[AVR32] Platform code for pata_at32
[linux-2.6/linux-2.6-openrd.git] / arch / avr32 / mach-at32ap / at32ap7000.c
blob30aedc9473f77acc10c9805d0820bfb69b4f9066
1 /*
2 * Copyright (C) 2005-2006 Atmel Corporation
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 */
8 #include <linux/clk.h>
9 #include <linux/fb.h>
10 #include <linux/init.h>
11 #include <linux/platform_device.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/spi/spi.h>
15 #include <asm/io.h>
17 #include <asm/arch/at32ap7000.h>
18 #include <asm/arch/board.h>
19 #include <asm/arch/portmux.h>
21 #include <video/atmel_lcdc.h>
23 #include "clock.h"
24 #include "hmatrix.h"
25 #include "pio.h"
26 #include "pm.h"
29 #define PBMEM(base) \
30 { \
31 .start = base, \
32 .end = base + 0x3ff, \
33 .flags = IORESOURCE_MEM, \
35 #define IRQ(num) \
36 { \
37 .start = num, \
38 .end = num, \
39 .flags = IORESOURCE_IRQ, \
41 #define NAMED_IRQ(num, _name) \
42 { \
43 .start = num, \
44 .end = num, \
45 .name = _name, \
46 .flags = IORESOURCE_IRQ, \
49 /* REVISIT these assume *every* device supports DMA, but several
50 * don't ... tc, smc, pio, rtc, watchdog, pwm, ps2, and more.
52 #define DEFINE_DEV(_name, _id) \
53 static u64 _name##_id##_dma_mask = DMA_32BIT_MASK; \
54 static struct platform_device _name##_id##_device = { \
55 .name = #_name, \
56 .id = _id, \
57 .dev = { \
58 .dma_mask = &_name##_id##_dma_mask, \
59 .coherent_dma_mask = DMA_32BIT_MASK, \
60 }, \
61 .resource = _name##_id##_resource, \
62 .num_resources = ARRAY_SIZE(_name##_id##_resource), \
64 #define DEFINE_DEV_DATA(_name, _id) \
65 static u64 _name##_id##_dma_mask = DMA_32BIT_MASK; \
66 static struct platform_device _name##_id##_device = { \
67 .name = #_name, \
68 .id = _id, \
69 .dev = { \
70 .dma_mask = &_name##_id##_dma_mask, \
71 .platform_data = &_name##_id##_data, \
72 .coherent_dma_mask = DMA_32BIT_MASK, \
73 }, \
74 .resource = _name##_id##_resource, \
75 .num_resources = ARRAY_SIZE(_name##_id##_resource), \
78 #define select_peripheral(pin, periph, flags) \
79 at32_select_periph(GPIO_PIN_##pin, GPIO_##periph, flags)
81 #define DEV_CLK(_name, devname, bus, _index) \
82 static struct clk devname##_##_name = { \
83 .name = #_name, \
84 .dev = &devname##_device.dev, \
85 .parent = &bus##_clk, \
86 .mode = bus##_clk_mode, \
87 .get_rate = bus##_clk_get_rate, \
88 .index = _index, \
91 static DEFINE_SPINLOCK(pm_lock);
93 unsigned long at32ap7000_osc_rates[3] = {
94 [0] = 32768,
95 /* FIXME: these are ATSTK1002-specific */
96 [1] = 20000000,
97 [2] = 12000000,
100 static unsigned long osc_get_rate(struct clk *clk)
102 return at32ap7000_osc_rates[clk->index];
105 static unsigned long pll_get_rate(struct clk *clk, unsigned long control)
107 unsigned long div, mul, rate;
109 if (!(control & PM_BIT(PLLEN)))
110 return 0;
112 div = PM_BFEXT(PLLDIV, control) + 1;
113 mul = PM_BFEXT(PLLMUL, control) + 1;
115 rate = clk->parent->get_rate(clk->parent);
116 rate = (rate + div / 2) / div;
117 rate *= mul;
119 return rate;
122 static unsigned long pll0_get_rate(struct clk *clk)
124 u32 control;
126 control = pm_readl(PLL0);
128 return pll_get_rate(clk, control);
131 static unsigned long pll1_get_rate(struct clk *clk)
133 u32 control;
135 control = pm_readl(PLL1);
137 return pll_get_rate(clk, control);
141 * The AT32AP7000 has five primary clock sources: One 32kHz
142 * oscillator, two crystal oscillators and two PLLs.
