KVM: x86 emulator: Only allow VMCALL/VMMCALL trapped by #UD
[linux-2.6/linux-2.6-openrd.git] / arch / x86 / kvm / x86.c
blob8a90403272e2e826211e182e438cfa7b7e20e830
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
8 * Authors:
9 * Avi Kivity <avi@qumranet.com>
10 * Yaniv Kamay <yaniv@qumranet.com>
12 * This work is licensed under the terms of the GNU GPL, version 2. See
13 * the COPYING file in the top-level directory.
17 #include <linux/kvm_host.h>
18 #include "segment_descriptor.h"
19 #include "irq.h"
20 #include "mmu.h"
22 #include <linux/kvm.h>
23 #include <linux/fs.h>
24 #include <linux/vmalloc.h>
25 #include <linux/module.h>
26 #include <linux/mman.h>
27 #include <linux/highmem.h>
29 #include <asm/uaccess.h>
30 #include <asm/msr.h>
32 #define MAX_IO_MSRS 256
33 #define CR0_RESERVED_BITS \
34 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
35 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
36 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
37 #define CR4_RESERVED_BITS \
38 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
39 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
40 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
41 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
43 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
44 #define EFER_RESERVED_BITS 0xfffffffffffff2fe
46 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
47 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
49 struct kvm_x86_ops *kvm_x86_ops;
51 struct kvm_stats_debugfs_item debugfs_entries[] = {
52 { "pf_fixed", VCPU_STAT(pf_fixed) },
53 { "pf_guest", VCPU_STAT(pf_guest) },
54 { "tlb_flush", VCPU_STAT(tlb_flush) },
55 { "invlpg", VCPU_STAT(invlpg) },
56 { "exits", VCPU_STAT(exits) },
57 { "io_exits", VCPU_STAT(io_exits) },
58 { "mmio_exits", VCPU_STAT(mmio_exits) },
59 { "signal_exits", VCPU_STAT(signal_exits) },
60 { "irq_window", VCPU_STAT(irq_window_exits) },
61 { "halt_exits", VCPU_STAT(halt_exits) },
62 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
63 { "request_irq", VCPU_STAT(request_irq_exits) },
64 { "irq_exits", VCPU_STAT(irq_exits) },
65 { "host_state_reload", VCPU_STAT(host_state_reload) },
66 { "efer_reload", VCPU_STAT(efer_reload) },
67 { "fpu_reload", VCPU_STAT(fpu_reload) },
68 { "insn_emulation", VCPU_STAT(insn_emulation) },
69 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
70 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
71 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
72 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
73 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
74 { "mmu_flooded", VM_STAT(mmu_flooded) },
75 { "mmu_recycled", VM_STAT(mmu_recycled) },
76 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
77 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
78 { NULL }
82 unsigned long segment_base(u16 selector)
84 struct descriptor_table gdt;
85 struct segment_descriptor *d;
86 unsigned long table_base;
87 unsigned long v;
89 if (selector == 0)
90 return 0;
92 asm("sgdt %0" : "=m"(gdt));
93 table_base = gdt.base;
95 if (selector & 4) { /* from ldt */
96 u16 ldt_selector;
98 asm("sldt %0" : "=g"(ldt_selector));
99 table_base = segment_base(ldt_selector);
101 d = (struct segment_descriptor *)(table_base + (selector & ~7));
102 v = d->base_low | ((unsigned long)d->base_mid << 16) |
103 ((unsigned long)d->base_high << 24);
104 #ifdef CONFIG_X86_64
105 if (d->system == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
106 v |= ((unsigned long) \
107 ((struct segment_descriptor_64 *)d)->base_higher) << 32;
108 #endif
109 return v;
111 EXPORT_SYMBOL_GPL(segment_base);
113 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
115 if (irqchip_in_kernel(vcpu->kvm))
116 return vcpu->arch.apic_base;
117 else
118 return vcpu->arch.apic_base;
120 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
122 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
124 /* TODO: reserve bits check */
125 if (irqchip_in_kernel(vcpu->kvm))
126 kvm_lapic_set_base(vcpu, data);
127 else
128 vcpu->arch.apic_base = data;
130 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
132 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
134 WARN_ON(vcpu->arch.exception.pending);
135 vcpu->arch.exception.pending = true;
136 vcpu->arch.exception.has_error_code = false;
137 vcpu->arch.exception.nr = nr;
139 EXPORT_SYMBOL_GPL(kvm_queue_exception);
141 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
142 u32 error_code)
144 ++vcpu->stat.pf_guest;
145 if (vcpu->arch.exception.pending && vcpu->arch.exception.nr == PF_VECTOR) {
146 printk(KERN_DEBUG "kvm: inject_page_fault:"
147 " double fault 0x%lx\n", addr);
148 vcpu->arch.exception.nr = DF_VECTOR;
149 vcpu->arch.exception.error_code = 0;
150 return;
152 vcpu->arch.cr2 = addr;
153 kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
156 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
158 WARN_ON(vcpu->arch.exception.pending);
159 vcpu->arch.exception.pending = true;
160 vcpu->arch.exception.has_error_code = true;
161 vcpu->arch.exception.nr = nr;
162 vcpu->arch.exception.error_code = error_code;
164 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
166 static void __queue_exception(struct kvm_vcpu *vcpu)
168 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
169 vcpu->arch.exception.has_error_code,
170 vcpu->arch.exception.error_code);
174 * Load the pae pdptrs. Return true is they are all valid.
176 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
178 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
179 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
180 int i;
181 int ret;
182 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
184 down_read(&current->mm->mmap_sem);
185 ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
186 offset * sizeof(u64), sizeof(pdpte));
187 if (ret < 0) {
188 ret = 0;
189 goto out;
191 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
192 if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
193 ret = 0;
194 goto out;
197 ret = 1;
199 memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
200 out:
201 up_read(&current->mm->mmap_sem);
203 return ret;
206 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
208 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
209 bool changed = true;
210 int r;
212 if (is_long_mode(vcpu) || !is_pae(vcpu))
213 return false;
215 down_read(&current->mm->mmap_sem);
216 r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
217 if (r < 0)
218 goto out;
219 changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
220 out:
221 up_read(&current->mm->mmap_sem);
223 return changed;
226 void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
228 if (cr0 & CR0_RESERVED_BITS) {
229 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
230 cr0, vcpu->arch.cr0);
231 kvm_inject_gp(vcpu, 0);
232 return;
235 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
236 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
237 kvm_inject_gp(vcpu, 0);
238 return;
241 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
242 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
243 "and a clear PE flag\n");
244 kvm_inject_gp(vcpu, 0);
245 return;
248 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
249 #ifdef CONFIG_X86_64
250 if ((vcpu->arch.shadow_efer & EFER_LME)) {
251 int cs_db, cs_l;
253 if (!is_pae(vcpu)) {
254 printk(KERN_DEBUG "set_cr0: #GP, start paging "
255 "in long mode while PAE is disabled\n");
256 kvm_inject_gp(vcpu, 0);
257 return;
259 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
260 if (cs_l) {
261 printk(KERN_DEBUG "set_cr0: #GP, start paging "
262 "in long mode while CS.L == 1\n");
263 kvm_inject_gp(vcpu, 0);
264 return;
267 } else
268 #endif
269 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
270 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
271 "reserved bits\n");
272 kvm_inject_gp(vcpu, 0);
273 return;
278 kvm_x86_ops->set_cr0(vcpu, cr0);
279 vcpu->arch.cr0 = cr0;
281 kvm_mmu_reset_context(vcpu);
282 return;
284 EXPORT_SYMBOL_GPL(set_cr0);
286 void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
288 set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
290 EXPORT_SYMBOL_GPL(lmsw);
292 void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
294 if (cr4 & CR4_RESERVED_BITS) {
295 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
296 kvm_inject_gp(vcpu, 0);
297 return;
300 if (is_long_mode(vcpu)) {
301 if (!(cr4 & X86_CR4_PAE)) {
302 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
303 "in long mode\n");
304 kvm_inject_gp(vcpu, 0);
305 return;
307 } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
308 && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
309 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
310 kvm_inject_gp(vcpu, 0);
311 return;
314 if (cr4 & X86_CR4_VMXE) {
315 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
316 kvm_inject_gp(vcpu, 0);
317 return;
319 kvm_x86_ops->set_cr4(vcpu, cr4);
320 vcpu->arch.cr4 = cr4;
321 kvm_mmu_reset_context(vcpu);
323 EXPORT_SYMBOL_GPL(set_cr4);
325 void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
327 if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
328 kvm_mmu_flush_tlb(vcpu);
329 return;
332 if (is_long_mode(vcpu)) {
333 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
334 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
335 kvm_inject_gp(vcpu, 0);
336 return;
338 } else {
339 if (is_pae(vcpu)) {
340 if (cr3 & CR3_PAE_RESERVED_BITS) {
341 printk(KERN_DEBUG
342 "set_cr3: #GP, reserved bits\n");
343 kvm_inject_gp(vcpu, 0);
344 return;
346 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
347 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
348 "reserved bits\n");
349 kvm_inject_gp(vcpu, 0);
350 return;
354 * We don't check reserved bits in nonpae mode, because
355 * this isn't enforced, and VMware depends on this.
359 down_read(&current->mm->mmap_sem);
361 * Does the new cr3 value map to physical memory? (Note, we
362 * catch an invalid cr3 even in real-mode, because it would
363 * cause trouble later on when we turn on paging anyway.)
365 * A real CPU would silently accept an invalid cr3 and would
366 * attempt to use it - with largely undefined (and often hard
367 * to debug) behavior on the guest side.
369 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
370 kvm_inject_gp(vcpu, 0);
371 else {
372 vcpu->arch.cr3 = cr3;
373 vcpu->arch.mmu.new_cr3(vcpu);
375 up_read(&current->mm->mmap_sem);
377 EXPORT_SYMBOL_GPL(set_cr3);
379 void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
381 if (cr8 & CR8_RESERVED_BITS) {
382 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
383 kvm_inject_gp(vcpu, 0);
384 return;
386 if (irqchip_in_kernel(vcpu->kvm))
387 kvm_lapic_set_tpr(vcpu, cr8);
388 else
389 vcpu->arch.cr8 = cr8;
391 EXPORT_SYMBOL_GPL(set_cr8);
393 unsigned long get_cr8(struct kvm_vcpu *vcpu)
395 if (irqchip_in_kernel(vcpu->kvm))
396 return kvm_lapic_get_cr8(vcpu);
397 else
398 return vcpu->arch.cr8;
400 EXPORT_SYMBOL_GPL(get_cr8);
403 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
404 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
406 * This list is modified at module load time to reflect the
407 * capabilities of the host cpu.
409 static u32 msrs_to_save[] = {
410 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
411 MSR_K6_STAR,
412 #ifdef CONFIG_X86_64
413 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
414 #endif
415 MSR_IA32_TIME_STAMP_COUNTER,
418 static unsigned num_msrs_to_save;
420 static u32 emulated_msrs[] = {
421 MSR_IA32_MISC_ENABLE,
424 #ifdef CONFIG_X86_64
426 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
428 if (efer & EFER_RESERVED_BITS) {
429 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
430 efer);
431 kvm_inject_gp(vcpu, 0);
432 return;
435 if (is_paging(vcpu)
436 && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
437 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
438 kvm_inject_gp(vcpu, 0);
439 return;
442 kvm_x86_ops->set_efer(vcpu, efer);
444 efer &= ~EFER_LMA;
445 efer |= vcpu->arch.shadow_efer & EFER_LMA;
447 vcpu->arch.shadow_efer = efer;
450 #endif
453 * Writes msr value into into the appropriate "register".
