2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
5 * Architecture independence:
6 * Copyright (c) 2005, Bull S.A.
7 * Written by Pierre Peiffer <pierre.peiffer@bull.net>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public Licens
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
24 * Extents support for EXT4
27 * - ext4*_error() should be used in some situations
28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 * - smart tree reduction
32 #include <linux/module.h>
34 #include <linux/time.h>
35 #include <linux/ext4_jbd2.h>
36 #include <linux/jbd2.h>
37 #include <linux/highuid.h>
38 #include <linux/pagemap.h>
39 #include <linux/quotaops.h>
40 #include <linux/string.h>
41 #include <linux/slab.h>
42 #include <linux/falloc.h>
43 #include <linux/ext4_fs_extents.h>
44 #include <asm/uaccess.h>
49 * combine low and high parts of physical block number into ext4_fsblk_t
51 static ext4_fsblk_t
ext_pblock(struct ext4_extent
*ex
)
55 block
= le32_to_cpu(ex
->ee_start_lo
);
56 block
|= ((ext4_fsblk_t
) le16_to_cpu(ex
->ee_start_hi
) << 31) << 1;
62 * combine low and high parts of a leaf physical block number into ext4_fsblk_t
64 ext4_fsblk_t
idx_pblock(struct ext4_extent_idx
*ix
)
68 block
= le32_to_cpu(ix
->ei_leaf_lo
);
69 block
|= ((ext4_fsblk_t
) le16_to_cpu(ix
->ei_leaf_hi
) << 31) << 1;
74 * ext4_ext_store_pblock:
75 * stores a large physical block number into an extent struct,
76 * breaking it into parts
78 void ext4_ext_store_pblock(struct ext4_extent
*ex
, ext4_fsblk_t pb
)
80 ex
->ee_start_lo
= cpu_to_le32((unsigned long) (pb
& 0xffffffff));
81 ex
->ee_start_hi
= cpu_to_le16((unsigned long) ((pb
>> 31) >> 1) & 0xffff);
85 * ext4_idx_store_pblock:
86 * stores a large physical block number into an index struct,
87 * breaking it into parts
89 static void ext4_idx_store_pblock(struct ext4_extent_idx
*ix
, ext4_fsblk_t pb
)
91 ix
->ei_leaf_lo
= cpu_to_le32((unsigned long) (pb
& 0xffffffff));
92 ix
->ei_leaf_hi
= cpu_to_le16((unsigned long) ((pb
>> 31) >> 1) & 0xffff);
95 static handle_t
*ext4_ext_journal_restart(handle_t
*handle
, int needed
)
99 if (handle
->h_buffer_credits
> needed
)
101 if (!ext4_journal_extend(handle
, needed
))
103 err
= ext4_journal_restart(handle
, needed
);
113 static int ext4_ext_get_access(handle_t
*handle
, struct inode
*inode
,
114 struct ext4_ext_path
*path
)
117 /* path points to block */
118 return ext4_journal_get_write_access(handle
, path
->p_bh
);
120 /* path points to leaf/index in inode body */
121 /* we use in-core data, no need to protect them */
131 static int ext4_ext_dirty(handle_t
*handle
, struct inode
*inode
,
132 struct ext4_ext_path
*path
)
136 /* path points to block */
137 err
= ext4_journal_dirty_metadata(handle
, path
->p_bh
);
139 /* path points to leaf/index in inode body */
140 err
= ext4_mark_inode_dirty(handle
, inode
);
145 static ext4_fsblk_t
ext4_ext_find_goal(struct inode
*inode
,
146 struct ext4_ext_path
*path
,
149 struct ext4_inode_info
*ei
= EXT4_I(inode
);
150 ext4_fsblk_t bg_start
;
151 ext4_grpblk_t colour
;
155 struct ext4_extent
*ex
;
156 depth
= path
->p_depth
;
158 /* try to predict block placement */
159 ex
= path
[depth
].p_ext
;
161 return ext_pblock(ex
)+(block
-le32_to_cpu(ex
->ee_block
));
163 /* it looks like index is empty;
164 * try to find starting block from index itself */
165 if (path
[depth
].p_bh
)
166 return path
[depth
].p_bh
->b_blocknr
;
169 /* OK. use inode's group */
170 bg_start
= (ei
->i_block_group
* EXT4_BLOCKS_PER_GROUP(inode
->i_sb
)) +
171 le32_to_cpu(EXT4_SB(inode
->i_sb
)->s_es
->s_first_data_block
);
172 colour
= (current
->pid
% 16) *
173 (EXT4_BLOCKS_PER_GROUP(inode
->i_sb
) / 16);
174 return bg_start
+ colour
+ block
;
178 ext4_ext_new_block(handle_t
*handle
, struct inode
*inode
,
179 struct ext4_ext_path
*path
,
180 struct ext4_extent
*ex
, int *err
)
182 ext4_fsblk_t goal
, newblock
;
184 goal
= ext4_ext_find_goal(inode
, path
, le32_to_cpu(ex
->ee_block
));
185 newblock
= ext4_new_block(handle
, inode
, goal
, err
);
189 static int ext4_ext_space_block(struct inode
*inode
)
193 size
= (inode
->i_sb
->s_blocksize
- sizeof(struct ext4_extent_header
))
194 / sizeof(struct ext4_extent
);
195 #ifdef AGGRESSIVE_TEST
202 static int ext4_ext_space_block_idx(struct inode
*inode
)
206 size
= (inode
->i_sb
->s_blocksize
- sizeof(struct ext4_extent_header
))
207 / sizeof(struct ext4_extent_idx
);
208 #ifdef AGGRESSIVE_TEST
215 static int ext4_ext_space_root(struct inode
*inode
)
219 size
= sizeof(EXT4_I(inode
)->i_data
);
220 size
-= sizeof(struct ext4_extent_header
);
221 size
/= sizeof(struct ext4_extent
);
222 #ifdef AGGRESSIVE_TEST
229 static int ext4_ext_space_root_idx(struct inode
*inode
)
233 size
= sizeof(EXT4_I(inode
)->i_data
);
234 size
-= sizeof(struct ext4_extent_header
);
235 size
/= sizeof(struct ext4_extent_idx
);
236 #ifdef AGGRESSIVE_TEST
244 ext4_ext_max_entries(struct inode
*inode
, int depth
)
248 if (depth
== ext_depth(inode
)) {
250 max
= ext4_ext_space_root(inode
);
252 max
= ext4_ext_space_root_idx(inode
);
255 max
= ext4_ext_space_block(inode
);
257 max
= ext4_ext_space_block_idx(inode
);
263 static int __ext4_ext_check_header(const char *function
, struct inode
*inode
,
264 struct ext4_extent_header
*eh
,
267 const char *error_msg
;
270 if (unlikely(eh
->eh_magic
!= EXT4_EXT_MAGIC
)) {
271 error_msg
= "invalid magic";
274 if (unlikely(le16_to_cpu(eh
->eh_depth
) != depth
)) {
275 error_msg
= "unexpected eh_depth";
278 if (unlikely(eh
->eh_max
== 0)) {
279 error_msg
= "invalid eh_max";
282 max
= ext4_ext_max_entries(inode
, depth
);
283 if (unlikely(le16_to_cpu(eh
->eh_max
) > max
)) {
284 error_msg
= "too large eh_max";
287 if (unlikely(le16_to_cpu(eh
->eh_entries
) > le16_to_cpu(eh
->eh_max
))) {
288 error_msg
= "invalid eh_entries";
294 ext4_error(inode
->i_sb
, function
,
295 "bad header in inode #%lu: %s - magic %x, "
296 "entries %u, max %u(%u), depth %u(%u)",
297 inode
->i_ino
, error_msg
, le16_to_cpu(eh
->eh_magic
),
298 le16_to_cpu(eh
->eh_entries
), le16_to_cpu(eh
->eh_max
),
299 max
, le16_to_cpu(eh
->eh_depth
), depth
);
304 #define ext4_ext_check_header(inode, eh, depth) \
305 __ext4_ext_check_header(__FUNCTION__, inode, eh, depth)
308 static void ext4_ext_show_path(struct inode
*inode
, struct ext4_ext_path
*path
)
310 int k
, l
= path
->p_depth
;
313 for (k
= 0; k
<= l
; k
++, path
++) {
315 ext_debug(" %d->%llu", le32_to_cpu(path
->p_idx
->ei_block
),
316 idx_pblock(path
->p_idx
));
317 } else if (path
->p_ext
) {
318 ext_debug(" %d:%d:%llu ",
319 le32_to_cpu(path
->p_ext
->ee_block
),
320 ext4_ext_get_actual_len(path
->p_ext
),
321 ext_pblock(path
->p_ext
));
328 static void ext4_ext_show_leaf(struct inode
*inode
, struct ext4_ext_path
*path
)
330 int depth
= ext_depth(inode
);
331 struct ext4_extent_header
*eh
;
332 struct ext4_extent
*ex
;
338 eh
= path
[depth
].p_hdr
;
339 ex
= EXT_FIRST_EXTENT(eh
);
341 for (i
= 0; i
< le16_to_cpu(eh
->eh_entries
); i
++, ex
++) {
342 ext_debug("%d:%d:%llu ", le32_to_cpu(ex
->ee_block
),
343 ext4_ext_get_actual_len(ex
), ext_pblock(ex
));
348 #define ext4_ext_show_path(inode,path)
349 #define ext4_ext_show_leaf(inode,path)
352 static void ext4_ext_drop_refs(struct ext4_ext_path
*path
)
354 int depth
= path
->p_depth
;
357 for (i
= 0; i
<= depth
; i
++, path
++)
365 * ext4_ext_binsearch_idx:
366 * binary search for the closest index of the given block
367 * the header must be checked before calling this
370 ext4_ext_binsearch_idx(struct inode
*inode
,
371 struct ext4_ext_path
*path
, ext4_lblk_t block
)
373 struct ext4_extent_header
*eh
= path
->p_hdr
;
374 struct ext4_extent_idx
*r
, *l
, *m
;
377 ext_debug("binsearch for %u(idx): ", block
);
379 l
= EXT_FIRST_INDEX(eh
) + 1;
380 r
= EXT_LAST_INDEX(eh
);
383 if (block
< le32_to_cpu(m
->ei_block
))
387 ext_debug("%p(%u):%p(%u):%p(%u) ", l
, le32_to_cpu(l
->ei_block
),
388 m
, le32_to_cpu(m
->ei_block
),
389 r
, le32_to_cpu(r
->ei_block
));
393 ext_debug(" -> %d->%lld ", le32_to_cpu(path
->p_idx
->ei_block
),
394 idx_pblock(path
->p_idx
));
396 #ifdef CHECK_BINSEARCH
398 struct ext4_extent_idx
*chix
, *ix
;
401 chix
= ix
= EXT_FIRST_INDEX(eh
);
402 for (k
= 0; k
< le16_to_cpu(eh
->eh_entries
); k
++, ix
++) {
404 le32_to_cpu(ix
->ei_block
) <= le32_to_cpu(ix
[-1].ei_block
)) {
405 printk("k=%d, ix=0x%p, first=0x%p\n", k
,
406 ix
, EXT_FIRST_INDEX(eh
));
408 le32_to_cpu(ix
->ei_block
),
409 le32_to_cpu(ix
[-1].ei_block
));
411 BUG_ON(k
&& le32_to_cpu(ix
->ei_block
)
412 <= le32_to_cpu(ix
[-1].ei_block
));
413 if (block
< le32_to_cpu(ix
->ei_block
))
417 BUG_ON(chix
!= path
->p_idx
);
424 * ext4_ext_binsearch:
425 * binary search for closest extent of the given block
426 * the header must be checked before calling this
429 ext4_ext_binsearch(struct inode
*inode
,
430 struct ext4_ext_path
*path
, ext4_lblk_t block
)
432 struct ext4_extent_header
*eh
= path
->p_hdr
;
433 struct ext4_extent
*r
, *l
, *m
;
435 if (eh
->eh_entries
== 0) {
437 * this leaf is empty:
438 * we get such a leaf in split/add case
443 ext_debug("binsearch for %u: ", block
);
445 l
= EXT_FIRST_EXTENT(eh
) + 1;
446 r
= EXT_LAST_EXTENT(eh
);
450 if (block
< le32_to_cpu(m
->ee_block
))
454 ext_debug("%p(%u):%p(%u):%p(%u) ", l
, le32_to_cpu(l
->ee_block
),
455 m
, le32_to_cpu(m
->ee_block
),
456 r
, le32_to_cpu(r
->ee_block
));
460 ext_debug(" -> %d:%llu:%d ",
461 le32_to_cpu(path
->p_ext
->ee_block
),
462 ext_pblock(path
->p_ext
),
463 ext4_ext_get_actual_len(path
->p_ext
));
465 #ifdef CHECK_BINSEARCH
467 struct ext4_extent
*chex
, *ex
;
470 chex
= ex
= EXT_FIRST_EXTENT(eh
);
471 for (k
= 0; k
< le16_to_cpu(eh
->eh_entries
); k
++, ex
++) {
472 BUG_ON(k
&& le32_to_cpu(ex
->ee_block
)
473 <= le32_to_cpu(ex
[-1].ee_block
));
474 if (block
< le32_to_cpu(ex
->ee_block
))
478 BUG_ON(chex
!= path
->p_ext
);
484 int ext4_ext_tree_init(handle_t
*handle
, struct inode
*inode
)
486 struct ext4_extent_header
*eh
;
488 eh
= ext_inode_hdr(inode
);
491 eh
->eh_magic
= EXT4_EXT_MAGIC
;
492 eh
->eh_max
= cpu_to_le16(ext4_ext_space_root(inode
));
493 ext4_mark_inode_dirty(handle
, inode
);
494 ext4_ext_invalidate_cache(inode
);
498 struct ext4_ext_path
*
499 ext4_ext_find_extent(struct inode
*inode
, ext4_lblk_t block
,
500 struct ext4_ext_path
*path
)
502 struct ext4_extent_header
*eh
;
503 struct buffer_head
*bh
;
504 short int depth
, i
, ppos
= 0, alloc
= 0;
506 eh
= ext_inode_hdr(inode
);
507 depth
= ext_depth(inode
);
508 if (ext4_ext_check_header(inode
, eh
, depth
))
509 return ERR_PTR(-EIO
);
512 /* account possible depth increase */
514 path
= kzalloc(sizeof(struct ext4_ext_path
) * (depth
+ 2),
517 return ERR_PTR(-ENOMEM
);
523 /* walk through the tree */
525 ext_debug("depth %d: num %d, max %d\n",
526 ppos
, le16_to_cpu(eh
->eh_entries
), le16_to_cpu(eh
->eh_max
));
528 ext4_ext_binsearch_idx(inode
, path
+ ppos
, block
);
529 path
[ppos
].p_block
= idx_pblock(path
[ppos
].p_idx
);
530 path
[ppos
].p_depth
= i
;
531 path
[ppos
].p_ext
= NULL
;
533 bh
= sb_bread(inode
->i_sb
, path
[ppos
].p_block
);
537 eh
= ext_block_hdr(bh
);
539 BUG_ON(ppos
> depth
);
540 path
[ppos
].p_bh
= bh
;
541 path
[ppos
].p_hdr
= eh
;
544 if (ext4_ext_check_header(inode
, eh
, i
))
548 path
[ppos
].p_depth
= i
;
549 path
[ppos
].p_hdr
= eh
;
550 path
[ppos
].p_ext
= NULL
;
551 path
[ppos
].p_idx
= NULL
;
554 ext4_ext_binsearch(inode
, path
+ ppos
, block
);
556 ext4_ext_show_path(inode
, path
);
561 ext4_ext_drop_refs(path
);
564 return ERR_PTR(-EIO
);
568 * ext4_ext_insert_index:
569 * insert new index [@logical;@ptr] into the block at @curp;
570 * check where to insert: before @curp or after @curp
572 static int ext4_ext_insert_index(handle_t
*handle
, struct inode
*inode
,
573 struct ext4_ext_path
*curp
,
574 int logical
, ext4_fsblk_t ptr
)
576 struct ext4_extent_idx
*ix
;
579 err
= ext4_ext_get_access(handle
, inode
, curp
);
583 BUG_ON(logical
== le32_to_cpu(curp
->p_idx
->ei_block
));
584 len
= EXT_MAX_INDEX(curp
->p_hdr
) - curp
->p_idx
;
585 if (logical
> le32_to_cpu(curp
->p_idx
->ei_block
)) {
587 if (curp
->p_idx
!= EXT_LAST_INDEX(curp
->p_hdr
)) {
588 len
= (len
- 1) * sizeof(struct ext4_extent_idx
);
589 len
= len
< 0 ? 0 : len
;
590 ext_debug("insert new index %d after: %llu. "
591 "move %d from 0x%p to 0x%p\n",
593 (curp
->p_idx
+ 1), (curp
->p_idx
+ 2));
594 memmove(curp
->p_idx
+ 2, curp
->p_idx
+ 1, len
);
596 ix
= curp
->p_idx
+ 1;
599 len
= len
* sizeof(struct ext4_extent_idx
);
600 len
= len
< 0 ? 0 : len
;
601 ext_debug("insert new index %d before: %llu. "
602 "move %d from 0x%p to 0x%p\n",
604 curp
->p_idx
, (curp
->p_idx
+ 1));
605 memmove(curp
->p_idx
+ 1, curp
->p_idx
, len
);
609 ix
->ei_block
= cpu_to_le32(logical
);
610 ext4_idx_store_pblock(ix
, ptr
);
611 curp
->p_hdr
->eh_entries
= cpu_to_le16(le16_to_cpu(curp
->p_hdr
->eh_entries
)+1);
613 BUG_ON(le16_to_cpu(curp
->p_hdr
->eh_entries
)
614 > le16_to_cpu(curp
->p_hdr
->eh_max
));
615 BUG_ON(ix
> EXT_LAST_INDEX(curp
->p_hdr
));
617 err
= ext4_ext_dirty(handle
, inode
, curp
);
618 ext4_std_error(inode
->i_sb
, err
);
625 * inserts new subtree into the path, using free index entry
627 * - allocates all needed blocks (new leaf and all intermediate index blocks)
628 * - makes decision where to split
629 * - moves remaining extents and index entries (right to the split point)
630 * into the newly allocated blocks
631 * - initializes subtree
633 static int ext4_ext_split(handle_t
*handle
, struct inode
*inode
,
634 struct ext4_ext_path
*path
,
635 struct ext4_extent
*newext
, int at
)
637 struct buffer_head
*bh
= NULL
;
638 int depth
= ext_depth(inode
);
639 struct ext4_extent_header
*neh
;
640 struct ext4_extent_idx
*fidx
;
641 struct ext4_extent
*ex
;
643 ext4_fsblk_t newblock
, oldblock
;
645 ext4_fsblk_t
*ablocks
= NULL
; /* array of allocated blocks */
648 /* make decision: where to split? */
649 /* FIXME: now decision is simplest: at current extent */
651 /* if current leaf will be split, then we should use
652 * border from split point */
653 BUG_ON(path
[depth
].p_ext
> EXT_MAX_EXTENT(path
[depth
].p_hdr
));
654 if (path
[depth
].p_ext
!= EXT_MAX_EXTENT(path
[depth
].p_hdr
)) {
655 border
= path
[depth
].p_ext
[1].ee_block
;
656 ext_debug("leaf will be split."
657 " next leaf starts at %d\n",
658 le32_to_cpu(border
));
660 border
= newext
->ee_block
;
661 ext_debug("leaf will be added."
662 " next leaf starts at %d\n",
663 le32_to_cpu(border
));
667 * If error occurs, then we break processing
668 * and mark filesystem read-only. index won't
669 * be inserted and tree will be in consistent
670 * state. Next mount will repair buffers too.
674 * Get array to track all allocated blocks.