144 static struct clk osc32k = {
145 .name = "osc32k",
146 .get_rate = osc_get_rate,
147 .users = 1,
148 .index = 0,
150 static struct clk osc0 = {
151 .name = "osc0",
152 .get_rate = osc_get_rate,
153 .users = 1,
154 .index = 1,
156 static struct clk osc1 = {
157 .name = "osc1",
158 .get_rate = osc_get_rate,
159 .index = 2,
161 static struct clk pll0 = {
162 .name = "pll0",
163 .get_rate = pll0_get_rate,
164 .parent = &osc0,
166 static struct clk pll1 = {
167 .name = "pll1",
168 .get_rate = pll1_get_rate,
169 .parent = &osc0,
173 * The main clock can be either osc0 or pll0. The boot loader may
174 * have chosen one for us, so we don't really know which one until we
175 * have a look at the SM.
177 static struct clk *main_clock;
180 * Synchronous clocks are generated from the main clock. The clocks
181 * must satisfy the constraint
182 * fCPU >= fHSB >= fPB
183 * i.e. each clock must not be faster than its parent.
185 static unsigned long bus_clk_get_rate(struct clk *clk, unsigned int shift)
187 return main_clock->get_rate(main_clock) >> shift;
190 static void cpu_clk_mode(struct clk *clk, int enabled)
192 unsigned long flags;
193 u32 mask;
195 spin_lock_irqsave(&pm_lock, flags);
196 mask = pm_readl(CPU_MASK);
197 if (enabled)
198 mask |= 1 << clk->index;
199 else
200 mask &= ~(1 << clk->index);
201 pm_writel(CPU_MASK, mask);
202 spin_unlock_irqrestore(&pm_lock, flags);
205 static unsigned long cpu_clk_get_rate(struct clk *clk)
207 unsigned long cksel, shift = 0;
209 cksel = pm_readl(CKSEL);
210 if (cksel & PM_BIT(CPUDIV))
211 shift = PM_BFEXT(CPUSEL, cksel) + 1;
213 return bus_clk_get_rate(clk, shift);
216 static long cpu_clk_set_rate(struct clk *clk, unsigned long rate, int apply)
218 u32 control;
219 unsigned long parent_rate, child_div, actual_rate, div;
221 parent_rate = clk->parent->get_rate(clk->parent);
222 control = pm_readl(CKSEL);
224 if (control & PM_BIT(HSBDIV))
225 child_div = 1 << (PM_BFEXT(HSBSEL, control) + 1);
226 else
227 child_div = 1;
229 if (rate > 3 * (parent_rate / 4) || child_div == 1) {
230 actual_rate = parent_rate;
231 control &= ~PM_BIT(CPUDIV);
232 } else {
233 unsigned int cpusel;
234 div = (parent_rate + rate / 2) / rate;
235 if (div > child_div)
236 div = child_div;
237 cpusel = (div > 1) ? (fls(div) - 2) : 0;
238 control = PM_BIT(CPUDIV) | PM_BFINS(CPUSEL, cpusel, control);
239 actual_rate = parent_rate / (1 << (cpusel + 1));
242 pr_debug("clk %s: new rate %lu (actual rate %lu)\n",
243 clk->name, rate, actual_rate);
245 if (apply)
246 pm_writel(CKSEL, control);
248 return actual_rate;
251 static void hsb_clk_mode(struct clk *clk, int enabled)
253 unsigned long flags;
254 u32 mask;
256 spin_lock_irqsave(&pm_lock, flags);
257 mask = pm_readl(HSB_MASK);