454 * Returns 0 on success, non-0 otherwise.
455 * Assumes vcpu_load() was already called.
457 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
459 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
463 * Adapt set_msr() to msr_io()'s calling convention
465 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
467 return kvm_set_msr(vcpu, index, *data);
471 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
473 switch (msr) {
474 #ifdef CONFIG_X86_64
475 case MSR_EFER:
476 set_efer(vcpu, data);
477 break;
478 #endif
479 case MSR_IA32_MC0_STATUS:
480 pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
481 __FUNCTION__, data);
482 break;
483 case MSR_IA32_MCG_STATUS:
484 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
485 __FUNCTION__, data);
486 break;
487 case MSR_IA32_UCODE_REV:
488 case MSR_IA32_UCODE_WRITE:
489 case 0x200 ... 0x2ff: /* MTRRs */
490 break;
491 case MSR_IA32_APICBASE:
492 kvm_set_apic_base(vcpu, data);
493 break;
494 case MSR_IA32_MISC_ENABLE:
495 vcpu->arch.ia32_misc_enable_msr = data;
496 break;
497 default:
498 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
499 return 1;
501 return 0;
503 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
507 * Reads an msr value (of 'msr_index') into 'pdata'.
508 * Returns 0 on success, non-0 otherwise.
509 * Assumes vcpu_load() was already called.
511 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
513 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
516 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
518 u64 data;
520 switch (msr) {
521 case 0xc0010010: /* SYSCFG */
522 case 0xc0010015: /* HWCR */
523 case MSR_IA32_PLATFORM_ID:
524 case MSR_IA32_P5_MC_ADDR:
525 case MSR_IA32_P5_MC_TYPE:
526 case MSR_IA32_MC0_CTL:
527 case MSR_IA32_MCG_STATUS:
528 case MSR_IA32_MCG_CAP:
529 case MSR_IA32_MC0_MISC:
530 case MSR_IA32_MC0_MISC+4:
531 case MSR_IA32_MC0_MISC+8:
532 case MSR_IA32_MC0_MISC+12:
533 case MSR_IA32_MC0_MISC+16:
534 case MSR_IA32_UCODE_REV:
535 case MSR_IA32_PERF_STATUS:
536 case MSR_IA32_EBL_CR_POWERON:
537 /* MTRR registers */
538 case 0xfe:
539 case 0x200 ... 0x2ff:
540 data = 0;
541 break;
542 case 0xcd: /* fsb frequency */
543 data = 3;
544 break;
545 case MSR_IA32_APICBASE:
546 data = kvm_get_apic_base(vcpu);
547 break;
548 case MSR_IA32_MISC_ENABLE:
549 data = vcpu->arch.ia32_misc_enable_msr;
550 break;
551 #ifdef CONFIG_X86_64
552 case MSR_EFER:
553 data = vcpu->arch.shadow_efer;
554 break;
555 #endif
556 default:
557 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
558 return 1;
560 *pdata = data;
561 return 0;
563 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
566 * Read or write a bunch of msrs. All parameters are kernel addresses.
568 * @return number of msrs set successfully.
570 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
571 struct kvm_msr_entry *entries,
572 int (*do_msr)(struct kvm_vcpu *vcpu,
573 unsigned index, u64 *data))
575 int i;
577 vcpu_load(vcpu);
579 for (i = 0; i < msrs->nmsrs; ++i)
580 if (do_msr(vcpu, entries[i].index, &entries[i].data))
581 break;
583 vcpu_put(vcpu);
585 return i;
589 * Read or write a bunch of msrs. Parameters are user addresses.
591 * @return number of msrs set successfully.
593 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
594 int (*do_msr)(struct kvm_vcpu *vcpu,
595 unsigned index, u64 *data),
596 int writeback)
598 struct kvm_msrs msrs;
599 struct kvm_msr_entry *entries;
600 int r, n;
601 unsigned size;
603 r = -EFAULT;
604 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
605 goto out;
607 r = -E2BIG;
608 if (msrs.nmsrs >= MAX_IO_MSRS)
609 goto out;
611 r = -ENOMEM;
612 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
613 entries = vmalloc(size);
614 if (!entries)
615 goto out;
617 r = -EFAULT;
618 if (copy_from_user(entries, user_msrs->entries, size))
619 goto out_free;
621 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
622 if (r < 0)
623 goto out_free;
625 r = -EFAULT;
626 if (writeback && copy_to_user(user_msrs->entries, entries, size))
627 goto out_free;
629 r = n;
631 out_free:
632 vfree(entries);
633 out:
634 return r;
638 * Make sure that a cpu that is being hot-unplugged does not have any vcpus
639 * cached on it.
641 void decache_vcpus_on_cpu(int cpu)
643 struct kvm *vm;
644 struct kvm_vcpu *vcpu;
645 int i;
647 spin_lock(&kvm_lock);
648 list_for_each_entry(vm, &vm_list, vm_list)
649 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
650 vcpu = vm->vcpus[i];
651 if (!vcpu)
652 continue;
654 * If the vcpu is locked, then it is running on some
655 * other cpu and therefore it is not cached on the
656 * cpu in question.
658 * If it's not locked, check the last cpu it executed
659 * on.
661 if (mutex_trylock(&vcpu->mutex)) {
662 if (vcpu->cpu == cpu) {
663 kvm_x86_ops->vcpu_decache(vcpu);
664 vcpu->cpu = -1;
666 mutex_unlock(&vcpu->mutex);
669 spin_unlock(&kvm_lock);
672 int kvm_dev_ioctl_check_extension(long ext)
674 int r;
676 switch (ext) {
677 case KVM_CAP_IRQCHIP:
678 case KVM_CAP_HLT:
679 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
680 case KVM_CAP_USER_MEMORY:
681 case KVM_CAP_SET_TSS_ADDR:
682 case KVM_CAP_EXT_CPUID:
683 r = 1;
684 break;
685 case KVM_CAP_VAPIC:
686 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
687 break;
688 default:
689 r = 0;
690 break;
692 return r;
696 long kvm_arch_dev_ioctl(struct file *filp,
697 unsigned int ioctl, unsigned long arg)
699 void __user *argp = (void __user *)arg;
700 long r;
702 switch (ioctl) {
703 case KVM_GET_MSR_INDEX_LIST: {
704 struct kvm_msr_list __user *user_msr_list = argp;
705 struct kvm_msr_list msr_list;
706 unsigned n;
708 r = -EFAULT;
709 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
710 goto out;
711 n = msr_list.nmsrs;
712 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
713 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
714 goto out;
715 r = -E2BIG;
716 if (n < num_msrs_to_save)
717 goto out;
718 r = -EFAULT;
719 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
720 num_msrs_to_save * sizeof(u32)))
721 goto out;
722 if (copy_to_user(user_msr_list->indices
723 + num_msrs_to_save * sizeof(u32),
724 &emulated_msrs,
725 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
726 goto out;
727 r = 0;
728 break;
730 default:
731 r = -EINVAL;
733 out:
734 return r;
737 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
739 kvm_x86_ops->vcpu_load(vcpu, cpu);
742 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
744 kvm_x86_ops->vcpu_put(vcpu);
745 kvm_put_guest_fpu(vcpu);
748 static int is_efer_nx(void)
750 u64 efer;
752 rdmsrl(MSR_EFER, efer);
753 return efer & EFER_NX;
756 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
758 int i;
759 struct kvm_cpuid_entry2 *e, *entry;
761 entry = NULL;
762 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
763 e = &vcpu->arch.cpuid_entries[i];
764 if (e->function == 0x80000001) {
765 entry = e;
766 break;
769 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
770 entry->edx &= ~(1 << 20);
771 printk(KERN_INFO "kvm: guest NX capability removed\n");
775 /* when an old userspace process fills a new kernel module */
776 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
777 struct kvm_cpuid *cpuid,
778 struct kvm_cpuid_entry __user *entries)
780 int r, i;
781 struct kvm_cpuid_entry *cpuid_entries;
783 r = -E2BIG;
784 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
785 goto out;
786 r = -ENOMEM;
787 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
788 if (!cpuid_entries)
789 goto out;
790 r = -EFAULT;
791 if (copy_from_user(cpuid_entries, entries,
792 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
793 goto out_free;
794 for (i = 0; i < cpuid->nent; i++) {
795 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
796 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
797 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
798 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
799 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
800 vcpu->arch.cpuid_entries[i].index = 0;
801 vcpu->arch.cpuid_entries[i].flags = 0;
802 vcpu->arch.cpuid_entries[i].padding[0] = 0;
803 vcpu->arch.cpuid_entries[i].padding[1] = 0;
804 vcpu->arch.cpuid_entries[i].padding[2] = 0;
806 vcpu->arch.cpuid_nent = cpuid->nent;
807 cpuid_fix_nx_cap(vcpu);
808 r = 0;
810 out_free:
811 vfree(cpuid_entries);
812 out:
813 return r;
816 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
817 struct kvm_cpuid2 *cpuid,
818 struct kvm_cpuid_entry2 __user *entries)
820 int r;
822 r = -E2BIG;
823 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
824 goto out;
825 r = -EFAULT;
826 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
827 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
828 goto out;
829 vcpu->arch.cpuid_nent = cpuid->nent;
830 return 0;
832 out:
833 return r;
836 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
837 struct kvm_cpuid2 *cpuid,
838 struct kvm_cpuid_entry2 __user *entries)
840 int r;
842 r = -E2BIG;
843 if (cpuid->nent < vcpu->arch.cpuid_nent)
844 goto out;
845 r = -EFAULT;
846 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
847 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
848 goto out;
849 return 0;
851 out:
852 cpuid->nent = vcpu->arch.cpuid_nent;
853 return r;
856 static inline u32 bit(int bitno)
858 return 1 << (bitno & 31);
861 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
862 u32 index)
864 entry->function = function;
865 entry->index = index;
866 cpuid_count(entry->function, entry->index,
867 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
868 entry->flags = 0;
871 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
872 u32 index, int *nent, int maxnent)
874 const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) |
875 bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
876 bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
877 bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
878 bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
879 bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) |
880 bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
881 bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) |
882 bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) |
883 bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP);
884 const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) |
885 bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
886 bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
887 bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
888 bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
889 bit(X86_FEATURE_PGE) |
890 bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
891 bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) |
892 bit(X86_FEATURE_SYSCALL) |
893 (bit(X86_FEATURE_NX) && is_efer_nx()) |
894 #ifdef CONFIG_X86_64
895 bit(X86_FEATURE_LM) |
896 #endif
897 bit(X86_FEATURE_MMXEXT) |
898 bit(X86_FEATURE_3DNOWEXT) |
899 bit(X86_FEATURE_3DNOW);
