)? */
943 if (!index
|| slot
< index
)
947 slot
= (slot
+ 1) & TVN_MASK
;
948 } while (slot
!= index
);
951 timer_jiffies
+= TVN_SIZE
- index
;
952 timer_jiffies
>>= TVN_BITS
;
958 * Check, if the next hrtimer event is before the next timer wheel
961 static unsigned long cmp_next_hrtimer_event(unsigned long now
,
962 unsigned long expires
)
964 ktime_t hr_delta
= hrtimer_get_next_event();
965 struct timespec tsdelta
;
968 if (hr_delta
.tv64
== KTIME_MAX
)
972 * Expired timer available, let it expire in the next tick
974 if (hr_delta
.tv64
<= 0)
977 tsdelta
= ktime_to_timespec(hr_delta
);
978 delta
= timespec_to_jiffies(&tsdelta
);
981 * Limit the delta to the max value, which is checked in
982 * tick_nohz_stop_sched_tick():
984 if (delta
> NEXT_TIMER_MAX_DELTA
)
985 delta
= NEXT_TIMER_MAX_DELTA
;
988 * Take rounding errors in to account and make sure, that it
989 * expires in the next tick. Otherwise we go into an endless
990 * ping pong due to tick_nohz_stop_sched_tick() retriggering
996 if (time_before(now
, expires
))
1002 * get_next_timer_interrupt - return the jiffy of the next pending timer
1003 * @now: current time (in jiffies)
1005 unsigned long get_next_timer_interrupt(unsigned long now
)
1007 struct tvec_base
*base
= __get_cpu_var(tvec_bases
);
1008 unsigned long expires
;
1010 spin_lock(&base
->lock
);
1011 expires
= __next_timer_interrupt(base
);
1012 spin_unlock(&base
->lock
);
1014 if (time_before_eq(expires
, now
))
1017 return cmp_next_hrtimer_event(now
, expires
);
1022 * Called from the timer interrupt handler to charge one tick to the current
1023 * process. user_tick is 1 if the tick is user time, 0 for system.
1025 void update_process_times(int user_tick
)
1027 struct task_struct
*p
= current
;
1028 int cpu
= smp_processor_id();
1030 /* Note: this timer irq context must be accounted for as well. */
1031 account_process_tick(p
, user_tick
);
1033 if (rcu_pending(cpu
))
1034 rcu_check_callbacks(cpu
, user_tick
);
1037 run_posix_cpu_timers(p
);
1041 * Nr of active tasks - counted in fixed-point numbers
1043 static unsigned long count_active_tasks(void)
1045 return nr_active() * FIXED_1
;
1049 * Hmm.. Changed this, as the GNU make sources (load.c) seems to
1050 * imply that avenrun[] is the standard name for this kind of thing.
1051 * Nothing else seems to be standardized: the fractional size etc
1052 * all seem to differ on different machines.
1054 * Requires xtime_lock to access.
1056 unsigned long avenrun
[3];
1058 EXPORT_SYMBOL(avenrun
);
1061 * calc_load - given tick count, update the avenrun load estimates.
1062 * This is called while holding a write_lock on xtime_lock.
1064 static inline void calc_load(unsigned long ticks
)
1066 unsigned long active_tasks
; /* fixed-point */
1067 static int count
= LOAD_FREQ
;
1070 if (unlikely(count
< 0)) {
1071 active_tasks
= count_active_tasks();
1073 CALC_LOAD(avenrun
[0], EXP_1
, active_tasks
);
1074 CALC_LOAD(avenrun
[1], EXP_5
, active_tasks
);
1075 CALC_LOAD(avenrun
[2], EXP_15
, active_tasks
);
1077 } while (count
< 0);
1082 * This function runs timers and the timer-tq in bottom half context.
1084 static void run_timer_softirq(struct softirq_action
*h
)
1086 struct tvec_base
*base
= __get_cpu_var(tvec_bases
);
1088 hrtimer_run_pending();
1090 if (time_after_eq(jiffies
, base
->timer_jiffies
))
1095 * Called by the local, per-CPU timer interrupt on SMP.
1097 void run_local_timers(void)
1099 hrtimer_run_queues();
1100 raise_softirq(TIMER_SOFTIRQ
);
1105 * Called by the timer interrupt. xtime_lock must already be taken
1108 static inline void update_times(unsigned long ticks
)
1115 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1116 * without sampling the sequence number in xtime_lock.
1117 * jiffies is defined in the linker script...