675 * We need this to handle errors and free blocks
678 ablocks
= kzalloc(sizeof(ext4_fsblk_t
) * depth
, GFP_NOFS
);
682 /* allocate all needed blocks */
683 ext_debug("allocate %d blocks for indexes/leaf\n", depth
- at
);
684 for (a
= 0; a
< depth
- at
; a
++) {
685 newblock
= ext4_ext_new_block(handle
, inode
, path
, newext
, &err
);
688 ablocks
[a
] = newblock
;
691 /* initialize new leaf */
692 newblock
= ablocks
[--a
];
693 BUG_ON(newblock
== 0);
694 bh
= sb_getblk(inode
->i_sb
, newblock
);
701 err
= ext4_journal_get_create_access(handle
, bh
);
705 neh
= ext_block_hdr(bh
);
707 neh
->eh_max
= cpu_to_le16(ext4_ext_space_block(inode
));
708 neh
->eh_magic
= EXT4_EXT_MAGIC
;
710 ex
= EXT_FIRST_EXTENT(neh
);
712 /* move remainder of path[depth] to the new leaf */
713 BUG_ON(path
[depth
].p_hdr
->eh_entries
!= path
[depth
].p_hdr
->eh_max
);
714 /* start copy from next extent */
715 /* TODO: we could do it by single memmove */
718 while (path
[depth
].p_ext
<=
719 EXT_MAX_EXTENT(path
[depth
].p_hdr
)) {
720 ext_debug("move %d:%llu:%d in new leaf %llu\n",
721 le32_to_cpu(path
[depth
].p_ext
->ee_block
),
722 ext_pblock(path
[depth
].p_ext
),
723 ext4_ext_get_actual_len(path
[depth
].p_ext
),
725 /*memmove(ex++, path[depth].p_ext++,
726 sizeof(struct ext4_extent));
732 memmove(ex
, path
[depth
].p_ext
-m
, sizeof(struct ext4_extent
)*m
);
733 neh
->eh_entries
= cpu_to_le16(le16_to_cpu(neh
->eh_entries
)+m
);
736 set_buffer_uptodate(bh
);
739 err
= ext4_journal_dirty_metadata(handle
, bh
);
745 /* correct old leaf */
747 err
= ext4_ext_get_access(handle
, inode
, path
+ depth
);
750 path
[depth
].p_hdr
->eh_entries
=
751 cpu_to_le16(le16_to_cpu(path
[depth
].p_hdr
->eh_entries
)-m
);
752 err
= ext4_ext_dirty(handle
, inode
, path
+ depth
);
758 /* create intermediate indexes */
762 ext_debug("create %d intermediate indices\n", k
);
763 /* insert new index into current index block */
764 /* current depth stored in i var */
768 newblock
= ablocks
[--a
];
769 bh
= sb_getblk(inode
->i_sb
, newblock
);
776 err
= ext4_journal_get_create_access(handle
, bh
);
780 neh
= ext_block_hdr(bh
);
781 neh
->eh_entries
= cpu_to_le16(1);
782 neh
->eh_magic
= EXT4_EXT_MAGIC
;
783 neh
->eh_max
= cpu_to_le16(ext4_ext_space_block_idx(inode
));
784 neh
->eh_depth
= cpu_to_le16(depth
- i
);
785 fidx
= EXT_FIRST_INDEX(neh
);
786 fidx
->ei_block
= border
;
787 ext4_idx_store_pblock(fidx
, oldblock
);
789 ext_debug("int.index at %d (block %llu): %u -> %llu\n",
790 i
, newblock
, le32_to_cpu(border
), oldblock
);
795 ext_debug("cur 0x%p, last 0x%p\n", path
[i
].p_idx
,
796 EXT_MAX_INDEX(path
[i
].p_hdr
));
797 BUG_ON(EXT_MAX_INDEX(path
[i
].p_hdr
) !=
798 EXT_LAST_INDEX(path
[i
].p_hdr
));
799 while (path
[i
].p_idx
<= EXT_MAX_INDEX(path
[i
].p_hdr
)) {
800 ext_debug("%d: move %d:%llu in new index %llu\n", i
,
801 le32_to_cpu(path
[i
].p_idx
->ei_block
),
802 idx_pblock(path
[i
].p_idx
),
804 /*memmove(++fidx, path[i].p_idx++,
805 sizeof(struct ext4_extent_idx));
807 BUG_ON(neh->eh_entries > neh->eh_max);*/
812 memmove(++fidx
, path
[i
].p_idx
- m
,
813 sizeof(struct ext4_extent_idx
) * m
);
815 cpu_to_le16(le16_to_cpu(neh
->eh_entries
) + m
);
817 set_buffer_uptodate(bh
);
820 err
= ext4_journal_dirty_metadata(handle
, bh
);
826 /* correct old index */
828 err
= ext4_ext_get_access(handle
, inode
, path
+ i
);
831 path
[i
].p_hdr
->eh_entries
= cpu_to_le16(le16_to_cpu(path
[i
].p_hdr
->eh_entries
)-m
);
832 err
= ext4_ext_dirty(handle
, inode
, path
+ i
);
840 /* insert new index */
841 err
= ext4_ext_insert_index(handle
, inode
, path
+ at
,
842 le32_to_cpu(border
), newblock
);
846 if (buffer_locked(bh
))
852 /* free all allocated blocks in error case */
853 for (i
= 0; i
< depth
; i
++) {
856 ext4_free_blocks(handle
, inode
, ablocks
[i
], 1, 1);
865 * ext4_ext_grow_indepth:
866 * implements tree growing procedure:
867 * - allocates new block
868 * - moves top-level data (index block or leaf) into the new block
869 * - initializes new top-level, creating index that points to the
872 static int ext4_ext_grow_indepth(handle_t
*handle
, struct inode
*inode
,
873 struct ext4_ext_path
*path
,
874 struct ext4_extent
*newext
)
876 struct ext4_ext_path
*curp
= path
;
877 struct ext4_extent_header
*neh
;
878 struct ext4_extent_idx
*fidx
;
879 struct buffer_head
*bh
;
880 ext4_fsblk_t newblock
;
883 newblock
= ext4_ext_new_block(handle
, inode
, path
, newext
, &err
);
887 bh
= sb_getblk(inode
->i_sb
, newblock
);
890 ext4_std_error(inode
->i_sb
, err
);
895 err
= ext4_journal_get_create_access(handle
, bh
);
901 /* move top-level index/leaf into new block */
902 memmove(bh
->b_data
, curp
->p_hdr
, sizeof(EXT4_I(inode
)->i_data
));
904 /* set size of new block */
905 neh
= ext_block_hdr(bh
);
906 /* old root could have indexes or leaves
907 * so calculate e_max right way */
908 if (ext_depth(inode
))
909 neh
->eh_max
= cpu_to_le16(ext4_ext_space_block_idx(inode
));
911 neh
->eh_max
= cpu_to_le16(ext4_ext_space_block(inode
));
912 neh
->eh_magic
= EXT4_EXT_MAGIC
;
913 set_buffer_uptodate(bh
);
916 err
= ext4_journal_dirty_metadata(handle
, bh
);
920 /* create index in new top-level index: num,max,pointer */
921 err
= ext4_ext_get_access(handle
, inode
, curp
);
925 curp
->p_hdr
->eh_magic
= EXT4_EXT_MAGIC
;
926 curp
->p_hdr
->eh_max
= cpu_to_le16(ext4_ext_space_root_idx(inode
));
927 curp
->p_hdr
->eh_entries
= cpu_to_le16(1);
928 curp
->p_idx
= EXT_FIRST_INDEX(curp
->p_hdr
);
930 if (path
[0].p_hdr
->eh_depth
)
931 curp
->p_idx
->ei_block
=
932 EXT_FIRST_INDEX(path
[0].p_hdr
)->ei_block
;
934 curp
->p_idx
->ei_block
=
935 EXT_FIRST_EXTENT(path
[0].p_hdr
)->ee_block
;
936 ext4_idx_store_pblock(curp
->p_idx
, newblock
);
938 neh
= ext_inode_hdr(inode
);
939 fidx
= EXT_FIRST_INDEX(neh
);
940 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
941 le16_to_cpu(neh
->eh_entries
), le16_to_cpu(neh
->eh_max
),
942 le32_to_cpu(fidx
->ei_block
), idx_pblock(fidx
));
944 neh
->eh_depth
= cpu_to_le16(path
->p_depth
+ 1);
945 err
= ext4_ext_dirty(handle
, inode
, curp
);
953 * ext4_ext_create_new_leaf:
954 * finds empty index and adds new leaf.
955 * if no free index is found, then it requests in-depth growing.
957 static int ext4_ext_create_new_leaf(handle_t
*handle
, struct inode
*inode
,
958 struct ext4_ext_path
*path
,
959 struct ext4_extent
*newext
)
961 struct ext4_ext_path
*curp
;
962 int depth
, i
, err
= 0;
965 i
= depth
= ext_depth(inode
);
967 /* walk up to the tree and look for free index entry */
969 while (i
> 0 && !EXT_HAS_FREE_INDEX(curp
)) {
974 /* we use already allocated block for index block,
975 * so subsequent data blocks should be contiguous */
976 if (EXT_HAS_FREE_INDEX(curp
)) {
977 /* if we found index with free entry, then use that
978 * entry: create all needed subtree and add new leaf */
979 err
= ext4_ext_split(handle
, inode
, path
, newext
, i
);
982 ext4_ext_drop_refs(path
);
983 path
= ext4_ext_find_extent(inode
,
984 (ext4_lblk_t
)le32_to_cpu(newext
->ee_block
),
989 /* tree is full, time to grow in depth */
990 err
= ext4_ext_grow_indepth(handle
, inode
, path
, newext
);
995 ext4_ext_drop_refs(path
);
996 path
= ext4_ext_find_extent(inode
,
997 (ext4_lblk_t
)le32_to_cpu(newext
->ee_block
),
1000 err
= PTR_ERR(path
);
1005 * only first (depth 0 -> 1) produces free space;
1006 * in all other cases we have to split the grown tree
1008 depth
= ext_depth(inode
);
1009 if (path
[depth
].p_hdr
->eh_entries
== path
[depth
].p_hdr
->eh_max
) {
1010 /* now we need to split */
1020 * search the closest allocated block to the left for *logical
1021 * and returns it at @logical + it's physical address at @phys
1022 * if *logical is the smallest allocated block, the function
1023 * returns 0 at @phys
1024 * return value contains 0 (success) or error code
1027 ext4_ext_search_left(struct inode
*inode
, struct ext4_ext_path
*path
,
1028 ext4_lblk_t
*logical
, ext4_fsblk_t
*phys
)
1030 struct ext4_extent_idx
*ix
;
1031 struct ext4_extent
*ex
;
1034 BUG_ON(path
== NULL
);
1035 depth
= path
->p_depth
;
1038 if (depth
== 0 && path
->p_ext
== NULL
)
1041 /* usually extent in the path covers blocks smaller
1042 * then *logical, but it can be that extent is the
1043 * first one in the file */
1045 ex
= path
[depth
].p_ext
;
1046 ee_len
= ext4_ext_get_actual_len(ex
);
1047 if (*logical
< le32_to_cpu(ex
->ee_block
)) {
1048 BUG_ON(EXT_FIRST_EXTENT(path
[depth
].p_hdr
) != ex
);
1049 while (--depth
>= 0) {
1050 ix
= path
[depth
].p_idx
;
1051 BUG_ON(ix
!= EXT_FIRST_INDEX(path
[depth
].p_hdr
));
1056 BUG_ON(*logical
< (le32_to_cpu(ex
->ee_block
) + ee_len
));
1058 *logical
= le32_to_cpu(ex
->ee_block
) + ee_len
- 1;
1059 *phys
= ext_pblock(ex
) + ee_len
- 1;
1064 * search the closest allocated block to the right for *logical
1065 * and returns it at @logical + it's physical address at @phys
1066 * if *logical is the smallest allocated block, the function
1067 * returns 0 at @phys
1068 * return value contains 0 (success) or error code
1071 ext4_ext_search_right(struct inode
*inode
, struct ext4_ext_path
*path
,
1072 ext4_lblk_t
*logical
, ext4_fsblk_t
*phys
)
1074 struct buffer_head
*bh
= NULL
;
1075 struct ext4_extent_header
*eh
;
1076 struct ext4_extent_idx
*ix
;
1077 struct ext4_extent
*ex
;
1081 BUG_ON(path
== NULL
);
1082 depth
= path
->p_depth
;
1085 if (depth
== 0 && path
->p_ext
== NULL
)
1088 /* usually extent in the path covers blocks smaller
1089 * then *logical, but it can be that extent is the
1090 * first one in the file */
1092 ex
= path
[depth
].p_ext
;
1093 ee_len
= ext4_ext_get_actual_len(ex
);
1094 if (*logical
< le32_to_cpu(ex
->ee_block
)) {
1095 BUG_ON(EXT_FIRST_EXTENT(path
[depth
].p_hdr
) != ex
);
1096 while (--depth
>= 0) {
1097 ix
= path
[depth
].p_idx
;
1098 BUG_ON(ix
!= EXT_FIRST_INDEX(path
[depth
].p_hdr
));
1100 *logical
= le32_to_cpu(ex
->ee_block
);
1101 *phys
= ext_pblock(ex
);
1105 BUG_ON(*logical
< (le32_to_cpu(ex
->ee_block
) + ee_len
));
1107 if (ex
!= EXT_LAST_EXTENT(path
[depth
].p_hdr
)) {
1108 /* next allocated block in this leaf */
1110 *logical
= le32_to_cpu(ex
->ee_block
);
1111 *phys
= ext_pblock(ex
);
1115 /* go up and search for index to the right */
1116 while (--depth
>= 0) {
1117 ix
= path
[depth
].p_idx
;
1118 if (ix
!= EXT_LAST_INDEX(path
[depth
].p_hdr
))
1123 /* we've gone up to the root and
1124 * found no index to the right */
1128 /* we've found index to the right, let's
1129 * follow it and find the closest allocated
1130 * block to the right */
1132 block
= idx_pblock(ix
);
1133 while (++depth
< path
->p_depth
) {
1134 bh
= sb_bread(inode
->i_sb
, block
);
1137 eh
= ext_block_hdr(bh
);
1138 if (ext4_ext_check_header(inode
, eh
, depth
)) {
1142 ix
= EXT_FIRST_INDEX(eh
);
1143 block
= idx_pblock(ix
);
1147 bh
= sb_bread(inode
->i_sb
, block
);
1150 eh
= ext_block_hdr(bh
);
1151 if (ext4_ext_check_header(inode
, eh
, path
->p_depth
- depth
)) {
1155 ex
= EXT_FIRST_EXTENT(eh
);
1156 *logical
= le32_to_cpu(ex
->ee_block
);
1157 *phys
= ext_pblock(ex
);
1164 * ext4_ext_next_allocated_block:
1165 * returns allocated block in subsequent extent or EXT_MAX_BLOCK.
