Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial
[linux-2.6/linux-2.6-openrd.git] / drivers / net / wimax / i2400m / rx.c
blob7ddb173fd4a7b4f2470adfce618e6612375fa534
1 /*
2 * Intel Wireless WiMAX Connection 2400m
3 * Handle incoming traffic and deliver it to the control or data planes
6 * Copyright (C) 2007-2008 Intel Corporation. All rights reserved.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
12 * * Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * * Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in
16 * the documentation and/or other materials provided with the
17 * distribution.
18 * * Neither the name of Intel Corporation nor the names of its
19 * contributors may be used to endorse or promote products derived
20 * from this software without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 * Intel Corporation <linux-wimax@intel.com>
36 * Yanir Lubetkin <yanirx.lubetkin@intel.com>
37 * - Initial implementation
38 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
39 * - Use skb_clone(), break up processing in chunks
40 * - Split transport/device specific
41 * - Make buffer size dynamic to exert less memory pressure
42 * - RX reorder support
44 * This handles the RX path.
46 * We receive an RX message from the bus-specific driver, which
47 * contains one or more payloads that have potentially different
48 * destinataries (data or control paths).
50 * So we just take that payload from the transport specific code in
51 * the form of an skb, break it up in chunks (a cloned skb each in the
52 * case of network packets) and pass it to netdev or to the
53 * command/ack handler (and from there to the WiMAX stack).
55 * PROTOCOL FORMAT
57 * The format of the buffer is:
59 * HEADER (struct i2400m_msg_hdr)
60 * PAYLOAD DESCRIPTOR 0 (struct i2400m_pld)
61 * PAYLOAD DESCRIPTOR 1
62 * ...
63 * PAYLOAD DESCRIPTOR N
64 * PAYLOAD 0 (raw bytes)
65 * PAYLOAD 1
66 * ...
67 * PAYLOAD N
69 * See tx.c for a deeper description on alignment requirements and
70 * other fun facts of it.
72 * DATA PACKETS
74 * In firmwares <= v1.3, data packets have no header for RX, but they
75 * do for TX (currently unused).
77 * In firmware >= 1.4, RX packets have an extended header (16
78 * bytes). This header conveys information for management of host
79 * reordering of packets (the device offloads storage of the packets
80 * for reordering to the host). Read below for more information.
82 * The header is used as dummy space to emulate an ethernet header and
83 * thus be able to act as an ethernet device without having to reallocate.
85 * DATA RX REORDERING
87 * Starting in firmware v1.4, the device can deliver packets for
88 * delivery with special reordering information; this allows it to
89 * more effectively do packet management when some frames were lost in
90 * the radio traffic.
92 * Thus, for RX packets that come out of order, the device gives the
93 * driver enough information to queue them properly and then at some
94 * point, the signal to deliver the whole (or part) of the queued
95 * packets to the networking stack. There are 16 such queues.
97 * This only happens when a packet comes in with the "need reorder"
98 * flag set in the RX header. When such bit is set, the following
99 * operations might be indicated:
101 * - reset queue: send all queued packets to the OS
103 * - queue: queue a packet
105 * - update ws: update the queue's window start and deliver queued
106 * packets that meet the criteria
108 * - queue & update ws: queue a packet, update the window start and
109 * deliver queued packets that meet the criteria
111 * (delivery criteria: the packet's [normalized] sequence number is
112 * lower than the new [normalized] window start).
114 * See the i2400m_roq_*() functions for details.
116 * ROADMAP
118 * i2400m_rx
119 * i2400m_rx_msg_hdr_check
120 * i2400m_rx_pl_descr_check
121 * i2400m_rx_payload
122 * i2400m_net_rx
123 * i2400m_rx_edata
124 * i2400m_net_erx
125 * i2400m_roq_reset
126 * i2400m_net_erx
127 * i2400m_roq_queue
128 * __i2400m_roq_queue
129 * i2400m_roq_update_ws
130 * __i2400m_roq_update_ws
131 * i2400m_net_erx
132 * i2400m_roq_queue_update_ws
133 * __i2400m_roq_queue
134 * __i2400m_roq_update_ws
135 * i2400m_net_erx
136 * i2400m_rx_ctl
137 * i2400m_msg_size_check
138 * i2400m_report_hook_work [in a workqueue]
139 * i2400m_report_hook
140 * wimax_msg_to_user
141 * i2400m_rx_ctl_ack
142 * wimax_msg_to_user_alloc
143 * i2400m_rx_trace
144 * i2400m_msg_size_check
145 * wimax_msg
147 #include <linux/kernel.h>
148 #include <linux/if_arp.h>
149 #include <linux/netdevice.h>
150 #include <linux/workqueue.h>
151 #include "i2400m.h"
154 #define D_SUBMODULE rx
155 #include "debug-levels.h"
157 struct i2400m_report_hook_args {
158 struct sk_buff *skb_rx;
159 const struct i2400m_l3l4_hdr *l3l4_hdr;
160 size_t size;
161 struct list_head list_node;
166 * Execute i2400m_report_hook in a workqueue
168 * Goes over the list of queued reports in i2400m->rx_reports and
169 * processes them.
171 * NOTE: refcounts on i2400m are not needed because we flush the
172 * workqueue this runs on (i2400m->work_queue) before destroying
173 * i2400m.
