2 * Memory Migration functionality - linux/mm/migration.c
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter <clameter@sgi.com>
15 #include <linux/migrate.h>
16 #include <linux/module.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/pagevec.h>
23 #include <linux/rmap.h>
24 #include <linux/topology.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/writeback.h>
28 #include <linux/mempolicy.h>
29 #include <linux/vmalloc.h>
30 #include <linux/security.h>
34 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
37 * Isolate one page from the LRU lists. If successful put it onto
38 * the indicated list with elevated page count.
41 * -EBUSY: page not on LRU list
42 * 0: page removed from LRU list and added to the specified list.
44 int isolate_lru_page(struct page
*page
, struct list_head
*pagelist
)
49 struct zone
*zone
= page_zone(page
);
51 spin_lock_irq(&zone
->lru_lock
);
57 del_page_from_active_list(zone
, page
);
59 del_page_from_inactive_list(zone
, page
);
60 list_add_tail(&page
->lru
, pagelist
);
62 spin_unlock_irq(&zone
->lru_lock
);
68 * migrate_prep() needs to be called before we start compiling a list of pages
69 * to be migrated using isolate_lru_page().
71 int migrate_prep(void)
74 * Clear the LRU lists so pages can be isolated.
75 * Note that pages may be moved off the LRU after we have
76 * drained them. Those pages will fail to migrate like other
77 * pages that may be busy.
84 static inline void move_to_lru(struct page
*page
)
86 if (PageActive(page
)) {
88 * lru_cache_add_active checks that
89 * the PG_active bit is off.
91 ClearPageActive(page
);
92 lru_cache_add_active(page
);
100 * Add isolated pages on the list back to the LRU.
102 * returns the number of pages put back.
104 int putback_lru_pages(struct list_head
*l
)
110 list_for_each_entry_safe(page
, page2
, l
, lru
) {
111 list_del(&page
->lru
);
118 static inline int is_swap_pte(pte_t pte
)
120 return !pte_none(pte
) && !pte_present(pte
) && !pte_file(pte
);
124 * Restore a potential migration pte to a working pte entry
126 static void remove_migration_pte(struct vm_area_struct
*vma
,
127 struct page
*old
, struct page
*new)
129 struct mm_struct
*mm
= vma
->vm_mm
;
136 unsigned long addr
= page_address_in_vma(new, vma
);
141 pgd
= pgd_offset(mm
, addr
);
142 if (!pgd_present(*pgd
))
145 pud
= pud_offset(pgd
, addr
);
146 if (!pud_present(*pud
))
149 pmd
= pmd_offset(pud
, addr
);
150 if (!pmd_present(*pmd
))
153 ptep
= pte_offset_map(pmd
, addr
);
155 if (!is_swap_pte(*ptep
)) {
160 ptl
= pte_lockptr(mm
, pmd
);
163 if (!is_swap_pte(pte
))
166 entry
= pte_to_swp_entry(pte
);
168 if (!is_migration_entry(entry
) || migration_entry_to_page(entry
) != old
)
172 pte
= pte_mkold(mk_pte(new, vma
->vm_page_prot
));
173 if (is_write_migration_entry(entry
))
174 pte
= pte_mkwrite(pte
);
175 set_pte_at(mm
, addr
, ptep
, pte
);
178 page_add_anon_rmap(new, vma
, addr
);
180 page_add_file_rmap(new);
182 /* No need to invalidate - it was non-present before */
183 update_mmu_cache(vma
, addr
, pte
);
184 lazy_mmu_prot_update(pte
);
187 pte_unmap_unlock(ptep
, ptl
);
191 * Note that remove_file_migration_ptes will only work on regular mappings,
192 * Nonlinear mappings do not use migration entries.
194 static void remove_file_migration_ptes(struct page
*old
, struct page
*new)
196 struct vm_area_struct
*vma
;
197 struct address_space
*mapping
= page_mapping(new);
198 struct prio_tree_iter iter
;
199 pgoff_t pgoff
= new->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
204 spin_lock(&mapping
->i_mmap_lock
);
206 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
)
207 remove_migration_pte(vma
, old
, new);
209 spin_unlock(&mapping
->i_mmap_lock
);
213 * Must hold mmap_sem lock on at least one of the vmas containing
214 * the page so that the anon_vma cannot vanish.
