Merge branch 'for-linus' of git://git.kernel.dk/linux-2.6-block
[linux-2.6/linux-2.6-openrd.git] / drivers / block / cciss.c
blobfb5be2d95d52c57a8ac8aab4f0375579a8852de6
1 /*
2 * Disk Array driver for HP Smart Array controllers.
3 * (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
17 * 02111-1307, USA.
19 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/smp_lock.h>
30 #include <linux/delay.h>
31 #include <linux/major.h>
32 #include <linux/fs.h>
33 #include <linux/bio.h>
34 #include <linux/blkpg.h>
35 #include <linux/timer.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/init.h>
39 #include <linux/jiffies.h>
40 #include <linux/hdreg.h>
41 #include <linux/spinlock.h>
42 #include <linux/compat.h>
43 #include <linux/mutex.h>
44 #include <asm/uaccess.h>
45 #include <asm/io.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/blkdev.h>
49 #include <linux/genhd.h>
50 #include <linux/completion.h>
51 #include <scsi/scsi.h>
52 #include <scsi/sg.h>
53 #include <scsi/scsi_ioctl.h>
54 #include <linux/cdrom.h>
55 #include <linux/scatterlist.h>
56 #include <linux/kthread.h>
58 #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
59 #define DRIVER_NAME "HP CISS Driver (v 3.6.20)"
60 #define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 20)
62 /* Embedded module documentation macros - see modules.h */
63 MODULE_AUTHOR("Hewlett-Packard Company");
64 MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
65 MODULE_SUPPORTED_DEVICE("HP SA5i SA5i+ SA532 SA5300 SA5312 SA641 SA642 SA6400"
66 " SA6i P600 P800 P400 P400i E200 E200i E500 P700m"
67 " Smart Array G2 Series SAS/SATA Controllers");
68 MODULE_VERSION("3.6.20");
69 MODULE_LICENSE("GPL");
71 #include "cciss_cmd.h"
72 #include "cciss.h"
73 #include <linux/cciss_ioctl.h>
75 /* define the PCI info for the cards we can control */
76 static const struct pci_device_id cciss_pci_device_id[] = {
77 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS, 0x0E11, 0x4070},
78 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
79 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
80 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
81 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
82 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
83 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
84 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
85 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
86 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSA, 0x103C, 0x3225},
87 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3223},
88 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3234},
89 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3235},
90 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3211},
91 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3212},
92 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3213},
93 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3214},
94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3215},
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3237},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x323D},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
102 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A},
103 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B},
104 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
105 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
106 {0,}
109 MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
111 /* board_id = Subsystem Device ID & Vendor ID
112 * product = Marketing Name for the board
113 * access = Address of the struct of function pointers
115 static struct board_type products[] = {
116 {0x40700E11, "Smart Array 5300", &SA5_access},
117 {0x40800E11, "Smart Array 5i", &SA5B_access},
118 {0x40820E11, "Smart Array 532", &SA5B_access},
119 {0x40830E11, "Smart Array 5312", &SA5B_access},
120 {0x409A0E11, "Smart Array 641", &SA5_access},
121 {0x409B0E11, "Smart Array 642", &SA5_access},
122 {0x409C0E11, "Smart Array 6400", &SA5_access},
123 {0x409D0E11, "Smart Array 6400 EM", &SA5_access},
124 {0x40910E11, "Smart Array 6i", &SA5_access},
125 {0x3225103C, "Smart Array P600", &SA5_access},
126 {0x3223103C, "Smart Array P800", &SA5_access},
127 {0x3234103C, "Smart Array P400", &SA5_access},
128 {0x3235103C, "Smart Array P400i", &SA5_access},
129 {0x3211103C, "Smart Array E200i", &SA5_access},
130 {0x3212103C, "Smart Array E200", &SA5_access},
131 {0x3213103C, "Smart Array E200i", &SA5_access},
132 {0x3214103C, "Smart Array E200i", &SA5_access},
133 {0x3215103C, "Smart Array E200i", &SA5_access},
134 {0x3237103C, "Smart Array E500", &SA5_access},
135 {0x323D103C, "Smart Array P700m", &SA5_access},
136 {0x3241103C, "Smart Array P212", &SA5_access},
137 {0x3243103C, "Smart Array P410", &SA5_access},
138 {0x3245103C, "Smart Array P410i", &SA5_access},
139 {0x3247103C, "Smart Array P411", &SA5_access},
140 {0x3249103C, "Smart Array P812", &SA5_access},
141 {0x324A103C, "Smart Array P712m", &SA5_access},
142 {0x324B103C, "Smart Array P711m", &SA5_access},
143 {0xFFFF103C, "Unknown Smart Array", &SA5_access},
146 /* How long to wait (in milliseconds) for board to go into simple mode */
147 #define MAX_CONFIG_WAIT 30000
148 #define MAX_IOCTL_CONFIG_WAIT 1000
150 /*define how many times we will try a command because of bus resets */
151 #define MAX_CMD_RETRIES 3
153 #define MAX_CTLR 32
155 /* Originally cciss driver only supports 8 major numbers */
156 #define MAX_CTLR_ORIG 8
158 static ctlr_info_t *hba[MAX_CTLR];
160 static struct task_struct *cciss_scan_thread;
161 static DEFINE_MUTEX(scan_mutex);
162 static LIST_HEAD(scan_q);
164 static void do_cciss_request(struct request_queue *q);
165 static irqreturn_t do_cciss_intr(int irq, void *dev_id);
166 static int cciss_open(struct block_device *bdev, fmode_t mode);
167 static int cciss_release(struct gendisk *disk, fmode_t mode);
168 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
169 unsigned int cmd, unsigned long arg);
170 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
172 static int cciss_revalidate(struct gendisk *disk);
173 static int rebuild_lun_table(ctlr_info_t *h, int first_time, int via_ioctl);
174 static int deregister_disk(ctlr_info_t *h, int drv_index,
175 int clear_all, int via_ioctl);
177 static void cciss_read_capacity(int ctlr, int logvol, int withirq,
178 sector_t *total_size, unsigned int *block_size);
179 static void cciss_read_capacity_16(int ctlr, int logvol, int withirq,
180 sector_t *total_size, unsigned int *block_size);
181 static void cciss_geometry_inquiry(int ctlr, int logvol,
182 int withirq, sector_t total_size,
183 unsigned int block_size, InquiryData_struct *inq_buff,
184 drive_info_struct *drv);
185 static void __devinit cciss_interrupt_mode(ctlr_info_t *, struct pci_dev *,
186 __u32);
187 static void start_io(ctlr_info_t *h);
188 static int sendcmd(__u8 cmd, int ctlr, void *buff, size_t size,
189 __u8 page_code, unsigned char *scsi3addr, int cmd_type);
190 static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
191 __u8 page_code, unsigned char scsi3addr[],
192 int cmd_type);
193 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
194 int attempt_retry);
195 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c);
197 static void fail_all_cmds(unsigned long ctlr);
198 static int add_to_scan_list(struct ctlr_info *h);
199 static int scan_thread(void *data);
200 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c);
201 static void cciss_hba_release(struct device *dev);
202 static void cciss_device_release(struct device *dev);
203 static void cciss_free_gendisk(ctlr_info_t *h, int drv_index);
204 static void cciss_free_drive_info(ctlr_info_t *h, int drv_index);
206 #ifdef CONFIG_PROC_FS
207 static void cciss_procinit(int i);
208 #else
209 static void cciss_procinit(int i)
212 #endif /* CONFIG_PROC_FS */
214 #ifdef CONFIG_COMPAT
215 static int cciss_compat_ioctl(struct block_device *, fmode_t,
216 unsigned, unsigned long);
217 #endif
219 static const struct block_device_operations cciss_fops = {
220 .owner = THIS_MODULE,
221 .open = cciss_open,
222 .release = cciss_release,
223 .locked_ioctl = cciss_ioctl,
224 .getgeo = cciss_getgeo,
225 #ifdef CONFIG_COMPAT
226 .compat_ioctl = cciss_compat_ioctl,
227 #endif
228 .revalidate_disk = cciss_revalidate,
232 * Enqueuing and dequeuing functions for cmdlists.
234 static inline void addQ(struct hlist_head *list, CommandList_struct *c)
236 hlist_add_head(&c->list, list);
239 static inline void removeQ(CommandList_struct *c)
242 * After kexec/dump some commands might still
243 * be in flight, which the firmware will try
244 * to complete. Resetting the firmware doesn't work
245 * with old fw revisions, so we have to mark
246 * them off as 'stale' to prevent the driver from
247 * falling over.
249 if (WARN_ON(hlist_unhashed(&c->list))) {
250 c->cmd_type = CMD_MSG_STALE;
251 return;
254 hlist_del_init(&c->list);
257 #include "cciss_scsi.c" /* For SCSI tape support */
259 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
260 "UNKNOWN"
262 #define RAID_UNKNOWN (sizeof(raid_label) / sizeof(raid_label[0])-1)
264 #ifdef CONFIG_PROC_FS
267 * Report information about this controller.
269 #define ENG_GIG 1000000000
270 #define ENG_GIG_FACTOR (ENG_GIG/512)
271 #define ENGAGE_SCSI "engage scsi"
273 static struct proc_dir_entry *proc_cciss;
275 static void cciss_seq_show_header(struct seq_file *seq)
277 ctlr_info_t *h = seq->private;
279 seq_printf(seq, "%s: HP %s Controller\n"
280 "Board ID: 0x%08lx\n"
281 "Firmware Version: %c%c%c%c\n"
282 "IRQ: %d\n"
283 "Logical drives: %d\n"
284 "Current Q depth: %d\n"
285 "Current # commands on controller: %d\n"
286 "Max Q depth since init: %d\n"
287 "Max # commands on controller since init: %d\n"
288 "Max SG entries since init: %d\n",
289 h->devname,
290 h->product_name,
291 (unsigned long)h->board_id,
292 h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
293 h->firm_ver[3], (unsigned int)h->intr[SIMPLE_MODE_INT],
294 h->num_luns,
295 h->Qdepth, h->commands_outstanding,
296 h->maxQsinceinit, h->max_outstanding, h->maxSG);
298 #ifdef CONFIG_CISS_SCSI_TAPE
299 cciss_seq_tape_report(seq, h->ctlr);
300 #endif /* CONFIG_CISS_SCSI_TAPE */
303 static void *cciss_seq_start(struct seq_file *seq, loff_t *pos)
305 ctlr_info_t *h = seq->private;
306 unsigned ctlr = h->ctlr;
307 unsigned long flags;
309 /* prevent displaying bogus info during configuration
310 * or deconfiguration of a logical volume
312 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
313 if (h->busy_configuring) {
314 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
315 return ERR_PTR(-EBUSY);
317 h->busy_configuring = 1;
318 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
320 if (*pos == 0)
321 cciss_seq_show_header(seq);
323 return pos;
326 static int cciss_seq_show(struct seq_file *seq, void *v)
328 sector_t vol_sz, vol_sz_frac;
329 ctlr_info_t *h = seq->private;
330 unsigned ctlr = h->ctlr;
331 loff_t *pos = v;
332 drive_info_struct *drv = h->drv[*pos];
334 if (*pos > h->highest_lun)
335 return 0;
337 if (drv->heads == 0)
338 return 0;
340 vol_sz = drv->nr_blocks;
341 vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
342 vol_sz_frac *= 100;
343 sector_div(vol_sz_frac, ENG_GIG_FACTOR);
345 if (drv->raid_level < 0 || drv->raid_level > RAID_UNKNOWN)
346 drv->raid_level = RAID_UNKNOWN;
347 seq_printf(seq, "cciss/c%dd%d:"
348 "\t%4u.%02uGB\tRAID %s\n",
349 ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac,
350 raid_label[drv->raid_level]);
351 return 0;
354 static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos)
356 ctlr_info_t *h = seq->private;
358 if (*pos > h->highest_lun)
359 return NULL;
360 *pos += 1;
362 return pos;
365 static void cciss_seq_stop(struct seq_file *seq, void *v)
367 ctlr_info_t *h = seq->private;
369 /* Only reset h->busy_configuring if we succeeded in setting
370 * it during cciss_seq_start. */
371 if (v == ERR_PTR(-EBUSY))
372 return;
374 h->busy_configuring = 0;
377 static const struct seq_operations cciss_seq_ops = {
378 .start = cciss_seq_start,
379 .show = cciss_seq_show,
380 .next = cciss_seq_next,
381 .stop = cciss_seq_stop,
384 static int cciss_seq_open(struct inode *inode, struct file *file)
386 int ret = seq_open(file, &cciss_seq_ops);
387 struct seq_file *seq = file->private_data;
389 if (!ret)
390 seq->private = PDE(inode)->data;
392 return ret;
395 static ssize_t
396 cciss_proc_write(struct file *file, const char __user *buf,
397 size_t length, loff_t *ppos)
399 int err;
400 char *buffer;
402 #ifndef CONFIG_CISS_SCSI_TAPE
403 return -EINVAL;
404 #endif
406 if (!buf || length > PAGE_SIZE - 1)
407 return -EINVAL;
409 buffer = (char *)__get_free_page(GFP_KERNEL);
410 if (!buffer)
411 return -ENOMEM;
413 err = -EFAULT;
414 if (copy_from_user(buffer, buf, length))
415 goto out;
416 buffer[length] = '\0';
418 #ifdef CONFIG_CISS_SCSI_TAPE
419 if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) {
420 struct seq_file *seq = file->private_data;
421 ctlr_info_t *h = seq->private;
422 int rc;
424 rc = cciss_engage_scsi(h->ctlr);
425 if (rc != 0)
426 err = -rc;
427 else
428 err = length;
429 } else
430 #endif /* CONFIG_CISS_SCSI_TAPE */
431 err = -EINVAL;
432 /* might be nice to have "disengage" too, but it's not
433 safely possible. (only 1 module use count, lock issues.) */
435 out:
436 free_page((unsigned long)buffer);
437 return err;
440 static const struct file_operations cciss_proc_fops = {
441 .owner = THIS_MODULE,
442 .open = cciss_seq_open,
443 .read = seq_read,
444 .llseek = seq_lseek,
445 .release = seq_release,
446 .write = cciss_proc_write,
449 static void __devinit cciss_procinit(int i)
451 struct proc_dir_entry *pde;
453 if (proc_cciss == NULL)
454 proc_cciss = proc_mkdir("driver/cciss", NULL);
455 if (!proc_cciss)
456 return;
457 pde = proc_create_data(hba[i]->devname, S_IWUSR | S_IRUSR | S_IRGRP |
458 S_IROTH, proc_cciss,
459 &cciss_proc_fops, hba[i]);
461 #endif /* CONFIG_PROC_FS */
463 #define MAX_PRODUCT_NAME_LEN 19
465 #define to_hba(n) container_of(n, struct ctlr_info, dev)
466 #define to_drv(n) container_of(n, drive_info_struct, dev)
468 static ssize_t host_store_rescan(struct device *dev,
469 struct device_attribute *attr,
470 const char *buf, size_t count)
472 struct ctlr_info *h = to_hba(dev);
474 add_to_scan_list(h);
475 wake_up_process(cciss_scan_thread);
476 wait_for_completion_interruptible(&h->scan_wait);
478 return count;
480 DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
482 static ssize_t dev_show_unique_id(struct device *dev,
483 struct device_attribute *attr,
484 char *buf)
486 drive_info_struct *drv = to_drv(dev);
487 struct ctlr_info *h = to_hba(drv->dev.parent);
488 __u8 sn[16];
489 unsigned long flags;
490 int ret = 0;
492 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
493 if (h->busy_configuring)
494 ret = -EBUSY;
495 else
496 memcpy(sn, drv->serial_no, sizeof(sn));
497 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
499 if (ret)
500 return ret;
501 else
502 return snprintf(buf, 16 * 2 + 2,
503 "%02X%02X%02X%02X%02X%02X%02X%02X"
504 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
505 sn[0], sn[1], sn[2], sn[3],
506 sn[4], sn[5], sn[6], sn[7],
507 sn[8], sn[9], sn[10], sn[11],
508 sn[12], sn[13], sn[14], sn[15]);
510 DEVICE_ATTR(unique_id, S_IRUGO, dev_show_unique_id, NULL);
512 static ssize_t dev_show_vendor(struct device *dev,
513 struct device_attribute *attr,
514 char *buf)
516 drive_info_struct *drv = to_drv(dev);
517 struct ctlr_info *h = to_hba(drv->dev.parent);
518 char vendor[VENDOR_LEN + 1];
519 unsigned long flags;
520 int ret = 0;
522 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
523 if (h->busy_configuring)
524 ret = -EBUSY;
525 else
526 memcpy(vendor, drv->vendor, VENDOR_LEN + 1);
527 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
529 if (ret)
530 return ret;
531 else
532 return snprintf(buf, sizeof(vendor) + 1, "%s\n", drv->vendor);
534 DEVICE_ATTR(vendor, S_IRUGO, dev_show_vendor, NULL);
536 static ssize_t dev_show_model(struct device *dev,
537 struct device_attribute *attr,
538 char *buf)
540 drive_info_struct *drv = to_drv(dev);
541 struct ctlr_info *h = to_hba(drv->dev.parent);
542 char model[MODEL_LEN + 1];
543 unsigned long flags;
544 int ret = 0;
546 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
547 if (h->busy_configuring)
548 ret = -EBUSY;
549 else
550 memcpy(model, drv->model, MODEL_LEN + 1);
551 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
553 if (ret)
554 return ret;
555 else
556 return snprintf(buf, sizeof(model) + 1, "%s\n", drv->model);
558 DEVICE_ATTR(model, S_IRUGO, dev_show_model, NULL);
560 static ssize_t dev_show_rev(struct device *dev,
561 struct device_attribute *attr,
562 char *buf)
564 drive_info_struct *drv = to_drv(dev);
565 struct ctlr_info *h = to_hba(drv->dev.parent);
566 char rev[REV_LEN + 1];
567 unsigned long flags;
568 int ret = 0;
570 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
571 if (h->busy_configuring)
572 ret = -EBUSY;
573 else
574 memcpy(rev, drv->rev, REV_LEN + 1);
575 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
577 if (ret)
578 return ret;
579 else
580 return snprintf(buf, sizeof(rev) + 1, "%s\n", drv->rev);
582 DEVICE_ATTR(rev, S_IRUGO, dev_show_rev, NULL);
584 static ssize_t cciss_show_lunid(struct device *dev,
585 struct device_attribute *attr, char *buf)
587 drive_info_struct *drv = to_drv(dev);
588 struct ctlr_info *h = to_hba(drv->dev.parent);
589 unsigned long flags;
590 unsigned char lunid[8];
592 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
593 if (h->busy_configuring) {
594 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
595 return -EBUSY;
597 if (!drv->heads) {
598 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
599 return -ENOTTY;
601 memcpy(lunid, drv->LunID, sizeof(lunid));
602 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
603 return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
604 lunid[0], lunid[1], lunid[2], lunid[3],
605 lunid[4], lunid[5], lunid[6], lunid[7]);
607 DEVICE_ATTR(lunid, S_IRUGO, cciss_show_lunid, NULL);
609 static ssize_t cciss_show_raid_level(struct device *dev,
610 struct device_attribute *attr, char *buf)
612 drive_info_struct *drv = to_drv(dev);
613 struct ctlr_info *h = to_hba(drv->dev.parent);
614 int raid;
615 unsigned long flags;
617 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
618 if (h->busy_configuring) {
619 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
620 return -EBUSY;
622 raid = drv->raid_level;
623 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
624 if (raid < 0 || raid > RAID_UNKNOWN)
625 raid = RAID_UNKNOWN;
627 return snprintf(buf, strlen(raid_label[raid]) + 7, "RAID %s\n",
628 raid_label[raid]);
630 DEVICE_ATTR(raid_level, S_IRUGO, cciss_show_raid_level, NULL);
632 static ssize_t cciss_show_usage_count(struct device *dev,
633 struct device_attribute *attr, char *buf)
635 drive_info_struct *drv = to_drv(dev);
636 struct ctlr_info *h = to_hba(drv->dev.parent);
637 unsigned long flags;
638 int count;
640 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
641 if (h->busy_configuring) {
642 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
643 return -EBUSY;
645 count = drv->usage_count;
646 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
647 return snprintf(buf, 20, "%d\n", count);
649 DEVICE_ATTR(usage_count, S_IRUGO, cciss_show_usage_count, NULL);
651 static struct attribute *cciss_host_attrs[] = {
652 &dev_attr_rescan.attr,
653 NULL
656 static struct attribute_group cciss_host_attr_group = {
657 .attrs = cciss_host_attrs,
660 static const struct attribute_group *cciss_host_attr_groups[] = {
661 &cciss_host_attr_group,
662 NULL
665 static struct device_type cciss_host_type = {
666 .name = "cciss_host",
667 .groups = cciss_host_attr_groups,
668 .release = cciss_hba_release,
671 static struct attribute *cciss_dev_attrs[] = {
672 &dev_attr_unique_id.attr,
673 &dev_attr_model.attr,
674 &dev_attr_vendor.attr,
675 &dev_attr_rev.attr,
676 &dev_attr_lunid.attr,
677 &dev_attr_raid_level.attr,
678 &dev_attr_usage_count.attr,
679 NULL
682 static struct attribute_group cciss_dev_attr_group = {
683 .attrs = cciss_dev_attrs,
686 static const struct attribute_group *cciss_dev_attr_groups[] = {
687 &cciss_dev_attr_group,
688 NULL
691 static struct device_type cciss_dev_type = {
692 .name = "cciss_device",
693 .groups = cciss_dev_attr_groups,
694 .release = cciss_device_release,
697 static struct bus_type cciss_bus_type = {
698 .name = "cciss",
702 * cciss_hba_release is called when the reference count
703 * of h->dev goes to zero.