175 void i2400m_report_hook_work(struct work_struct *ws)
177 struct i2400m *i2400m = container_of(ws, struct i2400m, rx_report_ws);
178 struct device *dev = i2400m_dev(i2400m);
179 struct i2400m_report_hook_args *args, *args_next;
180 LIST_HEAD(list);
181 unsigned long flags;
183 while (1) {
184 spin_lock_irqsave(&i2400m->rx_lock, flags);
185 list_splice_init(&i2400m->rx_reports, &list);
186 spin_unlock_irqrestore(&i2400m->rx_lock, flags);
187 if (list_empty(&list))
188 break;
189 else
190 d_printf(1, dev, "processing queued reports\n");
191 list_for_each_entry_safe(args, args_next, &list, list_node) {
192 d_printf(2, dev, "processing queued report %p\n", args);
193 i2400m_report_hook(i2400m, args->l3l4_hdr, args->size);
194 kfree_skb(args->skb_rx);
195 list_del(&args->list_node);
196 kfree(args);
203 * Flush the list of queued reports
205 static
206 void i2400m_report_hook_flush(struct i2400m *i2400m)
208 struct device *dev = i2400m_dev(i2400m);
209 struct i2400m_report_hook_args *args, *args_next;
210 LIST_HEAD(list);
211 unsigned long flags;
213 d_printf(1, dev, "flushing queued reports\n");
214 spin_lock_irqsave(&i2400m->rx_lock, flags);
215 list_splice_init(&i2400m->rx_reports, &list);
216 spin_unlock_irqrestore(&i2400m->rx_lock, flags);
217 list_for_each_entry_safe(args, args_next, &list, list_node) {
218 d_printf(2, dev, "flushing queued report %p\n", args);
219 kfree_skb(args->skb_rx);
220 list_del(&args->list_node);
221 kfree(args);
227 * Queue a report for later processing
229 * @i2400m: device descriptor
230 * @skb_rx: skb that contains the payload (for reference counting)
231 * @l3l4_hdr: pointer to the control
232 * @size: size of the message
234 static
235 void i2400m_report_hook_queue(struct i2400m *i2400m, struct sk_buff *skb_rx,
236 const void *l3l4_hdr, size_t size)
238 struct device *dev = i2400m_dev(i2400m);
239 unsigned long flags;
240 struct i2400m_report_hook_args *args;
242 args = kzalloc(sizeof(*args), GFP_NOIO);
243 if (args) {
244 args->skb_rx = skb_get(skb_rx);
245 args->l3l4_hdr = l3l4_hdr;
246 args->size = size;
247 spin_lock_irqsave(&i2400m->rx_lock, flags);
248 list_add_tail(&args->list_node, &i2400m->rx_reports);
249 spin_unlock_irqrestore(&i2400m->rx_lock, flags);
250 d_printf(2, dev, "queued report %p\n", args);
251 rmb(); /* see i2400m->ready's documentation */
252 if (likely(i2400m->ready)) /* only send if up */
253 queue_work(i2400m->work_queue, &i2400m->rx_report_ws);
254 } else {
255 if (printk_ratelimit())
256 dev_err(dev, "%s:%u: Can't allocate %zu B\n",
257 __func__, __LINE__, sizeof(*args));
263 * Process an ack to a command
265 * @i2400m: device descriptor
266 * @payload: pointer to message
267 * @size: size of the message
269 * Pass the acknodledgment (in an skb) to the thread that is waiting
270 * for it in i2400m->msg_completion.
272 * We need to coordinate properly with the thread waiting for the
273 * ack. Check if it is waiting or if it is gone. We loose the spinlock
274 * to avoid allocating on atomic contexts (yeah, could use GFP_ATOMIC,
275 * but this is not so speed critical).
277 static
278 void i2400m_rx_ctl_ack(struct i2400m *i2400m,
279 const void *payload, size_t size)
281 struct device *dev = i2400m_dev(i2400m);
282 struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
283 unsigned long flags;
284 struct sk_buff *ack_skb;
286 /* Anyone waiting for an answer? */
287 spin_lock_irqsave(&i2400m->rx_lock, flags);
288 if (i2400m->ack_skb != ERR_PTR(-EINPROGRESS)) {
289 dev_err(dev, "Huh? reply to command with no waiters\n");
290 goto error_no_waiter;
292 spin_unlock_irqrestore(&i2400m->rx_lock, flags);
294 ack_skb = wimax_msg_alloc(wimax_dev, NULL, payload, size, GFP_KERNEL);
296 /* Check waiter didn't time out waiting for the answer... */
297 spin_lock_irqsave(&i2400m->rx_lock, flags);
298 if (i2400m->ack_skb != ERR_PTR(-EINPROGRESS)) {
299 d_printf(1, dev, "Huh? waiter for command reply cancelled\n");
300 goto error_waiter_cancelled;
302 if (ack_skb == NULL) {
303 dev_err(dev, "CMD/GET/SET ack: cannot allocate SKB\n");
304 i2400m->ack_skb = ERR_PTR(-ENOMEM);
305 } else
306 i2400m->ack_skb = ack_skb;
307 spin_unlock_irqrestore(&i2400m->rx_lock, flags);
308 complete(&i2400m->msg_completion);
309 return;
311 error_waiter_cancelled:
312 kfree_skb(ack_skb);
313 error_no_waiter:
314 spin_unlock_irqrestore(&i2400m->rx_lock, flags);
315 return;
320 * Receive and process a control payload
322 * @i2400m: device descriptor
323 * @skb_rx: skb that contains the payload (for reference counting)
324 * @payload: pointer to message
325 * @size: size of the message
327 * There are two types of control RX messages: reports (asynchronous,
328 * like your every day interrupts) and 'acks' (reponses to a command,
329 * get or set request).
331 * If it is a report, we run hooks on it (to extract information for
332 * things we need to do in the driver) and then pass it over to the
333 * WiMAX stack to send it to user space.
335 * NOTE: report processing is done in a workqueue specific to the
336 * generic driver, to avoid deadlocks in the system.
338 * If it is not a report, it is an ack to a previously executed
339 * command, set or get, so wake up whoever is waiting for it from
340 * i2400m_msg_to_dev(). i2400m_rx_ctl_ack() takes care of that.
342 * Note that the sizes we pass to other functions from here are the
343 * sizes of the _l3l4_hdr + payload, not full buffer sizes, as we have
344 * verified in _msg_size_check() that they are congruent.
346 * For reports: We can't clone the original skb where the data is
347 * because we need to send this up via netlink; netlink has to add
348 * headers and we can't overwrite what's preceeding the payload...as
349 * it is another message. So we just dup them.
351 static
352 void i2400m_rx_ctl(struct i2400m *i2400m, struct sk_buff *skb_rx,
353 const void *payload, size_t size)
355 int result;
356 struct device *dev = i2400m_dev(i2400m);
357 const struct i2400m_l3l4_hdr *l3l4_hdr = payload;
358 unsigned msg_type;
360 result = i2400m_msg_size_check(i2400m, l3l4_hdr, size);
361 if (result < 0) {
362 dev_err(dev, "HW BUG? device sent a bad message: %d\n",
363 result);
364 goto error_check;
366 msg_type = le16_to_cpu(l3l4_hdr->type);
367 d_printf(1, dev, "%s 0x%04x: %zu bytes\n",
368 msg_type & I2400M_MT_REPORT_MASK ? "REPORT" : "CMD/SET/GET",
369 msg_type, size);
370 d_dump(2, dev, l3l4_hdr, size);
371 if (msg_type & I2400M_MT_REPORT_MASK) {
373 * Process each report
375 * - has to be ran serialized as well
377 * - the handling might force the execution of
378 * commands. That might cause reentrancy issues with
379 * bus-specific subdrivers and workqueues, so the we
380 * run it in a separate workqueue.
382 * - when the driver is not yet ready to handle them,
383 * they are queued and at some point the queue is
384 * restarted [NOTE: we can't queue SKBs directly, as
385 * this might be a piece of a SKB, not the whole
386 * thing, and this is cheaper than cloning the
387 * SKB].