216 static void remove_anon_migration_ptes(struct page
*old
, struct page
*new)
218 struct anon_vma
*anon_vma
;
219 struct vm_area_struct
*vma
;
220 unsigned long mapping
;
222 mapping
= (unsigned long)new->mapping
;
224 if (!mapping
|| (mapping
& PAGE_MAPPING_ANON
) == 0)
228 * We hold the mmap_sem lock. So no need to call page_lock_anon_vma.
230 anon_vma
= (struct anon_vma
*) (mapping
- PAGE_MAPPING_ANON
);
231 spin_lock(&anon_vma
->lock
);
233 list_for_each_entry(vma
, &anon_vma
->head
, anon_vma_node
)
234 remove_migration_pte(vma
, old
, new);
236 spin_unlock(&anon_vma
->lock
);
240 * Get rid of all migration entries and replace them by
241 * references to the indicated page.
243 static void remove_migration_ptes(struct page
*old
, struct page
*new)
246 remove_anon_migration_ptes(old
, new);
248 remove_file_migration_ptes(old
, new);
252 * Something used the pte of a page under migration. We need to
253 * get to the page and wait until migration is finished.
254 * When we return from this function the fault will be retried.
256 * This function is called from do_swap_page().
258 void migration_entry_wait(struct mm_struct
*mm
, pmd_t
*pmd
,
259 unsigned long address
)
266 ptep
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
268 if (!is_swap_pte(pte
))
271 entry
= pte_to_swp_entry(pte
);
272 if (!is_migration_entry(entry
))
275 page
= migration_entry_to_page(entry
);
278 pte_unmap_unlock(ptep
, ptl
);
279 wait_on_page_locked(page
);
283 pte_unmap_unlock(ptep
, ptl
);
287 * Replace the page in the mapping.
289 * The number of remaining references must be:
290 * 1 for anonymous pages without a mapping
291 * 2 for pages with a mapping
292 * 3 for pages with a mapping and PagePrivate set.
294 static int migrate_page_move_mapping(struct address_space
*mapping
,
295 struct page
*newpage
, struct page
*page
)
297 struct page
**radix_pointer
;
301 if (page_count(page
) != 1)
306 write_lock_irq(&mapping
->tree_lock
);
308 radix_pointer
= (struct page
**)radix_tree_lookup_slot(
312 if (page_count(page
) != 2 + !!PagePrivate(page
) ||
313 *radix_pointer
!= page
) {
314 write_unlock_irq(&mapping
->tree_lock
);
319 * Now we know that no one else is looking at the page.
323 if (PageSwapCache(page
)) {
324 SetPageSwapCache(newpage
);
325 set_page_private(newpage
, page_private(page
));
329 *radix_pointer
= newpage
;
331 write_unlock_irq(&mapping
->tree_lock
);
337 * Copy the page to its new location
339 static void migrate_page_copy(struct page
*newpage
, struct page
*page
)
341 copy_highpage(newpage
, page
);
344 SetPageError(newpage
);
345 if (PageReferenced(page
))
346 SetPageReferenced(newpage
);
347 if (PageUptodate(page
))
348 SetPageUptodate(newpage
);
349 if (PageActive(page
))
350 SetPageActive(newpage
);
351 if (PageChecked(page
))
352 SetPageChecked(newpage
);
353 if (PageMappedToDisk(page
))
354 SetPageMappedToDisk(newpage
);
356 if (PageDirty(page
)) {
357 clear_page_dirty_for_io(page
);
358 set_page_dirty(newpage
);
362 ClearPageSwapCache(page
);
364 ClearPageActive(page
);
365 ClearPagePrivate(page
);
366 set_page_private(page
, 0);
367 page
->mapping
= NULL
;
370 * If any waiters have accumulated on the new page then
373 if (PageWriteback(newpage
))
374 end_page_writeback(newpage
);
377 /************************************************************
378 * Migration functions
379 ***********************************************************/
381 /* Always fail migration. Used for mappings that are not movable */
382 int fail_migrate_page(struct address_space
*mapping
,
383 struct page
*newpage
, struct page
*page
)
387 EXPORT_SYMBOL(fail_migrate_page
);
390 * Common logic to directly migrate a single page suitable for
391 * pages that do not use PagePrivate.
