2 * sparse memory mappings.
5 #include <linux/mmzone.h>
6 #include <linux/bootmem.h>
7 #include <linux/highmem.h>
8 #include <linux/module.h>
9 #include <linux/spinlock.h>
10 #include <linux/vmalloc.h>
13 #include <asm/pgalloc.h>
14 #include <asm/pgtable.h>
17 * Permanent SPARSEMEM data:
19 * 1) mem_section - memory sections, mem_map's for valid memory
21 #ifdef CONFIG_SPARSEMEM_EXTREME
22 struct mem_section
*mem_section
[NR_SECTION_ROOTS
]
23 ____cacheline_internodealigned_in_smp
;
25 struct mem_section mem_section
[NR_SECTION_ROOTS
][SECTIONS_PER_ROOT
]
26 ____cacheline_internodealigned_in_smp
;
28 EXPORT_SYMBOL(mem_section
);
30 #ifdef NODE_NOT_IN_PAGE_FLAGS
32 * If we did not store the node number in the page then we have to
33 * do a lookup in the section_to_node_table in order to find which
34 * node the page belongs to.
36 #if MAX_NUMNODES <= 256
37 static u8 section_to_node_table
[NR_MEM_SECTIONS
] __cacheline_aligned
;
39 static u16 section_to_node_table
[NR_MEM_SECTIONS
] __cacheline_aligned
;
42 int page_to_nid(struct page
*page
)
44 return section_to_node_table
[page_to_section(page
)];
46 EXPORT_SYMBOL(page_to_nid
);
48 static void set_section_nid(unsigned long section_nr
, int nid
)
50 section_to_node_table
[section_nr
] = nid
;
52 #else /* !NODE_NOT_IN_PAGE_FLAGS */
53 static inline void set_section_nid(unsigned long section_nr
, int nid
)
58 #ifdef CONFIG_SPARSEMEM_EXTREME
59 static struct mem_section noinline __init_refok
*sparse_index_alloc(int nid
)
61 struct mem_section
*section
= NULL
;
62 unsigned long array_size
= SECTIONS_PER_ROOT
*
63 sizeof(struct mem_section
);
65 if (slab_is_available())
66 section
= kmalloc_node(array_size
, GFP_KERNEL
, nid
);
68 section
= alloc_bootmem_node(NODE_DATA(nid
), array_size
);
71 memset(section
, 0, array_size
);
76 static int __meminit
sparse_index_init(unsigned long section_nr
, int nid
)
78 static DEFINE_SPINLOCK(index_init_lock
);
79 unsigned long root
= SECTION_NR_TO_ROOT(section_nr
);
80 struct mem_section
*section
;
83 if (mem_section
[root
])
86 section
= sparse_index_alloc(nid
);
90 * This lock keeps two different sections from
91 * reallocating for the same index
93 spin_lock(&index_init_lock
);
95 if (mem_section
[root
]) {
100 mem_section
[root
] = section
;
102 spin_unlock(&index_init_lock
);
105 #else /* !SPARSEMEM_EXTREME */
106 static inline int sparse_index_init(unsigned long section_nr
, int nid
)
113 * Although written for the SPARSEMEM_EXTREME case, this happens
114 * to also work for the flat array case because
115 * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
117 int __section_nr(struct mem_section
* ms
)
119 unsigned long root_nr
;
120 struct mem_section
* root
;
122 for (root_nr
= 0; root_nr
< NR_SECTION_ROOTS
; root_nr
++) {
123 root
= __nr_to_section(root_nr
* SECTIONS_PER_ROOT
);
127 if ((ms
>= root
) && (ms
< (root
+ SECTIONS_PER_ROOT
)))
131 return (root_nr
* SECTIONS_PER_ROOT
) + (ms
- root
);
135 * During early boot, before section_mem_map is used for an actual
136 * mem_map, we use section_mem_map to store the section's NUMA
137 * node. This keeps us from having to use another data structure. The
138 * node information is cleared just before we store the real mem_map.