389 * Note we don't do refcounting for the device
390 * structure; this is because before destroying
391 * 'i2400m', we make sure to flush the
392 * i2400m->work_queue, so there are no issues.
394 i2400m_report_hook_queue(i2400m, skb_rx, l3l4_hdr, size);
395 if (unlikely(i2400m->trace_msg_from_user))
396 wimax_msg(&i2400m->wimax_dev, "echo",
397 l3l4_hdr, size, GFP_KERNEL);
398 result = wimax_msg(&i2400m->wimax_dev, NULL, l3l4_hdr, size,
399 GFP_KERNEL);
400 if (result < 0)
401 dev_err(dev, "error sending report to userspace: %d\n",
402 result);
403 } else /* an ack to a CMD, GET or SET */
404 i2400m_rx_ctl_ack(i2400m, payload, size);
405 error_check:
406 return;
411 * Receive and send up a trace
413 * @i2400m: device descriptor
414 * @skb_rx: skb that contains the trace (for reference counting)
415 * @payload: pointer to trace message inside the skb
416 * @size: size of the message
418 * THe i2400m might produce trace information (diagnostics) and we
419 * send them through a different kernel-to-user pipe (to avoid
420 * clogging it).
422 * As in i2400m_rx_ctl(), we can't clone the original skb where the
423 * data is because we need to send this up via netlink; netlink has to
424 * add headers and we can't overwrite what's preceeding the
425 * payload...as it is another message. So we just dup them.
427 static
428 void i2400m_rx_trace(struct i2400m *i2400m,
429 const void *payload, size_t size)
431 int result;
432 struct device *dev = i2400m_dev(i2400m);
433 struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
434 const struct i2400m_l3l4_hdr *l3l4_hdr = payload;
435 unsigned msg_type;
437 result = i2400m_msg_size_check(i2400m, l3l4_hdr, size);
438 if (result < 0) {
439 dev_err(dev, "HW BUG? device sent a bad trace message: %d\n",
440 result);
441 goto error_check;
443 msg_type = le16_to_cpu(l3l4_hdr->type);
444 d_printf(1, dev, "Trace %s 0x%04x: %zu bytes\n",
445 msg_type & I2400M_MT_REPORT_MASK ? "REPORT" : "CMD/SET/GET",
446 msg_type, size);
447 d_dump(2, dev, l3l4_hdr, size);
448 result = wimax_msg(wimax_dev, "trace", l3l4_hdr, size, GFP_KERNEL);
449 if (result < 0)
450 dev_err(dev, "error sending trace to userspace: %d\n",
451 result);
452 error_check:
453 return;
458 * Reorder queue data stored on skb->cb while the skb is queued in the
459 * reorder queues.
461 struct i2400m_roq_data {
462 unsigned sn; /* Serial number for the skb */
463 enum i2400m_cs cs; /* packet type for the skb */
468 * ReOrder Queue
470 * @ws: Window Start; sequence number where the current window start
471 * is for this queue
472 * @queue: the skb queue itself
473 * @log: circular ring buffer used to log information about the
474 * reorder process in this queue that can be displayed in case of
475 * error to help diagnose it.
477 * This is the head for a list of skbs. In the skb->cb member of the
478 * skb when queued here contains a 'struct i2400m_roq_data' were we
479 * store the sequence number (sn) and the cs (packet type) coming from
480 * the RX payload header from the device.
482 struct i2400m_roq
484 unsigned ws;
485 struct sk_buff_head queue;
486 struct i2400m_roq_log *log;
490 static
491 void __i2400m_roq_init(struct i2400m_roq *roq)
493 roq->ws = 0;
494 skb_queue_head_init(&roq->queue);
498 static
499 unsigned __i2400m_roq_index(struct i2400m *i2400m, struct i2400m_roq *roq)
501 return ((unsigned long) roq - (unsigned long) i2400m->rx_roq)
502 / sizeof(*roq);
507 * Normalize a sequence number based on the queue's window start
509 * nsn = (sn - ws) % 2048
511 * Note that if @sn < @roq->ws, we still need a positive number; %'s
512 * sign is implementation specific, so we normalize it by adding 2048
513 * to bring it to be positive.
515 static
516 unsigned __i2400m_roq_nsn(struct i2400m_roq *roq, unsigned sn)
518 int r;
519 r = ((int) sn - (int) roq->ws) % 2048;
520 if (r < 0)
521 r += 2048;
522 return r;
527 * Circular buffer to keep the last N reorder operations
529 * In case something fails, dumb then to try to come up with what
530 * happened.
532 enum {
533 I2400M_ROQ_LOG_LENGTH = 32,
536 struct i2400m_roq_log {
537 struct i2400m_roq_log_entry {
538 enum i2400m_ro_type type;
539 unsigned ws, count, sn, nsn, new_ws;
540 } entry[I2400M_ROQ_LOG_LENGTH];
541 unsigned in, out;
545 /* Print a log entry */
546 static
547 void i2400m_roq_log_entry_print(struct i2400m *i2400m, unsigned index,
548 unsigned e_index,
549 struct i2400m_roq_log_entry *e)
551 struct device *dev = i2400m_dev(i2400m);
553 switch(e->type) {
554 case I2400M_RO_TYPE_RESET:
555 dev_err(dev, "q#%d reset ws %u cnt %u sn %u/%u"
556 " - new nws %u\n",
557 index, e->ws, e->count, e->sn, e->nsn, e->new_ws);
558 break;
559 case I2400M_RO_TYPE_PACKET:
560 dev_err(dev, "q#%d queue ws %u cnt %u sn %u/%u\n",
561 index, e->ws, e->count, e->sn, e->nsn);
562 break;
563 case I2400M_RO_TYPE_WS:
564 dev_err(dev, "q#%d update_ws ws %u cnt %u sn %u/%u"
565 " - new nws %u\n",
566 index, e->ws, e->count, e->sn, e->nsn, e->new_ws);
567 break;
568 case I2400M_RO_TYPE_PACKET_WS:
569 dev_err(dev, "q#%d queue_update_ws ws %u cnt %u sn %u/%u"
570 " - new nws %u\n",
571 index, e->ws, e->count, e->sn, e->nsn, e->new_ws);
572 break;
573 default:
574 dev_err(dev, "q#%d BUG? entry %u - unknown type %u\n",
575 index, e_index, e->type);
576 break;
581 static
582 void i2400m_roq_log_add(struct i2400m *i2400m,
583 struct i2400m_roq *roq, enum i2400m_ro_type type,
584 unsigned ws, unsigned count, unsigned sn,
585 unsigned nsn, unsigned new_ws)
587 struct i2400m_roq_log_entry *e;
588 unsigned cnt_idx;
589 int index = __i2400m_roq_index(i2400m, roq);
591 /* if we run out of space, we eat from the end */
592 if (roq->log->in - roq->log->out == I2400M_ROQ_LOG_LENGTH)
593 roq->log->out++;
594 cnt_idx = roq->log->in++ % I2400M_ROQ_LOG_LENGTH;
595 e = &roq->log->entry[cnt_idx];
597 e->type = type;
598 e->ws = ws;
599 e->count = count;
600 e->sn = sn;
601 e->nsn = nsn;
602 e->new_ws = new_ws;
604 if (d_test(1))
605 i2400m_roq_log_entry_print(i2400m, index, cnt_idx, e);
609 /* Dump all the entries in the FIFO and reinitialize it */
610 static
611 void i2400m_roq_log_dump(struct i2400m *i2400m, struct i2400m_roq *roq)
613 unsigned cnt, cnt_idx;
614 struct i2400m_roq_log_entry *e;
615 int index = __i2400m_roq_index(i2400m, roq);
617 BUG_ON(roq->log->out > roq->log->in);
618 for (cnt = roq->log->out; cnt < roq->log->in; cnt++) {
619 cnt_idx = cnt % I2400M_ROQ_LOG_LENGTH;
620 e = &roq->log->entry[cnt_idx];
621 i2400m_roq_log_entry_print(i2400m, index, cnt_idx, e);
622 memset(e, 0, sizeof(*e));
624 roq->log->in = roq->log->out = 0;
629 * Backbone for the queuing of an skb (by normalized sequence number)
631 * @i2400m: device descriptor
632 * @roq: reorder queue where to add
633 * @skb: the skb to add
634 * @sn: the sequence number of the skb
635 * @nsn: the normalized sequence number of the skb (pre-computed by the
636 * caller from the @sn and @roq->ws).