705 static void cciss_hba_release(struct device *dev)
708 * nothing to do, but need this to avoid a warning
709 * about not having a release handler from lib/kref.c.
714 * Initialize sysfs entry for each controller. This sets up and registers
715 * the 'cciss#' directory for each individual controller under
716 * /sys/bus/pci/devices/<dev>/.
718 static int cciss_create_hba_sysfs_entry(struct ctlr_info *h)
720 device_initialize(&h->dev);
721 h->dev.type = &cciss_host_type;
722 h->dev.bus = &cciss_bus_type;
723 dev_set_name(&h->dev, "%s", h->devname);
724 h->dev.parent = &h->pdev->dev;
726 return device_add(&h->dev);
730 * Remove sysfs entries for an hba.
732 static void cciss_destroy_hba_sysfs_entry(struct ctlr_info *h)
734 device_del(&h->dev);
735 put_device(&h->dev); /* final put. */
738 /* cciss_device_release is called when the reference count
739 * of h->drv[x]dev goes to zero.
741 static void cciss_device_release(struct device *dev)
743 drive_info_struct *drv = to_drv(dev);
744 kfree(drv);
748 * Initialize sysfs for each logical drive. This sets up and registers
749 * the 'c#d#' directory for each individual logical drive under
750 * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
751 * /sys/block/cciss!c#d# to this entry.
753 static long cciss_create_ld_sysfs_entry(struct ctlr_info *h,
754 int drv_index)
756 struct device *dev;
758 if (h->drv[drv_index]->device_initialized)
759 return 0;
761 dev = &h->drv[drv_index]->dev;
762 device_initialize(dev);
763 dev->type = &cciss_dev_type;
764 dev->bus = &cciss_bus_type;
765 dev_set_name(dev, "c%dd%d", h->ctlr, drv_index);
766 dev->parent = &h->dev;
767 h->drv[drv_index]->device_initialized = 1;
768 return device_add(dev);
772 * Remove sysfs entries for a logical drive.
774 static void cciss_destroy_ld_sysfs_entry(struct ctlr_info *h, int drv_index,
775 int ctlr_exiting)
777 struct device *dev = &h->drv[drv_index]->dev;
779 /* special case for c*d0, we only destroy it on controller exit */
780 if (drv_index == 0 && !ctlr_exiting)
781 return;
783 device_del(dev);
784 put_device(dev); /* the "final" put. */
785 h->drv[drv_index] = NULL;
789 * For operations that cannot sleep, a command block is allocated at init,
790 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
791 * which ones are free or in use. For operations that can wait for kmalloc
792 * to possible sleep, this routine can be called with get_from_pool set to 0.
793 * cmd_free() MUST be called with a got_from_pool set to 0 if cmd_alloc was.
795 static CommandList_struct *cmd_alloc(ctlr_info_t *h, int get_from_pool)
797 CommandList_struct *c;
798 int i;
799 u64bit temp64;
800 dma_addr_t cmd_dma_handle, err_dma_handle;
802 if (!get_from_pool) {
803 c = (CommandList_struct *) pci_alloc_consistent(h->pdev,
804 sizeof(CommandList_struct), &cmd_dma_handle);
805 if (c == NULL)
806 return NULL;
807 memset(c, 0, sizeof(CommandList_struct));
809 c->cmdindex = -1;
811 c->err_info = (ErrorInfo_struct *)
812 pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
813 &err_dma_handle);
815 if (c->err_info == NULL) {
816 pci_free_consistent(h->pdev,
817 sizeof(CommandList_struct), c, cmd_dma_handle);
818 return NULL;
820 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
821 } else { /* get it out of the controllers pool */
823 do {
824 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
825 if (i == h->nr_cmds)
826 return NULL;
827 } while (test_and_set_bit
828 (i & (BITS_PER_LONG - 1),
829 h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
830 #ifdef CCISS_DEBUG
831 printk(KERN_DEBUG "cciss: using command buffer %d\n", i);
832 #endif
833 c = h->cmd_pool + i;
834 memset(c, 0, sizeof(CommandList_struct));
835 cmd_dma_handle = h->cmd_pool_dhandle
836 + i * sizeof(CommandList_struct);
837 c->err_info = h->errinfo_pool + i;
838 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
839 err_dma_handle = h->errinfo_pool_dhandle
840 + i * sizeof(ErrorInfo_struct);
841 h->nr_allocs++;
843 c->cmdindex = i;
846 INIT_HLIST_NODE(&c->list);
847 c->busaddr = (__u32) cmd_dma_handle;
848 temp64.val = (__u64) err_dma_handle;
849 c->ErrDesc.Addr.lower = temp64.val32.lower;
850 c->ErrDesc.Addr.upper = temp64.val32.upper;
851 c->ErrDesc.Len = sizeof(ErrorInfo_struct);
853 c->ctlr = h->ctlr;
854 return c;
858 * Frees a command block that was previously allocated with cmd_alloc().
860 static void cmd_free(ctlr_info_t *h, CommandList_struct *c, int got_from_pool)
862 int i;
863 u64bit temp64;
865 if (!got_from_pool) {
866 temp64.val32.lower = c->ErrDesc.Addr.lower;
867 temp64.val32.upper = c->ErrDesc.Addr.upper;
868 pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
869 c->err_info, (dma_addr_t) temp64.val);
870 pci_free_consistent(h->pdev, sizeof(CommandList_struct),
871 c, (dma_addr_t) c->busaddr);
872 } else {
873 i = c - h->cmd_pool;
874 clear_bit(i & (BITS_PER_LONG - 1),
875 h->cmd_pool_bits + (i / BITS_PER_LONG));
876 h->nr_frees++;
880 static inline ctlr_info_t *get_host(struct gendisk *disk)
882 return disk->queue->queuedata;
885 static inline drive_info_struct *get_drv(struct gendisk *disk)
887 return disk->private_data;
891 * Open. Make sure the device is really there.
893 static int cciss_open(struct block_device *bdev, fmode_t mode)
895 ctlr_info_t *host = get_host(bdev->bd_disk);
896 drive_info_struct *drv = get_drv(bdev->bd_disk);
898 #ifdef CCISS_DEBUG
899 printk(KERN_DEBUG "cciss_open %s\n", bdev->bd_disk->disk_name);
900 #endif /* CCISS_DEBUG */
902 if (drv->busy_configuring)
903 return -EBUSY;
905 * Root is allowed to open raw volume zero even if it's not configured
906 * so array config can still work. Root is also allowed to open any
907 * volume that has a LUN ID, so it can issue IOCTL to reread the
908 * disk information. I don't think I really like this
909 * but I'm already using way to many device nodes to claim another one
910 * for "raw controller".
912 if (drv->heads == 0) {
913 if (MINOR(bdev->bd_dev) != 0) { /* not node 0? */
914 /* if not node 0 make sure it is a partition = 0 */
915 if (MINOR(bdev->bd_dev) & 0x0f) {
916 return -ENXIO;
917 /* if it is, make sure we have a LUN ID */
918 } else if (memcmp(drv->LunID, CTLR_LUNID,
919 sizeof(drv->LunID))) {
920 return -ENXIO;
923 if (!capable(CAP_SYS_ADMIN))
924 return -EPERM;
926 drv->usage_count++;
927 host->usage_count++;
928 return 0;
932 * Close. Sync first.
934 static int cciss_release(struct gendisk *disk, fmode_t mode)
936 ctlr_info_t *host = get_host(disk);
937 drive_info_struct *drv = get_drv(disk);
939 #ifdef CCISS_DEBUG
940 printk(KERN_DEBUG "cciss_release %s\n", disk->disk_name);
941 #endif /* CCISS_DEBUG */
943 drv->usage_count--;
944 host->usage_count--;
945 return 0;
948 #ifdef CONFIG_COMPAT
950 static int do_ioctl(struct block_device *bdev, fmode_t mode,
951 unsigned cmd, unsigned long arg)
953 int ret;
954 lock_kernel();
955 ret = cciss_ioctl(bdev, mode, cmd, arg);
956 unlock_kernel();
957 return ret;
960 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
961 unsigned cmd, unsigned long arg);
962 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
963 unsigned cmd, unsigned long arg);
965 static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode,
966 unsigned cmd, unsigned long arg)
968 switch (cmd) {
969 case CCISS_GETPCIINFO:
970 case CCISS_GETINTINFO:
971 case CCISS_SETINTINFO:
972 case CCISS_GETNODENAME:
973 case CCISS_SETNODENAME:
974 case CCISS_GETHEARTBEAT:
975 case CCISS_GETBUSTYPES:
976 case CCISS_GETFIRMVER:
977 case CCISS_GETDRIVVER:
978 case CCISS_REVALIDVOLS:
979 case CCISS_DEREGDISK:
980 case CCISS_REGNEWDISK:
981 case CCISS_REGNEWD:
982 case CCISS_RESCANDISK:
983 case CCISS_GETLUNINFO:
984 return do_ioctl(bdev, mode, cmd, arg);
986 case CCISS_PASSTHRU32:
987 return cciss_ioctl32_passthru(bdev, mode, cmd, arg);
988 case CCISS_BIG_PASSTHRU32:
989 return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg);
991 default:
992 return -ENOIOCTLCMD;
996 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
997 unsigned cmd, unsigned long arg)
999 IOCTL32_Command_struct __user *arg32 =
1000 (IOCTL32_Command_struct __user *) arg;
1001 IOCTL_Command_struct arg64;
1002 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
1003 int err;
1004 u32 cp;
1006 err = 0;
1007 err |=
1008 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1009 sizeof(arg64.LUN_info));
1010 err |=
1011 copy_from_user(&arg64.Request, &arg32->Request,
1012 sizeof(arg64.Request));
1013 err |=
1014 copy_from_user(&arg64.error_info, &arg32->error_info,
1015 sizeof(arg64.error_info));
1016 err |= get_user(arg64.buf_size, &arg32->buf_size);
1017 err |= get_user(cp, &arg32->buf);
1018 arg64.buf = compat_ptr(cp);
1019 err |= copy_to_user(p, &arg64, sizeof(arg64));
1021 if (err)
1022 return -EFAULT;
1024 err = do_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p);
1025 if (err)
1026 return err;
1027 err |=
1028 copy_in_user(&arg32->error_info, &p->error_info,
1029 sizeof(arg32->error_info));
1030 if (err)
1031 return -EFAULT;
1032 return err;
1035 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1036 unsigned cmd, unsigned long arg)
1038 BIG_IOCTL32_Command_struct __user *arg32 =
1039 (BIG_IOCTL32_Command_struct __user *) arg;
1040 BIG_IOCTL_Command_struct arg64;
1041 BIG_IOCTL_Command_struct __user *p =
1042 compat_alloc_user_space(sizeof(arg64));
1043 int err;
1044 u32 cp;
1046 err = 0;
1047 err |=
1048 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1049 sizeof(arg64.LUN_info));
1050 err |=
1051 copy_from_user(&arg64.Request, &arg32->Request,
1052 sizeof(arg64.Request));
1053 err |=
1054 copy_from_user(&arg64.error_info, &arg32->error_info,
1055 sizeof(arg64.error_info));
1056 err |= get_user(arg64.buf_size, &arg32->buf_size);
1057 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
1058 err |= get_user(cp, &arg32->buf);
1059 arg64.buf = compat_ptr(cp);
1060 err |= copy_to_user(p, &arg64, sizeof(arg64));
1062 if (err)
1063 return -EFAULT;
1065 err = do_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p);
1066 if (err)
1067 return err;
1068 err |=
1069 copy_in_user(&arg32->error_info, &p->error_info,
1070 sizeof(arg32->error_info));
1071 if (err)
1072 return -EFAULT;
1073 return err;
1075 #endif
1077 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1079 drive_info_struct *drv = get_drv(bdev->bd_disk);
1081 if (!drv->cylinders)
1082 return -ENXIO;
1084 geo->heads = drv->heads;
1085 geo->sectors = drv->sectors;
1086 geo->cylinders = drv->cylinders;
1087 return 0;
1090 static void check_ioctl_unit_attention(ctlr_info_t *host, CommandList_struct *c)
1092 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
1093 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
1094 (void)check_for_unit_attention(host, c);
1097 * ioctl
1099 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
1100 unsigned int cmd, unsigned long arg)
1102 struct gendisk *disk = bdev->bd_disk;
1103 ctlr_info_t *host = get_host(disk);
1104 drive_info_struct *drv = get_drv(disk);
1105 int ctlr = host->ctlr;
1106 void __user *argp = (void __user *)arg;
1108 #ifdef CCISS_DEBUG
1109 printk(KERN_DEBUG "cciss_ioctl: Called with cmd=%x %lx\n", cmd, arg);
1110 #endif /* CCISS_DEBUG */
1112 switch (cmd) {
1113 case CCISS_GETPCIINFO:
1115 cciss_pci_info_struct pciinfo;
1117 if (!arg)
1118 return -EINVAL;
1119 pciinfo.domain = pci_domain_nr(host->pdev->bus);
1120 pciinfo.bus = host->pdev->bus->number;
1121 pciinfo.dev_fn = host->pdev->devfn;
1122 pciinfo.board_id = host->board_id;
1123 if (copy_to_user
1124 (argp, &pciinfo, sizeof(cciss_pci_info_struct)))
1125 return -EFAULT;
1126 return 0;
1128 case CCISS_GETINTINFO:
1130 cciss_coalint_struct intinfo;
1131 if (!arg)
1132 return -EINVAL;
1133 intinfo.delay =
1134 readl(&host->cfgtable->HostWrite.CoalIntDelay);
1135 intinfo.count =
1136 readl(&host->cfgtable->HostWrite.CoalIntCount);
1137 if (copy_to_user
1138 (argp, &intinfo, sizeof(cciss_coalint_struct)))
1139 return -EFAULT;
1140 return 0;
1142 case CCISS_SETINTINFO:
1144 cciss_coalint_struct intinfo;
1145 unsigned long flags;
1146 int i;
1148 if (!arg)
1149 return -EINVAL;
1150 if (!capable(CAP_SYS_ADMIN))
1151 return -EPERM;
1152 if (copy_from_user
1153 (&intinfo, argp, sizeof(cciss_coalint_struct)))
1154 return -EFAULT;
1155 if ((intinfo.delay == 0) && (intinfo.count == 0))
1157 // printk("cciss_ioctl: delay and count cannot be 0\n");
1158 return -EINVAL;
1160 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1161 /* Update the field, and then ring the doorbell */
1162 writel(intinfo.delay,
1163 &(host->cfgtable->HostWrite.CoalIntDelay));
1164 writel(intinfo.count,
1165 &(host->cfgtable->HostWrite.CoalIntCount));
1166 writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
1168 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1169 if (!(readl(host->vaddr + SA5_DOORBELL)
1170 & CFGTBL_ChangeReq))
1171 break;
1172 /* delay and try again */
1173 udelay(1000);
1175 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1176 if (i >= MAX_IOCTL_CONFIG_WAIT)
1177 return -EAGAIN;
1178 return 0;
1180 case CCISS_GETNODENAME:
1182 NodeName_type NodeName;
1183 int i;
1185 if (!arg)
1186 return -EINVAL;
1187 for (i = 0; i < 16; i++)
1188 NodeName[i] =
1189 readb(&host->cfgtable->ServerName[i]);
1190 if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
1191 return -EFAULT;
1192 return 0;
1194 case CCISS_SETNODENAME:
1196 NodeName_type NodeName;
1197 unsigned long flags;
1198 int i;
1200 if (!arg)
1201 return -EINVAL;
1202 if (!capable(CAP_SYS_ADMIN))
1203 return -EPERM;
1205 if (copy_from_user
1206 (NodeName, argp, sizeof(NodeName_type)))
1207 return -EFAULT;
1209 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1211 /* Update the field, and then ring the doorbell */
1212 for (i = 0; i < 16; i++)
1213 writeb(NodeName[i],
1214 &host->cfgtable->ServerName[i]);
1216 writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
1218 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1219 if (!(readl(host->vaddr + SA5_DOORBELL)
1220 & CFGTBL_ChangeReq))
1221 break;
1222 /* delay and try again */
1223 udelay(1000);
1225 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1226 if (i >= MAX_IOCTL_CONFIG_WAIT)
1227 return -EAGAIN;
1228 return 0;
1231 case CCISS_GETHEARTBEAT:
1233 Heartbeat_type heartbeat;
1235 if (!arg)
1236 return -EINVAL;
1237 heartbeat = readl(&host->cfgtable->HeartBeat);
1238 if (copy_to_user
1239 (argp, &heartbeat, sizeof(Heartbeat_type)))
1240 return -EFAULT;
1241 return 0;
1243 case CCISS_GETBUSTYPES:
1245 BusTypes_type BusTypes;
1247 if (!arg)
1248 return -EINVAL;
1249 BusTypes = readl(&host->cfgtable->BusTypes);
1250 if (copy_to_user
1251 (argp, &BusTypes, sizeof(BusTypes_type)))
1252 return -EFAULT;
1253 return 0;
1255 case CCISS_GETFIRMVER:
1257 FirmwareVer_type firmware;
1259 if (!arg)
1260 return -EINVAL;
1261 memcpy(firmware, host->firm_ver, 4);
1263 if (copy_to_user
1264 (argp, firmware, sizeof(FirmwareVer_type)))
1265 return -EFAULT;
1266 return 0;
1268 case CCISS_GETDRIVVER:
1270 DriverVer_type DriverVer = DRIVER_VERSION;
1272 if (!arg)
1273 return -EINVAL;
1275 if (copy_to_user
1276 (argp, &DriverVer, sizeof(DriverVer_type)))
1277 return -EFAULT;
1278 return 0;
1281 case CCISS_DEREGDISK:
1282 case CCISS_REGNEWD:
1283 case CCISS_REVALIDVOLS:
1284 return rebuild_lun_table(host, 0, 1);
1286 case CCISS_GETLUNINFO:{
1287 LogvolInfo_struct luninfo;
1289 memcpy(&luninfo.LunID, drv->LunID,
1290 sizeof(luninfo.LunID));
1291 luninfo.num_opens = drv->usage_count;