140 static inline unsigned long sparse_encode_early_nid(int nid
)
142 return (nid
<< SECTION_NID_SHIFT
);
145 static inline int sparse_early_nid(struct mem_section
*section
)
147 return (section
->section_mem_map
>> SECTION_NID_SHIFT
);
150 /* Validate the physical addressing limitations of the model */
151 void __meminit
mminit_validate_memmodel_limits(unsigned long *start_pfn
,
152 unsigned long *end_pfn
)
154 unsigned long max_sparsemem_pfn
= 1UL << (MAX_PHYSMEM_BITS
-PAGE_SHIFT
);
157 * Sanity checks - do not allow an architecture to pass
158 * in larger pfns than the maximum scope of sparsemem:
160 if (*start_pfn
> max_sparsemem_pfn
) {
161 mminit_dprintk(MMINIT_WARNING
, "pfnvalidation",
162 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
163 *start_pfn
, *end_pfn
, max_sparsemem_pfn
);
165 *start_pfn
= max_sparsemem_pfn
;
166 *end_pfn
= max_sparsemem_pfn
;
167 } else if (*end_pfn
> max_sparsemem_pfn
) {
168 mminit_dprintk(MMINIT_WARNING
, "pfnvalidation",
169 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
170 *start_pfn
, *end_pfn
, max_sparsemem_pfn
);
172 *end_pfn
= max_sparsemem_pfn
;
176 /* Record a memory area against a node. */
177 void __init
memory_present(int nid
, unsigned long start
, unsigned long end
)
181 start
&= PAGE_SECTION_MASK
;
182 mminit_validate_memmodel_limits(&start
, &end
);
183 for (pfn
= start
; pfn
< end
; pfn
+= PAGES_PER_SECTION
) {
184 unsigned long section
= pfn_to_section_nr(pfn
);
185 struct mem_section
*ms
;
187 sparse_index_init(section
, nid
);
188 set_section_nid(section
, nid
);
190 ms
= __nr_to_section(section
);
191 if (!ms
->section_mem_map
)
192 ms
->section_mem_map
= sparse_encode_early_nid(nid
) |
193 SECTION_MARKED_PRESENT
;
198 * Only used by the i386 NUMA architecures, but relatively
201 unsigned long __init
node_memmap_size_bytes(int nid
, unsigned long start_pfn
,
202 unsigned long end_pfn
)
205 unsigned long nr_pages
= 0;
207 mminit_validate_memmodel_limits(&start_pfn
, &end_pfn
);
208 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= PAGES_PER_SECTION
) {
209 if (nid
!= early_pfn_to_nid(pfn
))
212 if (pfn_present(pfn
))
213 nr_pages
+= PAGES_PER_SECTION
;
216 return nr_pages
* sizeof(struct page
);
220 * Subtle, we encode the real pfn into the mem_map such that
221 * the identity pfn - section_mem_map will return the actual
222 * physical page frame number.
224 static unsigned long sparse_encode_mem_map(struct page
*mem_map
, unsigned long pnum
)
226 return (unsigned long)(mem_map
- (section_nr_to_pfn(pnum
)));
230 * Decode mem_map from the coded memmap
232 struct page
*sparse_decode_mem_map(unsigned long coded_mem_map
, unsigned long pnum
)
234 /* mask off the extra low bits of information */
235 coded_mem_map
&= SECTION_MAP_MASK
;
236 return ((struct page
*)coded_mem_map
) + section_nr_to_pfn(pnum
);
239 static int __meminit
sparse_init_one_section(struct mem_section
*ms
,
240 unsigned long pnum
, struct page
*mem_map
,
241 unsigned long *pageblock_bitmap
)
243 if (!present_section(ms
))
246 ms
->section_mem_map
&= ~SECTION_MAP_MASK
;
247 ms
->section_mem_map
|= sparse_encode_mem_map(mem_map
, pnum
) |
249 ms
->pageblock_flags
= pageblock_bitmap
;
254 unsigned long usemap_size(void)
256 unsigned long size_bytes
;
257 size_bytes
= roundup(SECTION_BLOCKFLAGS_BITS
, 8) / 8;
258 size_bytes
= roundup(size_bytes
, sizeof(unsigned long));
262 #ifdef CONFIG_MEMORY_HOTPLUG
263 static unsigned long *__kmalloc_section_usemap(void)
265 return kmalloc(usemap_size(), GFP_KERNEL
);
267 #endif /* CONFIG_MEMORY_HOTPLUG */
269 #ifdef CONFIG_MEMORY_HOTREMOVE
270 static unsigned long * __init
271 sparse_early_usemap_alloc_pgdat_section(struct pglist_data
*pgdat
)
273 unsigned long section_nr
;
276 * A page may contain usemaps for other sections preventing the
277 * page being freed and making a section unremovable while
278 * other sections referencing the usemap retmain active. Similarly,
279 * a pgdat can prevent a section being removed. If section A
280 * contains a pgdat and section B contains the usemap, both
281 * sections become inter-dependent. This allocates usemaps
282 * from the same section as the pgdat where possible to avoid
285 section_nr
= pfn_to_section_nr(__pa(pgdat
) >> PAGE_SHIFT
);
286 return alloc_bootmem_section(usemap_size(), section_nr
);
289 static void __init
check_usemap_section_nr(int nid
, unsigned long *usemap
)
291 unsigned long usemap_snr
, pgdat_snr
;
292 static unsigned long old_usemap_snr
= NR_MEM_SECTIONS
;
293 static unsigned long old_pgdat_snr
= NR_MEM_SECTIONS
;
294 struct pglist_data
*pgdat
= NODE_DATA(nid
);
297 usemap_snr
= pfn_to_section_nr(__pa(usemap
) >> PAGE_SHIFT
);
298 pgdat_snr
= pfn_to_section_nr(__pa(pgdat
) >> PAGE_SHIFT
);
299 if (usemap_snr
== pgdat_snr
)
302 if (old_usemap_snr
== usemap_snr
&& old_pgdat_snr
== pgdat_snr
)
303 /* skip redundant message */
306 old_usemap_snr
= usemap_snr
;
307 old_pgdat_snr
= pgdat_snr
;
309 usemap_nid
= sparse_early_nid(__nr_to_section(usemap_snr
));
310 if (usemap_nid
!= nid
) {
312 "node %d must be removed before remove section %ld\n",
317 * There is a circular dependency.