638 * We try first a couple of quick cases:
640 * - the queue is empty
641 * - the skb would be appended to the queue
643 * These will be the most common operations.
645 * If these fail, then we have to do a sorted insertion in the queue,
646 * which is the slowest path.
648 * We don't have to acquire a reference count as we are going to own it.
650 static
651 void __i2400m_roq_queue(struct i2400m *i2400m, struct i2400m_roq *roq,
652 struct sk_buff *skb, unsigned sn, unsigned nsn)
654 struct device *dev = i2400m_dev(i2400m);
655 struct sk_buff *skb_itr;
656 struct i2400m_roq_data *roq_data_itr, *roq_data;
657 unsigned nsn_itr;
659 d_fnstart(4, dev, "(i2400m %p roq %p skb %p sn %u nsn %u)\n",
660 i2400m, roq, skb, sn, nsn);
662 roq_data = (struct i2400m_roq_data *) &skb->cb;
663 BUILD_BUG_ON(sizeof(*roq_data) > sizeof(skb->cb));
664 roq_data->sn = sn;
665 d_printf(3, dev, "ERX: roq %p [ws %u] nsn %d sn %u\n",
666 roq, roq->ws, nsn, roq_data->sn);
668 /* Queues will be empty on not-so-bad environments, so try
669 * that first */
670 if (skb_queue_empty(&roq->queue)) {
671 d_printf(2, dev, "ERX: roq %p - first one\n", roq);
672 __skb_queue_head(&roq->queue, skb);
673 goto out;
675 /* Now try append, as most of the operations will be that */
676 skb_itr = skb_peek_tail(&roq->queue);
677 roq_data_itr = (struct i2400m_roq_data *) &skb_itr->cb;
678 nsn_itr = __i2400m_roq_nsn(roq, roq_data_itr->sn);
679 /* NSN bounds assumed correct (checked when it was queued) */
680 if (nsn >= nsn_itr) {
681 d_printf(2, dev, "ERX: roq %p - appended after %p (nsn %d sn %u)\n",
682 roq, skb_itr, nsn_itr, roq_data_itr->sn);
683 __skb_queue_tail(&roq->queue, skb);
684 goto out;
686 /* None of the fast paths option worked. Iterate to find the
687 * right spot where to insert the packet; we know the queue is
688 * not empty, so we are not the first ones; we also know we
689 * are not going to be the last ones. The list is sorted, so
690 * we have to insert before the the first guy with an nsn_itr
691 * greater that our nsn. */
692 skb_queue_walk(&roq->queue, skb_itr) {
693 roq_data_itr = (struct i2400m_roq_data *) &skb_itr->cb;
694 nsn_itr = __i2400m_roq_nsn(roq, roq_data_itr->sn);
695 /* NSN bounds assumed correct (checked when it was queued) */
696 if (nsn_itr > nsn) {
697 d_printf(2, dev, "ERX: roq %p - queued before %p "
698 "(nsn %d sn %u)\n", roq, skb_itr, nsn_itr,
699 roq_data_itr->sn);
700 __skb_queue_before(&roq->queue, skb_itr, skb);
701 goto out;
704 /* If we get here, that is VERY bad -- print info to help
705 * diagnose and crash it */
706 dev_err(dev, "SW BUG? failed to insert packet\n");
707 dev_err(dev, "ERX: roq %p [ws %u] skb %p nsn %d sn %u\n",
708 roq, roq->ws, skb, nsn, roq_data->sn);
709 skb_queue_walk(&roq->queue, skb_itr) {
710 roq_data_itr = (struct i2400m_roq_data *) &skb_itr->cb;
711 nsn_itr = __i2400m_roq_nsn(roq, roq_data_itr->sn);
712 /* NSN bounds assumed correct (checked when it was queued) */
713 dev_err(dev, "ERX: roq %p skb_itr %p nsn %d sn %u\n",
714 roq, skb_itr, nsn_itr, roq_data_itr->sn);
716 BUG();
717 out:
718 d_fnend(4, dev, "(i2400m %p roq %p skb %p sn %u nsn %d) = void\n",
719 i2400m, roq, skb, sn, nsn);
720 return;
725 * Backbone for the update window start operation
727 * @i2400m: device descriptor
728 * @roq: Reorder queue
729 * @sn: New sequence number
731 * Updates the window start of a queue; when doing so, it must deliver
732 * to the networking stack all the queued skb's whose normalized
733 * sequence number is lower than the new normalized window start.