900 const u32 kvm_supported_word3_x86_features =
901 bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16);
902 const u32 kvm_supported_word6_x86_features =
903 bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY);
905 /* all func 2 cpuid_count() should be called on the same cpu */
906 get_cpu();
907 do_cpuid_1_ent(entry, function, index);
908 ++*nent;
910 switch (function) {
911 case 0:
912 entry->eax = min(entry->eax, (u32)0xb);
913 break;
914 case 1:
915 entry->edx &= kvm_supported_word0_x86_features;
916 entry->ecx &= kvm_supported_word3_x86_features;
917 break;
918 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
919 * may return different values. This forces us to get_cpu() before
920 * issuing the first command, and also to emulate this annoying behavior
921 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
922 case 2: {
923 int t, times = entry->eax & 0xff;
925 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
926 for (t = 1; t < times && *nent < maxnent; ++t) {
927 do_cpuid_1_ent(&entry[t], function, 0);
928 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
929 ++*nent;
931 break;
933 /* function 4 and 0xb have additional index. */
934 case 4: {
935 int index, cache_type;
937 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
938 /* read more entries until cache_type is zero */
939 for (index = 1; *nent < maxnent; ++index) {
940 cache_type = entry[index - 1].eax & 0x1f;
941 if (!cache_type)
942 break;
943 do_cpuid_1_ent(&entry[index], function, index);
944 entry[index].flags |=
945 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
946 ++*nent;
948 break;
950 case 0xb: {
951 int index, level_type;
953 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
954 /* read more entries until level_type is zero */
955 for (index = 1; *nent < maxnent; ++index) {
956 level_type = entry[index - 1].ecx & 0xff;
957 if (!level_type)
958 break;
959 do_cpuid_1_ent(&entry[index], function, index);
960 entry[index].flags |=
961 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
962 ++*nent;
964 break;
966 case 0x80000000:
967 entry->eax = min(entry->eax, 0x8000001a);
968 break;
969 case 0x80000001:
970 entry->edx &= kvm_supported_word1_x86_features;
971 entry->ecx &= kvm_supported_word6_x86_features;
972 break;
974 put_cpu();
977 static int kvm_vm_ioctl_get_supported_cpuid(struct kvm *kvm,
978 struct kvm_cpuid2 *cpuid,
979 struct kvm_cpuid_entry2 __user *entries)
981 struct kvm_cpuid_entry2 *cpuid_entries;
982 int limit, nent = 0, r = -E2BIG;
983 u32 func;
985 if (cpuid->nent < 1)
986 goto out;
987 r = -ENOMEM;
988 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
989 if (!cpuid_entries)
990 goto out;
992 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
993 limit = cpuid_entries[0].eax;
994 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
995 do_cpuid_ent(&cpuid_entries[nent], func, 0,
996 &nent, cpuid->nent);
997 r = -E2BIG;
998 if (nent >= cpuid->nent)
999 goto out_free;
1001 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1002 limit = cpuid_entries[nent - 1].eax;
1003 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1004 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1005 &nent, cpuid->nent);
1006 r = -EFAULT;
1007 if (copy_to_user(entries, cpuid_entries,
1008 nent * sizeof(struct kvm_cpuid_entry2)))
1009 goto out_free;
1010 cpuid->nent = nent;
1011 r = 0;
1013 out_free:
1014 vfree(cpuid_entries);
1015 out:
1016 return r;
1019 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1020 struct kvm_lapic_state *s)
1022 vcpu_load(vcpu);
1023 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1024 vcpu_put(vcpu);
1026 return 0;
1029 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1030 struct kvm_lapic_state *s)
1032 vcpu_load(vcpu);
1033 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1034 kvm_apic_post_state_restore(vcpu);
1035 vcpu_put(vcpu);
1037 return 0;
1040 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1041 struct kvm_interrupt *irq)
1043 if (irq->irq < 0 || irq->irq >= 256)
1044 return -EINVAL;
1045 if (irqchip_in_kernel(vcpu->kvm))
1046 return -ENXIO;
1047 vcpu_load(vcpu);
1049 set_bit(irq->irq, vcpu->arch.irq_pending);
1050 set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
1052 vcpu_put(vcpu);
1054 return 0;
1057 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
1058 struct kvm_tpr_access_ctl *tac)
1060 if (tac->flags)
1061 return -EINVAL;
1062 vcpu->arch.tpr_access_reporting = !!tac->enabled;
1063 return 0;
1066 long kvm_arch_vcpu_ioctl(struct file *filp,
1067 unsigned int ioctl, unsigned long arg)
1069 struct kvm_vcpu *vcpu = filp->private_data;
1070 void __user *argp = (void __user *)arg;
1071 int r;
1073 switch (ioctl) {
1074 case KVM_GET_LAPIC: {
1075 struct kvm_lapic_state lapic;
1077 memset(&lapic, 0, sizeof lapic);
1078 r = kvm_vcpu_ioctl_get_lapic(vcpu, &lapic);
1079 if (r)
1080 goto out;
1081 r = -EFAULT;
1082 if (copy_to_user(argp, &lapic, sizeof lapic))
1083 goto out;
1084 r = 0;
1085 break;
1087 case KVM_SET_LAPIC: {
1088 struct kvm_lapic_state lapic;
1090 r = -EFAULT;
1091 if (copy_from_user(&lapic, argp, sizeof lapic))
1092 goto out;
1093 r = kvm_vcpu_ioctl_set_lapic(vcpu, &lapic);;
1094 if (r)
1095 goto out;
1096 r = 0;
1097 break;
1099 case KVM_INTERRUPT: {
1100 struct kvm_interrupt irq;
1102 r = -EFAULT;
1103 if (copy_from_user(&irq, argp, sizeof irq))
1104 goto out;
1105 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1106 if (r)
1107 goto out;
1108 r = 0;
1109 break;
1111 case KVM_SET_CPUID: {
1112 struct kvm_cpuid __user *cpuid_arg = argp;
1113 struct kvm_cpuid cpuid;
1115 r = -EFAULT;
1116 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1117 goto out;
1118 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
1119 if (r)
1120 goto out;
1121 break;
1123 case KVM_SET_CPUID2: {
1124 struct kvm_cpuid2 __user *cpuid_arg = argp;
1125 struct kvm_cpuid2 cpuid;
1127 r = -EFAULT;
1128 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1129 goto out;
1130 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
1131 cpuid_arg->entries);
1132 if (r)
1133 goto out;
1134 break;
1136 case KVM_GET_CPUID2: {
1137 struct kvm_cpuid2 __user *cpuid_arg = argp;
1138 struct kvm_cpuid2 cpuid;
1140 r = -EFAULT;
1141 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1142 goto out;
1143 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
1144 cpuid_arg->entries);
1145 if (r)
1146 goto out;
1147 r = -EFAULT;
1148 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1149 goto out;
1150 r = 0;
1151 break;
1153 case KVM_GET_MSRS:
1154 r = msr_io(vcpu, argp, kvm_get_msr, 1);
1155 break;
1156 case KVM_SET_MSRS:
1157 r = msr_io(vcpu, argp, do_set_msr, 0);
1158 break;
1159 case KVM_TPR_ACCESS_REPORTING: {
1160 struct kvm_tpr_access_ctl tac;
1162 r = -EFAULT;
1163 if (copy_from_user(&tac, argp, sizeof tac))
1164 goto out;
1165 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
1166 if (r)
1167 goto out;
1168 r = -EFAULT;
1169 if (copy_to_user(argp, &tac, sizeof tac))
1170 goto out;
1171 r = 0;
1172 break;
1174 case KVM_SET_VAPIC_ADDR: {
1175 struct kvm_vapic_addr va;
1177 r = -EINVAL;
1178 if (!irqchip_in_kernel(vcpu->kvm))
1179 goto out;
1180 r = -EFAULT;
1181 if (copy_from_user(&va, argp, sizeof va))
1182 goto out;
1183 r = 0;
1184 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
1185 break;
1187 default:
1188 r = -EINVAL;
1190 out:
1191 return r;
1194 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
1196 int ret;
1198 if (addr > (unsigned int)(-3 * PAGE_SIZE))
1199 return -1;
1200 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
1201 return ret;
1204 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
1205 u32 kvm_nr_mmu_pages)
1207 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
1208 return -EINVAL;
1210 down_write(&current->mm->mmap_sem);
1212 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
1213 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1215 up_write(&current->mm->mmap_sem);
1216 return 0;
1219 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
1221 return kvm->arch.n_alloc_mmu_pages;
1224 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1226 int i;
1227 struct kvm_mem_alias *alias;
1229 for (i = 0; i < kvm->arch.naliases; ++i) {
1230 alias = &kvm->arch.aliases[i];
1231 if (gfn >= alias->base_gfn
1232 && gfn < alias->base_gfn + alias->npages)
1233 return alias->target_gfn + gfn - alias->base_gfn;
1235 return gfn;
1239 * Set a new alias region. Aliases map a portion of physical memory into
1240 * another portion. This is useful for memory windows, for example the PC
1241 * VGA region.
1243 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
1244 struct kvm_memory_alias *alias)
1246 int r, n;
1247 struct kvm_mem_alias *p;
1249 r = -EINVAL;
1250 /* General sanity checks */
1251 if (alias->memory_size & (PAGE_SIZE - 1))
1252 goto out;
1253 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
1254 goto out;
1255 if (alias->slot >= KVM_ALIAS_SLOTS)
1256 goto out;
1257 if (alias->guest_phys_addr + alias->memory_size
1258 < alias->guest_phys_addr)
1259 goto out;
1260 if (alias->target_phys_addr + alias->memory_size
1261 < alias->target_phys_addr)
1262 goto out;
1264 down_write(&current->mm->mmap_sem);
1266 p = &kvm->arch.aliases[alias->slot];
1267 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
1268 p->npages = alias->memory_size >> PAGE_SHIFT;
1269 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
1271 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
1272 if (kvm->arch.aliases[n - 1].npages)
1273 break;
1274 kvm->arch.naliases = n;
1276 kvm_mmu_zap_all(kvm);
1278 up_write(&current->mm->mmap_sem);
1280 return 0;
1282 out:
1283 return r;
1286 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1288 int r;
1290 r = 0;
1291 switch (chip->chip_id) {
1292 case KVM_IRQCHIP_PIC_MASTER:
1293 memcpy(&chip->chip.pic,
1294 &pic_irqchip(kvm)->pics[0],
1295 sizeof(struct kvm_pic_state));
1296 break;
1297 case KVM_IRQCHIP_PIC_SLAVE:
1298 memcpy(&chip->chip.pic,
1299 &pic_irqchip(kvm)->pics[1],
1300 sizeof(struct kvm_pic_state));
1301 break;
1302 case KVM_IRQCHIP_IOAPIC:
1303 memcpy(&chip->chip.ioapic,
1304 ioapic_irqchip(kvm),
1305 sizeof(struct kvm_ioapic_state));
1306 break;
1307 default:
1308 r = -EINVAL;
1309 break;
1311 return r;
1314 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1316 int r;
1318 r = 0;
1319 switch (chip->chip_id) {
1320 case KVM_IRQCHIP_PIC_MASTER:
1321 memcpy(&pic_irqchip(kvm)->pics[0],
1322 &chip->chip.pic,
1323 sizeof(struct kvm_pic_state));
1324 break;
1325 case KVM_IRQCHIP_PIC_SLAVE:
1326 memcpy(&pic_irqchip(kvm)->pics[1],
1327 &chip->chip.pic,
1328 sizeof(struct kvm_pic_state));
1329 break;
1330 case KVM_IRQCHIP_IOAPIC:
1331 memcpy(ioapic_irqchip(kvm),
1332 &chip->chip.ioapic,
1333 sizeof(struct kvm_ioapic_state));
1334 break;
1335 default:
1336 r = -EINVAL;
1337 break;
1339 kvm_pic_update_irq(pic_irqchip(kvm));
1340 return r;
1344 * Get (and clear) the dirty memory log for a memory slot.