258 if (enabled)
259 mask |= 1 << clk->index;
260 else
261 mask &= ~(1 << clk->index);
262 pm_writel(HSB_MASK, mask);
263 spin_unlock_irqrestore(&pm_lock, flags);
266 static unsigned long hsb_clk_get_rate(struct clk *clk)
268 unsigned long cksel, shift = 0;
270 cksel = pm_readl(CKSEL);
271 if (cksel & PM_BIT(HSBDIV))
272 shift = PM_BFEXT(HSBSEL, cksel) + 1;
274 return bus_clk_get_rate(clk, shift);
277 static void pba_clk_mode(struct clk *clk, int enabled)
279 unsigned long flags;
280 u32 mask;
282 spin_lock_irqsave(&pm_lock, flags);
283 mask = pm_readl(PBA_MASK);
284 if (enabled)
285 mask |= 1 << clk->index;
286 else
287 mask &= ~(1 << clk->index);
288 pm_writel(PBA_MASK, mask);
289 spin_unlock_irqrestore(&pm_lock, flags);
292 static unsigned long pba_clk_get_rate(struct clk *clk)
294 unsigned long cksel, shift = 0;
296 cksel = pm_readl(CKSEL);
297 if (cksel & PM_BIT(PBADIV))
298 shift = PM_BFEXT(PBASEL, cksel) + 1;
300 return bus_clk_get_rate(clk, shift);
303 static void pbb_clk_mode(struct clk *clk, int enabled)
305 unsigned long flags;
306 u32 mask;
308 spin_lock_irqsave(&pm_lock, flags);
309 mask = pm_readl(PBB_MASK);
310 if (enabled)
311 mask |= 1 << clk->index;
312 else
313 mask &= ~(1 << clk->index);
314 pm_writel(PBB_MASK, mask);
315 spin_unlock_irqrestore(&pm_lock, flags);
318 static unsigned long pbb_clk_get_rate(struct clk *clk)
320 unsigned long cksel, shift = 0;
322 cksel = pm_readl(CKSEL);
323 if (cksel & PM_BIT(PBBDIV))
324 shift = PM_BFEXT(PBBSEL, cksel) + 1;
326 return bus_clk_get_rate(clk, shift);
329 static struct clk cpu_clk = {
330 .name = "cpu",
331 .get_rate = cpu_clk_get_rate,
332 .set_rate = cpu_clk_set_rate,
333 .users = 1,
335 static struct clk hsb_clk = {
336 .name = "hsb",
337 .parent = &cpu_clk,
338 .get_rate = hsb_clk_get_rate,
340 static struct clk pba_clk = {
341 .name = "pba",
342 .parent = &hsb_clk,
343 .mode = hsb_clk_mode,
344 .get_rate = pba_clk_get_rate,
345 .index = 1,
347 static struct clk pbb_clk = {
348 .name = "pbb",
349 .parent = &hsb_clk,
350 .mode = hsb_clk_mode,
351 .get_rate = pbb_clk_get_rate,
352 .users = 1,
353 .index = 2,
356 /* --------------------------------------------------------------------
357 * Generic Clock operations
358 * -------------------------------------------------------------------- */
360 static void genclk_mode(struct clk *clk, int enabled)
362 u32 control;
364 control = pm_readl(GCCTRL(clk->index));
365 if (enabled)
366 control |= PM_BIT(CEN);
367 else
368 control &= ~PM_BIT(CEN);
369 pm_writel(GCCTRL(clk->index), control);
372 static unsigned long genclk_get_rate(struct clk *clk)
374 u32 control;
375 unsigned long div = 1;
377 control = pm_readl(GCCTRL(clk->index));
378 if (control & PM_BIT(DIVEN))