735 static
736 unsigned __i2400m_roq_update_ws(struct i2400m *i2400m, struct i2400m_roq *roq,
737 unsigned sn)
739 struct device *dev = i2400m_dev(i2400m);
740 struct sk_buff *skb_itr, *tmp_itr;
741 struct i2400m_roq_data *roq_data_itr;
742 unsigned new_nws, nsn_itr;
744 new_nws = __i2400m_roq_nsn(roq, sn);
745 if (unlikely(new_nws >= 1024) && d_test(1)) {
746 dev_err(dev, "SW BUG? __update_ws new_nws %u (sn %u ws %u)\n",
747 new_nws, sn, roq->ws);
748 WARN_ON(1);
749 i2400m_roq_log_dump(i2400m, roq);
751 skb_queue_walk_safe(&roq->queue, skb_itr, tmp_itr) {
752 roq_data_itr = (struct i2400m_roq_data *) &skb_itr->cb;
753 nsn_itr = __i2400m_roq_nsn(roq, roq_data_itr->sn);
754 /* NSN bounds assumed correct (checked when it was queued) */
755 if (nsn_itr < new_nws) {
756 d_printf(2, dev, "ERX: roq %p - release skb %p "
757 "(nsn %u/%u new nws %u)\n",
758 roq, skb_itr, nsn_itr, roq_data_itr->sn,
759 new_nws);
760 __skb_unlink(skb_itr, &roq->queue);
761 i2400m_net_erx(i2400m, skb_itr, roq_data_itr->cs);
763 else
764 break; /* rest of packets all nsn_itr > nws */
766 roq->ws = sn;
767 return new_nws;
772 * Reset a queue
774 * @i2400m: device descriptor
775 * @cin: Queue Index
777 * Deliver all the packets and reset the window-start to zero. Name is
778 * kind of misleading.
780 static
781 void i2400m_roq_reset(struct i2400m *i2400m, struct i2400m_roq *roq)
783 struct device *dev = i2400m_dev(i2400m);
784 struct sk_buff *skb_itr, *tmp_itr;
785 struct i2400m_roq_data *roq_data_itr;
787 d_fnstart(2, dev, "(i2400m %p roq %p)\n", i2400m, roq);
788 i2400m_roq_log_add(i2400m, roq, I2400M_RO_TYPE_RESET,
789 roq->ws, skb_queue_len(&roq->queue),
790 ~0, ~0, 0);
791 skb_queue_walk_safe(&roq->queue, skb_itr, tmp_itr) {
792 roq_data_itr = (struct i2400m_roq_data *) &skb_itr->cb;
793 d_printf(2, dev, "ERX: roq %p - release skb %p (sn %u)\n",
794 roq, skb_itr, roq_data_itr->sn);
795 __skb_unlink(skb_itr, &roq->queue);
796 i2400m_net_erx(i2400m, skb_itr, roq_data_itr->cs);
798 roq->ws = 0;
799 d_fnend(2, dev, "(i2400m %p roq %p) = void\n", i2400m, roq);
800 return;
805 * Queue a packet
807 * @i2400m: device descriptor
808 * @cin: Queue Index
809 * @skb: containing the packet data
810 * @fbn: First block number of the packet in @skb
811 * @lbn: Last block number of the packet in @skb
813 * The hardware is asking the driver to queue a packet for later
814 * delivery to the networking stack.
816 static
817 void i2400m_roq_queue(struct i2400m *i2400m, struct i2400m_roq *roq,
818 struct sk_buff * skb, unsigned lbn)
820 struct device *dev = i2400m_dev(i2400m);
821 unsigned nsn, len;
823 d_fnstart(2, dev, "(i2400m %p roq %p skb %p lbn %u) = void\n",
824 i2400m, roq, skb, lbn);
825 len = skb_queue_len(&roq->queue);
826 nsn = __i2400m_roq_nsn(roq, lbn);
827 if (unlikely(nsn >= 1024)) {
828 dev_err(dev, "SW BUG? queue nsn %d (lbn %u ws %u)\n",
829 nsn, lbn, roq->ws);
830 i2400m_roq_log_dump(i2400m, roq);
831 i2400m_reset(i2400m, I2400M_RT_WARM);
832 } else {
833 __i2400m_roq_queue(i2400m, roq, skb, lbn, nsn);
834 i2400m_roq_log_add(i2400m, roq, I2400M_RO_TYPE_PACKET,
835 roq->ws, len, lbn, nsn, ~0);
837 d_fnend(2, dev, "(i2400m %p roq %p skb %p lbn %u) = void\n",
838 i2400m, roq, skb, lbn);
839 return;
844 * Update the window start in a reorder queue and deliver all skbs
845 * with a lower window start
847 * @i2400m: device descriptor
848 * @roq: Reorder queue
849 * @sn: New sequence number
851 static
852 void i2400m_roq_update_ws(struct i2400m *i2400m, struct i2400m_roq *roq,
853 unsigned sn)
855 struct device *dev = i2400m_dev(i2400m);
856 unsigned old_ws, nsn, len;
858 d_fnstart(2, dev, "(i2400m %p roq %p sn %u)\n", i2400m, roq, sn);
859 old_ws = roq->ws;
860 len = skb_queue_len(&roq->queue);
861 nsn = __i2400m_roq_update_ws(i2400m, roq, sn);
862 i2400m_roq_log_add(i2400m, roq, I2400M_RO_TYPE_WS,
863 old_ws, len, sn, nsn, roq->ws);
864 d_fnstart(2, dev, "(i2400m %p roq %p sn %u) = void\n", i2400m, roq, sn);
865 return;
870 * Queue a packet and update the window start
872 * @i2400m: device descriptor
873 * @cin: Queue Index
874 * @skb: containing the packet data
875 * @fbn: First block number of the packet in @skb
876 * @sn: Last block number of the packet in @skb
878 * Note that unlike i2400m_roq_update_ws(), which sets the new window
879 * start to @sn, in here we'll set it to @sn + 1.