1292 luninfo.num_parts = 0;
1293 if (copy_to_user(argp, &luninfo,
1294 sizeof(LogvolInfo_struct)))
1295 return -EFAULT;
1296 return 0;
1298 case CCISS_PASSTHRU:
1300 IOCTL_Command_struct iocommand;
1301 CommandList_struct *c;
1302 char *buff = NULL;
1303 u64bit temp64;
1304 unsigned long flags;
1305 DECLARE_COMPLETION_ONSTACK(wait);
1307 if (!arg)
1308 return -EINVAL;
1310 if (!capable(CAP_SYS_RAWIO))
1311 return -EPERM;
1313 if (copy_from_user
1314 (&iocommand, argp, sizeof(IOCTL_Command_struct)))
1315 return -EFAULT;
1316 if ((iocommand.buf_size < 1) &&
1317 (iocommand.Request.Type.Direction != XFER_NONE)) {
1318 return -EINVAL;
1320 #if 0 /* 'buf_size' member is 16-bits, and always smaller than kmalloc limit */
1321 /* Check kmalloc limits */
1322 if (iocommand.buf_size > 128000)
1323 return -EINVAL;
1324 #endif
1325 if (iocommand.buf_size > 0) {
1326 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
1327 if (buff == NULL)
1328 return -EFAULT;
1330 if (iocommand.Request.Type.Direction == XFER_WRITE) {
1331 /* Copy the data into the buffer we created */
1332 if (copy_from_user
1333 (buff, iocommand.buf, iocommand.buf_size)) {
1334 kfree(buff);
1335 return -EFAULT;
1337 } else {
1338 memset(buff, 0, iocommand.buf_size);
1340 if ((c = cmd_alloc(host, 0)) == NULL) {
1341 kfree(buff);
1342 return -ENOMEM;
1344 // Fill in the command type
1345 c->cmd_type = CMD_IOCTL_PEND;
1346 // Fill in Command Header
1347 c->Header.ReplyQueue = 0; // unused in simple mode
1348 if (iocommand.buf_size > 0) // buffer to fill
1350 c->Header.SGList = 1;
1351 c->Header.SGTotal = 1;
1352 } else // no buffers to fill
1354 c->Header.SGList = 0;
1355 c->Header.SGTotal = 0;
1357 c->Header.LUN = iocommand.LUN_info;
1358 c->Header.Tag.lower = c->busaddr; // use the kernel address the cmd block for tag
1360 // Fill in Request block
1361 c->Request = iocommand.Request;
1363 // Fill in the scatter gather information
1364 if (iocommand.buf_size > 0) {
1365 temp64.val = pci_map_single(host->pdev, buff,
1366 iocommand.buf_size,
1367 PCI_DMA_BIDIRECTIONAL);
1368 c->SG[0].Addr.lower = temp64.val32.lower;
1369 c->SG[0].Addr.upper = temp64.val32.upper;
1370 c->SG[0].Len = iocommand.buf_size;
1371 c->SG[0].Ext = 0; // we are not chaining
1373 c->waiting = &wait;
1375 /* Put the request on the tail of the request queue */
1376 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1377 addQ(&host->reqQ, c);
1378 host->Qdepth++;
1379 start_io(host);
1380 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1382 wait_for_completion(&wait);
1384 /* unlock the buffers from DMA */
1385 temp64.val32.lower = c->SG[0].Addr.lower;
1386 temp64.val32.upper = c->SG[0].Addr.upper;
1387 pci_unmap_single(host->pdev, (dma_addr_t) temp64.val,
1388 iocommand.buf_size,
1389 PCI_DMA_BIDIRECTIONAL);
1391 check_ioctl_unit_attention(host, c);
1393 /* Copy the error information out */
1394 iocommand.error_info = *(c->err_info);
1395 if (copy_to_user
1396 (argp, &iocommand, sizeof(IOCTL_Command_struct))) {
1397 kfree(buff);
1398 cmd_free(host, c, 0);
1399 return -EFAULT;
1402 if (iocommand.Request.Type.Direction == XFER_READ) {
1403 /* Copy the data out of the buffer we created */
1404 if (copy_to_user
1405 (iocommand.buf, buff, iocommand.buf_size)) {
1406 kfree(buff);
1407 cmd_free(host, c, 0);
1408 return -EFAULT;
1411 kfree(buff);
1412 cmd_free(host, c, 0);
1413 return 0;
1415 case CCISS_BIG_PASSTHRU:{
1416 BIG_IOCTL_Command_struct *ioc;
1417 CommandList_struct *c;
1418 unsigned char **buff = NULL;
1419 int *buff_size = NULL;
1420 u64bit temp64;
1421 unsigned long flags;
1422 BYTE sg_used = 0;
1423 int status = 0;
1424 int i;
1425 DECLARE_COMPLETION_ONSTACK(wait);
1426 __u32 left;
1427 __u32 sz;
1428 BYTE __user *data_ptr;
1430 if (!arg)
1431 return -EINVAL;
1432 if (!capable(CAP_SYS_RAWIO))
1433 return -EPERM;
1434 ioc = (BIG_IOCTL_Command_struct *)
1435 kmalloc(sizeof(*ioc), GFP_KERNEL);
1436 if (!ioc) {
1437 status = -ENOMEM;
1438 goto cleanup1;
1440 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
1441 status = -EFAULT;
1442 goto cleanup1;
1444 if ((ioc->buf_size < 1) &&
1445 (ioc->Request.Type.Direction != XFER_NONE)) {
1446 status = -EINVAL;
1447 goto cleanup1;
1449 /* Check kmalloc limits using all SGs */
1450 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
1451 status = -EINVAL;
1452 goto cleanup1;
1454 if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
1455 status = -EINVAL;
1456 goto cleanup1;
1458 buff =
1459 kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
1460 if (!buff) {
1461 status = -ENOMEM;
1462 goto cleanup1;
1464 buff_size = kmalloc(MAXSGENTRIES * sizeof(int),
1465 GFP_KERNEL);
1466 if (!buff_size) {
1467 status = -ENOMEM;
1468 goto cleanup1;
1470 left = ioc->buf_size;
1471 data_ptr = ioc->buf;
1472 while (left) {
1473 sz = (left >
1474 ioc->malloc_size) ? ioc->
1475 malloc_size : left;
1476 buff_size[sg_used] = sz;
1477 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
1478 if (buff[sg_used] == NULL) {
1479 status = -ENOMEM;
1480 goto cleanup1;
1482 if (ioc->Request.Type.Direction == XFER_WRITE) {
1483 if (copy_from_user
1484 (buff[sg_used], data_ptr, sz)) {
1485 status = -EFAULT;
1486 goto cleanup1;
1488 } else {
1489 memset(buff[sg_used], 0, sz);
1491 left -= sz;
1492 data_ptr += sz;
1493 sg_used++;
1495 if ((c = cmd_alloc(host, 0)) == NULL) {
1496 status = -ENOMEM;
1497 goto cleanup1;
1499 c->cmd_type = CMD_IOCTL_PEND;
1500 c->Header.ReplyQueue = 0;
1502 if (ioc->buf_size > 0) {
1503 c->Header.SGList = sg_used;
1504 c->Header.SGTotal = sg_used;
1505 } else {
1506 c->Header.SGList = 0;
1507 c->Header.SGTotal = 0;
1509 c->Header.LUN = ioc->LUN_info;
1510 c->Header.Tag.lower = c->busaddr;
1512 c->Request = ioc->Request;
1513 if (ioc->buf_size > 0) {
1514 int i;
1515 for (i = 0; i < sg_used; i++) {
1516 temp64.val =
1517 pci_map_single(host->pdev, buff[i],
1518 buff_size[i],
1519 PCI_DMA_BIDIRECTIONAL);
1520 c->SG[i].Addr.lower =
1521 temp64.val32.lower;
1522 c->SG[i].Addr.upper =
1523 temp64.val32.upper;
1524 c->SG[i].Len = buff_size[i];
1525 c->SG[i].Ext = 0; /* we are not chaining */
1528 c->waiting = &wait;
1529 /* Put the request on the tail of the request queue */
1530 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1531 addQ(&host->reqQ, c);
1532 host->Qdepth++;
1533 start_io(host);
1534 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1535 wait_for_completion(&wait);
1536 /* unlock the buffers from DMA */
1537 for (i = 0; i < sg_used; i++) {
1538 temp64.val32.lower = c->SG[i].Addr.lower;
1539 temp64.val32.upper = c->SG[i].Addr.upper;
1540 pci_unmap_single(host->pdev,
1541 (dma_addr_t) temp64.val, buff_size[i],
1542 PCI_DMA_BIDIRECTIONAL);
1544 check_ioctl_unit_attention(host, c);
1545 /* Copy the error information out */
1546 ioc->error_info = *(c->err_info);
1547 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
1548 cmd_free(host, c, 0);
1549 status = -EFAULT;
1550 goto cleanup1;
1552 if (ioc->Request.Type.Direction == XFER_READ) {
1553 /* Copy the data out of the buffer we created */
1554 BYTE __user *ptr = ioc->buf;
1555 for (i = 0; i < sg_used; i++) {
1556 if (copy_to_user
1557 (ptr, buff[i], buff_size[i])) {
1558 cmd_free(host, c, 0);
1559 status = -EFAULT;
1560 goto cleanup1;
1562 ptr += buff_size[i];
1565 cmd_free(host, c, 0);
1566 status = 0;
1567 cleanup1:
1568 if (buff) {
1569 for (i = 0; i < sg_used; i++)
1570 kfree(buff[i]);
1571 kfree(buff);
1573 kfree(buff_size);
1574 kfree(ioc);
1575 return status;
1578 /* scsi_cmd_ioctl handles these, below, though some are not */
1579 /* very meaningful for cciss. SG_IO is the main one people want. */
1581 case SG_GET_VERSION_NUM:
1582 case SG_SET_TIMEOUT:
1583 case SG_GET_TIMEOUT:
1584 case SG_GET_RESERVED_SIZE:
1585 case SG_SET_RESERVED_SIZE:
1586 case SG_EMULATED_HOST:
1587 case SG_IO:
1588 case SCSI_IOCTL_SEND_COMMAND:
1589 return scsi_cmd_ioctl(disk->queue, disk, mode, cmd, argp);
1591 /* scsi_cmd_ioctl would normally handle these, below, but */
1592 /* they aren't a good fit for cciss, as CD-ROMs are */
1593 /* not supported, and we don't have any bus/target/lun */
1594 /* which we present to the kernel. */
1596 case CDROM_SEND_PACKET:
1597 case CDROMCLOSETRAY:
1598 case CDROMEJECT:
1599 case SCSI_IOCTL_GET_IDLUN:
1600 case SCSI_IOCTL_GET_BUS_NUMBER:
1601 default:
1602 return -ENOTTY;
1606 static void cciss_check_queues(ctlr_info_t *h)
1608 int start_queue = h->next_to_run;
1609 int i;
1611 /* check to see if we have maxed out the number of commands that can
1612 * be placed on the queue. If so then exit. We do this check here
1613 * in case the interrupt we serviced was from an ioctl and did not
1614 * free any new commands.
1616 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
1617 return;
1619 /* We have room on the queue for more commands. Now we need to queue
1620 * them up. We will also keep track of the next queue to run so
1621 * that every queue gets a chance to be started first.
1623 for (i = 0; i < h->highest_lun + 1; i++) {
1624 int curr_queue = (start_queue + i) % (h->highest_lun + 1);
1625 /* make sure the disk has been added and the drive is real
1626 * because this can be called from the middle of init_one.
1628 if (!h->drv[curr_queue])
1629 continue;
1630 if (!(h->drv[curr_queue]->queue) ||
1631 !(h->drv[curr_queue]->heads))
1632 continue;
1633 blk_start_queue(h->gendisk[curr_queue]->queue);
1635 /* check to see if we have maxed out the number of commands
1636 * that can be placed on the queue.
1638 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
1639 if (curr_queue == start_queue) {
1640 h->next_to_run =
1641 (start_queue + 1) % (h->highest_lun + 1);
1642 break;
1643 } else {
1644 h->next_to_run = curr_queue;
1645 break;
1651 static void cciss_softirq_done(struct request *rq)
1653 CommandList_struct *cmd = rq->completion_data;
1654 ctlr_info_t *h = hba[cmd->ctlr];
1655 unsigned long flags;
1656 u64bit temp64;
1657 int i, ddir;
1659 if (cmd->Request.Type.Direction == XFER_READ)
1660 ddir = PCI_DMA_FROMDEVICE;
1661 else
1662 ddir = PCI_DMA_TODEVICE;
1664 /* command did not need to be retried */
1665 /* unmap the DMA mapping for all the scatter gather elements */
1666 for (i = 0; i < cmd->Header.SGList; i++) {
1667 temp64.val32.lower = cmd->SG[i].Addr.lower;
1668 temp64.val32.upper = cmd->SG[i].Addr.upper;
1669 pci_unmap_page(h->pdev, temp64.val, cmd->SG[i].Len, ddir);
1672 #ifdef CCISS_DEBUG
1673 printk("Done with %p\n", rq);
1674 #endif /* CCISS_DEBUG */
1676 /* set the residual count for pc requests */
1677 if (blk_pc_request(rq))
1678 rq->resid_len = cmd->err_info->ResidualCnt;
1680 blk_end_request_all(rq, (rq->errors == 0) ? 0 : -EIO);
1682 spin_lock_irqsave(&h->lock, flags);
1683 cmd_free(h, cmd, 1);
1684 cciss_check_queues(h);
1685 spin_unlock_irqrestore(&h->lock, flags);
1688 static inline void log_unit_to_scsi3addr(ctlr_info_t *h,
1689 unsigned char scsi3addr[], uint32_t log_unit)
1691 memcpy(scsi3addr, h->drv[log_unit]->LunID,
1692 sizeof(h->drv[log_unit]->LunID));
1695 /* This function gets the SCSI vendor, model, and revision of a logical drive
1696 * via the inquiry page 0. Model, vendor, and rev are set to empty strings if
1697 * they cannot be read.
1699 static void cciss_get_device_descr(int ctlr, int logvol, int withirq,
1700 char *vendor, char *model, char *rev)
1702 int rc;
1703 InquiryData_struct *inq_buf;
1704 unsigned char scsi3addr[8];
1706 *vendor = '\0';
1707 *model = '\0';
1708 *rev = '\0';
1710 inq_buf = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1711 if (!inq_buf)
1712 return;
1714 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
1715 if (withirq)
1716 rc = sendcmd_withirq(CISS_INQUIRY, ctlr, inq_buf,
1717 sizeof(InquiryData_struct), 0,
1718 scsi3addr, TYPE_CMD);
1719 else
1720 rc = sendcmd(CISS_INQUIRY, ctlr, inq_buf,
1721 sizeof(InquiryData_struct), 0,
1722 scsi3addr, TYPE_CMD);
1723 if (rc == IO_OK) {
1724 memcpy(vendor, &inq_buf->data_byte[8], VENDOR_LEN);
1725 vendor[VENDOR_LEN] = '\0';
1726 memcpy(model, &inq_buf->data_byte[16], MODEL_LEN);
1727 model[MODEL_LEN] = '\0';
1728 memcpy(rev, &inq_buf->data_byte[32], REV_LEN);
1729 rev[REV_LEN] = '\0';
1732 kfree(inq_buf);
1733 return;
1736 /* This function gets the serial number of a logical drive via
1737 * inquiry page 0x83. Serial no. is 16 bytes. If the serial
1738 * number cannot be had, for whatever reason, 16 bytes of 0xff
1739 * are returned instead.
1741 static void cciss_get_serial_no(int ctlr, int logvol, int withirq,
1742 unsigned char *serial_no, int buflen)
1744 #define PAGE_83_INQ_BYTES 64
1745 int rc;
1746 unsigned char *buf;
1747 unsigned char scsi3addr[8];
1749 if (buflen > 16)
1750 buflen = 16;
1751 memset(serial_no, 0xff, buflen);
1752 buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL);
1753 if (!buf)
1754 return;
1755 memset(serial_no, 0, buflen);
1756 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
1757 if (withirq)
1758 rc = sendcmd_withirq(CISS_INQUIRY, ctlr, buf,
1759 PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
1760 else
1761 rc = sendcmd(CISS_INQUIRY, ctlr, buf,
1762 PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
1763 if (rc == IO_OK)
1764 memcpy(serial_no, &buf[8], buflen);
1765 kfree(buf);
1766 return;
1770 * cciss_add_disk sets up the block device queue for a logical drive
1772 static int cciss_add_disk(ctlr_info_t *h, struct gendisk *disk,
1773 int drv_index)
1775 disk->queue = blk_init_queue(do_cciss_request, &h->lock);
1776 if (!disk->queue)
1777 goto init_queue_failure;
1778 sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index);
1779 disk->major = h->major;
1780 disk->first_minor = drv_index << NWD_SHIFT;
1781 disk->fops = &cciss_fops;
1782 if (cciss_create_ld_sysfs_entry(h, drv_index))
1783 goto cleanup_queue;
1784 disk->private_data = h->drv[drv_index];
1785 disk->driverfs_dev = &h->drv[drv_index]->dev;
1787 /* Set up queue information */
1788 blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask);
1790 /* This is a hardware imposed limit. */
1791 blk_queue_max_hw_segments(disk->queue, MAXSGENTRIES);
1793 /* This is a limit in the driver and could be eliminated. */
1794 blk_queue_max_phys_segments(disk->queue, MAXSGENTRIES);
1796 blk_queue_max_sectors(disk->queue, h->cciss_max_sectors);
1798 blk_queue_softirq_done(disk->queue, cciss_softirq_done);
1800 disk->queue->queuedata = h;
1802 blk_queue_logical_block_size(disk->queue,
1803 h->drv[drv_index]->block_size);
1805 /* Make sure all queue data is written out before */
1806 /* setting h->drv[drv_index]->queue, as setting this */
1807 /* allows the interrupt handler to start the queue */
1808 wmb();
1809 h->drv[drv_index]->queue = disk->queue;
1810 add_disk(disk);
1811 return 0;
1813 cleanup_queue:
1814 blk_cleanup_queue(disk->queue);
1815 disk->queue = NULL;
1816 init_queue_failure:
1817 return -1;
1820 /* This function will check the usage_count of the drive to be updated/added.
1821 * If the usage_count is zero and it is a heretofore unknown drive, or,
1822 * the drive's capacity, geometry, or serial number has changed,
1823 * then the drive information will be updated and the disk will be
1824 * re-registered with the kernel. If these conditions don't hold,
1825 * then it will be left alone for the next reboot. The exception to this
1826 * is disk 0 which will always be left registered with the kernel since it
1827 * is also the controller node. Any changes to disk 0 will show up on
1828 * the next reboot.