379 div = 2 * (PM_BFEXT(DIV, control) + 1);
381 return clk->parent->get_rate(clk->parent) / div;
384 static long genclk_set_rate(struct clk *clk, unsigned long rate, int apply)
386 u32 control;
387 unsigned long parent_rate, actual_rate, div;
389 parent_rate = clk->parent->get_rate(clk->parent);
390 control = pm_readl(GCCTRL(clk->index));
392 if (rate > 3 * parent_rate / 4) {
393 actual_rate = parent_rate;
394 control &= ~PM_BIT(DIVEN);
395 } else {
396 div = (parent_rate + rate) / (2 * rate) - 1;
397 control = PM_BFINS(DIV, div, control) | PM_BIT(DIVEN);
398 actual_rate = parent_rate / (2 * (div + 1));
401 dev_dbg(clk->dev, "clk %s: new rate %lu (actual rate %lu)\n",
402 clk->name, rate, actual_rate);
404 if (apply)
405 pm_writel(GCCTRL(clk->index), control);
407 return actual_rate;
410 int genclk_set_parent(struct clk *clk, struct clk *parent)
412 u32 control;
414 dev_dbg(clk->dev, "clk %s: new parent %s (was %s)\n",
415 clk->name, parent->name, clk->parent->name);
417 control = pm_readl(GCCTRL(clk->index));
419 if (parent == &osc1 || parent == &pll1)
420 control |= PM_BIT(OSCSEL);
421 else if (parent == &osc0 || parent == &pll0)
422 control &= ~PM_BIT(OSCSEL);
423 else
424 return -EINVAL;
426 if (parent == &pll0 || parent == &pll1)
427 control |= PM_BIT(PLLSEL);
428 else
429 control &= ~PM_BIT(PLLSEL);
431 pm_writel(GCCTRL(clk->index), control);
432 clk->parent = parent;
434 return 0;
437 static void __init genclk_init_parent(struct clk *clk)
439 u32 control;
440 struct clk *parent;
442 BUG_ON(clk->index > 7);
444 control = pm_readl(GCCTRL(clk->index));
445 if (control & PM_BIT(OSCSEL))
446 parent = (control & PM_BIT(PLLSEL)) ? &pll1 : &osc1;
447 else
448 parent = (control & PM_BIT(PLLSEL)) ? &pll0 : &osc0;
450 clk->parent = parent;
453 /* --------------------------------------------------------------------
454 * System peripherals
455 * -------------------------------------------------------------------- */
456 static struct resource at32_pm0_resource[] = {
458 .start = 0xfff00000,
459 .end = 0xfff0007f,
460 .flags = IORESOURCE_MEM,
462 IRQ(20),
465 static struct resource at32ap700x_rtc0_resource[] = {
467 .start = 0xfff00080,
468 .end = 0xfff000af,
469 .flags = IORESOURCE_MEM,
471 IRQ(21),
474 static struct resource at32_wdt0_resource[] = {
476 .start = 0xfff000b0,
477 .end = 0xfff000bf,
478 .flags = IORESOURCE_MEM,
482 static struct resource at32_eic0_resource[] = {
484 .start = 0xfff00100,
485 .end = 0xfff0013f,
486 .flags = IORESOURCE_MEM,
488 IRQ(19),
491 DEFINE_DEV(at32_pm, 0);
492 DEFINE_DEV(at32ap700x_rtc, 0);
493 DEFINE_DEV(at32_wdt, 0);
494 DEFINE_DEV(at32_eic, 0);
497 * Peripheral clock for PM, RTC, WDT and EIC. PM will ensure that this
498 * is always running.