881 static
882 void i2400m_roq_queue_update_ws(struct i2400m *i2400m, struct i2400m_roq *roq,
883 struct sk_buff * skb, unsigned sn)
885 struct device *dev = i2400m_dev(i2400m);
886 unsigned nsn, old_ws, len;
888 d_fnstart(2, dev, "(i2400m %p roq %p skb %p sn %u)\n",
889 i2400m, roq, skb, sn);
890 len = skb_queue_len(&roq->queue);
891 nsn = __i2400m_roq_nsn(roq, sn);
892 old_ws = roq->ws;
893 if (unlikely(nsn >= 1024)) {
894 dev_err(dev, "SW BUG? queue_update_ws nsn %u (sn %u ws %u)\n",
895 nsn, sn, roq->ws);
896 i2400m_roq_log_dump(i2400m, roq);
897 i2400m_reset(i2400m, I2400M_RT_WARM);
898 } else {
899 /* if the queue is empty, don't bother as we'd queue
900 * it and inmediately unqueue it -- just deliver it */
901 if (len == 0) {
902 struct i2400m_roq_data *roq_data;
903 roq_data = (struct i2400m_roq_data *) &skb->cb;
904 i2400m_net_erx(i2400m, skb, roq_data->cs);
906 else
907 __i2400m_roq_queue(i2400m, roq, skb, sn, nsn);
908 __i2400m_roq_update_ws(i2400m, roq, sn + 1);
909 i2400m_roq_log_add(i2400m, roq, I2400M_RO_TYPE_PACKET_WS,
910 old_ws, len, sn, nsn, roq->ws);
912 d_fnend(2, dev, "(i2400m %p roq %p skb %p sn %u) = void\n",
913 i2400m, roq, skb, sn);
914 return;
919 * Receive and send up an extended data packet
921 * @i2400m: device descriptor
922 * @skb_rx: skb that contains the extended data packet
923 * @single_last: 1 if the payload is the only one or the last one of
924 * the skb.
925 * @payload: pointer to the packet's data inside the skb
926 * @size: size of the payload
928 * Starting in v1.4 of the i2400m's firmware, the device can send data
929 * packets to the host in an extended format that; this incudes a 16
930 * byte header (struct i2400m_pl_edata_hdr). Using this header's space
931 * we can fake ethernet headers for ethernet device emulation without
932 * having to copy packets around.
934 * This function handles said path.
937 * Receive and send up an extended data packet that requires no reordering
939 * @i2400m: device descriptor
940 * @skb_rx: skb that contains the extended data packet
941 * @single_last: 1 if the payload is the only one or the last one of
942 * the skb.
943 * @payload: pointer to the packet's data (past the actual extended
944 * data payload header).
945 * @size: size of the payload
947 * Pass over to the networking stack a data packet that might have
948 * reordering requirements.
950 * This needs to the decide if the skb in which the packet is
951 * contained can be reused or if it needs to be cloned. Then it has to
952 * be trimmed in the edges so that the beginning is the space for eth
953 * header and then pass it to i2400m_net_erx() for the stack
955 * Assumes the caller has verified the sanity of the payload (size,
956 * etc) already.
958 static
959 void i2400m_rx_edata(struct i2400m *i2400m, struct sk_buff *skb_rx,
960 unsigned single_last, const void *payload, size_t size)
962 struct device *dev = i2400m_dev(i2400m);
963 const struct i2400m_pl_edata_hdr *hdr = payload;
964 struct net_device *net_dev = i2400m->wimax_dev.net_dev;
965 struct sk_buff *skb;
966 enum i2400m_cs cs;
967 u32 reorder;
968 unsigned ro_needed, ro_type, ro_cin, ro_sn;
969 struct i2400m_roq *roq;
970 struct i2400m_roq_data *roq_data;
972 BUILD_BUG_ON(ETH_HLEN > sizeof(*hdr));
974 d_fnstart(2, dev, "(i2400m %p skb_rx %p single %u payload %p "
975 "size %zu)\n", i2400m, skb_rx, single_last, payload, size);
976 if (size < sizeof(*hdr)) {
977 dev_err(dev, "ERX: HW BUG? message with short header (%zu "
978 "vs %zu bytes expected)\n", size, sizeof(*hdr));
979 goto error;
982 if (single_last) {
983 skb = skb_get(skb_rx);
984 d_printf(3, dev, "ERX: skb %p reusing\n", skb);
985 } else {
986 skb = skb_clone(skb_rx, GFP_KERNEL);
987 if (skb == NULL) {
988 dev_err(dev, "ERX: no memory to clone skb\n");
989 net_dev->stats.rx_dropped++;
990 goto error_skb_clone;
992 d_printf(3, dev, "ERX: skb %p cloned from %p\n", skb, skb_rx);
994 /* now we have to pull and trim so that the skb points to the
995 * beginning of the IP packet; the netdev part will add the
996 * ethernet header as needed - we know there is enough space
997 * because we checked in i2400m_rx_edata(). */
998 skb_pull(skb, payload + sizeof(*hdr) - (void *) skb->data);
999 skb_trim(skb, (void *) skb_end_pointer(skb) - payload - sizeof(*hdr));
1001 reorder = le32_to_cpu(hdr->reorder);
1002 ro_needed = reorder & I2400M_RO_NEEDED;
1003 cs = hdr->cs;
1004 if (ro_needed) {
1005 ro_type = (reorder >> I2400M_RO_TYPE_SHIFT) & I2400M_RO_TYPE;
1006 ro_cin = (reorder >> I2400M_RO_CIN_SHIFT) & I2400M_RO_CIN;
1007 ro_sn = (reorder >> I2400M_RO_SN_SHIFT) & I2400M_RO_SN;
1009 roq = &i2400m->rx_roq[ro_cin];
1010 roq_data = (struct i2400m_roq_data *) &skb->cb;
1011 roq_data->sn = ro_sn;
1012 roq_data->cs = cs;
1013 d_printf(2, dev, "ERX: reorder needed: "
1014 "type %u cin %u [ws %u] sn %u/%u len %zuB\n",
1015 ro_type, ro_cin, roq->ws, ro_sn,
1016 __i2400m_roq_nsn(roq, ro_sn), size);
1017 d_dump(2, dev, payload, size);
1018 switch(ro_type) {
1019 case I2400M_RO_TYPE_RESET:
1020 i2400m_roq_reset(i2400m, roq);
1021 kfree_skb(skb); /* no data here */
1022 break;
1023 case I2400M_RO_TYPE_PACKET:
1024 i2400m_roq_queue(i2400m, roq, skb, ro_sn);
1025 break;
1026 case I2400M_RO_TYPE_WS:
1027 i2400m_roq_update_ws(i2400m, roq, ro_sn);
1028 kfree_skb(skb); /* no data here */
1029 break;
1030 case I2400M_RO_TYPE_PACKET_WS:
1031 i2400m_roq_queue_update_ws(i2400m, roq, skb, ro_sn);
1032 break;
1033 default:
1034 dev_err(dev, "HW BUG? unknown reorder type %u\n", ro_type);
1037 else
1038 i2400m_net_erx(i2400m, skb, cs);
1039 error_skb_clone:
1040 error:
1041 d_fnend(2, dev, "(i2400m %p skb_rx %p single %u payload %p "
1042 "size %zu) = void\n", i2400m, skb_rx, single_last, payload, size);
1043 return;
1048 * Act on a received payload
1050 * @i2400m: device instance
1051 * @skb_rx: skb where the transaction was received
1052 * @single_last: 1 this is the only payload or the last one (so the
1053 * skb can be reused instead of cloned).