1830 static void cciss_update_drive_info(int ctlr, int drv_index, int first_time,
1831 int via_ioctl)
1833 ctlr_info_t *h = hba[ctlr];
1834 struct gendisk *disk;
1835 InquiryData_struct *inq_buff = NULL;
1836 unsigned int block_size;
1837 sector_t total_size;
1838 unsigned long flags = 0;
1839 int ret = 0;
1840 drive_info_struct *drvinfo;
1842 /* Get information about the disk and modify the driver structure */
1843 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1844 drvinfo = kzalloc(sizeof(*drvinfo), GFP_KERNEL);
1845 if (inq_buff == NULL || drvinfo == NULL)
1846 goto mem_msg;
1848 /* testing to see if 16-byte CDBs are already being used */
1849 if (h->cciss_read == CCISS_READ_16) {
1850 cciss_read_capacity_16(h->ctlr, drv_index, 1,
1851 &total_size, &block_size);
1853 } else {
1854 cciss_read_capacity(ctlr, drv_index, 1,
1855 &total_size, &block_size);
1857 /* if read_capacity returns all F's this volume is >2TB */
1858 /* in size so we switch to 16-byte CDB's for all */
1859 /* read/write ops */
1860 if (total_size == 0xFFFFFFFFULL) {
1861 cciss_read_capacity_16(ctlr, drv_index, 1,
1862 &total_size, &block_size);
1863 h->cciss_read = CCISS_READ_16;
1864 h->cciss_write = CCISS_WRITE_16;
1865 } else {
1866 h->cciss_read = CCISS_READ_10;
1867 h->cciss_write = CCISS_WRITE_10;
1871 cciss_geometry_inquiry(ctlr, drv_index, 1, total_size, block_size,
1872 inq_buff, drvinfo);
1873 drvinfo->block_size = block_size;
1874 drvinfo->nr_blocks = total_size + 1;
1876 cciss_get_device_descr(ctlr, drv_index, 1, drvinfo->vendor,
1877 drvinfo->model, drvinfo->rev);
1878 cciss_get_serial_no(ctlr, drv_index, 1, drvinfo->serial_no,
1879 sizeof(drvinfo->serial_no));
1880 /* Save the lunid in case we deregister the disk, below. */
1881 memcpy(drvinfo->LunID, h->drv[drv_index]->LunID,
1882 sizeof(drvinfo->LunID));
1884 /* Is it the same disk we already know, and nothing's changed? */
1885 if (h->drv[drv_index]->raid_level != -1 &&
1886 ((memcmp(drvinfo->serial_no,
1887 h->drv[drv_index]->serial_no, 16) == 0) &&
1888 drvinfo->block_size == h->drv[drv_index]->block_size &&
1889 drvinfo->nr_blocks == h->drv[drv_index]->nr_blocks &&
1890 drvinfo->heads == h->drv[drv_index]->heads &&
1891 drvinfo->sectors == h->drv[drv_index]->sectors &&
1892 drvinfo->cylinders == h->drv[drv_index]->cylinders))
1893 /* The disk is unchanged, nothing to update */
1894 goto freeret;
1896 /* If we get here it's not the same disk, or something's changed,
1897 * so we need to * deregister it, and re-register it, if it's not
1898 * in use.
1899 * If the disk already exists then deregister it before proceeding
1900 * (unless it's the first disk (for the controller node).
1902 if (h->drv[drv_index]->raid_level != -1 && drv_index != 0) {
1903 printk(KERN_WARNING "disk %d has changed.\n", drv_index);
1904 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
1905 h->drv[drv_index]->busy_configuring = 1;
1906 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1908 /* deregister_disk sets h->drv[drv_index]->queue = NULL
1909 * which keeps the interrupt handler from starting
1910 * the queue.
1912 ret = deregister_disk(h, drv_index, 0, via_ioctl);
1915 /* If the disk is in use return */
1916 if (ret)
1917 goto freeret;
1919 /* Save the new information from cciss_geometry_inquiry
1920 * and serial number inquiry. If the disk was deregistered
1921 * above, then h->drv[drv_index] will be NULL.
1923 if (h->drv[drv_index] == NULL) {
1924 drvinfo->device_initialized = 0;
1925 h->drv[drv_index] = drvinfo;
1926 drvinfo = NULL; /* so it won't be freed below. */
1927 } else {
1928 /* special case for cxd0 */
1929 h->drv[drv_index]->block_size = drvinfo->block_size;
1930 h->drv[drv_index]->nr_blocks = drvinfo->nr_blocks;
1931 h->drv[drv_index]->heads = drvinfo->heads;
1932 h->drv[drv_index]->sectors = drvinfo->sectors;
1933 h->drv[drv_index]->cylinders = drvinfo->cylinders;
1934 h->drv[drv_index]->raid_level = drvinfo->raid_level;
1935 memcpy(h->drv[drv_index]->serial_no, drvinfo->serial_no, 16);
1936 memcpy(h->drv[drv_index]->vendor, drvinfo->vendor,
1937 VENDOR_LEN + 1);
1938 memcpy(h->drv[drv_index]->model, drvinfo->model, MODEL_LEN + 1);
1939 memcpy(h->drv[drv_index]->rev, drvinfo->rev, REV_LEN + 1);
1942 ++h->num_luns;
1943 disk = h->gendisk[drv_index];
1944 set_capacity(disk, h->drv[drv_index]->nr_blocks);
1946 /* If it's not disk 0 (drv_index != 0)
1947 * or if it was disk 0, but there was previously
1948 * no actual corresponding configured logical drive
1949 * (raid_leve == -1) then we want to update the
1950 * logical drive's information.
1952 if (drv_index || first_time) {
1953 if (cciss_add_disk(h, disk, drv_index) != 0) {
1954 cciss_free_gendisk(h, drv_index);
1955 cciss_free_drive_info(h, drv_index);
1956 printk(KERN_WARNING "cciss:%d could not update "
1957 "disk %d\n", h->ctlr, drv_index);
1958 --h->num_luns;
1962 freeret:
1963 kfree(inq_buff);
1964 kfree(drvinfo);
1965 return;
1966 mem_msg:
1967 printk(KERN_ERR "cciss: out of memory\n");
1968 goto freeret;
1971 /* This function will find the first index of the controllers drive array
1972 * that has a null drv pointer and allocate the drive info struct and
1973 * will return that index This is where new drives will be added.
1974 * If the index to be returned is greater than the highest_lun index for
1975 * the controller then highest_lun is set * to this new index.
1976 * If there are no available indexes or if tha allocation fails, then -1
1977 * is returned. * "controller_node" is used to know if this is a real
1978 * logical drive, or just the controller node, which determines if this
1979 * counts towards highest_lun.
1981 static int cciss_alloc_drive_info(ctlr_info_t *h, int controller_node)
1983 int i;
1984 drive_info_struct *drv;
1986 /* Search for an empty slot for our drive info */
1987 for (i = 0; i < CISS_MAX_LUN; i++) {
1989 /* if not cxd0 case, and it's occupied, skip it. */
1990 if (h->drv[i] && i != 0)
1991 continue;
1993 * If it's cxd0 case, and drv is alloc'ed already, and a
1994 * disk is configured there, skip it.
1996 if (i == 0 && h->drv[i] && h->drv[i]->raid_level != -1)
1997 continue;
2000 * We've found an empty slot. Update highest_lun
2001 * provided this isn't just the fake cxd0 controller node.
2003 if (i > h->highest_lun && !controller_node)
2004 h->highest_lun = i;
2006 /* If adding a real disk at cxd0, and it's already alloc'ed */
2007 if (i == 0 && h->drv[i] != NULL)
2008 return i;
2011 * Found an empty slot, not already alloc'ed. Allocate it.
2012 * Mark it with raid_level == -1, so we know it's new later on.
2014 drv = kzalloc(sizeof(*drv), GFP_KERNEL);
2015 if (!drv)
2016 return -1;
2017 drv->raid_level = -1; /* so we know it's new */
2018 h->drv[i] = drv;
2019 return i;
2021 return -1;
2024 static void cciss_free_drive_info(ctlr_info_t *h, int drv_index)
2026 kfree(h->drv[drv_index]);
2027 h->drv[drv_index] = NULL;
2030 static void cciss_free_gendisk(ctlr_info_t *h, int drv_index)
2032 put_disk(h->gendisk[drv_index]);
2033 h->gendisk[drv_index] = NULL;
2036 /* cciss_add_gendisk finds a free hba[]->drv structure
2037 * and allocates a gendisk if needed, and sets the lunid
2038 * in the drvinfo structure. It returns the index into
2039 * the ->drv[] array, or -1 if none are free.
2040 * is_controller_node indicates whether highest_lun should
2041 * count this disk, or if it's only being added to provide
2042 * a means to talk to the controller in case no logical
2043 * drives have yet been configured.
2045 static int cciss_add_gendisk(ctlr_info_t *h, unsigned char lunid[],
2046 int controller_node)
2048 int drv_index;
2050 drv_index = cciss_alloc_drive_info(h, controller_node);
2051 if (drv_index == -1)
2052 return -1;
2054 /*Check if the gendisk needs to be allocated */
2055 if (!h->gendisk[drv_index]) {
2056 h->gendisk[drv_index] =
2057 alloc_disk(1 << NWD_SHIFT);
2058 if (!h->gendisk[drv_index]) {
2059 printk(KERN_ERR "cciss%d: could not "
2060 "allocate a new disk %d\n",
2061 h->ctlr, drv_index);
2062 goto err_free_drive_info;
2065 memcpy(h->drv[drv_index]->LunID, lunid,
2066 sizeof(h->drv[drv_index]->LunID));
2067 if (cciss_create_ld_sysfs_entry(h, drv_index))
2068 goto err_free_disk;
2069 /* Don't need to mark this busy because nobody */
2070 /* else knows about this disk yet to contend */
2071 /* for access to it. */
2072 h->drv[drv_index]->busy_configuring = 0;
2073 wmb();
2074 return drv_index;
2076 err_free_disk:
2077 cciss_free_gendisk(h, drv_index);
2078 err_free_drive_info:
2079 cciss_free_drive_info(h, drv_index);
2080 return -1;
2083 /* This is for the special case of a controller which
2084 * has no logical drives. In this case, we still need
2085 * to register a disk so the controller can be accessed
2086 * by the Array Config Utility.
2088 static void cciss_add_controller_node(ctlr_info_t *h)
2090 struct gendisk *disk;
2091 int drv_index;
2093 if (h->gendisk[0] != NULL) /* already did this? Then bail. */
2094 return;
2096 drv_index = cciss_add_gendisk(h, CTLR_LUNID, 1);
2097 if (drv_index == -1)
2098 goto error;
2099 h->drv[drv_index]->block_size = 512;
2100 h->drv[drv_index]->nr_blocks = 0;
2101 h->drv[drv_index]->heads = 0;
2102 h->drv[drv_index]->sectors = 0;
2103 h->drv[drv_index]->cylinders = 0;
2104 h->drv[drv_index]->raid_level = -1;
2105 memset(h->drv[drv_index]->serial_no, 0, 16);
2106 disk = h->gendisk[drv_index];
2107 if (cciss_add_disk(h, disk, drv_index) == 0)
2108 return;
2109 cciss_free_gendisk(h, drv_index);
2110 cciss_free_drive_info(h, drv_index);
2111 error:
2112 printk(KERN_WARNING "cciss%d: could not "
2113 "add disk 0.\n", h->ctlr);
2114 return;
2117 /* This function will add and remove logical drives from the Logical
2118 * drive array of the controller and maintain persistency of ordering
2119 * so that mount points are preserved until the next reboot. This allows
2120 * for the removal of logical drives in the middle of the drive array
2121 * without a re-ordering of those drives.
2122 * INPUT
2123 * h = The controller to perform the operations on
2125 static int rebuild_lun_table(ctlr_info_t *h, int first_time,
2126 int via_ioctl)
2128 int ctlr = h->ctlr;
2129 int num_luns;
2130 ReportLunData_struct *ld_buff = NULL;
2131 int return_code;
2132 int listlength = 0;
2133 int i;
2134 int drv_found;
2135 int drv_index = 0;
2136 unsigned char lunid[8] = CTLR_LUNID;
2137 unsigned long flags;
2139 if (!capable(CAP_SYS_RAWIO))
2140 return -EPERM;
2142 /* Set busy_configuring flag for this operation */
2143 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2144 if (h->busy_configuring) {
2145 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2146 return -EBUSY;
2148 h->busy_configuring = 1;
2149 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2151 ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
2152 if (ld_buff == NULL)
2153 goto mem_msg;
2155 return_code = sendcmd_withirq(CISS_REPORT_LOG, ctlr, ld_buff,
2156 sizeof(ReportLunData_struct),
2157 0, CTLR_LUNID, TYPE_CMD);
2159 if (return_code == IO_OK)
2160 listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
2161 else { /* reading number of logical volumes failed */
2162 printk(KERN_WARNING "cciss: report logical volume"
2163 " command failed\n");
2164 listlength = 0;
2165 goto freeret;
2168 num_luns = listlength / 8; /* 8 bytes per entry */
2169 if (num_luns > CISS_MAX_LUN) {
2170 num_luns = CISS_MAX_LUN;
2171 printk(KERN_WARNING "cciss: more luns configured"
2172 " on controller than can be handled by"
2173 " this driver.\n");
2176 if (num_luns == 0)
2177 cciss_add_controller_node(h);
2179 /* Compare controller drive array to driver's drive array
2180 * to see if any drives are missing on the controller due
2181 * to action of Array Config Utility (user deletes drive)
2182 * and deregister logical drives which have disappeared.
2184 for (i = 0; i <= h->highest_lun; i++) {
2185 int j;
2186 drv_found = 0;
2188 /* skip holes in the array from already deleted drives */
2189 if (h->drv[i] == NULL)
2190 continue;
2192 for (j = 0; j < num_luns; j++) {
2193 memcpy(lunid, &ld_buff->LUN[j][0], sizeof(lunid));
2194 if (memcmp(h->drv[i]->LunID, lunid,
2195 sizeof(lunid)) == 0) {
2196 drv_found = 1;
2197 break;
2200 if (!drv_found) {
2201 /* Deregister it from the OS, it's gone. */
2202 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2203 h->drv[i]->busy_configuring = 1;
2204 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2205 return_code = deregister_disk(h, i, 1, via_ioctl);
2206 if (h->drv[i] != NULL)
2207 h->drv[i]->busy_configuring = 0;
2211 /* Compare controller drive array to driver's drive array.
2212 * Check for updates in the drive information and any new drives
2213 * on the controller due to ACU adding logical drives, or changing
2214 * a logical drive's size, etc. Reregister any new/changed drives
2216 for (i = 0; i < num_luns; i++) {
2217 int j;
2219 drv_found = 0;
2221 memcpy(lunid, &ld_buff->LUN[i][0], sizeof(lunid));
2222 /* Find if the LUN is already in the drive array
2223 * of the driver. If so then update its info
2224 * if not in use. If it does not exist then find
2225 * the first free index and add it.
2227 for (j = 0; j <= h->highest_lun; j++) {
2228 if (h->drv[j] != NULL &&
2229 memcmp(h->drv[j]->LunID, lunid,
2230 sizeof(h->drv[j]->LunID)) == 0) {
2231 drv_index = j;
2232 drv_found = 1;
2233 break;
2237 /* check if the drive was found already in the array */
2238 if (!drv_found) {
2239 drv_index = cciss_add_gendisk(h, lunid, 0);
2240 if (drv_index == -1)
2241 goto freeret;
2243 cciss_update_drive_info(ctlr, drv_index, first_time,
2244 via_ioctl);
2245 } /* end for */
2247 freeret:
2248 kfree(ld_buff);
2249 h->busy_configuring = 0;
2250 /* We return -1 here to tell the ACU that we have registered/updated
2251 * all of the drives that we can and to keep it from calling us
2252 * additional times.
2254 return -1;
2255 mem_msg:
2256 printk(KERN_ERR "cciss: out of memory\n");
2257 h->busy_configuring = 0;
2258 goto freeret;
2261 static void cciss_clear_drive_info(drive_info_struct *drive_info)
2263 /* zero out the disk size info */
2264 drive_info->nr_blocks = 0;
2265 drive_info->block_size = 0;
2266 drive_info->heads = 0;
2267 drive_info->sectors = 0;
2268 drive_info->cylinders = 0;
2269 drive_info->raid_level = -1;
2270 memset(drive_info->serial_no, 0, sizeof(drive_info->serial_no));
2271 memset(drive_info->model, 0, sizeof(drive_info->model));
2272 memset(drive_info->rev, 0, sizeof(drive_info->rev));
2273 memset(drive_info->vendor, 0, sizeof(drive_info->vendor));
2275 * don't clear the LUNID though, we need to remember which
2276 * one this one is.
2280 /* This function will deregister the disk and it's queue from the
2281 * kernel. It must be called with the controller lock held and the
2282 * drv structures busy_configuring flag set. It's parameters are:
2284 * disk = This is the disk to be deregistered
2285 * drv = This is the drive_info_struct associated with the disk to be
2286 * deregistered. It contains information about the disk used
2287 * by the driver.
2288 * clear_all = This flag determines whether or not the disk information
2289 * is going to be completely cleared out and the highest_lun
2290 * reset. Sometimes we want to clear out information about
2291 * the disk in preparation for re-adding it. In this case
2292 * the highest_lun should be left unchanged and the LunID
2293 * should not be cleared.
2294 * via_ioctl
2295 * This indicates whether we've reached this path via ioctl.
2296 * This affects the maximum usage count allowed for c0d0 to be messed with.
2297 * If this path is reached via ioctl(), then the max_usage_count will
2298 * be 1, as the process calling ioctl() has got to have the device open.
2299 * If we get here via sysfs, then the max usage count will be zero.
2301 static int deregister_disk(ctlr_info_t *h, int drv_index,
2302 int clear_all, int via_ioctl)
2304 int i;
2305 struct gendisk *disk;
2306 drive_info_struct *drv;
2307 int recalculate_highest_lun;
2309 if (!capable(CAP_SYS_RAWIO))
2310 return -EPERM;
2312 drv = h->drv[drv_index];
2313 disk = h->gendisk[drv_index];
2315 /* make sure logical volume is NOT is use */
2316 if (clear_all || (h->gendisk[0] == disk)) {
2317 if (drv->usage_count > via_ioctl)
2318 return -EBUSY;
2319 } else if (drv->usage_count > 0)
2320 return -EBUSY;
2322 recalculate_highest_lun = (drv == h->drv[h->highest_lun]);
2324 /* invalidate the devices and deregister the disk. If it is disk
2325 * zero do not deregister it but just zero out it's values. This
2326 * allows us to delete disk zero but keep the controller registered.
2328 if (h->gendisk[0] != disk) {
2329 struct request_queue *q = disk->queue;
2330 if (disk->flags & GENHD_FL_UP) {
2331 cciss_destroy_ld_sysfs_entry(h, drv_index, 0);
2332 del_gendisk(disk);
2334 if (q)
2335 blk_cleanup_queue(q);
2336 /* If clear_all is set then we are deleting the logical
2337 * drive, not just refreshing its info. For drives
2338 * other than disk 0 we will call put_disk. We do not
2339 * do this for disk 0 as we need it to be able to
2340 * configure the controller.
2342 if (clear_all){
2343 /* This isn't pretty, but we need to find the
2344 * disk in our array and NULL our the pointer.
2345 * This is so that we will call alloc_disk if
2346 * this index is used again later.
2348 for (i=0; i < CISS_MAX_LUN; i++){
2349 if (h->gendisk[i] == disk) {
2350 h->gendisk[i] = NULL;
2351 break;
2354 put_disk(disk);
2356 } else {
2357 set_capacity(disk, 0);
2358 cciss_clear_drive_info(drv);
2361 --h->num_luns;
2363 /* if it was the last disk, find the new hightest lun */
2364 if (clear_all && recalculate_highest_lun) {
2365 int i, newhighest = -1;
2366 for (i = 0; i <= h->highest_lun; i++) {
2367 /* if the disk has size > 0, it is available */
2368 if (h->drv[i] && h->drv[i]->heads)
2369 newhighest = i;
2371 h->highest_lun = newhighest;
2373 return 0;
2376 static int fill_cmd(CommandList_struct *c, __u8 cmd, int ctlr, void *buff,
2377 size_t size, __u8 page_code, unsigned char *scsi3addr,
2378 int cmd_type)
2380 ctlr_info_t *h = hba[ctlr];
2381 u64bit buff_dma_handle;
2382 int status = IO_OK;
2384 c->cmd_type = CMD_IOCTL_PEND;
2385 c->Header.ReplyQueue = 0;
2386 if (buff != NULL) {
2387 c->Header.SGList = 1;
2388 c->Header.SGTotal = 1;
2389 } else {
2390 c->Header.SGList = 0;
2391 c->Header.SGTotal = 0;
2393 c->Header.Tag.lower = c->busaddr;
2394 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2396 c->Request.Type.Type = cmd_type;
2397 if (cmd_type == TYPE_CMD) {
2398 switch (cmd) {
2399 case CISS_INQUIRY:
2400 /* are we trying to read a vital product page */
2401 if (page_code != 0) {
2402 c->Request.CDB[1] = 0x01;
2403 c->Request.CDB[2] = page_code;
2405 c->Request.CDBLen = 6;
2406 c->Request.Type.Attribute = ATTR_SIMPLE;
2407 c->Request.Type.Direction = XFER_READ;
2408 c->Request.Timeout = 0;
2409 c->Request.CDB[0] = CISS_INQUIRY;
2410 c->Request.CDB[4] = size & 0xFF;
2411 break;
2412 case CISS_REPORT_LOG:
2413 case CISS_REPORT_PHYS:
2414 /* Talking to controller so It's a physical command
2415 mode = 00 target = 0. Nothing to write.