1346 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1347 struct kvm_dirty_log *log)
1349 int r;
1350 int n;
1351 struct kvm_memory_slot *memslot;
1352 int is_dirty = 0;
1354 down_write(&current->mm->mmap_sem);
1356 r = kvm_get_dirty_log(kvm, log, &is_dirty);
1357 if (r)
1358 goto out;
1360 /* If nothing is dirty, don't bother messing with page tables. */
1361 if (is_dirty) {
1362 kvm_mmu_slot_remove_write_access(kvm, log->slot);
1363 kvm_flush_remote_tlbs(kvm);
1364 memslot = &kvm->memslots[log->slot];
1365 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1366 memset(memslot->dirty_bitmap, 0, n);
1368 r = 0;
1369 out:
1370 up_write(&current->mm->mmap_sem);
1371 return r;
1374 long kvm_arch_vm_ioctl(struct file *filp,
1375 unsigned int ioctl, unsigned long arg)
1377 struct kvm *kvm = filp->private_data;
1378 void __user *argp = (void __user *)arg;
1379 int r = -EINVAL;
1381 switch (ioctl) {
1382 case KVM_SET_TSS_ADDR:
1383 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
1384 if (r < 0)
1385 goto out;
1386 break;
1387 case KVM_SET_MEMORY_REGION: {
1388 struct kvm_memory_region kvm_mem;
1389 struct kvm_userspace_memory_region kvm_userspace_mem;
1391 r = -EFAULT;
1392 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
1393 goto out;
1394 kvm_userspace_mem.slot = kvm_mem.slot;
1395 kvm_userspace_mem.flags = kvm_mem.flags;
1396 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
1397 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
1398 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
1399 if (r)
1400 goto out;
1401 break;
1403 case KVM_SET_NR_MMU_PAGES:
1404 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
1405 if (r)
1406 goto out;
1407 break;
1408 case KVM_GET_NR_MMU_PAGES:
1409 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
1410 break;
1411 case KVM_SET_MEMORY_ALIAS: {
1412 struct kvm_memory_alias alias;
1414 r = -EFAULT;
1415 if (copy_from_user(&alias, argp, sizeof alias))
1416 goto out;
1417 r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
1418 if (r)
1419 goto out;
1420 break;
1422 case KVM_CREATE_IRQCHIP:
1423 r = -ENOMEM;
1424 kvm->arch.vpic = kvm_create_pic(kvm);
1425 if (kvm->arch.vpic) {
1426 r = kvm_ioapic_init(kvm);
1427 if (r) {
1428 kfree(kvm->arch.vpic);
1429 kvm->arch.vpic = NULL;
1430 goto out;
1432 } else
1433 goto out;
1434 break;
1435 case KVM_IRQ_LINE: {
1436 struct kvm_irq_level irq_event;
1438 r = -EFAULT;
1439 if (copy_from_user(&irq_event, argp, sizeof irq_event))
1440 goto out;
1441 if (irqchip_in_kernel(kvm)) {
1442 mutex_lock(&kvm->lock);
1443 if (irq_event.irq < 16)
1444 kvm_pic_set_irq(pic_irqchip(kvm),
1445 irq_event.irq,
1446 irq_event.level);
1447 kvm_ioapic_set_irq(kvm->arch.vioapic,
1448 irq_event.irq,
1449 irq_event.level);
1450 mutex_unlock(&kvm->lock);
1451 r = 0;
1453 break;
1455 case KVM_GET_IRQCHIP: {
1456 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1457 struct kvm_irqchip chip;
1459 r = -EFAULT;
1460 if (copy_from_user(&chip, argp, sizeof chip))
1461 goto out;
1462 r = -ENXIO;
1463 if (!irqchip_in_kernel(kvm))
1464 goto out;
1465 r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
1466 if (r)
1467 goto out;
1468 r = -EFAULT;
1469 if (copy_to_user(argp, &chip, sizeof chip))
1470 goto out;
1471 r = 0;
1472 break;
1474 case KVM_SET_IRQCHIP: {
1475 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1476 struct kvm_irqchip chip;
1478 r = -EFAULT;
1479 if (copy_from_user(&chip, argp, sizeof chip))
1480 goto out;
1481 r = -ENXIO;
1482 if (!irqchip_in_kernel(kvm))
1483 goto out;
1484 r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
1485 if (r)
1486 goto out;
1487 r = 0;
1488 break;
1490 case KVM_GET_SUPPORTED_CPUID: {
1491 struct kvm_cpuid2 __user *cpuid_arg = argp;
1492 struct kvm_cpuid2 cpuid;
1494 r = -EFAULT;
1495 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1496 goto out;
1497 r = kvm_vm_ioctl_get_supported_cpuid(kvm, &cpuid,
1498 cpuid_arg->entries);
1499 if (r)
1500 goto out;
1502 r = -EFAULT;
1503 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1504 goto out;
1505 r = 0;
1506 break;
1508 default:
1511 out:
1512 return r;
1515 static void kvm_init_msr_list(void)
1517 u32 dummy[2];
1518 unsigned i, j;
1520 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
1521 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
1522 continue;
1523 if (j < i)
1524 msrs_to_save[j] = msrs_to_save[i];
1525 j++;
1527 num_msrs_to_save = j;
1531 * Only apic need an MMIO device hook, so shortcut now..
1533 static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
1534 gpa_t addr)
1536 struct kvm_io_device *dev;
1538 if (vcpu->arch.apic) {
1539 dev = &vcpu->arch.apic->dev;
1540 if (dev->in_range(dev, addr))
1541 return dev;
1543 return NULL;
1547 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
1548 gpa_t addr)
1550 struct kvm_io_device *dev;
1552 dev = vcpu_find_pervcpu_dev(vcpu, addr);
1553 if (dev == NULL)
1554 dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
1555 return dev;
1558 int emulator_read_std(unsigned long addr,
1559 void *val,
1560 unsigned int bytes,
1561 struct kvm_vcpu *vcpu)
1563 void *data = val;
1564 int r = X86EMUL_CONTINUE;
1566 down_read(&current->mm->mmap_sem);
1567 while (bytes) {
1568 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1569 unsigned offset = addr & (PAGE_SIZE-1);
1570 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
1571 int ret;
1573 if (gpa == UNMAPPED_GVA) {
1574 r = X86EMUL_PROPAGATE_FAULT;
1575 goto out;
1577 ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
1578 if (ret < 0) {
1579 r = X86EMUL_UNHANDLEABLE;
1580 goto out;
1583 bytes -= tocopy;
1584 data += tocopy;
1585 addr += tocopy;
1587 out:
1588 up_read(&current->mm->mmap_sem);
1589 return r;
1591 EXPORT_SYMBOL_GPL(emulator_read_std);
1593 static int emulator_read_emulated(unsigned long addr,
1594 void *val,
1595 unsigned int bytes,
1596 struct kvm_vcpu *vcpu)
1598 struct kvm_io_device *mmio_dev;
1599 gpa_t gpa;
1601 if (vcpu->mmio_read_completed) {
1602 memcpy(val, vcpu->mmio_data, bytes);
1603 vcpu->mmio_read_completed = 0;
1604 return X86EMUL_CONTINUE;
1607 down_read(&current->mm->mmap_sem);
1608 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1609 up_read(&current->mm->mmap_sem);
1611 /* For APIC access vmexit */
1612 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
1613 goto mmio;
1615 if (emulator_read_std(addr, val, bytes, vcpu)
1616 == X86EMUL_CONTINUE)
1617 return X86EMUL_CONTINUE;
1618 if (gpa == UNMAPPED_GVA)
1619 return X86EMUL_PROPAGATE_FAULT;
1621 mmio:
1623 * Is this MMIO handled locally?
1625 mutex_lock(&vcpu->kvm->lock);
1626 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1627 if (mmio_dev) {
1628 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
1629 mutex_unlock(&vcpu->kvm->lock);
1630 return X86EMUL_CONTINUE;
1632 mutex_unlock(&vcpu->kvm->lock);
1634 vcpu->mmio_needed = 1;
1635 vcpu->mmio_phys_addr = gpa;
1636 vcpu->mmio_size = bytes;
1637 vcpu->mmio_is_write = 0;
1639 return X86EMUL_UNHANDLEABLE;
1642 static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1643 const void *val, int bytes)
1645 int ret;
1647 down_read(&current->mm->mmap_sem);
1648 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
1649 if (ret < 0) {
1650 up_read(&current->mm->mmap_sem);
1651 return 0;
1653 kvm_mmu_pte_write(vcpu, gpa, val, bytes);
1654 up_read(&current->mm->mmap_sem);
1655 return 1;
1658 static int emulator_write_emulated_onepage(unsigned long addr,
1659 const void *val,
1660 unsigned int bytes,
1661 struct kvm_vcpu *vcpu)
1663 struct kvm_io_device *mmio_dev;
1664 gpa_t gpa;
1666 down_read(&current->mm->mmap_sem);
1667 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1668 up_read(&current->mm->mmap_sem);
1670 if (gpa == UNMAPPED_GVA) {
1671 kvm_inject_page_fault(vcpu, addr, 2);
1672 return X86EMUL_PROPAGATE_FAULT;
1675 /* For APIC access vmexit */
1676 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
1677 goto mmio;
1679 if (emulator_write_phys(vcpu, gpa, val, bytes))
1680 return X86EMUL_CONTINUE;
1682 mmio:
1684 * Is this MMIO handled locally?