393 * Pages are locked upon entry and exit.
395 int migrate_page(struct address_space
*mapping
,
396 struct page
*newpage
, struct page
*page
)
400 BUG_ON(PageWriteback(page
)); /* Writeback must be complete */
402 rc
= migrate_page_move_mapping(mapping
, newpage
, page
);
407 migrate_page_copy(newpage
, page
);
410 EXPORT_SYMBOL(migrate_page
);
413 * Migration function for pages with buffers. This function can only be used
414 * if the underlying filesystem guarantees that no other references to "page"
417 int buffer_migrate_page(struct address_space
*mapping
,
418 struct page
*newpage
, struct page
*page
)
420 struct buffer_head
*bh
, *head
;
423 if (!page_has_buffers(page
))
424 return migrate_page(mapping
, newpage
, page
);
426 head
= page_buffers(page
);
428 rc
= migrate_page_move_mapping(mapping
, newpage
, page
);
437 bh
= bh
->b_this_page
;
439 } while (bh
!= head
);
441 ClearPagePrivate(page
);
442 set_page_private(newpage
, page_private(page
));
443 set_page_private(page
, 0);
449 set_bh_page(bh
, newpage
, bh_offset(bh
));
450 bh
= bh
->b_this_page
;
452 } while (bh
!= head
);
454 SetPagePrivate(newpage
);
456 migrate_page_copy(newpage
, page
);
462 bh
= bh
->b_this_page
;
464 } while (bh
!= head
);
468 EXPORT_SYMBOL(buffer_migrate_page
);
471 * Writeback a page to clean the dirty state
473 static int writeout(struct address_space
*mapping
, struct page
*page
)
475 struct writeback_control wbc
= {
476 .sync_mode
= WB_SYNC_NONE
,
479 .range_end
= LLONG_MAX
,
485 if (!mapping
->a_ops
->writepage
)
486 /* No write method for the address space */
489 if (!clear_page_dirty_for_io(page
))
490 /* Someone else already triggered a write */
494 * A dirty page may imply that the underlying filesystem has
495 * the page on some queue. So the page must be clean for
496 * migration. Writeout may mean we loose the lock and the
497 * page state is no longer what we checked for earlier.
498 * At this point we know that the migration attempt cannot
501 remove_migration_ptes(page
, page
);
503 rc
= mapping
->a_ops
->writepage(page
, &wbc
);
505 /* I/O Error writing */
508 if (rc
!= AOP_WRITEPAGE_ACTIVATE
)
509 /* unlocked. Relock */
516 * Default handling if a filesystem does not provide a migration function.
518 static int fallback_migrate_page(struct address_space
*mapping
,
519 struct page
*newpage
, struct page
*page
)
522 return writeout(mapping
, page
);
525 * Buffers may be managed in a filesystem specific way.
526 * We must have no buffers or drop them.
528 if (page_has_buffers(page
) &&
529 !try_to_release_page(page
, GFP_KERNEL
))
532 return migrate_page(mapping
, newpage
, page
);
536 * Move a page to a newly allocated page
537 * The page is locked and all ptes have been successfully removed.
539 * The new page will have replaced the old page if this function
542 static int move_to_new_page(struct page
*newpage
, struct page
*page
)
544 struct address_space
*mapping
;
548 * Block others from accessing the page when we get around to
549 * establishing additional references. We are the only one
550 * holding a reference to the new page at this point.
552 if (TestSetPageLocked(newpage
))
555 /* Prepare mapping for the new page.*/
556 newpage
->index
= page
->index
;
557 newpage
->mapping
= page
->mapping
;
559 mapping
= page_mapping(page
);
561 rc
= migrate_page(mapping
, newpage
, page
);
562 else if (mapping
->a_ops
->migratepage
)
564 * Most pages have a mapping and most filesystems
565 * should provide a migration function. Anonymous
566 * pages are part of swap space which also has its
567 * own migration function. This is the most common
568 * path for page migration.