2417 c->Request.CDBLen = 12;
2418 c->Request.Type.Attribute = ATTR_SIMPLE;
2419 c->Request.Type.Direction = XFER_READ;
2420 c->Request.Timeout = 0;
2421 c->Request.CDB[0] = cmd;
2422 c->Request.CDB[6] = (size >> 24) & 0xFF; //MSB
2423 c->Request.CDB[7] = (size >> 16) & 0xFF;
2424 c->Request.CDB[8] = (size >> 8) & 0xFF;
2425 c->Request.CDB[9] = size & 0xFF;
2426 break;
2428 case CCISS_READ_CAPACITY:
2429 c->Request.CDBLen = 10;
2430 c->Request.Type.Attribute = ATTR_SIMPLE;
2431 c->Request.Type.Direction = XFER_READ;
2432 c->Request.Timeout = 0;
2433 c->Request.CDB[0] = cmd;
2434 break;
2435 case CCISS_READ_CAPACITY_16:
2436 c->Request.CDBLen = 16;
2437 c->Request.Type.Attribute = ATTR_SIMPLE;
2438 c->Request.Type.Direction = XFER_READ;
2439 c->Request.Timeout = 0;
2440 c->Request.CDB[0] = cmd;
2441 c->Request.CDB[1] = 0x10;
2442 c->Request.CDB[10] = (size >> 24) & 0xFF;
2443 c->Request.CDB[11] = (size >> 16) & 0xFF;
2444 c->Request.CDB[12] = (size >> 8) & 0xFF;
2445 c->Request.CDB[13] = size & 0xFF;
2446 c->Request.Timeout = 0;
2447 c->Request.CDB[0] = cmd;
2448 break;
2449 case CCISS_CACHE_FLUSH:
2450 c->Request.CDBLen = 12;
2451 c->Request.Type.Attribute = ATTR_SIMPLE;
2452 c->Request.Type.Direction = XFER_WRITE;
2453 c->Request.Timeout = 0;
2454 c->Request.CDB[0] = BMIC_WRITE;
2455 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2456 break;
2457 case TEST_UNIT_READY:
2458 c->Request.CDBLen = 6;
2459 c->Request.Type.Attribute = ATTR_SIMPLE;
2460 c->Request.Type.Direction = XFER_NONE;
2461 c->Request.Timeout = 0;
2462 break;
2463 default:
2464 printk(KERN_WARNING
2465 "cciss%d: Unknown Command 0x%c\n", ctlr, cmd);
2466 return IO_ERROR;
2468 } else if (cmd_type == TYPE_MSG) {
2469 switch (cmd) {
2470 case 0: /* ABORT message */
2471 c->Request.CDBLen = 12;
2472 c->Request.Type.Attribute = ATTR_SIMPLE;
2473 c->Request.Type.Direction = XFER_WRITE;
2474 c->Request.Timeout = 0;
2475 c->Request.CDB[0] = cmd; /* abort */
2476 c->Request.CDB[1] = 0; /* abort a command */
2477 /* buff contains the tag of the command to abort */
2478 memcpy(&c->Request.CDB[4], buff, 8);
2479 break;
2480 case 1: /* RESET message */
2481 c->Request.CDBLen = 16;
2482 c->Request.Type.Attribute = ATTR_SIMPLE;
2483 c->Request.Type.Direction = XFER_NONE;
2484 c->Request.Timeout = 0;
2485 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2486 c->Request.CDB[0] = cmd; /* reset */
2487 c->Request.CDB[1] = 0x03; /* reset a target */
2488 break;
2489 case 3: /* No-Op message */
2490 c->Request.CDBLen = 1;
2491 c->Request.Type.Attribute = ATTR_SIMPLE;
2492 c->Request.Type.Direction = XFER_WRITE;
2493 c->Request.Timeout = 0;
2494 c->Request.CDB[0] = cmd;
2495 break;
2496 default:
2497 printk(KERN_WARNING
2498 "cciss%d: unknown message type %d\n", ctlr, cmd);
2499 return IO_ERROR;
2501 } else {
2502 printk(KERN_WARNING
2503 "cciss%d: unknown command type %d\n", ctlr, cmd_type);
2504 return IO_ERROR;
2506 /* Fill in the scatter gather information */
2507 if (size > 0) {
2508 buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
2509 buff, size,
2510 PCI_DMA_BIDIRECTIONAL);
2511 c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
2512 c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
2513 c->SG[0].Len = size;
2514 c->SG[0].Ext = 0; /* we are not chaining */
2516 return status;
2519 static int check_target_status(ctlr_info_t *h, CommandList_struct *c)
2521 switch (c->err_info->ScsiStatus) {
2522 case SAM_STAT_GOOD:
2523 return IO_OK;
2524 case SAM_STAT_CHECK_CONDITION:
2525 switch (0xf & c->err_info->SenseInfo[2]) {
2526 case 0: return IO_OK; /* no sense */
2527 case 1: return IO_OK; /* recovered error */
2528 default:
2529 printk(KERN_WARNING "cciss%d: cmd 0x%02x "
2530 "check condition, sense key = 0x%02x\n",
2531 h->ctlr, c->Request.CDB[0],
2532 c->err_info->SenseInfo[2]);
2534 break;
2535 default:
2536 printk(KERN_WARNING "cciss%d: cmd 0x%02x"
2537 "scsi status = 0x%02x\n", h->ctlr,
2538 c->Request.CDB[0], c->err_info->ScsiStatus);
2539 break;
2541 return IO_ERROR;
2544 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c)
2546 int return_status = IO_OK;
2548 if (c->err_info->CommandStatus == CMD_SUCCESS)
2549 return IO_OK;
2551 switch (c->err_info->CommandStatus) {
2552 case CMD_TARGET_STATUS:
2553 return_status = check_target_status(h, c);
2554 break;
2555 case CMD_DATA_UNDERRUN:
2556 case CMD_DATA_OVERRUN:
2557 /* expected for inquiry and report lun commands */
2558 break;
2559 case CMD_INVALID:
2560 printk(KERN_WARNING "cciss: cmd 0x%02x is "
2561 "reported invalid\n", c->Request.CDB[0]);
2562 return_status = IO_ERROR;
2563 break;
2564 case CMD_PROTOCOL_ERR:
2565 printk(KERN_WARNING "cciss: cmd 0x%02x has "
2566 "protocol error \n", c->Request.CDB[0]);
2567 return_status = IO_ERROR;
2568 break;
2569 case CMD_HARDWARE_ERR:
2570 printk(KERN_WARNING "cciss: cmd 0x%02x had "
2571 " hardware error\n", c->Request.CDB[0]);
2572 return_status = IO_ERROR;
2573 break;
2574 case CMD_CONNECTION_LOST:
2575 printk(KERN_WARNING "cciss: cmd 0x%02x had "
2576 "connection lost\n", c->Request.CDB[0]);
2577 return_status = IO_ERROR;
2578 break;
2579 case CMD_ABORTED:
2580 printk(KERN_WARNING "cciss: cmd 0x%02x was "
2581 "aborted\n", c->Request.CDB[0]);
2582 return_status = IO_ERROR;
2583 break;
2584 case CMD_ABORT_FAILED:
2585 printk(KERN_WARNING "cciss: cmd 0x%02x reports "
2586 "abort failed\n", c->Request.CDB[0]);
2587 return_status = IO_ERROR;
2588 break;
2589 case CMD_UNSOLICITED_ABORT:
2590 printk(KERN_WARNING
2591 "cciss%d: unsolicited abort 0x%02x\n", h->ctlr,
2592 c->Request.CDB[0]);
2593 return_status = IO_NEEDS_RETRY;
2594 break;
2595 default:
2596 printk(KERN_WARNING "cciss: cmd 0x%02x returned "
2597 "unknown status %x\n", c->Request.CDB[0],
2598 c->err_info->CommandStatus);
2599 return_status = IO_ERROR;
2601 return return_status;
2604 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
2605 int attempt_retry)
2607 DECLARE_COMPLETION_ONSTACK(wait);
2608 u64bit buff_dma_handle;
2609 unsigned long flags;
2610 int return_status = IO_OK;
2612 resend_cmd2:
2613 c->waiting = &wait;
2614 /* Put the request on the tail of the queue and send it */
2615 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2616 addQ(&h->reqQ, c);
2617 h->Qdepth++;
2618 start_io(h);
2619 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2621 wait_for_completion(&wait);
2623 if (c->err_info->CommandStatus == 0 || !attempt_retry)
2624 goto command_done;
2626 return_status = process_sendcmd_error(h, c);
2628 if (return_status == IO_NEEDS_RETRY &&
2629 c->retry_count < MAX_CMD_RETRIES) {
2630 printk(KERN_WARNING "cciss%d: retrying 0x%02x\n", h->ctlr,
2631 c->Request.CDB[0]);
2632 c->retry_count++;
2633 /* erase the old error information */
2634 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2635 return_status = IO_OK;
2636 INIT_COMPLETION(wait);
2637 goto resend_cmd2;
2640 command_done:
2641 /* unlock the buffers from DMA */
2642 buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2643 buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2644 pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
2645 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2646 return return_status;
2649 static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
2650 __u8 page_code, unsigned char scsi3addr[],
2651 int cmd_type)
2653 ctlr_info_t *h = hba[ctlr];
2654 CommandList_struct *c;
2655 int return_status;
2657 c = cmd_alloc(h, 0);
2658 if (!c)
2659 return -ENOMEM;
2660 return_status = fill_cmd(c, cmd, ctlr, buff, size, page_code,
2661 scsi3addr, cmd_type);
2662 if (return_status == IO_OK)
2663 return_status = sendcmd_withirq_core(h, c, 1);
2665 cmd_free(h, c, 0);
2666 return return_status;
2669 static void cciss_geometry_inquiry(int ctlr, int logvol,
2670 int withirq, sector_t total_size,
2671 unsigned int block_size,
2672 InquiryData_struct *inq_buff,
2673 drive_info_struct *drv)
2675 int return_code;
2676 unsigned long t;
2677 unsigned char scsi3addr[8];
2679 memset(inq_buff, 0, sizeof(InquiryData_struct));
2680 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
2681 if (withirq)
2682 return_code = sendcmd_withirq(CISS_INQUIRY, ctlr,
2683 inq_buff, sizeof(*inq_buff),
2684 0xC1, scsi3addr, TYPE_CMD);
2685 else
2686 return_code = sendcmd(CISS_INQUIRY, ctlr, inq_buff,
2687 sizeof(*inq_buff), 0xC1, scsi3addr,
2688 TYPE_CMD);
2689 if (return_code == IO_OK) {
2690 if (inq_buff->data_byte[8] == 0xFF) {
2691 printk(KERN_WARNING
2692 "cciss: reading geometry failed, volume "
2693 "does not support reading geometry\n");
2694 drv->heads = 255;
2695 drv->sectors = 32; // Sectors per track
2696 drv->cylinders = total_size + 1;
2697 drv->raid_level = RAID_UNKNOWN;
2698 } else {
2699 drv->heads = inq_buff->data_byte[6];
2700 drv->sectors = inq_buff->data_byte[7];
2701 drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
2702 drv->cylinders += inq_buff->data_byte[5];
2703 drv->raid_level = inq_buff->data_byte[8];
2705 drv->block_size = block_size;
2706 drv->nr_blocks = total_size + 1;
2707 t = drv->heads * drv->sectors;
2708 if (t > 1) {
2709 sector_t real_size = total_size + 1;
2710 unsigned long rem = sector_div(real_size, t);
2711 if (rem)
2712 real_size++;
2713 drv->cylinders = real_size;
2715 } else { /* Get geometry failed */
2716 printk(KERN_WARNING "cciss: reading geometry failed\n");
2720 static void
2721 cciss_read_capacity(int ctlr, int logvol, int withirq, sector_t *total_size,
2722 unsigned int *block_size)
2724 ReadCapdata_struct *buf;
2725 int return_code;
2726 unsigned char scsi3addr[8];
2728 buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
2729 if (!buf) {
2730 printk(KERN_WARNING "cciss: out of memory\n");
2731 return;
2734 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
2735 if (withirq)
2736 return_code = sendcmd_withirq(CCISS_READ_CAPACITY,
2737 ctlr, buf, sizeof(ReadCapdata_struct),
2738 0, scsi3addr, TYPE_CMD);
2739 else
2740 return_code = sendcmd(CCISS_READ_CAPACITY,
2741 ctlr, buf, sizeof(ReadCapdata_struct),
2742 0, scsi3addr, TYPE_CMD);
2743 if (return_code == IO_OK) {
2744 *total_size = be32_to_cpu(*(__be32 *) buf->total_size);
2745 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2746 } else { /* read capacity command failed */
2747 printk(KERN_WARNING "cciss: read capacity failed\n");
2748 *total_size = 0;
2749 *block_size = BLOCK_SIZE;
2751 kfree(buf);
2754 static void
2755 cciss_read_capacity_16(int ctlr, int logvol, int withirq, sector_t *total_size, unsigned int *block_size)
2757 ReadCapdata_struct_16 *buf;
2758 int return_code;
2759 unsigned char scsi3addr[8];
2761 buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
2762 if (!buf) {
2763 printk(KERN_WARNING "cciss: out of memory\n");
2764 return;
2767 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
2768 if (withirq) {
2769 return_code = sendcmd_withirq(CCISS_READ_CAPACITY_16,
2770 ctlr, buf, sizeof(ReadCapdata_struct_16),
2771 0, scsi3addr, TYPE_CMD);
2773 else {
2774 return_code = sendcmd(CCISS_READ_CAPACITY_16,
2775 ctlr, buf, sizeof(ReadCapdata_struct_16),
2776 0, scsi3addr, TYPE_CMD);
2778 if (return_code == IO_OK) {
2779 *total_size = be64_to_cpu(*(__be64 *) buf->total_size);
2780 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2781 } else { /* read capacity command failed */
2782 printk(KERN_WARNING "cciss: read capacity failed\n");
2783 *total_size = 0;
2784 *block_size = BLOCK_SIZE;
2786 printk(KERN_INFO " blocks= %llu block_size= %d\n",
2787 (unsigned long long)*total_size+1, *block_size);
2788 kfree(buf);
2791 static int cciss_revalidate(struct gendisk *disk)
2793 ctlr_info_t *h = get_host(disk);
2794 drive_info_struct *drv = get_drv(disk);
2795 int logvol;
2796 int FOUND = 0;
2797 unsigned int block_size;
2798 sector_t total_size;
2799 InquiryData_struct *inq_buff = NULL;
2801 for (logvol = 0; logvol < CISS_MAX_LUN; logvol++) {
2802 if (memcmp(h->drv[logvol]->LunID, drv->LunID,
2803 sizeof(drv->LunID)) == 0) {
2804 FOUND = 1;
2805 break;
2809 if (!FOUND)
2810 return 1;
2812 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2813 if (inq_buff == NULL) {
2814 printk(KERN_WARNING "cciss: out of memory\n");
2815 return 1;
2817 if (h->cciss_read == CCISS_READ_10) {
2818 cciss_read_capacity(h->ctlr, logvol, 1,
2819 &total_size, &block_size);
2820 } else {
2821 cciss_read_capacity_16(h->ctlr, logvol, 1,
2822 &total_size, &block_size);
2824 cciss_geometry_inquiry(h->ctlr, logvol, 1, total_size, block_size,
2825 inq_buff, drv);
2827 blk_queue_logical_block_size(drv->queue, drv->block_size);
2828 set_capacity(disk, drv->nr_blocks);
2830 kfree(inq_buff);
2831 return 0;
2835 * Wait polling for a command to complete.
2836 * The memory mapped FIFO is polled for the completion.
2837 * Used only at init time, interrupts from the HBA are disabled.
2839 static unsigned long pollcomplete(int ctlr)
2841 unsigned long done;
2842 int i;
2844 /* Wait (up to 20 seconds) for a command to complete */
2846 for (i = 20 * HZ; i > 0; i--) {
2847 done = hba[ctlr]->access.command_completed(hba[ctlr]);
2848 if (done == FIFO_EMPTY)
2849 schedule_timeout_uninterruptible(1);
2850 else
2851 return done;
2853 /* Invalid address to tell caller we ran out of time */
2854 return 1;
2857 /* Send command c to controller h and poll for it to complete.
2858 * Turns interrupts off on the board. Used at driver init time
2859 * and during SCSI error recovery.
2861 static int sendcmd_core(ctlr_info_t *h, CommandList_struct *c)
2863 int i;
2864 unsigned long complete;
2865 int status = IO_ERROR;
2866 u64bit buff_dma_handle;
2868 resend_cmd1:
2870 /* Disable interrupt on the board. */
2871 h->access.set_intr_mask(h, CCISS_INTR_OFF);
2873 /* Make sure there is room in the command FIFO */
2874 /* Actually it should be completely empty at this time */
2875 /* unless we are in here doing error handling for the scsi */
2876 /* tape side of the driver. */
2877 for (i = 200000; i > 0; i--) {
2878 /* if fifo isn't full go */
2879 if (!(h->access.fifo_full(h)))
2880 break;
2881 udelay(10);
2882 printk(KERN_WARNING "cciss cciss%d: SendCmd FIFO full,"
2883 " waiting!\n", h->ctlr);
2885 h->access.submit_command(h, c); /* Send the cmd */
2886 do {
2887 complete = pollcomplete(h->ctlr);
2889 #ifdef CCISS_DEBUG
2890 printk(KERN_DEBUG "cciss: command completed\n");
2891 #endif /* CCISS_DEBUG */
2893 if (complete == 1) {
2894 printk(KERN_WARNING
2895 "cciss cciss%d: SendCmd Timeout out, "
2896 "No command list address returned!\n", h->ctlr);
2897 status = IO_ERROR;
2898 break;
2901 /* Make sure it's the command we're expecting. */
2902 if ((complete & ~CISS_ERROR_BIT) != c->busaddr) {
2903 printk(KERN_WARNING "cciss%d: Unexpected command "
2904 "completion.\n", h->ctlr);
2905 continue;
2908 /* It is our command. If no error, we're done. */
2909 if (!(complete & CISS_ERROR_BIT)) {
2910 status = IO_OK;
2911 break;
2914 /* There is an error... */
2916 /* if data overrun or underun on Report command ignore it */
2917 if (((c->Request.CDB[0] == CISS_REPORT_LOG) ||
2918 (c->Request.CDB[0] == CISS_REPORT_PHYS) ||
2919 (c->Request.CDB[0] == CISS_INQUIRY)) &&
2920 ((c->err_info->CommandStatus == CMD_DATA_OVERRUN) ||
2921 (c->err_info->CommandStatus == CMD_DATA_UNDERRUN))) {
2922 complete = c->busaddr;
2923 status = IO_OK;
2924 break;
2927 if (c->err_info->CommandStatus == CMD_UNSOLICITED_ABORT) {
2928 printk(KERN_WARNING "cciss%d: unsolicited abort %p\n",
2929 h->ctlr, c);
2930 if (c->retry_count < MAX_CMD_RETRIES) {
2931 printk(KERN_WARNING "cciss%d: retrying %p\n",
2932 h->ctlr, c);
2933 c->retry_count++;
2934 /* erase the old error information */
2935 memset(c->err_info, 0, sizeof(c->err_info));
2936 goto resend_cmd1;
2938 printk(KERN_WARNING "cciss%d: retried %p too many "
2939 "times\n", h->ctlr, c);
2940 status = IO_ERROR;
2941 break;
2944 if (c->err_info->CommandStatus == CMD_UNABORTABLE) {
2945 printk(KERN_WARNING "cciss%d: command could not be "
2946 "aborted.\n", h->ctlr);
2947 status = IO_ERROR;
2948 break;
2951 if (c->err_info->CommandStatus == CMD_TARGET_STATUS) {
2952 status = check_target_status(h, c);
2953 break;
2956 printk(KERN_WARNING "cciss%d: sendcmd error\n", h->ctlr);
2957 printk(KERN_WARNING "cmd = 0x%02x, CommandStatus = 0x%02x\n",
2958 c->Request.CDB[0], c->err_info->CommandStatus);
2959 status = IO_ERROR;
2960 break;
2962 } while (1);
2964 /* unlock the data buffer from DMA */
2965 buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2966 buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2967 pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
2968 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2969 return status;
2973 * Send a command to the controller, and wait for it to complete.