1686 mutex_lock(&vcpu->kvm->lock);
1687 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1688 if (mmio_dev) {
1689 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
1690 mutex_unlock(&vcpu->kvm->lock);
1691 return X86EMUL_CONTINUE;
1693 mutex_unlock(&vcpu->kvm->lock);
1695 vcpu->mmio_needed = 1;
1696 vcpu->mmio_phys_addr = gpa;
1697 vcpu->mmio_size = bytes;
1698 vcpu->mmio_is_write = 1;
1699 memcpy(vcpu->mmio_data, val, bytes);
1701 return X86EMUL_CONTINUE;
1704 int emulator_write_emulated(unsigned long addr,
1705 const void *val,
1706 unsigned int bytes,
1707 struct kvm_vcpu *vcpu)
1709 /* Crossing a page boundary? */
1710 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
1711 int rc, now;
1713 now = -addr & ~PAGE_MASK;
1714 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
1715 if (rc != X86EMUL_CONTINUE)
1716 return rc;
1717 addr += now;
1718 val += now;
1719 bytes -= now;
1721 return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
1723 EXPORT_SYMBOL_GPL(emulator_write_emulated);
1725 static int emulator_cmpxchg_emulated(unsigned long addr,
1726 const void *old,
1727 const void *new,
1728 unsigned int bytes,
1729 struct kvm_vcpu *vcpu)
1731 static int reported;
1733 if (!reported) {
1734 reported = 1;
1735 printk(KERN_WARNING "kvm: emulating exchange as write\n");
1737 #ifndef CONFIG_X86_64
1738 /* guests cmpxchg8b have to be emulated atomically */
1739 if (bytes == 8) {
1740 gpa_t gpa;
1741 struct page *page;
1742 char *addr;
1743 u64 val;
1745 down_read(&current->mm->mmap_sem);
1746 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1748 if (gpa == UNMAPPED_GVA ||
1749 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
1750 goto emul_write;
1752 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
1753 goto emul_write;
1755 val = *(u64 *)new;
1756 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1757 addr = kmap_atomic(page, KM_USER0);
1758 set_64bit((u64 *)(addr + offset_in_page(gpa)), val);
1759 kunmap_atomic(addr, KM_USER0);
1760 kvm_release_page_dirty(page);
1761 emul_write:
1762 up_read(&current->mm->mmap_sem);
1764 #endif
1766 return emulator_write_emulated(addr, new, bytes, vcpu);
1769 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
1771 return kvm_x86_ops->get_segment_base(vcpu, seg);
1774 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
1776 return X86EMUL_CONTINUE;
1779 int emulate_clts(struct kvm_vcpu *vcpu)
1781 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
1782 return X86EMUL_CONTINUE;
1785 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
1787 struct kvm_vcpu *vcpu = ctxt->vcpu;
1789 switch (dr) {
1790 case 0 ... 3:
1791 *dest = kvm_x86_ops->get_dr(vcpu, dr);
1792 return X86EMUL_CONTINUE;
1793 default:
1794 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __FUNCTION__, dr);
1795 return X86EMUL_UNHANDLEABLE;
1799 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
1801 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
1802 int exception;
1804 kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
1805 if (exception) {
1806 /* FIXME: better handling */
1807 return X86EMUL_UNHANDLEABLE;
1809 return X86EMUL_CONTINUE;
1812 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
1814 static int reported;
1815 u8 opcodes[4];
1816 unsigned long rip = vcpu->arch.rip;
1817 unsigned long rip_linear;
1819 rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
1821 if (reported)
1822 return;
1824 emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
1826 printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
1827 context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
1828 reported = 1;
1830 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
1832 struct x86_emulate_ops emulate_ops = {
1833 .read_std = emulator_read_std,
1834 .read_emulated = emulator_read_emulated,
1835 .write_emulated = emulator_write_emulated,
1836 .cmpxchg_emulated = emulator_cmpxchg_emulated,
1839 int emulate_instruction(struct kvm_vcpu *vcpu,
1840 struct kvm_run *run,
1841 unsigned long cr2,
1842 u16 error_code,
1843 int emulation_type)
1845 int r;
1846 struct decode_cache *c;
1848 vcpu->arch.mmio_fault_cr2 = cr2;
1849 kvm_x86_ops->cache_regs(vcpu);
1851 vcpu->mmio_is_write = 0;
1852 vcpu->arch.pio.string = 0;
1854 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
1855 int cs_db, cs_l;
1856 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
1858 vcpu->arch.emulate_ctxt.vcpu = vcpu;
1859 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
1860 vcpu->arch.emulate_ctxt.mode =
1861 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
1862 ? X86EMUL_MODE_REAL : cs_l
1863 ? X86EMUL_MODE_PROT64 : cs_db
1864 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
1866 if (vcpu->arch.emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
1867 vcpu->arch.emulate_ctxt.cs_base = 0;
1868 vcpu->arch.emulate_ctxt.ds_base = 0;
1869 vcpu->arch.emulate_ctxt.es_base = 0;
1870 vcpu->arch.emulate_ctxt.ss_base = 0;
1871 } else {
1872 vcpu->arch.emulate_ctxt.cs_base =
1873 get_segment_base(vcpu, VCPU_SREG_CS);
1874 vcpu->arch.emulate_ctxt.ds_base =
1875 get_segment_base(vcpu, VCPU_SREG_DS);
1876 vcpu->arch.emulate_ctxt.es_base =
1877 get_segment_base(vcpu, VCPU_SREG_ES);
1878 vcpu->arch.emulate_ctxt.ss_base =
1879 get_segment_base(vcpu, VCPU_SREG_SS);
1882 vcpu->arch.emulate_ctxt.gs_base =
1883 get_segment_base(vcpu, VCPU_SREG_GS);
1884 vcpu->arch.emulate_ctxt.fs_base =
1885 get_segment_base(vcpu, VCPU_SREG_FS);
1887 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
1889 /* Reject the instructions other than VMCALL/VMMCALL when
1890 * try to emulate invalid opcode */
1891 c = &vcpu->arch.emulate_ctxt.decode;
1892 if ((emulation_type & EMULTYPE_TRAP_UD) &&
1893 (!(c->twobyte && c->b == 0x01 &&
1894 (c->modrm_reg == 0 || c->modrm_reg == 3) &&
1895 c->modrm_mod == 3 && c->modrm_rm == 1)))
1896 return EMULATE_FAIL;
1898 ++vcpu->stat.insn_emulation;
1899 if (r) {
1900 ++vcpu->stat.insn_emulation_fail;
1901 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
1902 return EMULATE_DONE;
1903 return EMULATE_FAIL;
1907 r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
1909 if (vcpu->arch.pio.string)
1910 return EMULATE_DO_MMIO;
1912 if ((r || vcpu->mmio_is_write) && run) {
1913 run->exit_reason = KVM_EXIT_MMIO;
1914 run->mmio.phys_addr = vcpu->mmio_phys_addr;
1915 memcpy(run->mmio.data, vcpu->mmio_data, 8);
1916 run->mmio.len = vcpu->mmio_size;
1917 run->mmio.is_write = vcpu->mmio_is_write;
1920 if (r) {
1921 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
1922 return EMULATE_DONE;
1923 if (!vcpu->mmio_needed) {
1924 kvm_report_emulation_failure(vcpu, "mmio");
1925 return EMULATE_FAIL;
1927 return EMULATE_DO_MMIO;
1930 kvm_x86_ops->decache_regs(vcpu);
1931 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
1933 if (vcpu->mmio_is_write) {
1934 vcpu->mmio_needed = 0;
1935 return EMULATE_DO_MMIO;
1938 return EMULATE_DONE;
1940 EXPORT_SYMBOL_GPL(emulate_instruction);
1942 static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
1944 int i;
1946 for (i = 0; i < ARRAY_SIZE(vcpu->arch.pio.guest_pages); ++i)
1947 if (vcpu->arch.pio.guest_pages[i]) {
1948 kvm_release_page_dirty(vcpu->arch.pio.guest_pages[i]);
1949 vcpu->arch.pio.guest_pages[i] = NULL;
1953 static int pio_copy_data(struct kvm_vcpu *vcpu)
1955 void *p = vcpu->arch.pio_data;
1956 void *q;
1957 unsigned bytes;
1958 int nr_pages = vcpu->arch.pio.guest_pages[1] ? 2 : 1;
1960 q = vmap(vcpu->arch.pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
1961 PAGE_KERNEL);
1962 if (!q) {
1963 free_pio_guest_pages(vcpu);
1964 return -ENOMEM;
1966 q += vcpu->arch.pio.guest_page_offset;
1967 bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
1968 if (vcpu->arch.pio.in)
1969 memcpy(q, p, bytes);
1970 else
1971 memcpy(p, q, bytes);
1972 q -= vcpu->arch.pio.guest_page_offset;
1973 vunmap(q);
1974 free_pio_guest_pages(vcpu);
1975 return 0;
1978 int complete_pio(struct kvm_vcpu *vcpu)
1980 struct kvm_pio_request *io = &vcpu->arch.pio;
1981 long delta;
1982 int r;
1984 kvm_x86_ops->cache_regs(vcpu);
1986 if (!io->string) {
1987 if (io->in)
1988 memcpy(&vcpu->arch.regs[VCPU_REGS_RAX], vcpu->arch.pio_data,
1989 io->size);
1990 } else {
1991 if (io->in) {
1992 r = pio_copy_data(vcpu);
1993 if (r) {
1994 kvm_x86_ops->cache_regs(vcpu);
1995 return r;
1999 delta = 1;
2000 if (io->rep) {
2001 delta *= io->cur_count;
2003 * The size of the register should really depend on
2004 * current address size.
2006 vcpu->arch.regs[VCPU_REGS_RCX] -= delta;
2008 if (io->down)
2009 delta = -delta;
2010 delta *= io->size;
2011 if (io->in)
2012 vcpu->arch.regs[VCPU_REGS_RDI] += delta;
2013 else
2014 vcpu->arch.regs[VCPU_REGS_RSI] += delta;
2017 kvm_x86_ops->decache_regs(vcpu);
2019 io->count -= io->cur_count;
2020 io->cur_count = 0;
2022 return 0;
2025 static void kernel_pio(struct kvm_io_device *pio_dev,
2026 struct kvm_vcpu *vcpu,
2027 void *pd)
2029 /* TODO: String I/O for in kernel device */
2031 mutex_lock(&vcpu->kvm->lock);
2032 if (vcpu->arch.pio.in)
2033 kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
2034 vcpu->arch.pio.size,
2035 pd);
2036 else
2037 kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
2038 vcpu->arch.pio.size,
2039 pd);
2040 mutex_unlock(&vcpu->kvm->lock);
2043 static void pio_string_write(struct kvm_io_device *pio_dev,
2044 struct kvm_vcpu *vcpu)
2046 struct kvm_pio_request *io = &vcpu->arch.pio;
2047 void *pd = vcpu->arch.pio_data;
2048 int i;
2050 mutex_lock(&vcpu->kvm->lock);
2051 for (i = 0; i < io->cur_count; i++) {
2052 kvm_iodevice_write(pio_dev, io->port,
2053 io->size,
2054 pd);
2055 pd += io->size;
2057 mutex_unlock(&vcpu->kvm->lock);
2060 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
2061 gpa_t addr)
2063 return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
2066 int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2067 int size, unsigned port)
2069 struct kvm_io_device *pio_dev;
2071 vcpu->run->exit_reason = KVM_EXIT_IO;
2072 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2073 vcpu->run->io.size = vcpu->arch.pio.size = size;
2074 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2075 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
2076 vcpu->run->io.port = vcpu->arch.pio.port = port;
2077 vcpu->arch.pio.in = in;
2078 vcpu->arch.pio.string = 0;
2079 vcpu->arch.pio.down = 0;
2080 vcpu->arch.pio.guest_page_offset = 0;
2081 vcpu->arch.pio.rep = 0;
2083 kvm_x86_ops->cache_regs(vcpu);
2084 memcpy(vcpu->arch.pio_data, &vcpu->arch.regs[VCPU_REGS_RAX], 4);
2085 kvm_x86_ops->decache_regs(vcpu);
2087 kvm_x86_ops->skip_emulated_instruction(vcpu);
2089 pio_dev = vcpu_find_pio_dev(vcpu, port);
2090 if (pio_dev) {
2091 kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
2092 complete_pio(vcpu);
2093 return 1;
2095 return 0;
2097 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
2099 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2100 int size, unsigned long count, int down,
2101 gva_t address, int rep, unsigned port)
2103 unsigned now, in_page;
2104 int i, ret = 0;
2105 int nr_pages = 1;
2106 struct page *page;
2107 struct kvm_io_device *pio_dev;
2109 vcpu->run->exit_reason = KVM_EXIT_IO;
2110 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2111 vcpu->run->io.size = vcpu->arch.pio.size = size;
2112 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2113 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
2114 vcpu->run->io.port = vcpu->arch.pio.port = port;
2115 vcpu->arch.pio.in = in;
2116 vcpu->arch.pio.string = 1;
2117 vcpu->arch.pio.down = down;
2118 vcpu->arch.pio.guest_page_offset = offset_in_page(address);
2119 vcpu->arch.pio.rep = rep;
2121 if (!count) {
2122 kvm_x86_ops->skip_emulated_instruction(vcpu);
2123 return 1;
2126 if (!down)
2127 in_page = PAGE_SIZE - offset_in_page(address);
2128 else
2129 in_page = offset_in_page(address) + size;
2130 now = min(count, (unsigned long)in_page / size);
2131 if (!now) {
2133 * String I/O straddles page boundary. Pin two guest pages
2134 * so that we satisfy atomicity constraints. Do just one
2135 * transaction to avoid complexity.