500 static struct clk at32_pm_pclk = {
501 .name = "pclk",
502 .dev = &at32_pm0_device.dev,
503 .parent = &pbb_clk,
504 .mode = pbb_clk_mode,
505 .get_rate = pbb_clk_get_rate,
506 .users = 1,
507 .index = 0,
510 static struct resource intc0_resource[] = {
511 PBMEM(0xfff00400),
513 struct platform_device at32_intc0_device = {
514 .name = "intc",
515 .id = 0,
516 .resource = intc0_resource,
517 .num_resources = ARRAY_SIZE(intc0_resource),
519 DEV_CLK(pclk, at32_intc0, pbb, 1);
521 static struct clk ebi_clk = {
522 .name = "ebi",
523 .parent = &hsb_clk,
524 .mode = hsb_clk_mode,
525 .get_rate = hsb_clk_get_rate,
526 .users = 1,
528 static struct clk hramc_clk = {
529 .name = "hramc",
530 .parent = &hsb_clk,
531 .mode = hsb_clk_mode,
532 .get_rate = hsb_clk_get_rate,
533 .users = 1,
534 .index = 3,
537 static struct resource smc0_resource[] = {
538 PBMEM(0xfff03400),
540 DEFINE_DEV(smc, 0);
541 DEV_CLK(pclk, smc0, pbb, 13);
542 DEV_CLK(mck, smc0, hsb, 0);
544 static struct platform_device pdc_device = {
545 .name = "pdc",
546 .id = 0,
548 DEV_CLK(hclk, pdc, hsb, 4);
549 DEV_CLK(pclk, pdc, pba, 16);
551 static struct clk pico_clk = {
552 .name = "pico",
553 .parent = &cpu_clk,
554 .mode = cpu_clk_mode,
555 .get_rate = cpu_clk_get_rate,
556 .users = 1,
559 /* --------------------------------------------------------------------
560 * HMATRIX
561 * -------------------------------------------------------------------- */
563 static struct clk hmatrix_clk = {
564 .name = "hmatrix_clk",
565 .parent = &pbb_clk,
566 .mode = pbb_clk_mode,
567 .get_rate = pbb_clk_get_rate,
568 .index = 2,
569 .users = 1,
571 #define HMATRIX_BASE ((void __iomem *)0xfff00800)
573 #define hmatrix_readl(reg) \
574 __raw_readl((HMATRIX_BASE) + HMATRIX_##reg)
575 #define hmatrix_writel(reg,value) \
576 __raw_writel((value), (HMATRIX_BASE) + HMATRIX_##reg)
579 * Set bits in the HMATRIX Special Function Register (SFR) used by the
580 * External Bus Interface (EBI). This can be used to enable special
581 * features like CompactFlash support, NAND Flash support, etc. on
582 * certain chipselects.
584 static inline void set_ebi_sfr_bits(u32 mask)
586 u32 sfr;
588 clk_enable(&hmatrix_clk);
589 sfr = hmatrix_readl(SFR4);
590 sfr |= mask;
591 hmatrix_writel(SFR4, sfr);
592 clk_disable(&hmatrix_clk);
595 /* --------------------------------------------------------------------
596 * System Timer/Counter (TC)
597 * -------------------------------------------------------------------- */
598 static struct resource at32_systc0_resource[] = {
599 PBMEM(0xfff00c00),
600 IRQ(22),
602 struct platform_device at32_systc0_device = {
603 .name = "systc",
604 .id = 0,
605 .resource = at32_systc0_resource,
606 .num_resources = ARRAY_SIZE(at32_systc0_resource),
608 DEV_CLK(pclk, at32_systc0, pbb, 3);
610 /* --------------------------------------------------------------------
611 * PIO
612 * -------------------------------------------------------------------- */
614 static struct resource pio0_resource[] = {
615 PBMEM(0xffe02800),
616 IRQ(13),
618 DEFINE_DEV(pio, 0);
619 DEV_CLK(mck, pio0, pba, 10);
621 static struct resource pio1_resource[] = {
622 PBMEM(0xffe02c00),
623 IRQ(14),
625 DEFINE_DEV(pio, 1);
626 DEV_CLK(mck, pio1, pba, 11);