2974 * Used at init time, and during SCSI error recovery.
2976 static int sendcmd(__u8 cmd, int ctlr, void *buff, size_t size,
2977 __u8 page_code, unsigned char *scsi3addr, int cmd_type)
2979 CommandList_struct *c;
2980 int status;
2982 c = cmd_alloc(hba[ctlr], 1);
2983 if (!c) {
2984 printk(KERN_WARNING "cciss: unable to get memory");
2985 return IO_ERROR;
2987 status = fill_cmd(c, cmd, ctlr, buff, size, page_code,
2988 scsi3addr, cmd_type);
2989 if (status == IO_OK)
2990 status = sendcmd_core(hba[ctlr], c);
2991 cmd_free(hba[ctlr], c, 1);
2992 return status;
2996 * Map (physical) PCI mem into (virtual) kernel space
2998 static void __iomem *remap_pci_mem(ulong base, ulong size)
3000 ulong page_base = ((ulong) base) & PAGE_MASK;
3001 ulong page_offs = ((ulong) base) - page_base;
3002 void __iomem *page_remapped = ioremap(page_base, page_offs + size);
3004 return page_remapped ? (page_remapped + page_offs) : NULL;
3008 * Takes jobs of the Q and sends them to the hardware, then puts it on
3009 * the Q to wait for completion.
3011 static void start_io(ctlr_info_t *h)
3013 CommandList_struct *c;
3015 while (!hlist_empty(&h->reqQ)) {
3016 c = hlist_entry(h->reqQ.first, CommandList_struct, list);
3017 /* can't do anything if fifo is full */
3018 if ((h->access.fifo_full(h))) {
3019 printk(KERN_WARNING "cciss: fifo full\n");
3020 break;
3023 /* Get the first entry from the Request Q */
3024 removeQ(c);
3025 h->Qdepth--;
3027 /* Tell the controller execute command */
3028 h->access.submit_command(h, c);
3030 /* Put job onto the completed Q */
3031 addQ(&h->cmpQ, c);
3035 /* Assumes that CCISS_LOCK(h->ctlr) is held. */
3036 /* Zeros out the error record and then resends the command back */
3037 /* to the controller */
3038 static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
3040 /* erase the old error information */
3041 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
3043 /* add it to software queue and then send it to the controller */
3044 addQ(&h->reqQ, c);
3045 h->Qdepth++;
3046 if (h->Qdepth > h->maxQsinceinit)
3047 h->maxQsinceinit = h->Qdepth;
3049 start_io(h);
3052 static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
3053 unsigned int msg_byte, unsigned int host_byte,
3054 unsigned int driver_byte)
3056 /* inverse of macros in scsi.h */
3057 return (scsi_status_byte & 0xff) |
3058 ((msg_byte & 0xff) << 8) |
3059 ((host_byte & 0xff) << 16) |
3060 ((driver_byte & 0xff) << 24);
3063 static inline int evaluate_target_status(ctlr_info_t *h,
3064 CommandList_struct *cmd, int *retry_cmd)
3066 unsigned char sense_key;
3067 unsigned char status_byte, msg_byte, host_byte, driver_byte;
3068 int error_value;
3070 *retry_cmd = 0;
3071 /* If we get in here, it means we got "target status", that is, scsi status */
3072 status_byte = cmd->err_info->ScsiStatus;
3073 driver_byte = DRIVER_OK;
3074 msg_byte = cmd->err_info->CommandStatus; /* correct? seems too device specific */
3076 if (blk_pc_request(cmd->rq))
3077 host_byte = DID_PASSTHROUGH;
3078 else
3079 host_byte = DID_OK;
3081 error_value = make_status_bytes(status_byte, msg_byte,
3082 host_byte, driver_byte);
3084 if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) {
3085 if (!blk_pc_request(cmd->rq))
3086 printk(KERN_WARNING "cciss: cmd %p "
3087 "has SCSI Status 0x%x\n",
3088 cmd, cmd->err_info->ScsiStatus);
3089 return error_value;
3092 /* check the sense key */
3093 sense_key = 0xf & cmd->err_info->SenseInfo[2];
3094 /* no status or recovered error */
3095 if (((sense_key == 0x0) || (sense_key == 0x1)) && !blk_pc_request(cmd->rq))
3096 error_value = 0;
3098 if (check_for_unit_attention(h, cmd)) {
3099 *retry_cmd = !blk_pc_request(cmd->rq);
3100 return 0;
3103 if (!blk_pc_request(cmd->rq)) { /* Not SG_IO or similar? */
3104 if (error_value != 0)
3105 printk(KERN_WARNING "cciss: cmd %p has CHECK CONDITION"
3106 " sense key = 0x%x\n", cmd, sense_key);
3107 return error_value;
3110 /* SG_IO or similar, copy sense data back */
3111 if (cmd->rq->sense) {
3112 if (cmd->rq->sense_len > cmd->err_info->SenseLen)
3113 cmd->rq->sense_len = cmd->err_info->SenseLen;
3114 memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
3115 cmd->rq->sense_len);
3116 } else
3117 cmd->rq->sense_len = 0;
3119 return error_value;
3122 /* checks the status of the job and calls complete buffers to mark all
3123 * buffers for the completed job. Note that this function does not need
3124 * to hold the hba/queue lock.
3126 static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
3127 int timeout)
3129 int retry_cmd = 0;
3130 struct request *rq = cmd->rq;
3132 rq->errors = 0;
3134 if (timeout)
3135 rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);
3137 if (cmd->err_info->CommandStatus == 0) /* no error has occurred */
3138 goto after_error_processing;
3140 switch (cmd->err_info->CommandStatus) {
3141 case CMD_TARGET_STATUS:
3142 rq->errors = evaluate_target_status(h, cmd, &retry_cmd);
3143 break;
3144 case CMD_DATA_UNDERRUN:
3145 if (blk_fs_request(cmd->rq)) {
3146 printk(KERN_WARNING "cciss: cmd %p has"
3147 " completed with data underrun "
3148 "reported\n", cmd);
3149 cmd->rq->resid_len = cmd->err_info->ResidualCnt;
3151 break;
3152 case CMD_DATA_OVERRUN:
3153 if (blk_fs_request(cmd->rq))
3154 printk(KERN_WARNING "cciss: cmd %p has"
3155 " completed with data overrun "
3156 "reported\n", cmd);
3157 break;
3158 case CMD_INVALID:
3159 printk(KERN_WARNING "cciss: cmd %p is "
3160 "reported invalid\n", cmd);
3161 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3162 cmd->err_info->CommandStatus, DRIVER_OK,
3163 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3164 break;
3165 case CMD_PROTOCOL_ERR:
3166 printk(KERN_WARNING "cciss: cmd %p has "
3167 "protocol error \n", cmd);
3168 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3169 cmd->err_info->CommandStatus, DRIVER_OK,
3170 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3171 break;
3172 case CMD_HARDWARE_ERR:
3173 printk(KERN_WARNING "cciss: cmd %p had "
3174 " hardware error\n", cmd);
3175 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3176 cmd->err_info->CommandStatus, DRIVER_OK,
3177 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3178 break;
3179 case CMD_CONNECTION_LOST:
3180 printk(KERN_WARNING "cciss: cmd %p had "
3181 "connection lost\n", cmd);
3182 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3183 cmd->err_info->CommandStatus, DRIVER_OK,
3184 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3185 break;
3186 case CMD_ABORTED:
3187 printk(KERN_WARNING "cciss: cmd %p was "
3188 "aborted\n", cmd);
3189 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3190 cmd->err_info->CommandStatus, DRIVER_OK,
3191 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
3192 break;
3193 case CMD_ABORT_FAILED:
3194 printk(KERN_WARNING "cciss: cmd %p reports "
3195 "abort failed\n", cmd);
3196 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3197 cmd->err_info->CommandStatus, DRIVER_OK,
3198 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3199 break;
3200 case CMD_UNSOLICITED_ABORT:
3201 printk(KERN_WARNING "cciss%d: unsolicited "
3202 "abort %p\n", h->ctlr, cmd);
3203 if (cmd->retry_count < MAX_CMD_RETRIES) {
3204 retry_cmd = 1;
3205 printk(KERN_WARNING
3206 "cciss%d: retrying %p\n", h->ctlr, cmd);
3207 cmd->retry_count++;
3208 } else
3209 printk(KERN_WARNING
3210 "cciss%d: %p retried too "
3211 "many times\n", h->ctlr, cmd);
3212 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3213 cmd->err_info->CommandStatus, DRIVER_OK,
3214 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
3215 break;
3216 case CMD_TIMEOUT:
3217 printk(KERN_WARNING "cciss: cmd %p timedout\n", cmd);
3218 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3219 cmd->err_info->CommandStatus, DRIVER_OK,
3220 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3221 break;
3222 default:
3223 printk(KERN_WARNING "cciss: cmd %p returned "
3224 "unknown status %x\n", cmd,
3225 cmd->err_info->CommandStatus);
3226 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3227 cmd->err_info->CommandStatus, DRIVER_OK,
3228 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3231 after_error_processing:
3233 /* We need to return this command */
3234 if (retry_cmd) {
3235 resend_cciss_cmd(h, cmd);
3236 return;
3238 cmd->rq->completion_data = cmd;
3239 blk_complete_request(cmd->rq);
3243 * Get a request and submit it to the controller.
3245 static void do_cciss_request(struct request_queue *q)
3247 ctlr_info_t *h = q->queuedata;
3248 CommandList_struct *c;
3249 sector_t start_blk;
3250 int seg;
3251 struct request *creq;
3252 u64bit temp64;
3253 struct scatterlist tmp_sg[MAXSGENTRIES];
3254 drive_info_struct *drv;
3255 int i, dir;
3257 /* We call start_io here in case there is a command waiting on the
3258 * queue that has not been sent.
3260 if (blk_queue_plugged(q))
3261 goto startio;
3263 queue:
3264 creq = blk_peek_request(q);
3265 if (!creq)
3266 goto startio;
3268 BUG_ON(creq->nr_phys_segments > MAXSGENTRIES);
3270 if ((c = cmd_alloc(h, 1)) == NULL)
3271 goto full;
3273 blk_start_request(creq);
3275 spin_unlock_irq(q->queue_lock);
3277 c->cmd_type = CMD_RWREQ;
3278 c->rq = creq;
3280 /* fill in the request */
3281 drv = creq->rq_disk->private_data;
3282 c->Header.ReplyQueue = 0; // unused in simple mode
3283 /* got command from pool, so use the command block index instead */
3284 /* for direct lookups. */
3285 /* The first 2 bits are reserved for controller error reporting. */
3286 c->Header.Tag.lower = (c->cmdindex << 3);
3287 c->Header.Tag.lower |= 0x04; /* flag for direct lookup. */
3288 memcpy(&c->Header.LUN, drv->LunID, sizeof(drv->LunID));
3289 c->Request.CDBLen = 10; // 12 byte commands not in FW yet;
3290 c->Request.Type.Type = TYPE_CMD; // It is a command.
3291 c->Request.Type.Attribute = ATTR_SIMPLE;
3292 c->Request.Type.Direction =
3293 (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
3294 c->Request.Timeout = 0; // Don't time out
3295 c->Request.CDB[0] =
3296 (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
3297 start_blk = blk_rq_pos(creq);
3298 #ifdef CCISS_DEBUG
3299 printk(KERN_DEBUG "ciss: sector =%d nr_sectors=%d\n",
3300 (int)blk_rq_pos(creq), (int)blk_rq_sectors(creq));
3301 #endif /* CCISS_DEBUG */
3303 sg_init_table(tmp_sg, MAXSGENTRIES);
3304 seg = blk_rq_map_sg(q, creq, tmp_sg);
3306 /* get the DMA records for the setup */
3307 if (c->Request.Type.Direction == XFER_READ)
3308 dir = PCI_DMA_FROMDEVICE;
3309 else
3310 dir = PCI_DMA_TODEVICE;
3312 for (i = 0; i < seg; i++) {
3313 c->SG[i].Len = tmp_sg[i].length;
3314 temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]),
3315 tmp_sg[i].offset,
3316 tmp_sg[i].length, dir);
3317 c->SG[i].Addr.lower = temp64.val32.lower;
3318 c->SG[i].Addr.upper = temp64.val32.upper;
3319 c->SG[i].Ext = 0; // we are not chaining
3321 /* track how many SG entries we are using */
3322 if (seg > h->maxSG)
3323 h->maxSG = seg;
3325 #ifdef CCISS_DEBUG
3326 printk(KERN_DEBUG "cciss: Submitting %u sectors in %d segments\n",
3327 blk_rq_sectors(creq), seg);
3328 #endif /* CCISS_DEBUG */
3330 c->Header.SGList = c->Header.SGTotal = seg;
3331 if (likely(blk_fs_request(creq))) {
3332 if(h->cciss_read == CCISS_READ_10) {
3333 c->Request.CDB[1] = 0;
3334 c->Request.CDB[2] = (start_blk >> 24) & 0xff; //MSB
3335 c->Request.CDB[3] = (start_blk >> 16) & 0xff;
3336 c->Request.CDB[4] = (start_blk >> 8) & 0xff;
3337 c->Request.CDB[5] = start_blk & 0xff;
3338 c->Request.CDB[6] = 0; // (sect >> 24) & 0xff; MSB
3339 c->Request.CDB[7] = (blk_rq_sectors(creq) >> 8) & 0xff;
3340 c->Request.CDB[8] = blk_rq_sectors(creq) & 0xff;
3341 c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
3342 } else {
3343 u32 upper32 = upper_32_bits(start_blk);
3345 c->Request.CDBLen = 16;
3346 c->Request.CDB[1]= 0;
3347 c->Request.CDB[2]= (upper32 >> 24) & 0xff; //MSB
3348 c->Request.CDB[3]= (upper32 >> 16) & 0xff;
3349 c->Request.CDB[4]= (upper32 >> 8) & 0xff;
3350 c->Request.CDB[5]= upper32 & 0xff;
3351 c->Request.CDB[6]= (start_blk >> 24) & 0xff;
3352 c->Request.CDB[7]= (start_blk >> 16) & 0xff;
3353 c->Request.CDB[8]= (start_blk >> 8) & 0xff;
3354 c->Request.CDB[9]= start_blk & 0xff;
3355 c->Request.CDB[10]= (blk_rq_sectors(creq) >> 24) & 0xff;
3356 c->Request.CDB[11]= (blk_rq_sectors(creq) >> 16) & 0xff;
3357 c->Request.CDB[12]= (blk_rq_sectors(creq) >> 8) & 0xff;
3358 c->Request.CDB[13]= blk_rq_sectors(creq) & 0xff;
3359 c->Request.CDB[14] = c->Request.CDB[15] = 0;
3361 } else if (blk_pc_request(creq)) {
3362 c->Request.CDBLen = creq->cmd_len;
3363 memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB);
3364 } else {
3365 printk(KERN_WARNING "cciss%d: bad request type %d\n", h->ctlr, creq->cmd_type);
3366 BUG();
3369 spin_lock_irq(q->queue_lock);
3371 addQ(&h->reqQ, c);
3372 h->Qdepth++;
3373 if (h->Qdepth > h->maxQsinceinit)
3374 h->maxQsinceinit = h->Qdepth;
3376 goto queue;
3377 full:
3378 blk_stop_queue(q);
3379 startio:
3380 /* We will already have the driver lock here so not need
3381 * to lock it.
3383 start_io(h);
3386 static inline unsigned long get_next_completion(ctlr_info_t *h)
3388 return h->access.command_completed(h);
3391 static inline int interrupt_pending(ctlr_info_t *h)
3393 return h->access.intr_pending(h);
3396 static inline long interrupt_not_for_us(ctlr_info_t *h)
3398 return (((h->access.intr_pending(h) == 0) ||
3399 (h->interrupts_enabled == 0)));
3402 static irqreturn_t do_cciss_intr(int irq, void *dev_id)
3404 ctlr_info_t *h = dev_id;
3405 CommandList_struct *c;
3406 unsigned long flags;
3407 __u32 a, a1, a2;
3409 if (interrupt_not_for_us(h))
3410 return IRQ_NONE;
3412 * If there are completed commands in the completion queue,
3413 * we had better do something about it.
3415 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
3416 while (interrupt_pending(h)) {
3417 while ((a = get_next_completion(h)) != FIFO_EMPTY) {
3418 a1 = a;
3419 if ((a & 0x04)) {
3420 a2 = (a >> 3);
3421 if (a2 >= h->nr_cmds) {
3422 printk(KERN_WARNING
3423 "cciss: controller cciss%d failed, stopping.\n",
3424 h->ctlr);
3425 fail_all_cmds(h->ctlr);
3426 return IRQ_HANDLED;
3429 c = h->cmd_pool + a2;
3430 a = c->busaddr;
3432 } else {
3433 struct hlist_node *tmp;
3435 a &= ~3;
3436 c = NULL;
3437 hlist_for_each_entry(c, tmp, &h->cmpQ, list) {
3438 if (c->busaddr == a)
3439 break;
3443 * If we've found the command, take it off the
3444 * completion Q and free it
3446 if (c && c->busaddr == a) {
3447 removeQ(c);
3448 if (c->cmd_type == CMD_RWREQ) {
3449 complete_command(h, c, 0);
3450 } else if (c->cmd_type == CMD_IOCTL_PEND) {
3451 complete(c->waiting);
3453 # ifdef CONFIG_CISS_SCSI_TAPE
3454 else if (c->cmd_type == CMD_SCSI)
3455 complete_scsi_command(c, 0, a1);
3456 # endif
3457 continue;
3462 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
3463 return IRQ_HANDLED;
3467 * add_to_scan_list() - add controller to rescan queue
3468 * @h: Pointer to the controller.
3470 * Adds the controller to the rescan queue if not already on the queue.
3472 * returns 1 if added to the queue, 0 if skipped (could be on the
3473 * queue already, or the controller could be initializing or shutting
3474 * down).
3476 static int add_to_scan_list(struct ctlr_info *h)
3478 struct ctlr_info *test_h;
3479 int found = 0;
3480 int ret = 0;
3482 if (h->busy_initializing)
3483 return 0;
3485 if (!mutex_trylock(&h->busy_shutting_down))
3486 return 0;
3488 mutex_lock(&scan_mutex);
3489 list_for_each_entry(test_h, &scan_q, scan_list) {
3490 if (test_h == h) {
3491 found = 1;
3492 break;
3495 if (!found && !h->busy_scanning) {
3496 INIT_COMPLETION(h->scan_wait);
3497 list_add_tail(&h->scan_list, &scan_q);
3498 ret = 1;
3500 mutex_unlock(&scan_mutex);
3501 mutex_unlock(&h->busy_shutting_down);
3503 return ret;
3507 * remove_from_scan_list() - remove controller from rescan queue
3508 * @h: Pointer to the controller.