2137 nr_pages = 2;
2138 now = 1;
2140 if (down) {
2142 * String I/O in reverse. Yuck. Kill the guest, fix later.
2144 pr_unimpl(vcpu, "guest string pio down\n");
2145 kvm_inject_gp(vcpu, 0);
2146 return 1;
2148 vcpu->run->io.count = now;
2149 vcpu->arch.pio.cur_count = now;
2151 if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
2152 kvm_x86_ops->skip_emulated_instruction(vcpu);
2154 for (i = 0; i < nr_pages; ++i) {
2155 down_read(&current->mm->mmap_sem);
2156 page = gva_to_page(vcpu, address + i * PAGE_SIZE);
2157 vcpu->arch.pio.guest_pages[i] = page;
2158 up_read(&current->mm->mmap_sem);
2159 if (!page) {
2160 kvm_inject_gp(vcpu, 0);
2161 free_pio_guest_pages(vcpu);
2162 return 1;
2166 pio_dev = vcpu_find_pio_dev(vcpu, port);
2167 if (!vcpu->arch.pio.in) {
2168 /* string PIO write */
2169 ret = pio_copy_data(vcpu);
2170 if (ret >= 0 && pio_dev) {
2171 pio_string_write(pio_dev, vcpu);
2172 complete_pio(vcpu);
2173 if (vcpu->arch.pio.count == 0)
2174 ret = 1;
2176 } else if (pio_dev)
2177 pr_unimpl(vcpu, "no string pio read support yet, "
2178 "port %x size %d count %ld\n",
2179 port, size, count);
2181 return ret;
2183 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
2185 int kvm_arch_init(void *opaque)
2187 int r;
2188 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
2190 r = kvm_mmu_module_init();
2191 if (r)
2192 goto out_fail;
2194 kvm_init_msr_list();
2196 if (kvm_x86_ops) {
2197 printk(KERN_ERR "kvm: already loaded the other module\n");
2198 r = -EEXIST;
2199 goto out;
2202 if (!ops->cpu_has_kvm_support()) {
2203 printk(KERN_ERR "kvm: no hardware support\n");
2204 r = -EOPNOTSUPP;
2205 goto out;
2207 if (ops->disabled_by_bios()) {
2208 printk(KERN_ERR "kvm: disabled by bios\n");
2209 r = -EOPNOTSUPP;
2210 goto out;
2213 kvm_x86_ops = ops;
2214 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
2215 return 0;
2217 out:
2218 kvm_mmu_module_exit();
2219 out_fail:
2220 return r;
2223 void kvm_arch_exit(void)
2225 kvm_x86_ops = NULL;
2226 kvm_mmu_module_exit();
2229 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
2231 ++vcpu->stat.halt_exits;
2232 if (irqchip_in_kernel(vcpu->kvm)) {
2233 vcpu->arch.mp_state = VCPU_MP_STATE_HALTED;
2234 kvm_vcpu_block(vcpu);
2235 if (vcpu->arch.mp_state != VCPU_MP_STATE_RUNNABLE)
2236 return -EINTR;
2237 return 1;
2238 } else {
2239 vcpu->run->exit_reason = KVM_EXIT_HLT;
2240 return 0;
2243 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
2245 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
2247 unsigned long nr, a0, a1, a2, a3, ret;
2249 kvm_x86_ops->cache_regs(vcpu);
2251 nr = vcpu->arch.regs[VCPU_REGS_RAX];
2252 a0 = vcpu->arch.regs[VCPU_REGS_RBX];
2253 a1 = vcpu->arch.regs[VCPU_REGS_RCX];
2254 a2 = vcpu->arch.regs[VCPU_REGS_RDX];
2255 a3 = vcpu->arch.regs[VCPU_REGS_RSI];
2257 if (!is_long_mode(vcpu)) {
2258 nr &= 0xFFFFFFFF;
2259 a0 &= 0xFFFFFFFF;
2260 a1 &= 0xFFFFFFFF;
2261 a2 &= 0xFFFFFFFF;
2262 a3 &= 0xFFFFFFFF;
2265 switch (nr) {
2266 case KVM_HC_VAPIC_POLL_IRQ:
2267 ret = 0;
2268 break;
2269 default:
2270 ret = -KVM_ENOSYS;
2271 break;
2273 vcpu->arch.regs[VCPU_REGS_RAX] = ret;
2274 kvm_x86_ops->decache_regs(vcpu);
2275 return 0;
2277 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
2279 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
2281 char instruction[3];
2282 int ret = 0;
2286 * Blow out the MMU to ensure that no other VCPU has an active mapping
2287 * to ensure that the updated hypercall appears atomically across all
2288 * VCPUs.
2290 kvm_mmu_zap_all(vcpu->kvm);
2292 kvm_x86_ops->cache_regs(vcpu);
2293 kvm_x86_ops->patch_hypercall(vcpu, instruction);
2294 if (emulator_write_emulated(vcpu->arch.rip, instruction, 3, vcpu)
2295 != X86EMUL_CONTINUE)
2296 ret = -EFAULT;
2298 return ret;
2301 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
2303 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
2306 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2308 struct descriptor_table dt = { limit, base };
2310 kvm_x86_ops->set_gdt(vcpu, &dt);
2313 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2315 struct descriptor_table dt = { limit, base };
2317 kvm_x86_ops->set_idt(vcpu, &dt);
2320 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
2321 unsigned long *rflags)
2323 lmsw(vcpu, msw);
2324 *rflags = kvm_x86_ops->get_rflags(vcpu);
2327 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
2329 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2330 switch (cr) {
2331 case 0:
2332 return vcpu->arch.cr0;
2333 case 2:
2334 return vcpu->arch.cr2;
2335 case 3:
2336 return vcpu->arch.cr3;
2337 case 4:
2338 return vcpu->arch.cr4;
2339 case 8:
2340 return get_cr8(vcpu);
2341 default:
2342 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
2343 return 0;
2347 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
2348 unsigned long *rflags)
2350 switch (cr) {
2351 case 0:
2352 set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
2353 *rflags = kvm_x86_ops->get_rflags(vcpu);
2354 break;
2355 case 2:
2356 vcpu->arch.cr2 = val;
2357 break;
2358 case 3:
2359 set_cr3(vcpu, val);
2360 break;
2361 case 4:
2362 set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
2363 break;
2364 case 8:
2365 set_cr8(vcpu, val & 0xfUL);
2366 break;
2367 default:
2368 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
2372 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
2374 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
2375 int j, nent = vcpu->arch.cpuid_nent;
2377 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
2378 /* when no next entry is found, the current entry[i] is reselected */
2379 for (j = i + 1; j == i; j = (j + 1) % nent) {
2380 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
2381 if (ej->function == e->function) {
2382 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2383 return j;
2386 return 0; /* silence gcc, even though control never reaches here */
2389 /* find an entry with matching function, matching index (if needed), and that
2390 * should be read next (if it's stateful) */
2391 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
2392 u32 function, u32 index)
2394 if (e->function != function)
2395 return 0;
2396 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
2397 return 0;
2398 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
2399 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
2400 return 0;
2401 return 1;
2404 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
2406 int i;
2407 u32 function, index;
2408 struct kvm_cpuid_entry2 *e, *best;
2410 kvm_x86_ops->cache_regs(vcpu);
2411 function = vcpu->arch.regs[VCPU_REGS_RAX];
2412 index = vcpu->arch.regs[VCPU_REGS_RCX];
2413 vcpu->arch.regs[VCPU_REGS_RAX] = 0;
2414 vcpu->arch.regs[VCPU_REGS_RBX] = 0;
2415 vcpu->arch.regs[VCPU_REGS_RCX] = 0;
2416 vcpu->arch.regs[VCPU_REGS_RDX] = 0;
2417 best = NULL;
2418 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
2419 e = &vcpu->arch.cpuid_entries[i];
2420 if (is_matching_cpuid_entry(e, function, index)) {
2421 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
2422 move_to_next_stateful_cpuid_entry(vcpu, i);
2423 best = e;
2424 break;
2427 * Both basic or both extended?
2429 if (((e->function ^ function) & 0x80000000) == 0)
2430 if (!best || e->function > best->function)
2431 best = e;
2433 if (best) {
2434 vcpu->arch.regs[VCPU_REGS_RAX] = best->eax;
2435 vcpu->arch.regs[VCPU_REGS_RBX] = best->ebx;
2436 vcpu->arch.regs[VCPU_REGS_RCX] = best->ecx;
2437 vcpu->arch.regs[VCPU_REGS_RDX] = best->edx;
2439 kvm_x86_ops->decache_regs(vcpu);
2440 kvm_x86_ops->skip_emulated_instruction(vcpu);
2442 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
2445 * Check if userspace requested an interrupt window, and that the
2446 * interrupt window is open.
2448 * No need to exit to userspace if we already have an interrupt queued.