318 * Some platforms allow un-removable section because they will just
319 * gather other removable sections for dynamic partitioning.
320 * Just notify un-removable section's number here.
322 printk(KERN_INFO
"Section %ld and %ld (node %d)", usemap_snr
,
325 " have a circular dependency on usemap and pgdat allocations\n");
328 static unsigned long * __init
329 sparse_early_usemap_alloc_pgdat_section(struct pglist_data
*pgdat
)
334 static void __init
check_usemap_section_nr(int nid
, unsigned long *usemap
)
337 #endif /* CONFIG_MEMORY_HOTREMOVE */
339 static unsigned long *__init
sparse_early_usemap_alloc(unsigned long pnum
)
341 unsigned long *usemap
;
342 struct mem_section
*ms
= __nr_to_section(pnum
);
343 int nid
= sparse_early_nid(ms
);
345 usemap
= sparse_early_usemap_alloc_pgdat_section(NODE_DATA(nid
));
349 usemap
= alloc_bootmem_node(NODE_DATA(nid
), usemap_size());
351 check_usemap_section_nr(nid
, usemap
);
355 /* Stupid: suppress gcc warning for SPARSEMEM && !NUMA */
358 printk(KERN_WARNING
"%s: allocation failed\n", __func__
);
362 #ifndef CONFIG_SPARSEMEM_VMEMMAP
363 struct page __init
*sparse_mem_map_populate(unsigned long pnum
, int nid
)
367 map
= alloc_remap(nid
, sizeof(struct page
) * PAGES_PER_SECTION
);
371 map
= alloc_bootmem_pages_node(NODE_DATA(nid
),
372 PAGE_ALIGN(sizeof(struct page
) * PAGES_PER_SECTION
));
375 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
377 static struct page __init
*sparse_early_mem_map_alloc(unsigned long pnum
)
380 struct mem_section
*ms
= __nr_to_section(pnum
);
381 int nid
= sparse_early_nid(ms
);
383 map
= sparse_mem_map_populate(pnum
, nid
);
387 printk(KERN_ERR
"%s: sparsemem memory map backing failed "
388 "some memory will not be available.\n", __func__
);
389 ms
->section_mem_map
= 0;
393 void __attribute__((weak
)) __meminit
vmemmap_populate_print_last(void)
397 * Allocate the accumulated non-linear sections, allocate a mem_map
398 * for each and record the physical to section mapping.
400 void __init
sparse_init(void)
404 unsigned long *usemap
;
405 unsigned long **usemap_map
;
409 * map is using big page (aka 2M in x86 64 bit)
410 * usemap is less one page (aka 24 bytes)
411 * so alloc 2M (with 2M align) and 24 bytes in turn will
412 * make next 2M slip to one more 2M later.
413 * then in big system, the memory will have a lot of holes...
414 * here try to allocate 2M pages continously.