1166 * NOTE: it considers block number from index entry as
1167 * allocated block. Thus, index entries have to be consistent
1171 ext4_ext_next_allocated_block(struct ext4_ext_path
*path
)
1175 BUG_ON(path
== NULL
);
1176 depth
= path
->p_depth
;
1178 if (depth
== 0 && path
->p_ext
== NULL
)
1179 return EXT_MAX_BLOCK
;
1181 while (depth
>= 0) {
1182 if (depth
== path
->p_depth
) {
1184 if (path
[depth
].p_ext
!=
1185 EXT_LAST_EXTENT(path
[depth
].p_hdr
))
1186 return le32_to_cpu(path
[depth
].p_ext
[1].ee_block
);
1189 if (path
[depth
].p_idx
!=
1190 EXT_LAST_INDEX(path
[depth
].p_hdr
))
1191 return le32_to_cpu(path
[depth
].p_idx
[1].ei_block
);
1196 return EXT_MAX_BLOCK
;
1200 * ext4_ext_next_leaf_block:
1201 * returns first allocated block from next leaf or EXT_MAX_BLOCK
1203 static ext4_lblk_t
ext4_ext_next_leaf_block(struct inode
*inode
,
1204 struct ext4_ext_path
*path
)
1208 BUG_ON(path
== NULL
);
1209 depth
= path
->p_depth
;
1211 /* zero-tree has no leaf blocks at all */
1213 return EXT_MAX_BLOCK
;
1215 /* go to index block */
1218 while (depth
>= 0) {
1219 if (path
[depth
].p_idx
!=
1220 EXT_LAST_INDEX(path
[depth
].p_hdr
))
1221 return (ext4_lblk_t
)
1222 le32_to_cpu(path
[depth
].p_idx
[1].ei_block
);
1226 return EXT_MAX_BLOCK
;
1230 * ext4_ext_correct_indexes:
1231 * if leaf gets modified and modified extent is first in the leaf,
1232 * then we have to correct all indexes above.
1233 * TODO: do we need to correct tree in all cases?
1235 static int ext4_ext_correct_indexes(handle_t
*handle
, struct inode
*inode
,
1236 struct ext4_ext_path
*path
)
1238 struct ext4_extent_header
*eh
;
1239 int depth
= ext_depth(inode
);
1240 struct ext4_extent
*ex
;
1244 eh
= path
[depth
].p_hdr
;
1245 ex
= path
[depth
].p_ext
;
1250 /* there is no tree at all */
1254 if (ex
!= EXT_FIRST_EXTENT(eh
)) {
1255 /* we correct tree if first leaf got modified only */
1260 * TODO: we need correction if border is smaller than current one
1263 border
= path
[depth
].p_ext
->ee_block
;
1264 err
= ext4_ext_get_access(handle
, inode
, path
+ k
);
1267 path
[k
].p_idx
->ei_block
= border
;
1268 err
= ext4_ext_dirty(handle
, inode
, path
+ k
);
1273 /* change all left-side indexes */
1274 if (path
[k
+1].p_idx
!= EXT_FIRST_INDEX(path
[k
+1].p_hdr
))
1276 err
= ext4_ext_get_access(handle
, inode
, path
+ k
);
1279 path
[k
].p_idx
->ei_block
= border
;
1280 err
= ext4_ext_dirty(handle
, inode
, path
+ k
);
1289 ext4_can_extents_be_merged(struct inode
*inode
, struct ext4_extent
*ex1
,
1290 struct ext4_extent
*ex2
)
1292 unsigned short ext1_ee_len
, ext2_ee_len
, max_len
;
1295 * Make sure that either both extents are uninitialized, or
1298 if (ext4_ext_is_uninitialized(ex1
) ^ ext4_ext_is_uninitialized(ex2
))
1301 if (ext4_ext_is_uninitialized(ex1
))
1302 max_len
= EXT_UNINIT_MAX_LEN
;
1304 max_len
= EXT_INIT_MAX_LEN
;
1306 ext1_ee_len
= ext4_ext_get_actual_len(ex1
);
1307 ext2_ee_len
= ext4_ext_get_actual_len(ex2
);
1309 if (le32_to_cpu(ex1
->ee_block
) + ext1_ee_len
!=
1310 le32_to_cpu(ex2
->ee_block
))
1314 * To allow future support for preallocated extents to be added
1315 * as an RO_COMPAT feature, refuse to merge to extents if
1316 * this can result in the top bit of ee_len being set.
1318 if (ext1_ee_len
+ ext2_ee_len
> max_len
)
1320 #ifdef AGGRESSIVE_TEST
1321 if (ext1_ee_len
>= 4)
1325 if (ext_pblock(ex1
) + ext1_ee_len
== ext_pblock(ex2
))
1331 * This function tries to merge the "ex" extent to the next extent in the tree.
1332 * It always tries to merge towards right. If you want to merge towards
1333 * left, pass "ex - 1" as argument instead of "ex".
1334 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1335 * 1 if they got merged.
1337 int ext4_ext_try_to_merge(struct inode
*inode
,
1338 struct ext4_ext_path
*path
,
1339 struct ext4_extent
*ex
)
1341 struct ext4_extent_header
*eh
;
1342 unsigned int depth
, len
;
1344 int uninitialized
= 0;
1346 depth
= ext_depth(inode
);
1347 BUG_ON(path
[depth
].p_hdr
== NULL
);
1348 eh
= path
[depth
].p_hdr
;
1350 while (ex
< EXT_LAST_EXTENT(eh
)) {
1351 if (!ext4_can_extents_be_merged(inode
, ex
, ex
+ 1))
1353 /* merge with next extent! */
1354 if (ext4_ext_is_uninitialized(ex
))
1356 ex
->ee_len
= cpu_to_le16(ext4_ext_get_actual_len(ex
)
1357 + ext4_ext_get_actual_len(ex
+ 1));
1359 ext4_ext_mark_uninitialized(ex
);
1361 if (ex
+ 1 < EXT_LAST_EXTENT(eh
)) {
1362 len
= (EXT_LAST_EXTENT(eh
) - ex
- 1)
1363 * sizeof(struct ext4_extent
);
1364 memmove(ex
+ 1, ex
+ 2, len
);
1366 eh
->eh_entries
= cpu_to_le16(le16_to_cpu(eh
->eh_entries
) - 1);
1368 WARN_ON(eh
->eh_entries
== 0);
1369 if (!eh
->eh_entries
)
1370 ext4_error(inode
->i_sb
, "ext4_ext_try_to_merge",
1371 "inode#%lu, eh->eh_entries = 0!", inode
->i_ino
);
1378 * check if a portion of the "newext" extent overlaps with an
1381 * If there is an overlap discovered, it updates the length of the newext
1382 * such that there will be no overlap, and then returns 1.
1383 * If there is no overlap found, it returns 0.
1385 unsigned int ext4_ext_check_overlap(struct inode
*inode
,
1386 struct ext4_extent
*newext
,
1387 struct ext4_ext_path
*path
)
1390 unsigned int depth
, len1
;
1391 unsigned int ret
= 0;
1393 b1
= le32_to_cpu(newext
->ee_block
);
1394 len1
= ext4_ext_get_actual_len(newext
);
1395 depth
= ext_depth(inode
);
1396 if (!path
[depth
].p_ext
)
1398 b2
= le32_to_cpu(path
[depth
].p_ext
->ee_block
);
1401 * get the next allocated block if the extent in the path
1402 * is before the requested block(s)
1405 b2
= ext4_ext_next_allocated_block(path
);
1406 if (b2
== EXT_MAX_BLOCK
)
1410 /* check for wrap through zero on extent logical start block*/
1411 if (b1
+ len1
< b1
) {
1412 len1
= EXT_MAX_BLOCK
- b1
;
1413 newext
->ee_len
= cpu_to_le16(len1
);
1417 /* check for overlap */
1418 if (b1
+ len1
> b2
) {
1419 newext
->ee_len
= cpu_to_le16(b2
- b1
);
1427 * ext4_ext_insert_extent:
1428 * tries to merge requsted extent into the existing extent or
1429 * inserts requested extent as new one into the tree,
1430 * creating new leaf in the no-space case.
1432 int ext4_ext_insert_extent(handle_t
*handle
, struct inode
*inode
,
1433 struct ext4_ext_path
*path
,
1434 struct ext4_extent
*newext
)
1436 struct ext4_extent_header
* eh
;
1437 struct ext4_extent
*ex
, *fex
;
1438 struct ext4_extent
*nearex
; /* nearest extent */
1439 struct ext4_ext_path
*npath
= NULL
;
1440 int depth
, len
, err
;
1442 unsigned uninitialized
= 0;
1444 BUG_ON(ext4_ext_get_actual_len(newext
) == 0);
1445 depth
= ext_depth(inode
);
1446 ex
= path
[depth
].p_ext
;
1447 BUG_ON(path
[depth
].p_hdr
== NULL
);
1449 /* try to insert block into found extent and return */
1450 if (ex
&& ext4_can_extents_be_merged(inode
, ex
, newext
)) {
1451 ext_debug("append %d block to %d:%d (from %llu)\n",
1452 ext4_ext_get_actual_len(newext
),
1453 le32_to_cpu(ex
->ee_block
),
1454 ext4_ext_get_actual_len(ex
), ext_pblock(ex
));
1455 err
= ext4_ext_get_access(handle
, inode
, path
+ depth
);
1460 * ext4_can_extents_be_merged should have checked that either
1461 * both extents are uninitialized, or both aren't. Thus we
1462 * need to check only one of them here.