628 static struct resource pio2_resource[] = {
629 PBMEM(0xffe03000),
630 IRQ(15),
632 DEFINE_DEV(pio, 2);
633 DEV_CLK(mck, pio2, pba, 12);
635 static struct resource pio3_resource[] = {
636 PBMEM(0xffe03400),
637 IRQ(16),
639 DEFINE_DEV(pio, 3);
640 DEV_CLK(mck, pio3, pba, 13);
642 static struct resource pio4_resource[] = {
643 PBMEM(0xffe03800),
644 IRQ(17),
646 DEFINE_DEV(pio, 4);
647 DEV_CLK(mck, pio4, pba, 14);
649 void __init at32_add_system_devices(void)
651 platform_device_register(&at32_pm0_device);
652 platform_device_register(&at32_intc0_device);
653 platform_device_register(&at32ap700x_rtc0_device);
654 platform_device_register(&at32_wdt0_device);
655 platform_device_register(&at32_eic0_device);
656 platform_device_register(&smc0_device);
657 platform_device_register(&pdc_device);
659 platform_device_register(&at32_systc0_device);
661 platform_device_register(&pio0_device);
662 platform_device_register(&pio1_device);
663 platform_device_register(&pio2_device);
664 platform_device_register(&pio3_device);
665 platform_device_register(&pio4_device);
668 /* --------------------------------------------------------------------
669 * USART
670 * -------------------------------------------------------------------- */
672 static struct atmel_uart_data atmel_usart0_data = {
673 .use_dma_tx = 1,
674 .use_dma_rx = 1,
676 static struct resource atmel_usart0_resource[] = {
677 PBMEM(0xffe00c00),
678 IRQ(6),
680 DEFINE_DEV_DATA(atmel_usart, 0);
681 DEV_CLK(usart, atmel_usart0, pba, 4);
683 static struct atmel_uart_data atmel_usart1_data = {
684 .use_dma_tx = 1,
685 .use_dma_rx = 1,
687 static struct resource atmel_usart1_resource[] = {
688 PBMEM(0xffe01000),
689 IRQ(7),
691 DEFINE_DEV_DATA(atmel_usart, 1);
692 DEV_CLK(usart, atmel_usart1, pba, 4);
694 static struct atmel_uart_data atmel_usart2_data = {
695 .use_dma_tx = 1,
696 .use_dma_rx = 1,
698 static struct resource atmel_usart2_resource[] = {
699 PBMEM(0xffe01400),
700 IRQ(8),
702 DEFINE_DEV_DATA(atmel_usart, 2);
703 DEV_CLK(usart, atmel_usart2, pba, 5);
705 static struct atmel_uart_data atmel_usart3_data = {
706 .use_dma_tx = 1,
707 .use_dma_rx = 1,
709 static struct resource atmel_usart3_resource[] = {
710 PBMEM(0xffe01800),
711 IRQ(9),
713 DEFINE_DEV_DATA(atmel_usart, 3);
714 DEV_CLK(usart, atmel_usart3, pba, 6);
716 static inline void configure_usart0_pins(void)
718 select_peripheral(PA(8), PERIPH_B, 0); /* RXD */
719 select_peripheral(PA(9), PERIPH_B, 0); /* TXD */
722 static inline void configure_usart1_pins(void)
724 select_peripheral(PA(17), PERIPH_A, 0); /* RXD */
725 select_peripheral(PA(18), PERIPH_A, 0); /* TXD */
728 static inline void configure_usart2_pins(void)
730 select_peripheral(PB(26), PERIPH_B, 0); /* RXD */
731 select_peripheral(PB(27), PERIPH_B, 0); /* TXD */
734 static inline void configure_usart3_pins(void)
736 select_peripheral(PB(18), PERIPH_B, 0); /* RXD */
737 select_peripheral(PB(17), PERIPH_B, 0); /* TXD */
740 static struct platform_device *__initdata at32_usarts[4];
742 void __init at32_map_usart(unsigned int hw_id, unsigned int line)
744 struct platform_device *pdev;
746 switch (hw_id) {
747 case 0:
748 pdev = &atmel_usart0_device;
749 configure_usart0_pins();