1054 * @pld: payload descriptor
1055 * @payload: payload data
1057 * Upon reception of a payload, look at its guts in the payload
1058 * descriptor and decide what to do with it. If it is a single payload
1059 * skb or if the last skb is a data packet, the skb will be referenced
1060 * and modified (so it doesn't have to be cloned).
1062 static
1063 void i2400m_rx_payload(struct i2400m *i2400m, struct sk_buff *skb_rx,
1064 unsigned single_last, const struct i2400m_pld *pld,
1065 const void *payload)
1067 struct device *dev = i2400m_dev(i2400m);
1068 size_t pl_size = i2400m_pld_size(pld);
1069 enum i2400m_pt pl_type = i2400m_pld_type(pld);
1071 d_printf(7, dev, "RX: received payload type %u, %zu bytes\n",
1072 pl_type, pl_size);
1073 d_dump(8, dev, payload, pl_size);
1075 switch (pl_type) {
1076 case I2400M_PT_DATA:
1077 d_printf(3, dev, "RX: data payload %zu bytes\n", pl_size);
1078 i2400m_net_rx(i2400m, skb_rx, single_last, payload, pl_size);
1079 break;
1080 case I2400M_PT_CTRL:
1081 i2400m_rx_ctl(i2400m, skb_rx, payload, pl_size);
1082 break;
1083 case I2400M_PT_TRACE:
1084 i2400m_rx_trace(i2400m, payload, pl_size);
1085 break;
1086 case I2400M_PT_EDATA:
1087 d_printf(3, dev, "ERX: data payload %zu bytes\n", pl_size);
1088 i2400m_rx_edata(i2400m, skb_rx, single_last, payload, pl_size);
1089 break;
1090 default: /* Anything else shouldn't come to the host */
1091 if (printk_ratelimit())
1092 dev_err(dev, "RX: HW BUG? unexpected payload type %u\n",
1093 pl_type);
1099 * Check a received transaction's message header
1101 * @i2400m: device descriptor
1102 * @msg_hdr: message header
1103 * @buf_size: size of the received buffer
1105 * Check that the declarations done by a RX buffer message header are
1106 * sane and consistent with the amount of data that was received.
1108 static
1109 int i2400m_rx_msg_hdr_check(struct i2400m *i2400m,
1110 const struct i2400m_msg_hdr *msg_hdr,
1111 size_t buf_size)
1113 int result = -EIO;
1114 struct device *dev = i2400m_dev(i2400m);
1115 if (buf_size < sizeof(*msg_hdr)) {
1116 dev_err(dev, "RX: HW BUG? message with short header (%zu "
1117 "vs %zu bytes expected)\n", buf_size, sizeof(*msg_hdr));
1118 goto error;
1120 if (msg_hdr->barker != cpu_to_le32(I2400M_D2H_MSG_BARKER)) {
1121 dev_err(dev, "RX: HW BUG? message received with unknown "
1122 "barker 0x%08x (buf_size %zu bytes)\n",
1123 le32_to_cpu(msg_hdr->barker), buf_size);
1124 goto error;
1126 if (msg_hdr->num_pls == 0) {
1127 dev_err(dev, "RX: HW BUG? zero payload packets in message\n");
1128 goto error;
1130 if (le16_to_cpu(msg_hdr->num_pls) > I2400M_MAX_PLS_IN_MSG) {
1131 dev_err(dev, "RX: HW BUG? message contains more payload "
1132 "than maximum; ignoring.\n");
1133 goto error;
1135 result = 0;
1136 error:
1137 return result;
1142 * Check a payload descriptor against the received data
1144 * @i2400m: device descriptor
1145 * @pld: payload descriptor
1146 * @pl_itr: offset (in bytes) in the received buffer the payload is
1147 * located
1148 * @buf_size: size of the received buffer
1150 * Given a payload descriptor (part of a RX buffer), check it is sane
1151 * and that the data it declares fits in the buffer.
1153 static
1154 int i2400m_rx_pl_descr_check(struct i2400m *i2400m,
1155 const struct i2400m_pld *pld,
1156 size_t pl_itr, size_t buf_size)
1158 int result = -EIO;
1159 struct device *dev = i2400m_dev(i2400m);
1160 size_t pl_size = i2400m_pld_size(pld);
1161 enum i2400m_pt pl_type = i2400m_pld_type(pld);
1163 if (pl_size > i2400m->bus_pl_size_max) {
1164 dev_err(dev, "RX: HW BUG? payload @%zu: size %zu is "
1165 "bigger than maximum %zu; ignoring message\n",
1166 pl_itr, pl_size, i2400m->bus_pl_size_max);
1167 goto error;
1169 if (pl_itr + pl_size > buf_size) { /* enough? */
1170 dev_err(dev, "RX: HW BUG? payload @%zu: size %zu "
1171 "goes beyond the received buffer "
1172 "size (%zu bytes); ignoring message\n",
1173 pl_itr, pl_size, buf_size);
1174 goto error;
1176 if (pl_type >= I2400M_PT_ILLEGAL) {
1177 dev_err(dev, "RX: HW BUG? illegal payload type %u; "
1178 "ignoring message\n", pl_type);
1179 goto error;
1181 result = 0;
1182 error:
1183 return result;
1188 * i2400m_rx - Receive a buffer of data from the device
1190 * @i2400m: device descriptor
1191 * @skb: skbuff where the data has been received
1193 * Parse in a buffer of data that contains an RX message sent from the
1194 * device. See the file header for the format. Run all checks on the
1195 * buffer header, then run over each payload's descriptors, verify
1196 * their consistency and act on each payload's contents. If
1197 * everything is successful, update the device's statistics.
1199 * Note: You need to set the skb to contain only the length of the
1200 * received buffer; for that, use skb_trim(skb, RECEIVED_SIZE).
1202 * Returns:
1204 * 0 if ok, < 0 errno on error
1206 * If ok, this function owns now the skb and the caller DOESN'T have
1207 * to run kfree_skb() on it. However, on error, the caller still owns
1208 * the skb and it is responsible for releasing it.