3510 * Removes the controller from the rescan queue if present. Blocks if
3511 * the controller is currently conducting a rescan.
3513 static void remove_from_scan_list(struct ctlr_info *h)
3515 struct ctlr_info *test_h, *tmp_h;
3516 int scanning = 0;
3518 mutex_lock(&scan_mutex);
3519 list_for_each_entry_safe(test_h, tmp_h, &scan_q, scan_list) {
3520 if (test_h == h) {
3521 list_del(&h->scan_list);
3522 complete_all(&h->scan_wait);
3523 mutex_unlock(&scan_mutex);
3524 return;
3527 if (&h->busy_scanning)
3528 scanning = 0;
3529 mutex_unlock(&scan_mutex);
3531 if (scanning)
3532 wait_for_completion(&h->scan_wait);
3536 * scan_thread() - kernel thread used to rescan controllers
3537 * @data: Ignored.
3539 * A kernel thread used scan for drive topology changes on
3540 * controllers. The thread processes only one controller at a time
3541 * using a queue. Controllers are added to the queue using
3542 * add_to_scan_list() and removed from the queue either after done
3543 * processing or using remove_from_scan_list().
3545 * returns 0.
3547 static int scan_thread(void *data)
3549 struct ctlr_info *h;
3551 while (1) {
3552 set_current_state(TASK_INTERRUPTIBLE);
3553 schedule();
3554 if (kthread_should_stop())
3555 break;
3557 while (1) {
3558 mutex_lock(&scan_mutex);
3559 if (list_empty(&scan_q)) {
3560 mutex_unlock(&scan_mutex);
3561 break;
3564 h = list_entry(scan_q.next,
3565 struct ctlr_info,
3566 scan_list);
3567 list_del(&h->scan_list);
3568 h->busy_scanning = 1;
3569 mutex_unlock(&scan_mutex);
3571 if (h) {
3572 rebuild_lun_table(h, 0, 0);
3573 complete_all(&h->scan_wait);
3574 mutex_lock(&scan_mutex);
3575 h->busy_scanning = 0;
3576 mutex_unlock(&scan_mutex);
3581 return 0;
3584 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c)
3586 if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
3587 return 0;
3589 switch (c->err_info->SenseInfo[12]) {
3590 case STATE_CHANGED:
3591 printk(KERN_WARNING "cciss%d: a state change "
3592 "detected, command retried\n", h->ctlr);
3593 return 1;
3594 break;
3595 case LUN_FAILED:
3596 printk(KERN_WARNING "cciss%d: LUN failure "
3597 "detected, action required\n", h->ctlr);
3598 return 1;
3599 break;
3600 case REPORT_LUNS_CHANGED:
3601 printk(KERN_WARNING "cciss%d: report LUN data "
3602 "changed\n", h->ctlr);
3603 add_to_scan_list(h);
3604 wake_up_process(cciss_scan_thread);
3605 return 1;
3606 break;
3607 case POWER_OR_RESET:
3608 printk(KERN_WARNING "cciss%d: a power on "
3609 "or device reset detected\n", h->ctlr);
3610 return 1;
3611 break;
3612 case UNIT_ATTENTION_CLEARED:
3613 printk(KERN_WARNING "cciss%d: unit attention "
3614 "cleared by another initiator\n", h->ctlr);
3615 return 1;
3616 break;
3617 default:
3618 printk(KERN_WARNING "cciss%d: unknown "
3619 "unit attention detected\n", h->ctlr);
3620 return 1;
3625 * We cannot read the structure directly, for portability we must use
3626 * the io functions.
3627 * This is for debug only.
3629 #ifdef CCISS_DEBUG
3630 static void print_cfg_table(CfgTable_struct *tb)
3632 int i;
3633 char temp_name[17];
3635 printk("Controller Configuration information\n");
3636 printk("------------------------------------\n");
3637 for (i = 0; i < 4; i++)
3638 temp_name[i] = readb(&(tb->Signature[i]));
3639 temp_name[4] = '\0';
3640 printk(" Signature = %s\n", temp_name);
3641 printk(" Spec Number = %d\n", readl(&(tb->SpecValence)));
3642 printk(" Transport methods supported = 0x%x\n",
3643 readl(&(tb->TransportSupport)));
3644 printk(" Transport methods active = 0x%x\n",
3645 readl(&(tb->TransportActive)));
3646 printk(" Requested transport Method = 0x%x\n",
3647 readl(&(tb->HostWrite.TransportRequest)));
3648 printk(" Coalesce Interrupt Delay = 0x%x\n",
3649 readl(&(tb->HostWrite.CoalIntDelay)));
3650 printk(" Coalesce Interrupt Count = 0x%x\n",
3651 readl(&(tb->HostWrite.CoalIntCount)));
3652 printk(" Max outstanding commands = 0x%d\n",
3653 readl(&(tb->CmdsOutMax)));
3654 printk(" Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3655 for (i = 0; i < 16; i++)
3656 temp_name[i] = readb(&(tb->ServerName[i]));
3657 temp_name[16] = '\0';
3658 printk(" Server Name = %s\n", temp_name);
3659 printk(" Heartbeat Counter = 0x%x\n\n\n", readl(&(tb->HeartBeat)));
3661 #endif /* CCISS_DEBUG */
3663 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3665 int i, offset, mem_type, bar_type;
3666 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3667 return 0;
3668 offset = 0;
3669 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3670 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3671 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3672 offset += 4;
3673 else {
3674 mem_type = pci_resource_flags(pdev, i) &
3675 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3676 switch (mem_type) {
3677 case PCI_BASE_ADDRESS_MEM_TYPE_32:
3678 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3679 offset += 4; /* 32 bit */
3680 break;
3681 case PCI_BASE_ADDRESS_MEM_TYPE_64:
3682 offset += 8;
3683 break;
3684 default: /* reserved in PCI 2.2 */
3685 printk(KERN_WARNING
3686 "Base address is invalid\n");
3687 return -1;
3688 break;
3691 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3692 return i + 1;
3694 return -1;
3697 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3698 * controllers that are capable. If not, we use IO-APIC mode.
3701 static void __devinit cciss_interrupt_mode(ctlr_info_t *c,
3702 struct pci_dev *pdev, __u32 board_id)
3704 #ifdef CONFIG_PCI_MSI
3705 int err;
3706 struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1},
3707 {0, 2}, {0, 3}
3710 /* Some boards advertise MSI but don't really support it */
3711 if ((board_id == 0x40700E11) ||
3712 (board_id == 0x40800E11) ||
3713 (board_id == 0x40820E11) || (board_id == 0x40830E11))
3714 goto default_int_mode;
3716 if (pci_find_capability(pdev, PCI_CAP_ID_MSIX)) {
3717 err = pci_enable_msix(pdev, cciss_msix_entries, 4);
3718 if (!err) {
3719 c->intr[0] = cciss_msix_entries[0].vector;
3720 c->intr[1] = cciss_msix_entries[1].vector;
3721 c->intr[2] = cciss_msix_entries[2].vector;
3722 c->intr[3] = cciss_msix_entries[3].vector;
3723 c->msix_vector = 1;
3724 return;
3726 if (err > 0) {
3727 printk(KERN_WARNING "cciss: only %d MSI-X vectors "
3728 "available\n", err);
3729 goto default_int_mode;
3730 } else {
3731 printk(KERN_WARNING "cciss: MSI-X init failed %d\n",
3732 err);
3733 goto default_int_mode;
3736 if (pci_find_capability(pdev, PCI_CAP_ID_MSI)) {
3737 if (!pci_enable_msi(pdev)) {
3738 c->msi_vector = 1;
3739 } else {
3740 printk(KERN_WARNING "cciss: MSI init failed\n");
3743 default_int_mode:
3744 #endif /* CONFIG_PCI_MSI */
3745 /* if we get here we're going to use the default interrupt mode */
3746 c->intr[SIMPLE_MODE_INT] = pdev->irq;
3747 return;
3750 static int __devinit cciss_pci_init(ctlr_info_t *c, struct pci_dev *pdev)
3752 ushort subsystem_vendor_id, subsystem_device_id, command;
3753 __u32 board_id, scratchpad = 0;
3754 __u64 cfg_offset;
3755 __u32 cfg_base_addr;
3756 __u64 cfg_base_addr_index;
3757 int i, err;
3759 /* check to see if controller has been disabled */
3760 /* BEFORE trying to enable it */
3761 (void)pci_read_config_word(pdev, PCI_COMMAND, &command);
3762 if (!(command & 0x02)) {
3763 printk(KERN_WARNING
3764 "cciss: controller appears to be disabled\n");
3765 return -ENODEV;
3768 err = pci_enable_device(pdev);
3769 if (err) {
3770 printk(KERN_ERR "cciss: Unable to Enable PCI device\n");
3771 return err;
3774 err = pci_request_regions(pdev, "cciss");
3775 if (err) {
3776 printk(KERN_ERR "cciss: Cannot obtain PCI resources, "
3777 "aborting\n");
3778 return err;
3781 subsystem_vendor_id = pdev->subsystem_vendor;
3782 subsystem_device_id = pdev->subsystem_device;
3783 board_id = (((__u32) (subsystem_device_id << 16) & 0xffff0000) |
3784 subsystem_vendor_id);
3786 #ifdef CCISS_DEBUG
3787 printk("command = %x\n", command);
3788 printk("irq = %x\n", pdev->irq);
3789 printk("board_id = %x\n", board_id);
3790 #endif /* CCISS_DEBUG */
3792 /* If the kernel supports MSI/MSI-X we will try to enable that functionality,
3793 * else we use the IO-APIC interrupt assigned to us by system ROM.
3795 cciss_interrupt_mode(c, pdev, board_id);
3797 /* find the memory BAR */
3798 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3799 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM)
3800 break;
3802 if (i == DEVICE_COUNT_RESOURCE) {
3803 printk(KERN_WARNING "cciss: No memory BAR found\n");
3804 err = -ENODEV;
3805 goto err_out_free_res;
3808 c->paddr = pci_resource_start(pdev, i); /* addressing mode bits
3809 * already removed
3812 #ifdef CCISS_DEBUG
3813 printk("address 0 = %lx\n", c->paddr);
3814 #endif /* CCISS_DEBUG */
3815 c->vaddr = remap_pci_mem(c->paddr, 0x250);
3817 /* Wait for the board to become ready. (PCI hotplug needs this.)
3818 * We poll for up to 120 secs, once per 100ms. */
3819 for (i = 0; i < 1200; i++) {
3820 scratchpad = readl(c->vaddr + SA5_SCRATCHPAD_OFFSET);
3821 if (scratchpad == CCISS_FIRMWARE_READY)
3822 break;
3823 set_current_state(TASK_INTERRUPTIBLE);
3824 schedule_timeout(msecs_to_jiffies(100)); /* wait 100ms */
3826 if (scratchpad != CCISS_FIRMWARE_READY) {
3827 printk(KERN_WARNING "cciss: Board not ready. Timed out.\n");
3828 err = -ENODEV;
3829 goto err_out_free_res;
3832 /* get the address index number */
3833 cfg_base_addr = readl(c->vaddr + SA5_CTCFG_OFFSET);
3834 cfg_base_addr &= (__u32) 0x0000ffff;
3835 #ifdef CCISS_DEBUG
3836 printk("cfg base address = %x\n", cfg_base_addr);
3837 #endif /* CCISS_DEBUG */
3838 cfg_base_addr_index = find_PCI_BAR_index(pdev, cfg_base_addr);
3839 #ifdef CCISS_DEBUG
3840 printk("cfg base address index = %llx\n",
3841 (unsigned long long)cfg_base_addr_index);
3842 #endif /* CCISS_DEBUG */
3843 if (cfg_base_addr_index == -1) {
3844 printk(KERN_WARNING "cciss: Cannot find cfg_base_addr_index\n");
3845 err = -ENODEV;
3846 goto err_out_free_res;
3849 cfg_offset = readl(c->vaddr + SA5_CTMEM_OFFSET);
3850 #ifdef CCISS_DEBUG
3851 printk("cfg offset = %llx\n", (unsigned long long)cfg_offset);
3852 #endif /* CCISS_DEBUG */
3853 c->cfgtable = remap_pci_mem(pci_resource_start(pdev,
3854 cfg_base_addr_index) +
3855 cfg_offset, sizeof(CfgTable_struct));
3856 c->board_id = board_id;
3858 #ifdef CCISS_DEBUG
3859 print_cfg_table(c->cfgtable);
3860 #endif /* CCISS_DEBUG */
3862 /* Some controllers support Zero Memory Raid (ZMR).
3863 * When configured in ZMR mode the number of supported
3864 * commands drops to 64. So instead of just setting an
3865 * arbitrary value we make the driver a little smarter.
3866 * We read the config table to tell us how many commands
3867 * are supported on the controller then subtract 4 to
3868 * leave a little room for ioctl calls.
3870 c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
3871 for (i = 0; i < ARRAY_SIZE(products); i++) {
3872 if (board_id == products[i].board_id) {
3873 c->product_name = products[i].product_name;
3874 c->access = *(products[i].access);
3875 c->nr_cmds = c->max_commands - 4;
3876 break;
3879 if ((readb(&c->cfgtable->Signature[0]) != 'C') ||
3880 (readb(&c->cfgtable->Signature[1]) != 'I') ||
3881 (readb(&c->cfgtable->Signature[2]) != 'S') ||
3882 (readb(&c->cfgtable->Signature[3]) != 'S')) {
3883 printk("Does not appear to be a valid CISS config table\n");
3884 err = -ENODEV;
3885 goto err_out_free_res;
3887 /* We didn't find the controller in our list. We know the
3888 * signature is valid. If it's an HP device let's try to
3889 * bind to the device and fire it up. Otherwise we bail.
3891 if (i == ARRAY_SIZE(products)) {
3892 if (subsystem_vendor_id == PCI_VENDOR_ID_HP) {
3893 c->product_name = products[i-1].product_name;
3894 c->access = *(products[i-1].access);
3895 c->nr_cmds = c->max_commands - 4;
3896 printk(KERN_WARNING "cciss: This is an unknown "
3897 "Smart Array controller.\n"
3898 "cciss: Please update to the latest driver "
3899 "available from www.hp.com.\n");
3900 } else {
3901 printk(KERN_WARNING "cciss: Sorry, I don't know how"
3902 " to access the Smart Array controller %08lx\n"
3903 , (unsigned long)board_id);
3904 err = -ENODEV;
3905 goto err_out_free_res;
3908 #ifdef CONFIG_X86
3910 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3911 __u32 prefetch;
3912 prefetch = readl(&(c->cfgtable->SCSI_Prefetch));
3913 prefetch |= 0x100;
3914 writel(prefetch, &(c->cfgtable->SCSI_Prefetch));
3916 #endif
3918 /* Disabling DMA prefetch and refetch for the P600.
3919 * An ASIC bug may result in accesses to invalid memory addresses.
3920 * We've disabled prefetch for some time now. Testing with XEN
3921 * kernels revealed a bug in the refetch if dom0 resides on a P600.
3923 if(board_id == 0x3225103C) {
3924 __u32 dma_prefetch;
3925 __u32 dma_refetch;
3926 dma_prefetch = readl(c->vaddr + I2O_DMA1_CFG);
3927 dma_prefetch |= 0x8000;
3928 writel(dma_prefetch, c->vaddr + I2O_DMA1_CFG);
3929 pci_read_config_dword(pdev, PCI_COMMAND_PARITY, &dma_refetch);
3930 dma_refetch |= 0x1;
3931 pci_write_config_dword(pdev, PCI_COMMAND_PARITY, dma_refetch);
3934 #ifdef CCISS_DEBUG
3935 printk("Trying to put board into Simple mode\n");
3936 #endif /* CCISS_DEBUG */
3937 c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
3938 /* Update the field, and then ring the doorbell */
3939 writel(CFGTBL_Trans_Simple, &(c->cfgtable->HostWrite.TransportRequest));
3940 writel(CFGTBL_ChangeReq, c->vaddr + SA5_DOORBELL);
3942 /* under certain very rare conditions, this can take awhile.
3943 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3944 * as we enter this code.) */
3945 for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3946 if (!(readl(c->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3947 break;
3948 /* delay and try again */
3949 set_current_state(TASK_INTERRUPTIBLE);
3950 schedule_timeout(msecs_to_jiffies(1));
3953 #ifdef CCISS_DEBUG
3954 printk(KERN_DEBUG "I counter got to %d %x\n", i,
3955 readl(c->vaddr + SA5_DOORBELL));
3956 #endif /* CCISS_DEBUG */
3957 #ifdef CCISS_DEBUG
3958 print_cfg_table(c->cfgtable);
3959 #endif /* CCISS_DEBUG */
3961 if (!(readl(&(c->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3962 printk(KERN_WARNING "cciss: unable to get board into"
3963 " simple mode\n");
3964 err = -ENODEV;
3965 goto err_out_free_res;
3967 return 0;
3969 err_out_free_res:
3971 * Deliberately omit pci_disable_device(): it does something nasty to
3972 * Smart Array controllers that pci_enable_device does not undo
3974 pci_release_regions(pdev);
3975 return err;
3978 /* Function to find the first free pointer into our hba[] array
3979 * Returns -1 if no free entries are left.