750 break;
751 case 1:
752 pdev = &atmel_usart1_device;
753 configure_usart1_pins();
754 break;
755 case 2:
756 pdev = &atmel_usart2_device;
757 configure_usart2_pins();
758 break;
759 case 3:
760 pdev = &atmel_usart3_device;
761 configure_usart3_pins();
762 break;
763 default:
764 return;
767 if (PXSEG(pdev->resource[0].start) == P4SEG) {
768 /* Addresses in the P4 segment are permanently mapped 1:1 */
769 struct atmel_uart_data *data = pdev->dev.platform_data;
770 data->regs = (void __iomem *)pdev->resource[0].start;
773 pdev->id = line;
774 at32_usarts[line] = pdev;
777 struct platform_device *__init at32_add_device_usart(unsigned int id)
779 platform_device_register(at32_usarts[id]);
780 return at32_usarts[id];
783 struct platform_device *atmel_default_console_device;
785 void __init at32_setup_serial_console(unsigned int usart_id)
787 atmel_default_console_device = at32_usarts[usart_id];
790 /* --------------------------------------------------------------------
791 * Ethernet
792 * -------------------------------------------------------------------- */
794 static struct eth_platform_data macb0_data;
795 static struct resource macb0_resource[] = {
796 PBMEM(0xfff01800),
797 IRQ(25),
799 DEFINE_DEV_DATA(macb, 0);
800 DEV_CLK(hclk, macb0, hsb, 8);
801 DEV_CLK(pclk, macb0, pbb, 6);
803 static struct eth_platform_data macb1_data;
804 static struct resource macb1_resource[] = {
805 PBMEM(0xfff01c00),
806 IRQ(26),
808 DEFINE_DEV_DATA(macb, 1);
809 DEV_CLK(hclk, macb1, hsb, 9);
810 DEV_CLK(pclk, macb1, pbb, 7);
812 struct platform_device *__init
813 at32_add_device_eth(unsigned int id, struct eth_platform_data *data)
815 struct platform_device *pdev;
817 switch (id) {
818 case 0:
819 pdev = &macb0_device;
821 select_peripheral(PC(3), PERIPH_A, 0); /* TXD0 */
822 select_peripheral(PC(4), PERIPH_A, 0); /* TXD1 */
823 select_peripheral(PC(7), PERIPH_A, 0); /* TXEN */
824 select_peripheral(PC(8), PERIPH_A, 0); /* TXCK */
825 select_peripheral(PC(9), PERIPH_A, 0); /* RXD0 */
826 select_peripheral(PC(10), PERIPH_A, 0); /* RXD1 */
827 select_peripheral(PC(13), PERIPH_A, 0); /* RXER */
828 select_peripheral(PC(15), PERIPH_A, 0); /* RXDV */
829 select_peripheral(PC(16), PERIPH_A, 0); /* MDC */
830 select_peripheral(PC(17), PERIPH_A, 0); /* MDIO */
832 if (!data->is_rmii) {
833 select_peripheral(PC(0), PERIPH_A, 0); /* COL */
834 select_peripheral(PC(1), PERIPH_A, 0); /* CRS */
835 select_peripheral(PC(2), PERIPH_A, 0); /* TXER */
836 select_peripheral(PC(5), PERIPH_A, 0); /* TXD2 */
837 select_peripheral(PC(6), PERIPH_A, 0); /* TXD3 */
838 select_peripheral(PC(11), PERIPH_A, 0); /* RXD2 */
839 select_peripheral(PC(12), PERIPH_A, 0); /* RXD3 */
840 select_peripheral(PC(14), PERIPH_A, 0); /* RXCK */
841 select_peripheral(PC(18), PERIPH_A, 0); /* SPD */
843 break;
845 case 1:
846 pdev = &macb1_device;
848 select_peripheral(PD(13), PERIPH_B, 0); /* TXD0 */
849 select_peripheral(PD(14), PERIPH_B, 0); /* TXD1 */
850 select_peripheral(PD(11), PERIPH_B, 0); /* TXEN */
851 select_peripheral(PD(12), PERIPH_B, 0); /* TXCK */
852 select_peripheral(PD(10), PERIPH_B, 0); /* RXD0 */
853 select_peripheral(PD(6), PERIPH_B, 0); /* RXD1 */
854 select_peripheral(PD(5), PERIPH_B, 0); /* RXER */