1464 if (ext4_ext_is_uninitialized(ex
))
1466 ex
->ee_len
= cpu_to_le16(ext4_ext_get_actual_len(ex
)
1467 + ext4_ext_get_actual_len(newext
));
1469 ext4_ext_mark_uninitialized(ex
);
1470 eh
= path
[depth
].p_hdr
;
1476 depth
= ext_depth(inode
);
1477 eh
= path
[depth
].p_hdr
;
1478 if (le16_to_cpu(eh
->eh_entries
) < le16_to_cpu(eh
->eh_max
))
1481 /* probably next leaf has space for us? */
1482 fex
= EXT_LAST_EXTENT(eh
);
1483 next
= ext4_ext_next_leaf_block(inode
, path
);
1484 if (le32_to_cpu(newext
->ee_block
) > le32_to_cpu(fex
->ee_block
)
1485 && next
!= EXT_MAX_BLOCK
) {
1486 ext_debug("next leaf block - %d\n", next
);
1487 BUG_ON(npath
!= NULL
);
1488 npath
= ext4_ext_find_extent(inode
, next
, NULL
);
1490 return PTR_ERR(npath
);
1491 BUG_ON(npath
->p_depth
!= path
->p_depth
);
1492 eh
= npath
[depth
].p_hdr
;
1493 if (le16_to_cpu(eh
->eh_entries
) < le16_to_cpu(eh
->eh_max
)) {
1494 ext_debug("next leaf isnt full(%d)\n",
1495 le16_to_cpu(eh
->eh_entries
));
1499 ext_debug("next leaf has no free space(%d,%d)\n",
1500 le16_to_cpu(eh
->eh_entries
), le16_to_cpu(eh
->eh_max
));
1504 * There is no free space in the found leaf.
1505 * We're gonna add a new leaf in the tree.
1507 err
= ext4_ext_create_new_leaf(handle
, inode
, path
, newext
);
1510 depth
= ext_depth(inode
);
1511 eh
= path
[depth
].p_hdr
;
1514 nearex
= path
[depth
].p_ext
;
1516 err
= ext4_ext_get_access(handle
, inode
, path
+ depth
);
1521 /* there is no extent in this leaf, create first one */
1522 ext_debug("first extent in the leaf: %d:%llu:%d\n",
1523 le32_to_cpu(newext
->ee_block
),
1525 ext4_ext_get_actual_len(newext
));
1526 path
[depth
].p_ext
= EXT_FIRST_EXTENT(eh
);
1527 } else if (le32_to_cpu(newext
->ee_block
)
1528 > le32_to_cpu(nearex
->ee_block
)) {
1529 /* BUG_ON(newext->ee_block == nearex->ee_block); */
1530 if (nearex
!= EXT_LAST_EXTENT(eh
)) {
1531 len
= EXT_MAX_EXTENT(eh
) - nearex
;
1532 len
= (len
- 1) * sizeof(struct ext4_extent
);
1533 len
= len
< 0 ? 0 : len
;
1534 ext_debug("insert %d:%llu:%d after: nearest 0x%p, "
1535 "move %d from 0x%p to 0x%p\n",
1536 le32_to_cpu(newext
->ee_block
),
1538 ext4_ext_get_actual_len(newext
),
1539 nearex
, len
, nearex
+ 1, nearex
+ 2);
1540 memmove(nearex
+ 2, nearex
+ 1, len
);
1542 path
[depth
].p_ext
= nearex
+ 1;
1544 BUG_ON(newext
->ee_block
== nearex
->ee_block
);
1545 len
= (EXT_MAX_EXTENT(eh
) - nearex
) * sizeof(struct ext4_extent
);
1546 len
= len
< 0 ? 0 : len
;
1547 ext_debug("insert %d:%llu:%d before: nearest 0x%p, "
1548 "move %d from 0x%p to 0x%p\n",
1549 le32_to_cpu(newext
->ee_block
),
1551 ext4_ext_get_actual_len(newext
),
1552 nearex
, len
, nearex
+ 1, nearex
+ 2);
1553 memmove(nearex
+ 1, nearex
, len
);
1554 path
[depth
].p_ext
= nearex
;
1557 eh
->eh_entries
= cpu_to_le16(le16_to_cpu(eh
->eh_entries
)+1);
1558 nearex
= path
[depth
].p_ext
;
1559 nearex
->ee_block
= newext
->ee_block
;
1560 ext4_ext_store_pblock(nearex
, ext_pblock(newext
));
1561 nearex
->ee_len
= newext
->ee_len
;
1564 /* try to merge extents to the right */
1565 ext4_ext_try_to_merge(inode
, path
, nearex
);
1567 /* try to merge extents to the left */
1569 /* time to correct all indexes above */
1570 err
= ext4_ext_correct_indexes(handle
, inode
, path
);
1574 err
= ext4_ext_dirty(handle
, inode
, path
+ depth
);
1578 ext4_ext_drop_refs(npath
);
1581 ext4_ext_tree_changed(inode
);
1582 ext4_ext_invalidate_cache(inode
);
1587 ext4_ext_put_in_cache(struct inode
*inode
, ext4_lblk_t block
,
1588 __u32 len
, ext4_fsblk_t start
, int type
)
1590 struct ext4_ext_cache
*cex
;
1592 cex
= &EXT4_I(inode
)->i_cached_extent
;
1593 cex
->ec_type
= type
;
1594 cex
->ec_block
= block
;
1596 cex
->ec_start
= start
;
1600 * ext4_ext_put_gap_in_cache:
1601 * calculate boundaries of the gap that the requested block fits into
1602 * and cache this gap
1605 ext4_ext_put_gap_in_cache(struct inode
*inode
, struct ext4_ext_path
*path
,
1608 int depth
= ext_depth(inode
);
1611 struct ext4_extent
*ex
;
1613 ex
= path
[depth
].p_ext
;
1615 /* there is no extent yet, so gap is [0;-] */
1617 len
= EXT_MAX_BLOCK
;
1618 ext_debug("cache gap(whole file):");
1619 } else if (block
< le32_to_cpu(ex
->ee_block
)) {
1621 len
= le32_to_cpu(ex
->ee_block
) - block
;
1622 ext_debug("cache gap(before): %u [%u:%u]",
1624 le32_to_cpu(ex
->ee_block
),
1625 ext4_ext_get_actual_len(ex
));
1626 } else if (block
>= le32_to_cpu(ex
->ee_block
)
1627 + ext4_ext_get_actual_len(ex
)) {
1629 lblock
= le32_to_cpu(ex
->ee_block
)
1630 + ext4_ext_get_actual_len(ex
);
1632 next
= ext4_ext_next_allocated_block(path
);
1633 ext_debug("cache gap(after): [%u:%u] %u",
1634 le32_to_cpu(ex
->ee_block
),
1635 ext4_ext_get_actual_len(ex
),
1637 BUG_ON(next
== lblock
);
1638 len
= next
- lblock
;
1644 ext_debug(" -> %u:%lu\n", lblock
, len
);
1645 ext4_ext_put_in_cache(inode
, lblock
, len
, 0, EXT4_EXT_CACHE_GAP
);
1649 ext4_ext_in_cache(struct inode
*inode
, ext4_lblk_t block
,
1650 struct ext4_extent
*ex
)
1652 struct ext4_ext_cache
*cex
;
1654 cex
= &EXT4_I(inode
)->i_cached_extent
;
1656 /* has cache valid data? */
1657 if (cex
->ec_type
== EXT4_EXT_CACHE_NO
)
1658 return EXT4_EXT_CACHE_NO
;
1660 BUG_ON(cex
->ec_type
!= EXT4_EXT_CACHE_GAP
&&
1661 cex
->ec_type
!= EXT4_EXT_CACHE_EXTENT
);
1662 if (block
>= cex
->ec_block
&& block
< cex
->ec_block
+ cex
->ec_len
) {
1663 ex
->ee_block
= cpu_to_le32(cex
->ec_block
);
1664 ext4_ext_store_pblock(ex
, cex
->ec_start
);
1665 ex
->ee_len
= cpu_to_le16(cex
->ec_len
);
1666 ext_debug("%u cached by %u:%u:%llu\n",
1668 cex
->ec_block
, cex
->ec_len
, cex
->ec_start
);
1669 return cex
->ec_type
;
1673 return EXT4_EXT_CACHE_NO
;
1678 * removes index from the index block.
1679 * It's used in truncate case only, thus all requests are for
1680 * last index in the block only.
1682 static int ext4_ext_rm_idx(handle_t
*handle
, struct inode
*inode
,
1683 struct ext4_ext_path
*path
)
1685 struct buffer_head
*bh
;
1689 /* free index block */
1691 leaf
= idx_pblock(path
->p_idx
);
1692 BUG_ON(path
->p_hdr
->eh_entries
== 0);
1693 err
= ext4_ext_get_access(handle
, inode
, path
);
1696 path
->p_hdr
->eh_entries
= cpu_to_le16(le16_to_cpu(path
->p_hdr
->eh_entries
)-1);
1697 err
= ext4_ext_dirty(handle
, inode
, path
);
1700 ext_debug("index is empty, remove it, free block %llu\n", leaf
);
1701 bh
= sb_find_get_block(inode
->i_sb
, leaf
);
1702 ext4_forget(handle
, 1, inode
, bh
, leaf
);
1703 ext4_free_blocks(handle
, inode
, leaf
, 1, 1);
1708 * ext4_ext_calc_credits_for_insert:
1709 * This routine returns max. credits that the extent tree can consume.
1710 * It should be OK for low-performance paths like ->writepage()
1711 * To allow many writing processes to fit into a single transaction,
1712 * the caller should calculate credits under i_data_sem and
1713 * pass the actual path.
1715 int ext4_ext_calc_credits_for_insert(struct inode
*inode
,
1716 struct ext4_ext_path
*path
)
1721 /* probably there is space in leaf? */
1722 depth
= ext_depth(inode
);
1723 if (le16_to_cpu(path
[depth
].p_hdr
->eh_entries
)
1724 < le16_to_cpu(path
[depth
].p_hdr
->eh_max
))
1729 * given 32-bit logical block (4294967296 blocks), max. tree
1730 * can be 4 levels in depth -- 4 * 340^4 == 53453440000.
1731 * Let's also add one more level for imbalance.