1120 void do_timer(unsigned long ticks
)
1122 jiffies_64
+= ticks
;
1123 update_times(ticks
);
1126 #ifdef __ARCH_WANT_SYS_ALARM
1129 * For backwards compatibility? This can be done in libc so Alpha
1130 * and all newer ports shouldn't need it.
1132 SYSCALL_DEFINE1(alarm
, unsigned int, seconds
)
1134 return alarm_setitimer(seconds
);
1142 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1143 * should be moved into arch/i386 instead?
1147 * sys_getpid - return the thread group id of the current process
1149 * Note, despite the name, this returns the tgid not the pid. The tgid and
1150 * the pid are identical unless CLONE_THREAD was specified on clone() in
1151 * which case the tgid is the same in all threads of the same group.
1153 * This is SMP safe as current->tgid does not change.
1155 SYSCALL_DEFINE0(getpid
)
1157 return task_tgid_vnr(current
);
1161 * Accessing ->real_parent is not SMP-safe, it could
1162 * change from under us. However, we can use a stale
1163 * value of ->real_parent under rcu_read_lock(), see
1164 * release_task()->call_rcu(delayed_put_task_struct).
1166 SYSCALL_DEFINE0(getppid
)
1171 pid
= task_tgid_vnr(current
->real_parent
);
1177 SYSCALL_DEFINE0(getuid
)
1179 /* Only we change this so SMP safe */
1180 return current_uid();
1183 SYSCALL_DEFINE0(geteuid
)
1185 /* Only we change this so SMP safe */
1186 return current_euid();
1189 SYSCALL_DEFINE0(getgid
)
1191 /* Only we change this so SMP safe */
1192 return current_gid();
1195 SYSCALL_DEFINE0(getegid
)
1197 /* Only we change this so SMP safe */
1198 return current_egid();
1203 static void process_timeout(unsigned long __data
)
1205 wake_up_process((struct task_struct
*)__data
);
1209 * schedule_timeout - sleep until timeout
1210 * @timeout: timeout value in jiffies
1212 * Make the current task sleep until @timeout jiffies have
1213 * elapsed. The routine will return immediately unless
1214 * the current task state has been set (see set_current_state()).
1216 * You can set the task state as follows -
1218 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1219 * pass before the routine returns. The routine will return 0
1221 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1222 * delivered to the current task. In this case the remaining time
1223 * in jiffies will be returned, or 0 if the timer expired in time
1225 * The current task state is guaranteed to be TASK_RUNNING when this
1228 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1229 * the CPU away without a bound on the timeout. In this case the return
1230 * value will be %MAX_SCHEDULE_TIMEOUT.
1232 * In all cases the return value is guaranteed to be non-negative.
1234 signed long __sched
schedule_timeout(signed long timeout
)
1236 struct timer_list timer
;
1237 unsigned long expire
;
1241 case MAX_SCHEDULE_TIMEOUT
:
1243 * These two special cases are useful to be comfortable
1244 * in the caller. Nothing more. We could take
1245 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1246 * but I' d like to return a valid offset (>=0) to allow
1247 * the caller to do everything it want with the retval.
1253 * Another bit of PARANOID. Note that the retval will be
1254 * 0 since no piece of kernel is supposed to do a check
1255 * for a negative retval of schedule_timeout() (since it
1256 * should never happens anyway). You just have the printk()
1257 * that will tell you if something is gone wrong and where.
1260 printk(KERN_ERR
"schedule_timeout: wrong timeout "
1261 "value %lx\n", timeout
);
1263 current
->state
= TASK_RUNNING
;
1268 expire
= timeout
+ jiffies
;
1270 setup_timer_on_stack(&timer
, process_timeout
, (unsigned long)current
);
1271 __mod_timer(&timer
, expire
);
1273 del_singleshot_timer_sync(&timer
);
1275 /* Remove the timer from the object tracker */
1276 destroy_timer_on_stack(&timer
);
1278 timeout
= expire
- jiffies
;
1281 return timeout
< 0 ? 0 : timeout
;
1283 EXPORT_SYMBOL(schedule_timeout
);
1286 * We can use __set_current_state() here because schedule_timeout() calls
1287 * schedule() unconditionally.