2450 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
2451 struct kvm_run *kvm_run)
2453 return (!vcpu->arch.irq_summary &&
2454 kvm_run->request_interrupt_window &&
2455 vcpu->arch.interrupt_window_open &&
2456 (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
2459 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
2460 struct kvm_run *kvm_run)
2462 kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
2463 kvm_run->cr8 = get_cr8(vcpu);
2464 kvm_run->apic_base = kvm_get_apic_base(vcpu);
2465 if (irqchip_in_kernel(vcpu->kvm))
2466 kvm_run->ready_for_interrupt_injection = 1;
2467 else
2468 kvm_run->ready_for_interrupt_injection =
2469 (vcpu->arch.interrupt_window_open &&
2470 vcpu->arch.irq_summary == 0);
2473 static void vapic_enter(struct kvm_vcpu *vcpu)
2475 struct kvm_lapic *apic = vcpu->arch.apic;
2476 struct page *page;
2478 if (!apic || !apic->vapic_addr)
2479 return;
2481 down_read(&current->mm->mmap_sem);
2482 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
2483 vcpu->arch.apic->vapic_page = page;
2484 up_read(&current->mm->mmap_sem);
2487 static void vapic_exit(struct kvm_vcpu *vcpu)
2489 struct kvm_lapic *apic = vcpu->arch.apic;
2491 if (!apic || !apic->vapic_addr)
2492 return;
2494 kvm_release_page_dirty(apic->vapic_page);
2495 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
2498 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2500 int r;
2502 if (unlikely(vcpu->arch.mp_state == VCPU_MP_STATE_SIPI_RECEIVED)) {
2503 pr_debug("vcpu %d received sipi with vector # %x\n",
2504 vcpu->vcpu_id, vcpu->arch.sipi_vector);
2505 kvm_lapic_reset(vcpu);
2506 r = kvm_x86_ops->vcpu_reset(vcpu);
2507 if (r)
2508 return r;
2509 vcpu->arch.mp_state = VCPU_MP_STATE_RUNNABLE;
2512 vapic_enter(vcpu);
2514 preempted:
2515 if (vcpu->guest_debug.enabled)
2516 kvm_x86_ops->guest_debug_pre(vcpu);
2518 again:
2519 r = kvm_mmu_reload(vcpu);
2520 if (unlikely(r))
2521 goto out;
2523 if (vcpu->requests)
2524 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
2525 &vcpu->requests)) {
2526 kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
2527 r = 0;
2528 goto out;
2531 kvm_inject_pending_timer_irqs(vcpu);
2533 preempt_disable();
2535 kvm_x86_ops->prepare_guest_switch(vcpu);
2536 kvm_load_guest_fpu(vcpu);
2538 local_irq_disable();
2540 if (signal_pending(current)) {
2541 local_irq_enable();
2542 preempt_enable();
2543 r = -EINTR;
2544 kvm_run->exit_reason = KVM_EXIT_INTR;
2545 ++vcpu->stat.signal_exits;
2546 goto out;
2549 if (vcpu->arch.exception.pending)
2550 __queue_exception(vcpu);
2551 else if (irqchip_in_kernel(vcpu->kvm))
2552 kvm_x86_ops->inject_pending_irq(vcpu);
2553 else
2554 kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
2556 kvm_lapic_sync_to_vapic(vcpu);
2558 vcpu->guest_mode = 1;
2559 kvm_guest_enter();
2561 if (vcpu->requests)
2562 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
2563 kvm_x86_ops->tlb_flush(vcpu);
2565 kvm_x86_ops->run(vcpu, kvm_run);
2567 vcpu->guest_mode = 0;
2568 local_irq_enable();
2570 ++vcpu->stat.exits;
2573 * We must have an instruction between local_irq_enable() and
2574 * kvm_guest_exit(), so the timer interrupt isn't delayed by
2575 * the interrupt shadow. The stat.exits increment will do nicely.
2576 * But we need to prevent reordering, hence this barrier():
2578 barrier();
2580 kvm_guest_exit();
2582 preempt_enable();
2585 * Profile KVM exit RIPs:
2587 if (unlikely(prof_on == KVM_PROFILING)) {
2588 kvm_x86_ops->cache_regs(vcpu);
2589 profile_hit(KVM_PROFILING, (void *)vcpu->arch.rip);
2592 if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu))
2593 vcpu->arch.exception.pending = false;
2595 kvm_lapic_sync_from_vapic(vcpu);
2597 r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
2599 if (r > 0) {
2600 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
2601 r = -EINTR;
2602 kvm_run->exit_reason = KVM_EXIT_INTR;
2603 ++vcpu->stat.request_irq_exits;
2604 goto out;
2606 if (!need_resched())
2607 goto again;
2610 out:
2611 if (r > 0) {
2612 kvm_resched(vcpu);
2613 goto preempted;
2616 post_kvm_run_save(vcpu, kvm_run);
2618 vapic_exit(vcpu);
2620 return r;
2623 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2625 int r;
2626 sigset_t sigsaved;
2628 vcpu_load(vcpu);
2630 if (unlikely(vcpu->arch.mp_state == VCPU_MP_STATE_UNINITIALIZED)) {
2631 kvm_vcpu_block(vcpu);
2632 vcpu_put(vcpu);
2633 return -EAGAIN;
2636 if (vcpu->sigset_active)
2637 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
2639 /* re-sync apic's tpr */
2640 if (!irqchip_in_kernel(vcpu->kvm))
2641 set_cr8(vcpu, kvm_run->cr8);
2643 if (vcpu->arch.pio.cur_count) {
2644 r = complete_pio(vcpu);
2645 if (r)
2646 goto out;
2648 #if CONFIG_HAS_IOMEM
2649 if (vcpu->mmio_needed) {
2650 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
2651 vcpu->mmio_read_completed = 1;
2652 vcpu->mmio_needed = 0;
2653 r = emulate_instruction(vcpu, kvm_run,
2654 vcpu->arch.mmio_fault_cr2, 0,
2655 EMULTYPE_NO_DECODE);
2656 if (r == EMULATE_DO_MMIO) {
2658 * Read-modify-write. Back to userspace.
2660 r = 0;
2661 goto out;
2664 #endif
2665 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
2666 kvm_x86_ops->cache_regs(vcpu);
2667 vcpu->arch.regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
2668 kvm_x86_ops->decache_regs(vcpu);
2671 r = __vcpu_run(vcpu, kvm_run);
2673 out:
2674 if (vcpu->sigset_active)
2675 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
2677 vcpu_put(vcpu);
2678 return r;
2681 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
2683 vcpu_load(vcpu);
2685 kvm_x86_ops->cache_regs(vcpu);
2687 regs->rax = vcpu->arch.regs[VCPU_REGS_RAX];
2688 regs->rbx = vcpu->arch.regs[VCPU_REGS_RBX];
2689 regs->rcx = vcpu->arch.regs[VCPU_REGS_RCX];
2690 regs->rdx = vcpu->arch.regs[VCPU_REGS_RDX];
2691 regs->rsi = vcpu->arch.regs[VCPU_REGS_RSI];
2692 regs->rdi = vcpu->arch.regs[VCPU_REGS_RDI];
2693 regs->rsp = vcpu->arch.regs[VCPU_REGS_RSP];
2694 regs->rbp = vcpu->arch.regs[VCPU_REGS_RBP];
2695 #ifdef CONFIG_X86_64
2696 regs->r8 = vcpu->arch.regs[VCPU_REGS_R8];
2697 regs->r9 = vcpu->arch.regs[VCPU_REGS_R9];
2698 regs->r10 = vcpu->arch.regs[VCPU_REGS_R10];
2699 regs->r11 = vcpu->arch.regs[VCPU_REGS_R11];
2700 regs->r12 = vcpu->arch.regs[VCPU_REGS_R12];
2701 regs->r13 = vcpu->arch.regs[VCPU_REGS_R13];
2702 regs->r14 = vcpu->arch.regs[VCPU_REGS_R14];
2703 regs->r15 = vcpu->arch.regs[VCPU_REGS_R15];
2704 #endif
2706 regs->rip = vcpu->arch.rip;
2707 regs->rflags = kvm_x86_ops->get_rflags(vcpu);
2710 * Don't leak debug flags in case they were set for guest debugging
2712 if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
2713 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
2715 vcpu_put(vcpu);
2717 return 0;
2720 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
2722 vcpu_load(vcpu);
2724 vcpu->arch.regs[VCPU_REGS_RAX] = regs->rax;
2725 vcpu->arch.regs[VCPU_REGS_RBX] = regs->rbx;
2726 vcpu->arch.regs[VCPU_REGS_RCX] = regs->rcx;
2727 vcpu->arch.regs[VCPU_REGS_RDX] = regs->rdx;
2728 vcpu->arch.regs[VCPU_REGS_RSI] = regs->rsi;
2729 vcpu->arch.regs[VCPU_REGS_RDI] = regs->rdi;
2730 vcpu->arch.regs[VCPU_REGS_RSP] = regs->rsp;
2731 vcpu->arch.regs[VCPU_REGS_RBP] = regs->rbp;
2732 #ifdef CONFIG_X86_64
2733 vcpu->arch.regs[VCPU_REGS_R8] = regs->r8;
2734 vcpu->arch.regs[VCPU_REGS_R9] = regs->r9;
2735 vcpu->arch.regs[VCPU_REGS_R10] = regs->r10;
2736 vcpu->arch.regs[VCPU_REGS_R11] = regs->r11;
2737 vcpu->arch.regs[VCPU_REGS_R12] = regs->r12;
2738 vcpu->arch.regs[VCPU_REGS_R13] = regs->r13;
2739 vcpu->arch.regs[VCPU_REGS_R14] = regs->r14;
2740 vcpu->arch.regs[VCPU_REGS_R15] = regs->r15;
2741 #endif
2743 vcpu->arch.rip = regs->rip;
2744 kvm_x86_ops->set_rflags(vcpu, regs->rflags);
2746 kvm_x86_ops->decache_regs(vcpu);
2748 vcpu_put(vcpu);
2750 return 0;
2753 static void get_segment(struct kvm_vcpu *vcpu,
2754 struct kvm_segment *var, int seg)
2756 return kvm_x86_ops->get_segment(vcpu, var, seg);
2759 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
2761 struct kvm_segment cs;
2763 get_segment(vcpu, &cs, VCPU_SREG_CS);
2764 *db = cs.db;
2765 *l = cs.l;
2767 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
2769 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
2770 struct kvm_sregs *sregs)
2772 struct descriptor_table dt;
2773 int pending_vec;
2775 vcpu_load(vcpu);
2777 get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
2778 get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
2779 get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
2780 get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
2781 get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
2782 get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
2784 get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
2785 get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
2787 kvm_x86_ops->get_idt(vcpu, &dt);
2788 sregs->idt.limit = dt.limit;
2789 sregs->idt.base = dt.base;
2790 kvm_x86_ops->get_gdt(vcpu, &dt);
2791 sregs->gdt.limit = dt.limit;
2792 sregs->gdt.base = dt.base;
2794 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2795 sregs->cr0 = vcpu->arch.cr0;
2796 sregs->cr2 = vcpu->arch.cr2;
2797 sregs->cr3 = vcpu->arch.cr3;
2798 sregs->cr4 = vcpu->arch.cr4;
2799 sregs->cr8 = get_cr8(vcpu);
2800 sregs->efer = vcpu->arch.shadow_efer;
2801 sregs->apic_base = kvm_get_apic_base(vcpu);
2803 if (irqchip_in_kernel(vcpu->kvm)) {
2804 memset(sregs->interrupt_bitmap, 0,
2805 sizeof sregs->interrupt_bitmap);
2806 pending_vec = kvm_x86_ops->get_irq(vcpu);
2807 if (pending_vec >= 0)
2808 set_bit(pending_vec,
2809 (unsigned long *)sregs->interrupt_bitmap);
2810 } else
2811 memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending,
2812 sizeof sregs->interrupt_bitmap);
2814 vcpu_put(vcpu);
2816 return 0;
2819 static void set_segment(struct kvm_vcpu *vcpu,
2820 struct kvm_segment *var, int seg)
2822 return kvm_x86_ops->set_segment(vcpu, var, seg);
2825 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
2826 struct kvm_sregs *sregs)
2828 int mmu_reset_needed = 0;
2829 int i, pending_vec, max_bits;
2830 struct descriptor_table dt;
2832 vcpu_load(vcpu);
2834 dt.limit = sregs->idt.limit;
2835 dt.base = sregs->idt.base;
2836 kvm_x86_ops->set_idt(vcpu, &dt);
2837 dt.limit = sregs->gdt.limit;
2838 dt.base = sregs->gdt.base;
2839 kvm_x86_ops->set_gdt(vcpu, &dt);
2841 vcpu->arch.cr2 = sregs->cr2;
2842 mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
2843 vcpu->arch.cr3 = sregs->cr3;
2845 set_cr8(vcpu, sregs->cr8);
2847 mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
2848 #ifdef CONFIG_X86_64
2849 kvm_x86_ops->set_efer(vcpu, sregs->efer);
2850 #endif
2851 kvm_set_apic_base(vcpu, sregs->apic_base);
2853 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2855 mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
2856 vcpu->arch.cr0 = sregs->cr0;
2857 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
2859 mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
2860 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
2861 if (!is_long_mode(vcpu) && is_pae(vcpu))
2862 load_pdptrs(vcpu, vcpu->arch.cr3);
2864 if (mmu_reset_needed)
2865 kvm_mmu_reset_context(vcpu);
2867 if (!irqchip_in_kernel(vcpu->kvm)) {
2868 memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap,
2869 sizeof vcpu->arch.irq_pending);
2870 vcpu->arch.irq_summary = 0;
2871 for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i)
2872 if (vcpu->arch.irq_pending[i])
2873 __set_bit(i, &vcpu->arch.irq_summary);
2874 } else {
2875 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
2876 pending_vec = find_first_bit(
2877 (const unsigned long *)sregs->interrupt_bitmap,
2878 max_bits);
2879 /* Only pending external irq is handled here */
2880 if (pending_vec < max_bits) {
2881 kvm_x86_ops->set_irq(vcpu, pending_vec);
2882 pr_debug("Set back pending irq %d\n",
2883 pending_vec);
2887 set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
2888 set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
2889 set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
2890 set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
2891 set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
2892 set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
2894 set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
2895 set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
2897 vcpu_put(vcpu);
2899 return 0;
2902 int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
2903 struct kvm_debug_guest *dbg)
2905 int r;
2907 vcpu_load(vcpu);
2909 r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
2911 vcpu_put(vcpu);
2913 return r;
2917 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
2918 * we have asm/x86/processor.h
2920 struct fxsave {
2921 u16 cwd;
2922 u16 swd;
2923 u16 twd;
2924 u16 fop;
2925 u64 rip;
2926 u64 rdp;
2927 u32 mxcsr;
2928 u32 mxcsr_mask;
2929 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
2930 #ifdef CONFIG_X86_64
2931 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
2932 #else
2933 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
2934 #endif
2938 * Translate a guest virtual address to a guest physical address.