1735 /* allocation of new data block(s) */
1739 * tree can be full, so it would need to grow in depth:
1740 * we need one credit to modify old root, credits for
1741 * new root will be added in split accounting
1746 * Index split can happen, we would need:
1747 * allocate intermediate indexes (bitmap + group)
1748 * + change two blocks at each level, but root (already included)
1750 needed
+= (depth
* 2) + (depth
* 2);
1752 /* any allocation modifies superblock */
1758 static int ext4_remove_blocks(handle_t
*handle
, struct inode
*inode
,
1759 struct ext4_extent
*ex
,
1760 ext4_lblk_t from
, ext4_lblk_t to
)
1762 struct buffer_head
*bh
;
1763 unsigned short ee_len
= ext4_ext_get_actual_len(ex
);
1764 int i
, metadata
= 0;
1766 if (S_ISDIR(inode
->i_mode
) || S_ISLNK(inode
->i_mode
))
1768 #ifdef EXTENTS_STATS
1770 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1771 spin_lock(&sbi
->s_ext_stats_lock
);
1772 sbi
->s_ext_blocks
+= ee_len
;
1773 sbi
->s_ext_extents
++;
1774 if (ee_len
< sbi
->s_ext_min
)
1775 sbi
->s_ext_min
= ee_len
;
1776 if (ee_len
> sbi
->s_ext_max
)
1777 sbi
->s_ext_max
= ee_len
;
1778 if (ext_depth(inode
) > sbi
->s_depth_max
)
1779 sbi
->s_depth_max
= ext_depth(inode
);
1780 spin_unlock(&sbi
->s_ext_stats_lock
);
1783 if (from
>= le32_to_cpu(ex
->ee_block
)
1784 && to
== le32_to_cpu(ex
->ee_block
) + ee_len
- 1) {
1789 num
= le32_to_cpu(ex
->ee_block
) + ee_len
- from
;
1790 start
= ext_pblock(ex
) + ee_len
- num
;
1791 ext_debug("free last %u blocks starting %llu\n", num
, start
);
1792 for (i
= 0; i
< num
; i
++) {
1793 bh
= sb_find_get_block(inode
->i_sb
, start
+ i
);
1794 ext4_forget(handle
, 0, inode
, bh
, start
+ i
);
1796 ext4_free_blocks(handle
, inode
, start
, num
, metadata
);
1797 } else if (from
== le32_to_cpu(ex
->ee_block
)
1798 && to
<= le32_to_cpu(ex
->ee_block
) + ee_len
- 1) {
1799 printk(KERN_INFO
"strange request: removal %u-%u from %u:%u\n",
1800 from
, to
, le32_to_cpu(ex
->ee_block
), ee_len
);
1802 printk(KERN_INFO
"strange request: removal(2) "
1803 "%u-%u from %u:%u\n",
1804 from
, to
, le32_to_cpu(ex
->ee_block
), ee_len
);
1810 ext4_ext_rm_leaf(handle_t
*handle
, struct inode
*inode
,
1811 struct ext4_ext_path
*path
, ext4_lblk_t start
)
1813 int err
= 0, correct_index
= 0;
1814 int depth
= ext_depth(inode
), credits
;
1815 struct ext4_extent_header
*eh
;
1816 ext4_lblk_t a
, b
, block
;
1818 ext4_lblk_t ex_ee_block
;
1819 unsigned short ex_ee_len
;
1820 unsigned uninitialized
= 0;
1821 struct ext4_extent
*ex
;
1823 /* the header must be checked already in ext4_ext_remove_space() */
1824 ext_debug("truncate since %u in leaf\n", start
);
1825 if (!path
[depth
].p_hdr
)
1826 path
[depth
].p_hdr
= ext_block_hdr(path
[depth
].p_bh
);
1827 eh
= path
[depth
].p_hdr
;
1830 /* find where to start removing */
1831 ex
= EXT_LAST_EXTENT(eh
);
1833 ex_ee_block
= le32_to_cpu(ex
->ee_block
);
1834 if (ext4_ext_is_uninitialized(ex
))
1836 ex_ee_len
= ext4_ext_get_actual_len(ex
);
1838 while (ex
>= EXT_FIRST_EXTENT(eh
) &&
1839 ex_ee_block
+ ex_ee_len
> start
) {
1840 ext_debug("remove ext %lu:%u\n", ex_ee_block
, ex_ee_len
);
1841 path
[depth
].p_ext
= ex
;
1843 a
= ex_ee_block
> start
? ex_ee_block
: start
;
1844 b
= ex_ee_block
+ ex_ee_len
- 1 < EXT_MAX_BLOCK
?
1845 ex_ee_block
+ ex_ee_len
- 1 : EXT_MAX_BLOCK
;
1847 ext_debug(" border %u:%u\n", a
, b
);
1849 if (a
!= ex_ee_block
&& b
!= ex_ee_block
+ ex_ee_len
- 1) {
1853 } else if (a
!= ex_ee_block
) {
1854 /* remove tail of the extent */
1855 block
= ex_ee_block
;
1857 } else if (b
!= ex_ee_block
+ ex_ee_len
- 1) {
1858 /* remove head of the extent */
1861 /* there is no "make a hole" API yet */
1864 /* remove whole extent: excellent! */
1865 block
= ex_ee_block
;
1867 BUG_ON(a
!= ex_ee_block
);
1868 BUG_ON(b
!= ex_ee_block
+ ex_ee_len
- 1);
1871 /* at present, extent can't cross block group: */
1872 /* leaf + bitmap + group desc + sb + inode */
1874 if (ex
== EXT_FIRST_EXTENT(eh
)) {
1876 credits
+= (ext_depth(inode
)) + 1;
1879 credits
+= 2 * EXT4_QUOTA_TRANS_BLOCKS(inode
->i_sb
);
1882 handle
= ext4_ext_journal_restart(handle
, credits
);
1883 if (IS_ERR(handle
)) {
1884 err
= PTR_ERR(handle
);
1888 err
= ext4_ext_get_access(handle
, inode
, path
+ depth
);
1892 err
= ext4_remove_blocks(handle
, inode
, ex
, a
, b
);
1897 /* this extent is removed; mark slot entirely unused */
1898 ext4_ext_store_pblock(ex
, 0);
1899 eh
->eh_entries
= cpu_to_le16(le16_to_cpu(eh
->eh_entries
)-1);
1902 ex
->ee_block
= cpu_to_le32(block
);
1903 ex
->ee_len
= cpu_to_le16(num
);
1905 * Do not mark uninitialized if all the blocks in the
1906 * extent have been removed.
1908 if (uninitialized
&& num
)
1909 ext4_ext_mark_uninitialized(ex
);
1911 err
= ext4_ext_dirty(handle
, inode
, path
+ depth
);
1915 ext_debug("new extent: %u:%u:%llu\n", block
, num
,
1918 ex_ee_block
= le32_to_cpu(ex
->ee_block
);
1919 ex_ee_len
= ext4_ext_get_actual_len(ex
);
1922 if (correct_index
&& eh
->eh_entries
)
1923 err
= ext4_ext_correct_indexes(handle
, inode
, path
);
1925 /* if this leaf is free, then we should
1926 * remove it from index block above */
1927 if (err
== 0 && eh
->eh_entries
== 0 && path
[depth
].p_bh
!= NULL
)
1928 err
= ext4_ext_rm_idx(handle
, inode
, path
+ depth
);
1935 * ext4_ext_more_to_rm:
1936 * returns 1 if current index has to be freed (even partial)
1939 ext4_ext_more_to_rm(struct ext4_ext_path
*path
)
1941 BUG_ON(path
->p_idx
== NULL
);
1943 if (path
->p_idx
< EXT_FIRST_INDEX(path
->p_hdr
))
1947 * if truncate on deeper level happened, it wasn't partial,
1948 * so we have to consider current index for truncation
1950 if (le16_to_cpu(path
->p_hdr
->eh_entries
) == path
->p_block
)
1955 static int ext4_ext_remove_space(struct inode
*inode
, ext4_lblk_t start
)
1957 struct super_block
*sb
= inode
->i_sb
;
1958 int depth
= ext_depth(inode
);
1959 struct ext4_ext_path
*path
;
1963 ext_debug("truncate since %u\n", start
);
1965 /* probably first extent we're gonna free will be last in block */
1966 handle
= ext4_journal_start(inode
, depth
+ 1);
1968 return PTR_ERR(handle
);
1970 ext4_ext_invalidate_cache(inode
);
1973 * We start scanning from right side, freeing all the blocks
1974 * after i_size and walking into the tree depth-wise.