1289 signed long __sched
schedule_timeout_interruptible(signed long timeout
)
1291 __set_current_state(TASK_INTERRUPTIBLE
);
1292 return schedule_timeout(timeout
);
1294 EXPORT_SYMBOL(schedule_timeout_interruptible
);
1296 signed long __sched
schedule_timeout_killable(signed long timeout
)
1298 __set_current_state(TASK_KILLABLE
);
1299 return schedule_timeout(timeout
);
1301 EXPORT_SYMBOL(schedule_timeout_killable
);
1303 signed long __sched
schedule_timeout_uninterruptible(signed long timeout
)
1305 __set_current_state(TASK_UNINTERRUPTIBLE
);
1306 return schedule_timeout(timeout
);
1308 EXPORT_SYMBOL(schedule_timeout_uninterruptible
);
1310 /* Thread ID - the internal kernel "pid" */
1311 SYSCALL_DEFINE0(gettid
)
1313 return task_pid_vnr(current
);
1317 * do_sysinfo - fill in sysinfo struct
1318 * @info: pointer to buffer to fill
1320 int do_sysinfo(struct sysinfo
*info
)
1322 unsigned long mem_total
, sav_total
;
1323 unsigned int mem_unit
, bitcount
;
1326 memset(info
, 0, sizeof(struct sysinfo
));
1330 seq
= read_seqbegin(&xtime_lock
);
1333 * This is annoying. The below is the same thing
1334 * posix_get_clock_monotonic() does, but it wants to
1335 * take the lock which we want to cover the loads stuff
1339 getnstimeofday(&tp
);
1340 tp
.tv_sec
+= wall_to_monotonic
.tv_sec
;
1341 tp
.tv_nsec
+= wall_to_monotonic
.tv_nsec
;
1342 monotonic_to_bootbased(&tp
);
1343 if (tp
.tv_nsec
- NSEC_PER_SEC
>= 0) {
1344 tp
.tv_nsec
= tp
.tv_nsec
- NSEC_PER_SEC
;
1347 info
->uptime
= tp
.tv_sec
+ (tp
.tv_nsec
? 1 : 0);
1349 info
->loads
[0] = avenrun
[0] << (SI_LOAD_SHIFT
- FSHIFT
);
1350 info
->loads
[1] = avenrun
[1] << (SI_LOAD_SHIFT
- FSHIFT
);
1351 info
->loads
[2] = avenrun
[2] << (SI_LOAD_SHIFT
- FSHIFT
);
1353 info
->procs
= nr_threads
;
1354 } while (read_seqretry(&xtime_lock
, seq
));
1360 * If the sum of all the available memory (i.e. ram + swap)
1361 * is less than can be stored in a 32 bit unsigned long then
1362 * we can be binary compatible with 2.2.x kernels. If not,
1363 * well, in that case 2.2.x was broken anyways...
1365 * -Erik Andersen <andersee@debian.org>
1368 mem_total
= info
->totalram
+ info
->totalswap
;
1369 if (mem_total
< info
->totalram
|| mem_total
< info
->totalswap
)
1372 mem_unit
= info
->mem_unit
;
1373 while (mem_unit
> 1) {
1376 sav_total
= mem_total
;
1378 if (mem_total
< sav_total
)
1383 * If mem_total did not overflow, multiply all memory values by
1384 * info->mem_unit and set it to 1. This leaves things compatible
1385 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1390 info
->totalram
<<= bitcount
;
1391 info
->freeram
<<= bitcount
;
1392 info
->sharedram
<<= bitcount
;
1393 info
->bufferram
<<= bitcount
;
1394 info
->totalswap
<<= bitcount
;
1395 info
->freeswap
<<= bitcount
;
1396 info
->totalhigh
<<= bitcount
;
1397 info
->freehigh
<<= bitcount
;
1403 SYSCALL_DEFINE1(sysinfo
, struct sysinfo __user
*, info
)
1409 if (copy_to_user(info
, &val
, sizeof(struct sysinfo
)))
1415 static int __cpuinit
init_timers_cpu(int cpu
)
1418 struct tvec_base
*base
;
1419 static char __cpuinitdata tvec_base_done
[NR_CPUS
];
1421 if (!tvec_base_done
[cpu
]) {
1422 static char boot_done
;
1426 * The APs use this path later in boot
1428 base
= kmalloc_node(sizeof(*base
),
1429 GFP_KERNEL
| __GFP_ZERO
,
1434 /* Make sure that tvec_base is 2 byte aligned */
1435 if (tbase_get_deferrable(base
)) {
1440 per_cpu(tvec_bases
, cpu
) = base
;
1443 * This is for the boot CPU - we use compile-time
1444 * static initialisation because per-cpu memory isn't
1445 * ready yet and because the memory allocators are not
1446 * initialised either.