1210 int i2400m_rx(struct i2400m *i2400m, struct sk_buff *skb)
1212 int i, result;
1213 struct device *dev = i2400m_dev(i2400m);
1214 const struct i2400m_msg_hdr *msg_hdr;
1215 size_t pl_itr, pl_size, skb_len;
1216 unsigned long flags;
1217 unsigned num_pls, single_last;
1219 skb_len = skb->len;
1220 d_fnstart(4, dev, "(i2400m %p skb %p [size %zu])\n",
1221 i2400m, skb, skb_len);
1222 result = -EIO;
1223 msg_hdr = (void *) skb->data;
1224 result = i2400m_rx_msg_hdr_check(i2400m, msg_hdr, skb->len);
1225 if (result < 0)
1226 goto error_msg_hdr_check;
1227 result = -EIO;
1228 num_pls = le16_to_cpu(msg_hdr->num_pls);
1229 pl_itr = sizeof(*msg_hdr) + /* Check payload descriptor(s) */
1230 num_pls * sizeof(msg_hdr->pld[0]);
1231 pl_itr = ALIGN(pl_itr, I2400M_PL_ALIGN);
1232 if (pl_itr > skb->len) { /* got all the payload descriptors? */
1233 dev_err(dev, "RX: HW BUG? message too short (%u bytes) for "
1234 "%u payload descriptors (%zu each, total %zu)\n",
1235 skb->len, num_pls, sizeof(msg_hdr->pld[0]), pl_itr);
1236 goto error_pl_descr_short;
1238 /* Walk each payload payload--check we really got it */
1239 for (i = 0; i < num_pls; i++) {
1240 /* work around old gcc warnings */
1241 pl_size = i2400m_pld_size(&msg_hdr->pld[i]);
1242 result = i2400m_rx_pl_descr_check(i2400m, &msg_hdr->pld[i],
1243 pl_itr, skb->len);
1244 if (result < 0)
1245 goto error_pl_descr_check;
1246 single_last = num_pls == 1 || i == num_pls - 1;
1247 i2400m_rx_payload(i2400m, skb, single_last, &msg_hdr->pld[i],
1248 skb->data + pl_itr);
1249 pl_itr += ALIGN(pl_size, I2400M_PL_ALIGN);
1250 cond_resched(); /* Don't monopolize */
1252 kfree_skb(skb);
1253 /* Update device statistics */
1254 spin_lock_irqsave(&i2400m->rx_lock, flags);
1255 i2400m->rx_pl_num += i;
1256 if (i > i2400m->rx_pl_max)
1257 i2400m->rx_pl_max = i;
1258 if (i < i2400m->rx_pl_min)
1259 i2400m->rx_pl_min = i;
1260 i2400m->rx_num++;
1261 i2400m->rx_size_acc += skb->len;
1262 if (skb->len < i2400m->rx_size_min)
1263 i2400m->rx_size_min = skb->len;
1264 if (skb->len > i2400m->rx_size_max)
1265 i2400m->rx_size_max = skb->len;
1266 spin_unlock_irqrestore(&i2400m->rx_lock, flags);
1267 error_pl_descr_check:
1268 error_pl_descr_short:
1269 error_msg_hdr_check:
1270 d_fnend(4, dev, "(i2400m %p skb %p [size %zu]) = %d\n",
1271 i2400m, skb, skb_len, result);
1272 return result;
1274 EXPORT_SYMBOL_GPL(i2400m_rx);
1277 void i2400m_unknown_barker(struct i2400m *i2400m,
1278 const void *buf, size_t size)
1280 struct device *dev = i2400m_dev(i2400m);
1281 char prefix[64];
1282 const __le32 *barker = buf;
1283 dev_err(dev, "RX: HW BUG? unknown barker %08x, "
1284 "dropping %zu bytes\n", le32_to_cpu(*barker), size);
1285 snprintf(prefix, sizeof(prefix), "%s %s: ",
1286 dev_driver_string(dev), dev_name(dev));
1287 if (size > 64) {
1288 print_hex_dump(KERN_ERR, prefix, DUMP_PREFIX_OFFSET,
1289 8, 4, buf, 64, 0);
1290 printk(KERN_ERR "%s... (only first 64 bytes "
1291 "dumped)\n", prefix);
1292 } else
1293 print_hex_dump(KERN_ERR, prefix, DUMP_PREFIX_OFFSET,
1294 8, 4, buf, size, 0);
1296 EXPORT_SYMBOL(i2400m_unknown_barker);
1300 * Initialize the RX queue and infrastructure
1302 * This sets up all the RX reordering infrastructures, which will not
1303 * be used if reordering is not enabled or if the firmware does not
1304 * support it. The device is told to do reordering in
1305 * i2400m_dev_initialize(), where it also looks at the value of the
1306 * i2400m->rx_reorder switch before taking a decission.
1308 * Note we allocate the roq queues in one chunk and the actual logging
1309 * support for it (logging) in another one and then we setup the
1310 * pointers from the first to the last.
1312 int i2400m_rx_setup(struct i2400m *i2400m)
1314 int result = 0;
1315 struct device *dev = i2400m_dev(i2400m);
1317 i2400m->rx_reorder = i2400m_rx_reorder_disabled? 0 : 1;
1318 if (i2400m->rx_reorder) {
1319 unsigned itr;
1320 size_t size;
1321 struct i2400m_roq_log *rd;
1323 result = -ENOMEM;
1325 size = sizeof(i2400m->rx_roq[0]) * (I2400M_RO_CIN + 1);
1326 i2400m->rx_roq = kzalloc(size, GFP_KERNEL);
1327 if (i2400m->rx_roq == NULL) {
1328 dev_err(dev, "RX: cannot allocate %zu bytes for "
1329 "reorder queues\n", size);
1330 goto error_roq_alloc;
1333 size = sizeof(*i2400m->rx_roq[0].log) * (I2400M_RO_CIN + 1);
1334 rd = kzalloc(size, GFP_KERNEL);
1335 if (rd == NULL) {
1336 dev_err(dev, "RX: cannot allocate %zu bytes for "
1337 "reorder queues log areas\n", size);
1338 result = -ENOMEM;
1339 goto error_roq_log_alloc;
1342 for(itr = 0; itr < I2400M_RO_CIN + 1; itr++) {
1343 __i2400m_roq_init(&i2400m->rx_roq[itr]);
1344 i2400m->rx_roq[itr].log = &rd[itr];
1347 return 0;
1349 error_roq_log_alloc:
1350 kfree(i2400m->rx_roq);
1351 error_roq_alloc:
1352 return result;
1356 /* Tear down the RX queue and infrastructure */
1357 void i2400m_rx_release(struct i2400m *i2400m)
1359 if (i2400m->rx_reorder) {
1360 unsigned itr;
1361 for(itr = 0; itr < I2400M_RO_CIN + 1; itr++)
1362 __skb_queue_purge(&i2400m->rx_roq[itr].queue);
1363 kfree(i2400m->rx_roq[0].log);
1364 kfree(i2400m->rx_roq);
1366 /* at this point, nothing can be received... */
1367 i2400m_report_hook_flush(i2400m);