1976 path
= kzalloc(sizeof(struct ext4_ext_path
) * (depth
+ 1), GFP_KERNEL
);
1978 ext4_journal_stop(handle
);
1981 path
[0].p_hdr
= ext_inode_hdr(inode
);
1982 if (ext4_ext_check_header(inode
, path
[0].p_hdr
, depth
)) {
1986 path
[0].p_depth
= depth
;
1988 while (i
>= 0 && err
== 0) {
1990 /* this is leaf block */
1991 err
= ext4_ext_rm_leaf(handle
, inode
, path
, start
);
1992 /* root level has p_bh == NULL, brelse() eats this */
1993 brelse(path
[i
].p_bh
);
1994 path
[i
].p_bh
= NULL
;
1999 /* this is index block */
2000 if (!path
[i
].p_hdr
) {
2001 ext_debug("initialize header\n");
2002 path
[i
].p_hdr
= ext_block_hdr(path
[i
].p_bh
);
2005 if (!path
[i
].p_idx
) {
2006 /* this level hasn't been touched yet */
2007 path
[i
].p_idx
= EXT_LAST_INDEX(path
[i
].p_hdr
);
2008 path
[i
].p_block
= le16_to_cpu(path
[i
].p_hdr
->eh_entries
)+1;
2009 ext_debug("init index ptr: hdr 0x%p, num %d\n",
2011 le16_to_cpu(path
[i
].p_hdr
->eh_entries
));
2013 /* we were already here, see at next index */
2017 ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2018 i
, EXT_FIRST_INDEX(path
[i
].p_hdr
),
2020 if (ext4_ext_more_to_rm(path
+ i
)) {
2021 struct buffer_head
*bh
;
2022 /* go to the next level */
2023 ext_debug("move to level %d (block %llu)\n",
2024 i
+ 1, idx_pblock(path
[i
].p_idx
));
2025 memset(path
+ i
+ 1, 0, sizeof(*path
));
2026 bh
= sb_bread(sb
, idx_pblock(path
[i
].p_idx
));
2028 /* should we reset i_size? */
2032 if (WARN_ON(i
+ 1 > depth
)) {
2036 if (ext4_ext_check_header(inode
, ext_block_hdr(bh
),
2041 path
[i
+ 1].p_bh
= bh
;
2043 /* save actual number of indexes since this
2044 * number is changed at the next iteration */
2045 path
[i
].p_block
= le16_to_cpu(path
[i
].p_hdr
->eh_entries
);
2048 /* we finished processing this index, go up */
2049 if (path
[i
].p_hdr
->eh_entries
== 0 && i
> 0) {
2050 /* index is empty, remove it;
2051 * handle must be already prepared by the
2052 * truncatei_leaf() */
2053 err
= ext4_ext_rm_idx(handle
, inode
, path
+ i
);
2055 /* root level has p_bh == NULL, brelse() eats this */
2056 brelse(path
[i
].p_bh
);
2057 path
[i
].p_bh
= NULL
;
2059 ext_debug("return to level %d\n", i
);
2063 /* TODO: flexible tree reduction should be here */
2064 if (path
->p_hdr
->eh_entries
== 0) {
2066 * truncate to zero freed all the tree,
2067 * so we need to correct eh_depth
2069 err
= ext4_ext_get_access(handle
, inode
, path
);
2071 ext_inode_hdr(inode
)->eh_depth
= 0;
2072 ext_inode_hdr(inode
)->eh_max
=
2073 cpu_to_le16(ext4_ext_space_root(inode
));
2074 err
= ext4_ext_dirty(handle
, inode
, path
);
2078 ext4_ext_tree_changed(inode
);
2079 ext4_ext_drop_refs(path
);
2081 ext4_journal_stop(handle
);
2087 * called at mount time
2089 void ext4_ext_init(struct super_block
*sb
)
2092 * possible initialization would be here
2095 if (test_opt(sb
, EXTENTS
)) {
2096 printk("EXT4-fs: file extents enabled");
2097 #ifdef AGGRESSIVE_TEST
2098 printk(", aggressive tests");
2100 #ifdef CHECK_BINSEARCH
2101 printk(", check binsearch");
2103 #ifdef EXTENTS_STATS
2107 #ifdef EXTENTS_STATS
2108 spin_lock_init(&EXT4_SB(sb
)->s_ext_stats_lock
);
2109 EXT4_SB(sb
)->s_ext_min
= 1 << 30;
2110 EXT4_SB(sb
)->s_ext_max
= 0;
2116 * called at umount time
2118 void ext4_ext_release(struct super_block
*sb
)
2120 if (!test_opt(sb
, EXTENTS
))
2123 #ifdef EXTENTS_STATS
2124 if (EXT4_SB(sb
)->s_ext_blocks
&& EXT4_SB(sb
)->s_ext_extents
) {
2125 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2126 printk(KERN_ERR
"EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2127 sbi
->s_ext_blocks
, sbi
->s_ext_extents
,
2128 sbi
->s_ext_blocks
/ sbi
->s_ext_extents
);
2129 printk(KERN_ERR
"EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2130 sbi
->s_ext_min
, sbi
->s_ext_max
, sbi
->s_depth_max
);
2136 * This function is called by ext4_ext_get_blocks() if someone tries to write
2137 * to an uninitialized extent. It may result in splitting the uninitialized
2138 * extent into multiple extents (upto three - one initialized and two
2140 * There are three possibilities:
2141 * a> There is no split required: Entire extent should be initialized
2142 * b> Splits in two extents: Write is happening at either end of the extent
2143 * c> Splits in three extents: Somone is writing in middle of the extent
2145 static int ext4_ext_convert_to_initialized(handle_t
*handle
,
2146 struct inode
*inode
,
2147 struct ext4_ext_path
*path
,
2149 unsigned long max_blocks
)
2151 struct ext4_extent
*ex
, newex
;
2152 struct ext4_extent
*ex1
= NULL
;
2153 struct ext4_extent
*ex2
= NULL
;
2154 struct ext4_extent
*ex3
= NULL
;
2155 struct ext4_extent_header
*eh
;
2156 ext4_lblk_t ee_block
;
2157 unsigned int allocated
, ee_len
, depth
;
2158 ext4_fsblk_t newblock
;
2162 depth
= ext_depth(inode
);
2163 eh
= path
[depth
].p_hdr
;
2164 ex
= path
[depth
].p_ext
;
2165 ee_block
= le32_to_cpu(ex
->ee_block
);
2166 ee_len
= ext4_ext_get_actual_len(ex
);
2167 allocated
= ee_len
- (iblock
- ee_block
);
2168 newblock
= iblock
- ee_block
+ ext_pblock(ex
);
2171 /* ex1: ee_block to iblock - 1 : uninitialized */
2172 if (iblock
> ee_block
) {
2174 ex1
->ee_len
= cpu_to_le16(iblock
- ee_block
);
2175 ext4_ext_mark_uninitialized(ex1
);
2179 * for sanity, update the length of the ex2 extent before
2180 * we insert ex3, if ex1 is NULL. This is to avoid temporary
2181 * overlap of blocks.
2183 if (!ex1
&& allocated
> max_blocks
)
2184 ex2
->ee_len
= cpu_to_le16(max_blocks
);
2185 /* ex3: to ee_block + ee_len : uninitialised */
2186 if (allocated
> max_blocks
) {
2187 unsigned int newdepth
;
2189 ex3
->ee_block
= cpu_to_le32(iblock
+ max_blocks
);
2190 ext4_ext_store_pblock(ex3
, newblock
+ max_blocks
);
2191 ex3
->ee_len
= cpu_to_le16(allocated
- max_blocks
);
2192 ext4_ext_mark_uninitialized(ex3
);
2193 err
= ext4_ext_insert_extent(handle
, inode
, path
, ex3
);
2197 * The depth, and hence eh & ex might change
2198 * as part of the insert above.
2200 newdepth
= ext_depth(inode
);
2201 if (newdepth
!= depth
) {
2203 path
= ext4_ext_find_extent(inode
, iblock
, NULL
);
2205 err
= PTR_ERR(path
);
2209 eh
= path
[depth
].p_hdr
;
2210 ex
= path
[depth
].p_ext
;
2214 allocated
= max_blocks
;
2217 * If there was a change of depth as part of the
2218 * insertion of ex3 above, we need to update the length
2219 * of the ex1 extent again here
2221 if (ex1
&& ex1
!= ex
) {
2223 ex1
->ee_len
= cpu_to_le16(iblock
- ee_block
);
2224 ext4_ext_mark_uninitialized(ex1
);
2227 /* ex2: iblock to iblock + maxblocks-1 : initialised */
2228 ex2
->ee_block
= cpu_to_le32(iblock
);
2229 ext4_ext_store_pblock(ex2
, newblock
);
2230 ex2
->ee_len
= cpu_to_le16(allocated
);
2233 err
= ext4_ext_get_access(handle
, inode
, path
+ depth
);
2237 * New (initialized) extent starts from the first block
2238 * in the current extent. i.e., ex2 == ex
2239 * We have to see if it can be merged with the extent
2242 if (ex2
> EXT_FIRST_EXTENT(eh
)) {
2244 * To merge left, pass "ex2 - 1" to try_to_merge(),
2245 * since it merges towards right _only_.
2247 ret
= ext4_ext_try_to_merge(inode
, path
, ex2
- 1);
2249 err
= ext4_ext_correct_indexes(handle
, inode
, path
);
2252 depth
= ext_depth(inode
);
2257 * Try to Merge towards right. This might be required
2258 * only when the whole extent is being written to.
2259 * i.e. ex2 == ex and ex3 == NULL.
2262 ret
= ext4_ext_try_to_merge(inode
, path
, ex2
);
2264 err
= ext4_ext_correct_indexes(handle
, inode
, path
);
2269 /* Mark modified extent as dirty */
2270 err
= ext4_ext_dirty(handle
, inode
, path
+ depth
);
2273 err
= ext4_ext_insert_extent(handle
, inode
, path
, &newex
);
2275 return err
? err
: allocated
;
2279 * Need to be called with
2280 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
2281 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
2283 int ext4_ext_get_blocks(handle_t
*handle
, struct inode
*inode
,
2285 unsigned long max_blocks
, struct buffer_head
*bh_result
,
2286 int create
, int extend_disksize
)
2288 struct ext4_ext_path
*path
= NULL
;
2289 struct ext4_extent_header
*eh
;
2290 struct ext4_extent newex
, *ex
;
2291 ext4_fsblk_t goal
, newblock
;
2292 int err
= 0, depth
, ret
;
2293 unsigned long allocated
= 0;
2294 struct ext4_allocation_request ar
;
2296 __clear_bit(BH_New
, &bh_result
->b_state
);
2297 ext_debug("blocks %u/%lu requested for inode %u\n",
2298 iblock
, max_blocks
, inode
->i_ino
);
2300 /* check in cache */
2301 goal
= ext4_ext_in_cache(inode
, iblock
, &newex
);
2303 if (goal
== EXT4_EXT_CACHE_GAP
) {
2306 * block isn't allocated yet and
2307 * user doesn't want to allocate it
2311 /* we should allocate requested block */
2312 } else if (goal
== EXT4_EXT_CACHE_EXTENT
) {
2313 /* block is already allocated */
2315 - le32_to_cpu(newex
.ee_block
)
2316 + ext_pblock(&newex
);
2317 /* number of remaining blocks in the extent */
2318 allocated
= ext4_ext_get_actual_len(&newex
) -
2319 (iblock
- le32_to_cpu(newex
.ee_block
));
2326 /* find extent for this block */
2327 path
= ext4_ext_find_extent(inode
, iblock
, NULL
);
2329 err
= PTR_ERR(path
);
2334 depth
= ext_depth(inode
);
2337 * consistent leaf must not be empty;
2338 * this situation is possible, though, _during_ tree modification;
2339 * this is why assert can't be put in ext4_ext_find_extent()
2341 BUG_ON(path
[depth
].p_ext
== NULL
&& depth
!= 0);
2342 eh
= path
[depth
].p_hdr
;
2344 ex
= path
[depth
].p_ext
;
2346 ext4_lblk_t ee_block
= le32_to_cpu(ex
->ee_block
);
2347 ext4_fsblk_t ee_start
= ext_pblock(ex
);
2348 unsigned short ee_len
;
2351 * Uninitialized extents are treated as holes, except that
2352 * we split out initialized portions during a write.
2354 ee_len
= ext4_ext_get_actual_len(ex
);
2355 /* if found extent covers block, simply return it */
2356 if (iblock
>= ee_block
&& iblock
< ee_block
+ ee_len
) {
2357 newblock
= iblock
- ee_block
+ ee_start
;
2358 /* number of remaining blocks in the extent */
2359 allocated
= ee_len
- (iblock
- ee_block
);
2360 ext_debug("%u fit into %lu:%d -> %llu\n", iblock
,
2361 ee_block
, ee_len
, newblock
);
2363 /* Do not put uninitialized extent in the cache */
2364 if (!ext4_ext_is_uninitialized(ex
)) {
2365 ext4_ext_put_in_cache(inode
, ee_block
,
2367 EXT4_EXT_CACHE_EXTENT
);
2370 if (create
== EXT4_CREATE_UNINITIALIZED_EXT
)
2375 ret
= ext4_ext_convert_to_initialized(handle
, inode
,
2388 * requested block isn't allocated yet;
2389 * we couldn't try to create block if create flag is zero
2393 * put just found gap into cache to speed up
2394 * subsequent requests
2396 ext4_ext_put_gap_in_cache(inode
, path
, iblock
);
2400 * Okay, we need to do block allocation. Lazily initialize the block
2401 * allocation info here if necessary.