1449 base
= &boot_tvec_bases
;
1451 tvec_base_done
[cpu
] = 1;
1453 base
= per_cpu(tvec_bases
, cpu
);
1456 spin_lock_init(&base
->lock
);
1458 for (j
= 0; j
< TVN_SIZE
; j
++) {
1459 INIT_LIST_HEAD(base
->tv5
.vec
+ j
);
1460 INIT_LIST_HEAD(base
->tv4
.vec
+ j
);
1461 INIT_LIST_HEAD(base
->tv3
.vec
+ j
);
1462 INIT_LIST_HEAD(base
->tv2
.vec
+ j
);
1464 for (j
= 0; j
< TVR_SIZE
; j
++)
1465 INIT_LIST_HEAD(base
->tv1
.vec
+ j
);
1467 base
->timer_jiffies
= jiffies
;
1471 #ifdef CONFIG_HOTPLUG_CPU
1472 static void migrate_timer_list(struct tvec_base
*new_base
, struct list_head
*head
)
1474 struct timer_list
*timer
;
1476 while (!list_empty(head
)) {
1477 timer
= list_first_entry(head
, struct timer_list
, entry
);
1478 detach_timer(timer
, 0);
1479 timer_set_base(timer
, new_base
);
1480 internal_add_timer(new_base
, timer
);
1484 static void __cpuinit
migrate_timers(int cpu
)
1486 struct tvec_base
*old_base
;
1487 struct tvec_base
*new_base
;
1490 BUG_ON(cpu_online(cpu
));
1491 old_base
= per_cpu(tvec_bases
, cpu
);
1492 new_base
= get_cpu_var(tvec_bases
);
1494 * The caller is globally serialized and nobody else
1495 * takes two locks at once, deadlock is not possible.
1497 spin_lock_irq(&new_base
->lock
);
1498 spin_lock_nested(&old_base
->lock
, SINGLE_DEPTH_NESTING
);
1500 BUG_ON(old_base
->running_timer
);
1502 for (i
= 0; i
< TVR_SIZE
; i
++)
1503 migrate_timer_list(new_base
, old_base
->tv1
.vec
+ i
);
1504 for (i
= 0; i
< TVN_SIZE
; i
++) {
1505 migrate_timer_list(new_base
, old_base
->tv2
.vec
+ i
);
1506 migrate_timer_list(new_base
, old_base
->tv3
.vec
+ i
);
1507 migrate_timer_list(new_base
, old_base
->tv4
.vec
+ i
);
1508 migrate_timer_list(new_base
, old_base
->tv5
.vec
+ i
);
1511 spin_unlock(&old_base
->lock
);
1512 spin_unlock_irq(&new_base
->lock
);
1513 put_cpu_var(tvec_bases
);
1515 #endif /* CONFIG_HOTPLUG_CPU */
1517 static int __cpuinit
timer_cpu_notify(struct notifier_block
*self
,
1518 unsigned long action
, void *hcpu
)
1520 long cpu
= (long)hcpu
;
1522 case CPU_UP_PREPARE
:
1523 case CPU_UP_PREPARE_FROZEN
:
1524 if (init_timers_cpu(cpu
) < 0)
1527 #ifdef CONFIG_HOTPLUG_CPU
1529 case CPU_DEAD_FROZEN
:
1530 migrate_timers(cpu
);
1539 static struct notifier_block __cpuinitdata timers_nb
= {
1540 .notifier_call
= timer_cpu_notify
,
1544 void __init
init_timers(void)
1546 int err
= timer_cpu_notify(&timers_nb
, (unsigned long)CPU_UP_PREPARE
,
1547 (void *)(long)smp_processor_id());
1551 BUG_ON(err
== NOTIFY_BAD
);
1552 register_cpu_notifier(&timers_nb
);
1553 open_softirq(TIMER_SOFTIRQ
, run_timer_softirq
);
1557 * msleep - sleep safely even with waitqueue interruptions
1558 * @msecs: Time in milliseconds to sleep for
1560 void msleep(unsigned int msecs
)
1562 unsigned long timeout
= msecs_to_jiffies(msecs
) + 1;
1565 timeout
= schedule_timeout_uninterruptible(timeout
);
1568 EXPORT_SYMBOL(msleep
);
1571 * msleep_interruptible - sleep waiting for signals
1572 * @msecs: Time in milliseconds to sleep for
1574 unsigned long msleep_interruptible(unsigned int msecs
)
1576 unsigned long timeout
= msecs_to_jiffies(msecs
) + 1;
1578 while (timeout
&& !signal_pending(current
))
1579 timeout
= schedule_timeout_interruptible(timeout
);
1580 return jiffies_to_msecs(timeout
);
1583 EXPORT_SYMBOL(msleep_interruptible
);