2940 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
2941 struct kvm_translation *tr)
2943 unsigned long vaddr = tr->linear_address;
2944 gpa_t gpa;
2946 vcpu_load(vcpu);
2947 down_read(&current->mm->mmap_sem);
2948 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
2949 up_read(&current->mm->mmap_sem);
2950 tr->physical_address = gpa;
2951 tr->valid = gpa != UNMAPPED_GVA;
2952 tr->writeable = 1;
2953 tr->usermode = 0;
2954 vcpu_put(vcpu);
2956 return 0;
2959 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2961 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
2963 vcpu_load(vcpu);
2965 memcpy(fpu->fpr, fxsave->st_space, 128);
2966 fpu->fcw = fxsave->cwd;
2967 fpu->fsw = fxsave->swd;
2968 fpu->ftwx = fxsave->twd;
2969 fpu->last_opcode = fxsave->fop;
2970 fpu->last_ip = fxsave->rip;
2971 fpu->last_dp = fxsave->rdp;
2972 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
2974 vcpu_put(vcpu);
2976 return 0;
2979 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2981 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
2983 vcpu_load(vcpu);
2985 memcpy(fxsave->st_space, fpu->fpr, 128);
2986 fxsave->cwd = fpu->fcw;
2987 fxsave->swd = fpu->fsw;
2988 fxsave->twd = fpu->ftwx;
2989 fxsave->fop = fpu->last_opcode;
2990 fxsave->rip = fpu->last_ip;
2991 fxsave->rdp = fpu->last_dp;
2992 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
2994 vcpu_put(vcpu);
2996 return 0;
2999 void fx_init(struct kvm_vcpu *vcpu)
3001 unsigned after_mxcsr_mask;
3003 /* Initialize guest FPU by resetting ours and saving into guest's */
3004 preempt_disable();
3005 fx_save(&vcpu->arch.host_fx_image);
3006 fpu_init();
3007 fx_save(&vcpu->arch.guest_fx_image);
3008 fx_restore(&vcpu->arch.host_fx_image);
3009 preempt_enable();
3011 vcpu->arch.cr0 |= X86_CR0_ET;
3012 after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
3013 vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
3014 memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
3015 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
3017 EXPORT_SYMBOL_GPL(fx_init);
3019 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
3021 if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
3022 return;
3024 vcpu->guest_fpu_loaded = 1;
3025 fx_save(&vcpu->arch.host_fx_image);
3026 fx_restore(&vcpu->arch.guest_fx_image);
3028 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
3030 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
3032 if (!vcpu->guest_fpu_loaded)
3033 return;
3035 vcpu->guest_fpu_loaded = 0;
3036 fx_save(&vcpu->arch.guest_fx_image);
3037 fx_restore(&vcpu->arch.host_fx_image);
3038 ++vcpu->stat.fpu_reload;
3040 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
3042 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
3044 kvm_x86_ops->vcpu_free(vcpu);
3047 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
3048 unsigned int id)
3050 return kvm_x86_ops->vcpu_create(kvm, id);
3053 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
3055 int r;
3057 /* We do fxsave: this must be aligned. */
3058 BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
3060 vcpu_load(vcpu);
3061 r = kvm_arch_vcpu_reset(vcpu);
3062 if (r == 0)
3063 r = kvm_mmu_setup(vcpu);
3064 vcpu_put(vcpu);
3065 if (r < 0)
3066 goto free_vcpu;
3068 return 0;
3069 free_vcpu:
3070 kvm_x86_ops->vcpu_free(vcpu);
3071 return r;
3074 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
3076 vcpu_load(vcpu);
3077 kvm_mmu_unload(vcpu);
3078 vcpu_put(vcpu);
3080 kvm_x86_ops->vcpu_free(vcpu);
3083 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
3085 return kvm_x86_ops->vcpu_reset(vcpu);
3088 void kvm_arch_hardware_enable(void *garbage)
3090 kvm_x86_ops->hardware_enable(garbage);
3093 void kvm_arch_hardware_disable(void *garbage)
3095 kvm_x86_ops->hardware_disable(garbage);
3098 int kvm_arch_hardware_setup(void)
3100 return kvm_x86_ops->hardware_setup();
3103 void kvm_arch_hardware_unsetup(void)
3105 kvm_x86_ops->hardware_unsetup();
3108 void kvm_arch_check_processor_compat(void *rtn)
3110 kvm_x86_ops->check_processor_compatibility(rtn);
3113 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
3115 struct page *page;
3116 struct kvm *kvm;
3117 int r;
3119 BUG_ON(vcpu->kvm == NULL);
3120 kvm = vcpu->kvm;
3122 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3123 if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
3124 vcpu->arch.mp_state = VCPU_MP_STATE_RUNNABLE;
3125 else
3126 vcpu->arch.mp_state = VCPU_MP_STATE_UNINITIALIZED;
3128 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3129 if (!page) {
3130 r = -ENOMEM;
3131 goto fail;
3133 vcpu->arch.pio_data = page_address(page);
3135 r = kvm_mmu_create(vcpu);
3136 if (r < 0)
3137 goto fail_free_pio_data;
3139 if (irqchip_in_kernel(kvm)) {
3140 r = kvm_create_lapic(vcpu);
3141 if (r < 0)
3142 goto fail_mmu_destroy;
3145 return 0;
3147 fail_mmu_destroy:
3148 kvm_mmu_destroy(vcpu);
3149 fail_free_pio_data:
3150 free_page((unsigned long)vcpu->arch.pio_data);
3151 fail:
3152 return r;
3155 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
3157 kvm_free_lapic(vcpu);
3158 kvm_mmu_destroy(vcpu);
3159 free_page((unsigned long)vcpu->arch.pio_data);
3162 struct kvm *kvm_arch_create_vm(void)
3164 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
3166 if (!kvm)
3167 return ERR_PTR(-ENOMEM);
3169 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
3171 return kvm;
3174 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
3176 vcpu_load(vcpu);
3177 kvm_mmu_unload(vcpu);
3178 vcpu_put(vcpu);
3181 static void kvm_free_vcpus(struct kvm *kvm)
3183 unsigned int i;
3186 * Unpin any mmu pages first.
3188 for (i = 0; i < KVM_MAX_VCPUS; ++i)
3189 if (kvm->vcpus[i])
3190 kvm_unload_vcpu_mmu(kvm->vcpus[i]);
3191 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
3192 if (kvm->vcpus[i]) {
3193 kvm_arch_vcpu_free(kvm->vcpus[i]);
3194 kvm->vcpus[i] = NULL;
3200 void kvm_arch_destroy_vm(struct kvm *kvm)
3202 kfree(kvm->arch.vpic);
3203 kfree(kvm->arch.vioapic);
3204 kvm_free_vcpus(kvm);
3205 kvm_free_physmem(kvm);
3206 kfree(kvm);
3209 int kvm_arch_set_memory_region(struct kvm *kvm,
3210 struct kvm_userspace_memory_region *mem,
3211 struct kvm_memory_slot old,
3212 int user_alloc)
3214 int npages = mem->memory_size >> PAGE_SHIFT;
3215 struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
3217 /*To keep backward compatibility with older userspace,
3218 *x86 needs to hanlde !user_alloc case.
3220 if (!user_alloc) {
3221 if (npages && !old.rmap) {
3222 memslot->userspace_addr = do_mmap(NULL, 0,
3223 npages * PAGE_SIZE,
3224 PROT_READ | PROT_WRITE,
3225 MAP_SHARED | MAP_ANONYMOUS,
3228 if (IS_ERR((void *)memslot->userspace_addr))
3229 return PTR_ERR((void *)memslot->userspace_addr);
3230 } else {
3231 if (!old.user_alloc && old.rmap) {
3232 int ret;
3234 ret = do_munmap(current->mm, old.userspace_addr,
3235 old.npages * PAGE_SIZE);
3236 if (ret < 0)
3237 printk(KERN_WARNING
3238 "kvm_vm_ioctl_set_memory_region: "
3239 "failed to munmap memory\n");
3244 if (!kvm->arch.n_requested_mmu_pages) {
3245 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
3246 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
3249 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
3250 kvm_flush_remote_tlbs(kvm);
3252 return 0;
3255 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
3257 return vcpu->arch.mp_state == VCPU_MP_STATE_RUNNABLE
3258 || vcpu->arch.mp_state == VCPU_MP_STATE_SIPI_RECEIVED;
3261 static void vcpu_kick_intr(void *info)
3263 #ifdef DEBUG
3264 struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
3265 printk(KERN_DEBUG "vcpu_kick_intr %p \n", vcpu);
3266 #endif
3269 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3271 int ipi_pcpu = vcpu->cpu;
3273 if (waitqueue_active(&vcpu->wq)) {
3274 wake_up_interruptible(&vcpu->wq);
3275 ++vcpu->stat.halt_wakeup;
3277 if (vcpu->guest_mode)
3278 smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0, 0);