2403 if (S_ISREG(inode
->i_mode
) && (!EXT4_I(inode
)->i_block_alloc_info
))
2404 ext4_init_block_alloc_info(inode
);
2406 /* find neighbour allocated blocks */
2408 err
= ext4_ext_search_left(inode
, path
, &ar
.lleft
, &ar
.pleft
);
2412 err
= ext4_ext_search_right(inode
, path
, &ar
.lright
, &ar
.pright
);
2417 * See if request is beyond maximum number of blocks we can have in
2418 * a single extent. For an initialized extent this limit is
2419 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
2420 * EXT_UNINIT_MAX_LEN.
2422 if (max_blocks
> EXT_INIT_MAX_LEN
&&
2423 create
!= EXT4_CREATE_UNINITIALIZED_EXT
)
2424 max_blocks
= EXT_INIT_MAX_LEN
;
2425 else if (max_blocks
> EXT_UNINIT_MAX_LEN
&&
2426 create
== EXT4_CREATE_UNINITIALIZED_EXT
)
2427 max_blocks
= EXT_UNINIT_MAX_LEN
;
2429 /* Check if we can really insert (iblock)::(iblock+max_blocks) extent */
2430 newex
.ee_block
= cpu_to_le32(iblock
);
2431 newex
.ee_len
= cpu_to_le16(max_blocks
);
2432 err
= ext4_ext_check_overlap(inode
, &newex
, path
);
2434 allocated
= ext4_ext_get_actual_len(&newex
);
2436 allocated
= max_blocks
;
2438 /* allocate new block */
2440 ar
.goal
= ext4_ext_find_goal(inode
, path
, iblock
);
2441 ar
.logical
= iblock
;
2443 if (S_ISREG(inode
->i_mode
))
2444 ar
.flags
= EXT4_MB_HINT_DATA
;
2446 /* disable in-core preallocation for non-regular files */
2448 newblock
= ext4_mb_new_blocks(handle
, &ar
, &err
);
2451 ext_debug("allocate new block: goal %llu, found %llu/%lu\n",
2452 goal
, newblock
, allocated
);
2454 /* try to insert new extent into found leaf and return */
2455 ext4_ext_store_pblock(&newex
, newblock
);
2456 newex
.ee_len
= cpu_to_le16(ar
.len
);
2457 if (create
== EXT4_CREATE_UNINITIALIZED_EXT
) /* Mark uninitialized */
2458 ext4_ext_mark_uninitialized(&newex
);
2459 err
= ext4_ext_insert_extent(handle
, inode
, path
, &newex
);
2461 /* free data blocks we just allocated */
2462 /* not a good idea to call discard here directly,
2463 * but otherwise we'd need to call it every free() */
2464 ext4_mb_discard_inode_preallocations(inode
);
2465 ext4_free_blocks(handle
, inode
, ext_pblock(&newex
),
2466 ext4_ext_get_actual_len(&newex
), 0);
2470 if (extend_disksize
&& inode
->i_size
> EXT4_I(inode
)->i_disksize
)
2471 EXT4_I(inode
)->i_disksize
= inode
->i_size
;
2473 /* previous routine could use block we allocated */
2474 newblock
= ext_pblock(&newex
);
2475 allocated
= ext4_ext_get_actual_len(&newex
);
2477 __set_bit(BH_New
, &bh_result
->b_state
);
2479 /* Cache only when it is _not_ an uninitialized extent */
2480 if (create
!= EXT4_CREATE_UNINITIALIZED_EXT
)
2481 ext4_ext_put_in_cache(inode
, iblock
, allocated
, newblock
,
2482 EXT4_EXT_CACHE_EXTENT
);
2484 if (allocated
> max_blocks
)
2485 allocated
= max_blocks
;
2486 ext4_ext_show_leaf(inode
, path
);
2487 __set_bit(BH_Mapped
, &bh_result
->b_state
);
2488 bh_result
->b_bdev
= inode
->i_sb
->s_bdev
;
2489 bh_result
->b_blocknr
= newblock
;
2492 ext4_ext_drop_refs(path
);
2495 return err
? err
: allocated
;
2498 void ext4_ext_truncate(struct inode
* inode
, struct page
*page
)
2500 struct address_space
*mapping
= inode
->i_mapping
;
2501 struct super_block
*sb
= inode
->i_sb
;
2502 ext4_lblk_t last_block
;
2507 * probably first extent we're gonna free will be last in block
2509 err
= ext4_writepage_trans_blocks(inode
) + 3;
2510 handle
= ext4_journal_start(inode
, err
);
2511 if (IS_ERR(handle
)) {
2513 clear_highpage(page
);
2514 flush_dcache_page(page
);
2516 page_cache_release(page
);
2522 ext4_block_truncate_page(handle
, page
, mapping
, inode
->i_size
);
2524 down_write(&EXT4_I(inode
)->i_data_sem
);
2525 ext4_ext_invalidate_cache(inode
);
2527 ext4_mb_discard_inode_preallocations(inode
);
2530 * TODO: optimization is possible here.
2531 * Probably we need not scan at all,
2532 * because page truncation is enough.
2534 if (ext4_orphan_add(handle
, inode
))
2537 /* we have to know where to truncate from in crash case */
2538 EXT4_I(inode
)->i_disksize
= inode
->i_size
;
2539 ext4_mark_inode_dirty(handle
, inode
);
2541 last_block
= (inode
->i_size
+ sb
->s_blocksize
- 1)
2542 >> EXT4_BLOCK_SIZE_BITS(sb
);
2543 err
= ext4_ext_remove_space(inode
, last_block
);
2545 /* In a multi-transaction truncate, we only make the final
2546 * transaction synchronous.
2553 * If this was a simple ftruncate() and the file will remain alive,
2554 * then we need to clear up the orphan record which we created above.
2555 * However, if this was a real unlink then we were called by
2556 * ext4_delete_inode(), and we allow that function to clean up the
2557 * orphan info for us.
2560 ext4_orphan_del(handle
, inode
);
2562 up_write(&EXT4_I(inode
)->i_data_sem
);
2563 ext4_journal_stop(handle
);
2567 * ext4_ext_writepage_trans_blocks:
2568 * calculate max number of blocks we could modify
2569 * in order to allocate new block for an inode
2571 int ext4_ext_writepage_trans_blocks(struct inode
*inode
, int num
)
2575 needed
= ext4_ext_calc_credits_for_insert(inode
, NULL
);
2577 /* caller wants to allocate num blocks, but note it includes sb */
2578 needed
= needed
* num
- (num
- 1);
2581 needed
+= 2 * EXT4_QUOTA_TRANS_BLOCKS(inode
->i_sb
);
2588 * preallocate space for a file. This implements ext4's fallocate inode
2589 * operation, which gets called from sys_fallocate system call.
2590 * For block-mapped files, posix_fallocate should fall back to the method
2591 * of writing zeroes to the required new blocks (the same behavior which is
2592 * expected for file systems which do not support fallocate() system call).
2594 long ext4_fallocate(struct inode
*inode
, int mode
, loff_t offset
, loff_t len
)
2598 unsigned long max_blocks
;
2599 ext4_fsblk_t nblocks
= 0;
2603 struct buffer_head map_bh
;
2604 unsigned int credits
, blkbits
= inode
->i_blkbits
;
2607 * currently supporting (pre)allocate mode for extent-based
2610 if (!(EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
))
2613 /* preallocation to directories is currently not supported */
2614 if (S_ISDIR(inode
->i_mode
))
2617 block
= offset
>> blkbits
;
2618 max_blocks
= (EXT4_BLOCK_ALIGN(len
+ offset
, blkbits
) >> blkbits
)
2622 * credits to insert 1 extent into extent tree + buffers to be able to
2623 * modify 1 super block, 1 block bitmap and 1 group descriptor.
2625 credits
= EXT4_DATA_TRANS_BLOCKS(inode
->i_sb
) + 3;
2626 down_write((&EXT4_I(inode
)->i_data_sem
));
2628 while (ret
>= 0 && ret
< max_blocks
) {
2629 block
= block
+ ret
;
2630 max_blocks
= max_blocks
- ret
;
2631 handle
= ext4_journal_start(inode
, credits
);
2632 if (IS_ERR(handle
)) {
2633 ret
= PTR_ERR(handle
);
2637 ret
= ext4_ext_get_blocks(handle
, inode
, block
,
2638 max_blocks
, &map_bh
,
2639 EXT4_CREATE_UNINITIALIZED_EXT
, 0);
2642 ext4_error(inode
->i_sb
, "ext4_fallocate",
2643 "ext4_ext_get_blocks returned error: "
2644 "inode#%lu, block=%u, max_blocks=%lu",
2645 inode
->i_ino
, block
, max_blocks
);
2647 ext4_mark_inode_dirty(handle
, inode
);
2648 ret2
= ext4_journal_stop(handle
);
2652 /* check wrap through sign-bit/zero here */
2653 if ((block
+ ret
) < 0 || (block
+ ret
) < block
) {
2655 ext4_mark_inode_dirty(handle
, inode
);
2656 ret2
= ext4_journal_stop(handle
);
2659 if (buffer_new(&map_bh
) && ((block
+ ret
) >
2660 (EXT4_BLOCK_ALIGN(i_size_read(inode
), blkbits
)
2662 nblocks
= nblocks
+ ret
;
2665 /* Update ctime if new blocks get allocated */
2667 struct timespec now
;
2669 now
= current_fs_time(inode
->i_sb
);
2670 if (!timespec_equal(&inode
->i_ctime
, &now
))
2671 inode
->i_ctime
= now
;
2674 ext4_mark_inode_dirty(handle
, inode
);
2675 ret2
= ext4_journal_stop(handle
);
2680 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
2683 up_write((&EXT4_I(inode
)->i_data_sem
));
2685 * Time to update the file size.
2686 * Update only when preallocation was requested beyond the file size.
2688 if (!(mode
& FALLOC_FL_KEEP_SIZE
) &&
2689 (offset
+ len
) > i_size_read(inode
)) {
2692 * if no error, we assume preallocation succeeded
2695 mutex_lock(&inode
->i_mutex
);
2696 i_size_write(inode
, offset
+ len
);
2697 EXT4_I(inode
)->i_disksize
= i_size_read(inode
);
2698 mutex_unlock(&inode
->i_mutex
);
2699 } else if (ret
< 0 && nblocks
) {
2700 /* Handle partial allocation scenario */
2703 mutex_lock(&inode
->i_mutex
);
2704 newsize
= (nblocks
<< blkbits
) + i_size_read(inode
);
2705 i_size_write(inode
, EXT4_BLOCK_ALIGN(newsize
, blkbits
));
2706 EXT4_I(inode
)->i_disksize
= i_size_read(inode
);
2707 mutex_unlock(&inode
->i_mutex
);
2711 return ret
> 0 ? ret2
: ret
;