416 * powerpc need to call sparse_init_one_section right after each
417 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
419 size
= sizeof(unsigned long *) * NR_MEM_SECTIONS
;
420 usemap_map
= alloc_bootmem(size
);
422 panic("can not allocate usemap_map\n");
424 for (pnum
= 0; pnum
< NR_MEM_SECTIONS
; pnum
++) {
425 if (!present_section_nr(pnum
))
427 usemap_map
[pnum
] = sparse_early_usemap_alloc(pnum
);
430 for (pnum
= 0; pnum
< NR_MEM_SECTIONS
; pnum
++) {
431 if (!present_section_nr(pnum
))
434 usemap
= usemap_map
[pnum
];
438 map
= sparse_early_mem_map_alloc(pnum
);
442 sparse_init_one_section(__nr_to_section(pnum
), pnum
, map
,
446 vmemmap_populate_print_last();
448 free_bootmem(__pa(usemap_map
), size
);
451 #ifdef CONFIG_MEMORY_HOTPLUG
452 #ifdef CONFIG_SPARSEMEM_VMEMMAP
453 static inline struct page
*kmalloc_section_memmap(unsigned long pnum
, int nid
,
454 unsigned long nr_pages
)
456 /* This will make the necessary allocations eventually. */
457 return sparse_mem_map_populate(pnum
, nid
);
459 static void __kfree_section_memmap(struct page
*memmap
, unsigned long nr_pages
)
461 return; /* XXX: Not implemented yet */
463 static void free_map_bootmem(struct page
*page
, unsigned long nr_pages
)
467 static struct page
*__kmalloc_section_memmap(unsigned long nr_pages
)
469 struct page
*page
, *ret
;
470 unsigned long memmap_size
= sizeof(struct page
) * nr_pages
;
472 page
= alloc_pages(GFP_KERNEL
|__GFP_NOWARN
, get_order(memmap_size
));
476 ret
= vmalloc(memmap_size
);
482 ret
= (struct page
*)pfn_to_kaddr(page_to_pfn(page
));
484 memset(ret
, 0, memmap_size
);
489 static inline struct page
*kmalloc_section_memmap(unsigned long pnum
, int nid
,
490 unsigned long nr_pages
)
492 return __kmalloc_section_memmap(nr_pages
);
495 static void __kfree_section_memmap(struct page
*memmap
, unsigned long nr_pages
)
497 if (is_vmalloc_addr(memmap
))
500 free_pages((unsigned long)memmap
,
501 get_order(sizeof(struct page
) * nr_pages
));
504 static void free_map_bootmem(struct page
*page
, unsigned long nr_pages
)
506 unsigned long maps_section_nr
, removing_section_nr
, i
;
509 for (i
= 0; i
< nr_pages
; i
++, page
++) {
510 magic
= atomic_read(&page
->_mapcount
);
512 BUG_ON(magic
== NODE_INFO
);
514 maps_section_nr
= pfn_to_section_nr(page_to_pfn(page
));
515 removing_section_nr
= page
->private;
518 * When this function is called, the removing section is
519 * logical offlined state. This means all pages are isolated
520 * from page allocator. If removing section's memmap is placed
521 * on the same section, it must not be freed.
522 * If it is freed, page allocator may allocate it which will
523 * be removed physically soon.
525 if (maps_section_nr
!= removing_section_nr
)
526 put_page_bootmem(page
);
529 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
531 static void free_section_usemap(struct page
*memmap
, unsigned long *usemap
)
533 struct page
*usemap_page
;
534 unsigned long nr_pages
;
539 usemap_page
= virt_to_page(usemap
);
541 * Check to see if allocation came from hot-plug-add
543 if (PageSlab(usemap_page
)) {
546 __kfree_section_memmap(memmap
, PAGES_PER_SECTION
);
551 * The usemap came from bootmem. This is packed with other usemaps
552 * on the section which has pgdat at boot time. Just keep it as is now.
556 struct page
*memmap_page
;
557 memmap_page
= virt_to_page(memmap
);
559 nr_pages
= PAGE_ALIGN(PAGES_PER_SECTION
* sizeof(struct page
))
562 free_map_bootmem(memmap_page
, nr_pages
);
567 * returns the number of sections whose mem_maps were properly
568 * set. If this is <=0, then that means that the passed-in
569 * map was not consumed and must be freed.
571 int __meminit
sparse_add_one_section(struct zone
*zone
, unsigned long start_pfn
,
574 unsigned long section_nr
= pfn_to_section_nr(start_pfn
);
575 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
576 struct mem_section
*ms
;
578 unsigned long *usemap
;
583 * no locking for this, because it does its own
584 * plus, it does a kmalloc
586 ret
= sparse_index_init(section_nr
, pgdat
->node_id
);
587 if (ret
< 0 && ret
!= -EEXIST
)
589 memmap
= kmalloc_section_memmap(section_nr
, pgdat
->node_id
, nr_pages
);
592 usemap
= __kmalloc_section_usemap();
594 __kfree_section_memmap(memmap
, nr_pages
);
598 pgdat_resize_lock(pgdat
, &flags
);
600 ms
= __pfn_to_section(start_pfn
);
601 if (ms
->section_mem_map
& SECTION_MARKED_PRESENT
) {
606 ms
->section_mem_map
|= SECTION_MARKED_PRESENT
;
608 ret
= sparse_init_one_section(ms
, section_nr
, memmap
, usemap
);
611 pgdat_resize_unlock(pgdat
, &flags
);
614 __kfree_section_memmap(memmap
, nr_pages
);
619 void sparse_remove_one_section(struct zone
*zone
, struct mem_section
*ms
)
621 struct page
*memmap
= NULL
;
622 unsigned long *usemap
= NULL
;
624 if (ms
->section_mem_map
) {
625 usemap
= ms
->pageblock_flags
;
626 memmap
= sparse_decode_mem_map(ms
->section_mem_map
,
628 ms
->section_mem_map
= 0;
629 ms
->pageblock_flags
= NULL
;
632 free_section_usemap(memmap
, usemap
);