570 rc
= mapping
->a_ops
->migratepage(mapping
,
573 rc
= fallback_migrate_page(mapping
, newpage
, page
);
576 remove_migration_ptes(page
, newpage
);
578 newpage
->mapping
= NULL
;
580 unlock_page(newpage
);
586 * Obtain the lock on page, remove all ptes and migrate the page
587 * to the newly allocated page in newpage.
589 static int unmap_and_move(new_page_t get_new_page
, unsigned long private,
590 struct page
*page
, int force
)
594 struct page
*newpage
= get_new_page(page
, private, &result
);
599 if (page_count(page
) == 1)
600 /* page was freed from under us. So we are done. */
604 if (TestSetPageLocked(page
)) {
610 if (PageWriteback(page
)) {
613 wait_on_page_writeback(page
);
617 * Establish migration ptes or remove ptes
619 try_to_unmap(page
, 1);
620 if (!page_mapped(page
))
621 rc
= move_to_new_page(newpage
, page
);
624 remove_migration_ptes(page
, page
);
631 * A page that has been migrated has all references
632 * removed and will be freed. A page that has not been
633 * migrated will have kepts its references and be
636 list_del(&page
->lru
);
642 * Move the new page to the LRU. If migration was not successful
643 * then this will free the page.
645 move_to_lru(newpage
);
650 *result
= page_to_nid(newpage
);
658 * The function takes one list of pages to migrate and a function
659 * that determines from the page to be migrated and the private data
660 * the target of the move and allocates the page.
662 * The function returns after 10 attempts or if no pages
663 * are movable anymore because to has become empty
664 * or no retryable pages exist anymore. All pages will be
665 * retruned to the LRU or freed.
667 * Return: Number of pages not migrated or error code.
669 int migrate_pages(struct list_head
*from
,
670 new_page_t get_new_page
, unsigned long private)
677 int swapwrite
= current
->flags
& PF_SWAPWRITE
;
681 current
->flags
|= PF_SWAPWRITE
;
683 for(pass
= 0; pass
< 10 && retry
; pass
++) {
686 list_for_each_entry_safe(page
, page2
, from
, lru
) {
689 rc
= unmap_and_move(get_new_page
, private,
701 /* Permanent failure */
710 current
->flags
&= ~PF_SWAPWRITE
;
712 putback_lru_pages(from
);
717 return nr_failed
+ retry
;
722 * Move a list of individual pages
724 struct page_to_node
{
731 static struct page
*new_page_node(struct page
*p
, unsigned long private,
734 struct page_to_node
*pm
= (struct page_to_node
*)private;
736 while (pm
->node
!= MAX_NUMNODES
&& pm
->page
!= p
)
739 if (pm
->node
== MAX_NUMNODES
)
742 *result
= &pm
->status
;
744 return alloc_pages_node(pm
->node
, GFP_HIGHUSER
, 0);
748 * Move a set of pages as indicated in the pm array. The addr
749 * field must be set to the virtual address of the page to be moved
750 * and the node number must contain a valid target node.
752 static int do_move_pages(struct mm_struct
*mm
, struct page_to_node
*pm
,
756 struct page_to_node
*pp
;
759 down_read(&mm
->mmap_sem
);
762 * Build a list of pages to migrate
765 for (pp
= pm
; pp
->node
!= MAX_NUMNODES
; pp
++) {
766 struct vm_area_struct
*vma
;
770 * A valid page pointer that will not match any of the
771 * pages that will be moved.