3981 static int alloc_cciss_hba(void)
3983 int i;
3985 for (i = 0; i < MAX_CTLR; i++) {
3986 if (!hba[i]) {
3987 ctlr_info_t *p;
3989 p = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
3990 if (!p)
3991 goto Enomem;
3992 hba[i] = p;
3993 return i;
3996 printk(KERN_WARNING "cciss: This driver supports a maximum"
3997 " of %d controllers.\n", MAX_CTLR);
3998 return -1;
3999 Enomem:
4000 printk(KERN_ERR "cciss: out of memory.\n");
4001 return -1;
4004 static void free_hba(int n)
4006 ctlr_info_t *h = hba[n];
4007 int i;
4009 hba[n] = NULL;
4010 for (i = 0; i < h->highest_lun + 1; i++)
4011 if (h->gendisk[i] != NULL)
4012 put_disk(h->gendisk[i]);
4013 kfree(h);
4016 /* Send a message CDB to the firmware. */
4017 static __devinit int cciss_message(struct pci_dev *pdev, unsigned char opcode, unsigned char type)
4019 typedef struct {
4020 CommandListHeader_struct CommandHeader;
4021 RequestBlock_struct Request;
4022 ErrDescriptor_struct ErrorDescriptor;
4023 } Command;
4024 static const size_t cmd_sz = sizeof(Command) + sizeof(ErrorInfo_struct);
4025 Command *cmd;
4026 dma_addr_t paddr64;
4027 uint32_t paddr32, tag;
4028 void __iomem *vaddr;
4029 int i, err;
4031 vaddr = ioremap_nocache(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
4032 if (vaddr == NULL)
4033 return -ENOMEM;
4035 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
4036 CCISS commands, so they must be allocated from the lower 4GiB of
4037 memory. */
4038 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4039 if (err) {
4040 iounmap(vaddr);
4041 return -ENOMEM;
4044 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
4045 if (cmd == NULL) {
4046 iounmap(vaddr);
4047 return -ENOMEM;
4050 /* This must fit, because of the 32-bit consistent DMA mask. Also,
4051 although there's no guarantee, we assume that the address is at
4052 least 4-byte aligned (most likely, it's page-aligned). */
4053 paddr32 = paddr64;
4055 cmd->CommandHeader.ReplyQueue = 0;
4056 cmd->CommandHeader.SGList = 0;
4057 cmd->CommandHeader.SGTotal = 0;
4058 cmd->CommandHeader.Tag.lower = paddr32;
4059 cmd->CommandHeader.Tag.upper = 0;
4060 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
4062 cmd->Request.CDBLen = 16;
4063 cmd->Request.Type.Type = TYPE_MSG;
4064 cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
4065 cmd->Request.Type.Direction = XFER_NONE;
4066 cmd->Request.Timeout = 0; /* Don't time out */
4067 cmd->Request.CDB[0] = opcode;
4068 cmd->Request.CDB[1] = type;
4069 memset(&cmd->Request.CDB[2], 0, 14); /* the rest of the CDB is reserved */
4071 cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(Command);
4072 cmd->ErrorDescriptor.Addr.upper = 0;
4073 cmd->ErrorDescriptor.Len = sizeof(ErrorInfo_struct);
4075 writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
4077 for (i = 0; i < 10; i++) {
4078 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
4079 if ((tag & ~3) == paddr32)
4080 break;
4081 schedule_timeout_uninterruptible(HZ);
4084 iounmap(vaddr);
4086 /* we leak the DMA buffer here ... no choice since the controller could
4087 still complete the command. */
4088 if (i == 10) {
4089 printk(KERN_ERR "cciss: controller message %02x:%02x timed out\n",
4090 opcode, type);
4091 return -ETIMEDOUT;
4094 pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
4096 if (tag & 2) {
4097 printk(KERN_ERR "cciss: controller message %02x:%02x failed\n",
4098 opcode, type);
4099 return -EIO;
4102 printk(KERN_INFO "cciss: controller message %02x:%02x succeeded\n",
4103 opcode, type);
4104 return 0;
4107 #define cciss_soft_reset_controller(p) cciss_message(p, 1, 0)
4108 #define cciss_noop(p) cciss_message(p, 3, 0)
4110 static __devinit int cciss_reset_msi(struct pci_dev *pdev)
4112 /* the #defines are stolen from drivers/pci/msi.h. */
4113 #define msi_control_reg(base) (base + PCI_MSI_FLAGS)
4114 #define PCI_MSIX_FLAGS_ENABLE (1 << 15)
4116 int pos;
4117 u16 control = 0;
4119 pos = pci_find_capability(pdev, PCI_CAP_ID_MSI);
4120 if (pos) {
4121 pci_read_config_word(pdev, msi_control_reg(pos), &control);
4122 if (control & PCI_MSI_FLAGS_ENABLE) {
4123 printk(KERN_INFO "cciss: resetting MSI\n");
4124 pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSI_FLAGS_ENABLE);
4128 pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
4129 if (pos) {
4130 pci_read_config_word(pdev, msi_control_reg(pos), &control);
4131 if (control & PCI_MSIX_FLAGS_ENABLE) {
4132 printk(KERN_INFO "cciss: resetting MSI-X\n");
4133 pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSIX_FLAGS_ENABLE);
4137 return 0;
4140 /* This does a hard reset of the controller using PCI power management
4141 * states. */
4142 static __devinit int cciss_hard_reset_controller(struct pci_dev *pdev)
4144 u16 pmcsr, saved_config_space[32];
4145 int i, pos;
4147 printk(KERN_INFO "cciss: using PCI PM to reset controller\n");
4149 /* This is very nearly the same thing as
4151 pci_save_state(pci_dev);
4152 pci_set_power_state(pci_dev, PCI_D3hot);
4153 pci_set_power_state(pci_dev, PCI_D0);
4154 pci_restore_state(pci_dev);
4156 but we can't use these nice canned kernel routines on
4157 kexec, because they also check the MSI/MSI-X state in PCI
4158 configuration space and do the wrong thing when it is
4159 set/cleared. Also, the pci_save/restore_state functions
4160 violate the ordering requirements for restoring the
4161 configuration space from the CCISS document (see the
4162 comment below). So we roll our own .... */
4164 for (i = 0; i < 32; i++)
4165 pci_read_config_word(pdev, 2*i, &saved_config_space[i]);
4167 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
4168 if (pos == 0) {
4169 printk(KERN_ERR "cciss_reset_controller: PCI PM not supported\n");
4170 return -ENODEV;
4173 /* Quoting from the Open CISS Specification: "The Power
4174 * Management Control/Status Register (CSR) controls the power
4175 * state of the device. The normal operating state is D0,
4176 * CSR=00h. The software off state is D3, CSR=03h. To reset
4177 * the controller, place the interface device in D3 then to
4178 * D0, this causes a secondary PCI reset which will reset the
4179 * controller." */
4181 /* enter the D3hot power management state */
4182 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
4183 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4184 pmcsr |= PCI_D3hot;
4185 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4187 schedule_timeout_uninterruptible(HZ >> 1);
4189 /* enter the D0 power management state */
4190 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4191 pmcsr |= PCI_D0;
4192 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4194 schedule_timeout_uninterruptible(HZ >> 1);
4196 /* Restore the PCI configuration space. The Open CISS
4197 * Specification says, "Restore the PCI Configuration
4198 * Registers, offsets 00h through 60h. It is important to
4199 * restore the command register, 16-bits at offset 04h,
4200 * last. Do not restore the configuration status register,
4201 * 16-bits at offset 06h." Note that the offset is 2*i. */
4202 for (i = 0; i < 32; i++) {
4203 if (i == 2 || i == 3)
4204 continue;
4205 pci_write_config_word(pdev, 2*i, saved_config_space[i]);
4207 wmb();
4208 pci_write_config_word(pdev, 4, saved_config_space[2]);
4210 return 0;
4214 * This is it. Find all the controllers and register them. I really hate
4215 * stealing all these major device numbers.
4216 * returns the number of block devices registered.
4218 static int __devinit cciss_init_one(struct pci_dev *pdev,
4219 const struct pci_device_id *ent)
4221 int i;
4222 int j = 0;
4223 int rc;
4224 int dac, return_code;
4225 InquiryData_struct *inq_buff;
4227 if (reset_devices) {
4228 /* Reset the controller with a PCI power-cycle */
4229 if (cciss_hard_reset_controller(pdev) || cciss_reset_msi(pdev))
4230 return -ENODEV;
4232 /* Now try to get the controller to respond to a no-op. Some
4233 devices (notably the HP Smart Array 5i Controller) need
4234 up to 30 seconds to respond. */
4235 for (i=0; i<30; i++) {
4236 if (cciss_noop(pdev) == 0)
4237 break;
4239 schedule_timeout_uninterruptible(HZ);
4241 if (i == 30) {
4242 printk(KERN_ERR "cciss: controller seems dead\n");
4243 return -EBUSY;
4247 i = alloc_cciss_hba();
4248 if (i < 0)
4249 return -1;
4251 hba[i]->busy_initializing = 1;
4252 INIT_HLIST_HEAD(&hba[i]->cmpQ);
4253 INIT_HLIST_HEAD(&hba[i]->reqQ);
4254 mutex_init(&hba[i]->busy_shutting_down);
4256 if (cciss_pci_init(hba[i], pdev) != 0)
4257 goto clean0;
4259 sprintf(hba[i]->devname, "cciss%d", i);
4260 hba[i]->ctlr = i;
4261 hba[i]->pdev = pdev;
4263 init_completion(&hba[i]->scan_wait);
4265 if (cciss_create_hba_sysfs_entry(hba[i]))
4266 goto clean0;
4268 /* configure PCI DMA stuff */
4269 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)))
4270 dac = 1;
4271 else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))
4272 dac = 0;
4273 else {
4274 printk(KERN_ERR "cciss: no suitable DMA available\n");
4275 goto clean1;
4279 * register with the major number, or get a dynamic major number
4280 * by passing 0 as argument. This is done for greater than
4281 * 8 controller support.
4283 if (i < MAX_CTLR_ORIG)
4284 hba[i]->major = COMPAQ_CISS_MAJOR + i;
4285 rc = register_blkdev(hba[i]->major, hba[i]->devname);
4286 if (rc == -EBUSY || rc == -EINVAL) {
4287 printk(KERN_ERR
4288 "cciss: Unable to get major number %d for %s "
4289 "on hba %d\n", hba[i]->major, hba[i]->devname, i);
4290 goto clean1;
4291 } else {
4292 if (i >= MAX_CTLR_ORIG)
4293 hba[i]->major = rc;
4296 /* make sure the board interrupts are off */
4297 hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_OFF);
4298 if (request_irq(hba[i]->intr[SIMPLE_MODE_INT], do_cciss_intr,
4299 IRQF_DISABLED | IRQF_SHARED, hba[i]->devname, hba[i])) {
4300 printk(KERN_ERR "cciss: Unable to get irq %d for %s\n",
4301 hba[i]->intr[SIMPLE_MODE_INT], hba[i]->devname);
4302 goto clean2;
4305 printk(KERN_INFO "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
4306 hba[i]->devname, pdev->device, pci_name(pdev),
4307 hba[i]->intr[SIMPLE_MODE_INT], dac ? "" : " not");
4309 hba[i]->cmd_pool_bits =
4310 kmalloc(DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG)
4311 * sizeof(unsigned long), GFP_KERNEL);
4312 hba[i]->cmd_pool = (CommandList_struct *)
4313 pci_alloc_consistent(hba[i]->pdev,
4314 hba[i]->nr_cmds * sizeof(CommandList_struct),
4315 &(hba[i]->cmd_pool_dhandle));
4316 hba[i]->errinfo_pool = (ErrorInfo_struct *)
4317 pci_alloc_consistent(hba[i]->pdev,
4318 hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
4319 &(hba[i]->errinfo_pool_dhandle));
4320 if ((hba[i]->cmd_pool_bits == NULL)
4321 || (hba[i]->cmd_pool == NULL)
4322 || (hba[i]->errinfo_pool == NULL)) {
4323 printk(KERN_ERR "cciss: out of memory");
4324 goto clean4;
4326 spin_lock_init(&hba[i]->lock);
4328 /* Initialize the pdev driver private data.
4329 have it point to hba[i]. */
4330 pci_set_drvdata(pdev, hba[i]);
4331 /* command and error info recs zeroed out before
4332 they are used */
4333 memset(hba[i]->cmd_pool_bits, 0,
4334 DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG)
4335 * sizeof(unsigned long));
4337 hba[i]->num_luns = 0;
4338 hba[i]->highest_lun = -1;
4339 for (j = 0; j < CISS_MAX_LUN; j++) {
4340 hba[i]->drv[j] = NULL;
4341 hba[i]->gendisk[j] = NULL;
4344 cciss_scsi_setup(i);
4346 /* Turn the interrupts on so we can service requests */
4347 hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_ON);
4349 /* Get the firmware version */
4350 inq_buff = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
4351 if (inq_buff == NULL) {
4352 printk(KERN_ERR "cciss: out of memory\n");
4353 goto clean4;
4356 return_code = sendcmd_withirq(CISS_INQUIRY, i, inq_buff,
4357 sizeof(InquiryData_struct), 0, CTLR_LUNID, TYPE_CMD);
4358 if (return_code == IO_OK) {
4359 hba[i]->firm_ver[0] = inq_buff->data_byte[32];
4360 hba[i]->firm_ver[1] = inq_buff->data_byte[33];
4361 hba[i]->firm_ver[2] = inq_buff->data_byte[34];
4362 hba[i]->firm_ver[3] = inq_buff->data_byte[35];
4363 } else { /* send command failed */
4364 printk(KERN_WARNING "cciss: unable to determine firmware"
4365 " version of controller\n");
4367 kfree(inq_buff);
4369 cciss_procinit(i);
4371 hba[i]->cciss_max_sectors = 2048;
4373 rebuild_lun_table(hba[i], 1, 0);
4374 hba[i]->busy_initializing = 0;
4375 return 1;
4377 clean4:
4378 kfree(hba[i]->cmd_pool_bits);
4379 if (hba[i]->cmd_pool)
4380 pci_free_consistent(hba[i]->pdev,
4381 hba[i]->nr_cmds * sizeof(CommandList_struct),
4382 hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
4383 if (hba[i]->errinfo_pool)
4384 pci_free_consistent(hba[i]->pdev,
4385 hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
4386 hba[i]->errinfo_pool,
4387 hba[i]->errinfo_pool_dhandle);
4388 free_irq(hba[i]->intr[SIMPLE_MODE_INT], hba[i]);
4389 clean2:
4390 unregister_blkdev(hba[i]->major, hba[i]->devname);
4391 clean1:
4392 cciss_destroy_hba_sysfs_entry(hba[i]);
4393 clean0:
4394 hba[i]->busy_initializing = 0;
4397 * Deliberately omit pci_disable_device(): it does something nasty to
4398 * Smart Array controllers that pci_enable_device does not undo
4400 pci_release_regions(pdev);
4401 pci_set_drvdata(pdev, NULL);
4402 free_hba(i);
4403 return -1;
4406 static void cciss_shutdown(struct pci_dev *pdev)
4408 ctlr_info_t *tmp_ptr;
4409 int i;
4410 char flush_buf[4];
4411 int return_code;
4413 tmp_ptr = pci_get_drvdata(pdev);
4414 if (tmp_ptr == NULL)
4415 return;
4416 i = tmp_ptr->ctlr;
4417 if (hba[i] == NULL)
4418 return;
4420 /* Turn board interrupts off and send the flush cache command */
4421 /* sendcmd will turn off interrupt, and send the flush...
4422 * To write all data in the battery backed cache to disks */
4423 memset(flush_buf, 0, 4);
4424 return_code = sendcmd(CCISS_CACHE_FLUSH, i, flush_buf, 4, 0,
4425 CTLR_LUNID, TYPE_CMD);
4426 if (return_code == IO_OK) {
4427 printk(KERN_INFO "Completed flushing cache on controller %d\n", i);
4428 } else {
4429 printk(KERN_WARNING "Error flushing cache on controller %d\n", i);
4431 free_irq(hba[i]->intr[2], hba[i]);
4434 static void __devexit cciss_remove_one(struct pci_dev *pdev)
4436 ctlr_info_t *tmp_ptr;
4437 int i, j;
4439 if (pci_get_drvdata(pdev) == NULL) {
4440 printk(KERN_ERR "cciss: Unable to remove device \n");
4441 return;
4444 tmp_ptr = pci_get_drvdata(pdev);
4445 i = tmp_ptr->ctlr;
4446 if (hba[i] == NULL) {
4447 printk(KERN_ERR "cciss: device appears to "
4448 "already be removed \n");
4449 return;
4452 mutex_lock(&hba[i]->busy_shutting_down);
4454 remove_from_scan_list(hba[i]);
4455 remove_proc_entry(hba[i]->devname, proc_cciss);
4456 unregister_blkdev(hba[i]->major, hba[i]->devname);
4458 /* remove it from the disk list */
4459 for (j = 0; j < CISS_MAX_LUN; j++) {
4460 struct gendisk *disk = hba[i]->gendisk[j];
4461 if (disk) {
4462 struct request_queue *q = disk->queue;
4464 if (disk->flags & GENHD_FL_UP) {
4465 cciss_destroy_ld_sysfs_entry(hba[i], j, 1);
4466 del_gendisk(disk);
4468 if (q)
4469 blk_cleanup_queue(q);
4473 #ifdef CONFIG_CISS_SCSI_TAPE
4474 cciss_unregister_scsi(i); /* unhook from SCSI subsystem */
4475 #endif
4477 cciss_shutdown(pdev);
4479 #ifdef CONFIG_PCI_MSI
4480 if (hba[i]->msix_vector)
4481 pci_disable_msix(hba[i]->pdev);
4482 else if (hba[i]->msi_vector)
4483 pci_disable_msi(hba[i]->pdev);
4484 #endif /* CONFIG_PCI_MSI */
4486 iounmap(hba[i]->vaddr);
4488 pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(CommandList_struct),
4489 hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
4490 pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
4491 hba[i]->errinfo_pool, hba[i]->errinfo_pool_dhandle);
4492 kfree(hba[i]->cmd_pool_bits);
4494 * Deliberately omit pci_disable_device(): it does something nasty to
4495 * Smart Array controllers that pci_enable_device does not undo
4497 pci_release_regions(pdev);
4498 pci_set_drvdata(pdev, NULL);
4499 cciss_destroy_hba_sysfs_entry(hba[i]);
4500 mutex_unlock(&hba[i]->busy_shutting_down);
4501 free_hba(i);
4504 static struct pci_driver cciss_pci_driver = {
4505 .name = "cciss",
4506 .probe = cciss_init_one,
4507 .remove = __devexit_p(cciss_remove_one),
4508 .id_table = cciss_pci_device_id, /* id_table */
4509 .shutdown = cciss_shutdown,
4513 * This is it. Register the PCI driver information for the cards we control
4514 * the OS will call our registered routines when it finds one of our cards.
4516 static int __init cciss_init(void)
4518 int err;
4521 * The hardware requires that commands are aligned on a 64-bit
4522 * boundary. Given that we use pci_alloc_consistent() to allocate an
4523 * array of them, the size must be a multiple of 8 bytes.
4525 BUILD_BUG_ON(sizeof(CommandList_struct) % 8);
4527 printk(KERN_INFO DRIVER_NAME "\n");
4529 err = bus_register(&cciss_bus_type);
4530 if (err)
4531 return err;
4533 /* Start the scan thread */
4534 cciss_scan_thread = kthread_run(scan_thread, NULL, "cciss_scan");
4535 if (IS_ERR(cciss_scan_thread)) {
4536 err = PTR_ERR(cciss_scan_thread);
4537 goto err_bus_unregister;
4540 /* Register for our PCI devices */
4541 err = pci_register_driver(&cciss_pci_driver);
4542 if (err)
4543 goto err_thread_stop;
4545 return err;
4547 err_thread_stop:
4548 kthread_stop(cciss_scan_thread);
4549 err_bus_unregister:
4550 bus_unregister(&cciss_bus_type);
4552 return err;
4555 static void __exit cciss_cleanup(void)
4557 int i;
4559 pci_unregister_driver(&cciss_pci_driver);
4560 /* double check that all controller entrys have been removed */
4561 for (i = 0; i < MAX_CTLR; i++) {
4562 if (hba[i] != NULL) {
4563 printk(KERN_WARNING "cciss: had to remove"
4564 " controller %d\n", i);
4565 cciss_remove_one(hba[i]->pdev);
4568 kthread_stop(cciss_scan_thread);
4569 remove_proc_entry("driver/cciss", NULL);
4570 bus_unregister(&cciss_bus_type);
4573 static void fail_all_cmds(unsigned long ctlr)
4575 /* If we get here, the board is apparently dead. */
4576 ctlr_info_t *h = hba[ctlr];
4577 CommandList_struct *c;
4578 unsigned long flags;
4580 printk(KERN_WARNING "cciss%d: controller not responding.\n", h->ctlr);
4581 h->alive = 0; /* the controller apparently died... */
4583 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
4585 pci_disable_device(h->pdev); /* Make sure it is really dead. */
4587 /* move everything off the request queue onto the completed queue */
4588 while (!hlist_empty(&h->reqQ)) {
4589 c = hlist_entry(h->reqQ.first, CommandList_struct, list);
4590 removeQ(c);
4591 h->Qdepth--;
4592 addQ(&h->cmpQ, c);
4595 /* Now, fail everything on the completed queue with a HW error */
4596 while (!hlist_empty(&h->cmpQ)) {
4597 c = hlist_entry(h->cmpQ.first, CommandList_struct, list);
4598 removeQ(c);
4599 if (c->cmd_type != CMD_MSG_STALE)
4600 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
4601 if (c->cmd_type == CMD_RWREQ) {
4602 complete_command(h, c, 0);
4603 } else if (c->cmd_type == CMD_IOCTL_PEND)
4604 complete(c->waiting);
4605 #ifdef CONFIG_CISS_SCSI_TAPE
4606 else if (c->cmd_type == CMD_SCSI)
4607 complete_scsi_command(c, 0, 0);
4608 #endif
4610 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
4611 return;
4614 module_init(cciss_init);
4615 module_exit(cciss_cleanup);