773 pp
->page
= ZERO_PAGE(0);
776 vma
= find_vma(mm
, pp
->addr
);
780 page
= follow_page(vma
, pp
->addr
, FOLL_GET
);
785 if (PageReserved(page
)) /* Check for zero page */
789 err
= page_to_nid(page
);
793 * Node already in the right place
798 if (page_mapcount(page
) > 1 &&
802 err
= isolate_lru_page(page
, &pagelist
);
805 * Either remove the duplicate refcount from
806 * isolate_lru_page() or drop the page ref if it was
814 if (!list_empty(&pagelist
))
815 err
= migrate_pages(&pagelist
, new_page_node
,
820 up_read(&mm
->mmap_sem
);
825 * Determine the nodes of a list of pages. The addr in the pm array
826 * must have been set to the virtual address of which we want to determine
829 static int do_pages_stat(struct mm_struct
*mm
, struct page_to_node
*pm
)
831 down_read(&mm
->mmap_sem
);
833 for ( ; pm
->node
!= MAX_NUMNODES
; pm
++) {
834 struct vm_area_struct
*vma
;
839 vma
= find_vma(mm
, pm
->addr
);
843 page
= follow_page(vma
, pm
->addr
, 0);
845 /* Use PageReserved to check for zero page */
846 if (!page
|| PageReserved(page
))
849 err
= page_to_nid(page
);
854 up_read(&mm
->mmap_sem
);
859 * Move a list of pages in the address space of the currently executing
862 asmlinkage
long sys_move_pages(pid_t pid
, unsigned long nr_pages
,
863 const void __user
* __user
*pages
,
864 const int __user
*nodes
,
865 int __user
*status
, int flags
)
869 struct task_struct
*task
;
870 nodemask_t task_nodes
;
871 struct mm_struct
*mm
;
872 struct page_to_node
*pm
= NULL
;
875 if (flags
& ~(MPOL_MF_MOVE
|MPOL_MF_MOVE_ALL
))
878 if ((flags
& MPOL_MF_MOVE_ALL
) && !capable(CAP_SYS_NICE
))
881 /* Find the mm_struct */
882 read_lock(&tasklist_lock
);
883 task
= pid
? find_task_by_pid(pid
) : current
;
885 read_unlock(&tasklist_lock
);
888 mm
= get_task_mm(task
);
889 read_unlock(&tasklist_lock
);
895 * Check if this process has the right to modify the specified
896 * process. The right exists if the process has administrative
897 * capabilities, superuser privileges or the same
898 * userid as the target process.
900 if ((current
->euid
!= task
->suid
) && (current
->euid
!= task
->uid
) &&
901 (current
->uid
!= task
->suid
) && (current
->uid
!= task
->uid
) &&
902 !capable(CAP_SYS_NICE
)) {
907 err
= security_task_movememory(task
);
912 task_nodes
= cpuset_mems_allowed(task
);
914 /* Limit nr_pages so that the multiplication may not overflow */
915 if (nr_pages
>= ULONG_MAX
/ sizeof(struct page_to_node
) - 1) {
920 pm
= vmalloc((nr_pages
+ 1) * sizeof(struct page_to_node
));
927 * Get parameters from user space and initialize the pm
928 * array. Return various errors if the user did something wrong.
930 for (i
= 0; i
< nr_pages
; i
++) {
934 if (get_user(p
, pages
+ i
))
937 pm
[i
].addr
= (unsigned long)p
;
941 if (get_user(node
, nodes
+ i
))
945 if (!node_online(node
))
949 if (!node_isset(node
, task_nodes
))
956 pm
[nr_pages
].node
= MAX_NUMNODES
;
959 err
= do_move_pages(mm
, pm
, flags
& MPOL_MF_MOVE_ALL
);
961 err
= do_pages_stat(mm
, pm
);
964 /* Return status information */
965 for (i
= 0; i
< nr_pages
; i
++)
966 if (put_user(pm
[i
].status
, status
+ i
))
978 * Call migration functions in the vma_ops that may prepare
979 * memory in a vm for migration. migration functions may perform
980 * the migration for vmas that do not have an underlying page struct.
982 int migrate_vmas(struct mm_struct
*mm
, const nodemask_t
*to
,
983 const nodemask_t
*from
, unsigned long flags
)
985 struct vm_area_struct
*vma
;
988 for(vma
= mm
->mmap
; vma
->vm_next
&& !err
; vma
= vma
->vm_next
) {
989 if (vma
->vm_ops
&& vma
->vm_ops
->migrate
) {
990 err
= vma
->vm_ops
->migrate(vma
, to
, from
, flags
);