855 select_peripheral(PD(4), PERIPH_B, 0); /* RXDV */
856 select_peripheral(PD(3), PERIPH_B, 0); /* MDC */
857 select_peripheral(PD(2), PERIPH_B, 0); /* MDIO */
859 if (!data->is_rmii) {
860 select_peripheral(PC(19), PERIPH_B, 0); /* COL */
861 select_peripheral(PC(23), PERIPH_B, 0); /* CRS */
862 select_peripheral(PC(26), PERIPH_B, 0); /* TXER */
863 select_peripheral(PC(27), PERIPH_B, 0); /* TXD2 */
864 select_peripheral(PC(28), PERIPH_B, 0); /* TXD3 */
865 select_peripheral(PC(29), PERIPH_B, 0); /* RXD2 */
866 select_peripheral(PC(30), PERIPH_B, 0); /* RXD3 */
867 select_peripheral(PC(24), PERIPH_B, 0); /* RXCK */
868 select_peripheral(PD(15), PERIPH_B, 0); /* SPD */
870 break;
872 default:
873 return NULL;
876 memcpy(pdev->dev.platform_data, data, sizeof(struct eth_platform_data));
877 platform_device_register(pdev);
879 return pdev;
882 /* --------------------------------------------------------------------
883 * SPI
884 * -------------------------------------------------------------------- */
885 static struct resource atmel_spi0_resource[] = {
886 PBMEM(0xffe00000),
887 IRQ(3),
889 DEFINE_DEV(atmel_spi, 0);
890 DEV_CLK(spi_clk, atmel_spi0, pba, 0);
892 static struct resource atmel_spi1_resource[] = {
893 PBMEM(0xffe00400),
894 IRQ(4),
896 DEFINE_DEV(atmel_spi, 1);
897 DEV_CLK(spi_clk, atmel_spi1, pba, 1);
899 static void __init
900 at32_spi_setup_slaves(unsigned int bus_num, struct spi_board_info *b,
901 unsigned int n, const u8 *pins)
903 unsigned int pin, mode;
905 for (; n; n--, b++) {
906 b->bus_num = bus_num;
907 if (b->chip_select >= 4)
908 continue;
909 pin = (unsigned)b->controller_data;
910 if (!pin) {
911 pin = pins[b->chip_select];
912 b->controller_data = (void *)pin;
914 mode = AT32_GPIOF_OUTPUT;
915 if (!(b->mode & SPI_CS_HIGH))
916 mode |= AT32_GPIOF_HIGH;
917 at32_select_gpio(pin, mode);
921 struct platform_device *__init
922 at32_add_device_spi(unsigned int id, struct spi_board_info *b, unsigned int n)
925 * Manage the chipselects as GPIOs, normally using the same pins
926 * the SPI controller expects; but boards can use other pins.
928 static u8 __initdata spi0_pins[] =
929 { GPIO_PIN_PA(3), GPIO_PIN_PA(4),
930 GPIO_PIN_PA(5), GPIO_PIN_PA(20), };
931 static u8 __initdata spi1_pins[] =
932 { GPIO_PIN_PB(2), GPIO_PIN_PB(3),
933 GPIO_PIN_PB(4), GPIO_PIN_PA(27), };
934 struct platform_device *pdev;
936 switch (id) {
937 case 0:
938 pdev = &atmel_spi0_device;
939 select_peripheral(PA(0), PERIPH_A, 0); /* MISO */
940 select_peripheral(PA(1), PERIPH_A, 0); /* MOSI */
941 select_peripheral(PA(2), PERIPH_A, 0); /* SCK */
942 at32_spi_setup_slaves(0, b, n, spi0_pins);
943 break;
945 case 1:
946 pdev = &atmel_spi1_device;
947 select_peripheral(PB(0), PERIPH_B, 0); /* MISO */
948 select_peripheral(PB(1), PERIPH_B, 0); /* MOSI */
949 select_peripheral(PB(5), PERIPH_B, 0); /* SCK */
950 at32_spi_setup_slaves(1, b, n, spi1_pins);
951 break;
953 default:
954 return NULL;
957 spi_register_board_info(b, n);
958 platform_device_register(pdev);
959 return pdev;
962 /* --------------------------------------------------------------------
963 * LCDC
964 * -------------------------------------------------------------------- */
965 static struct atmel_lcdfb_info atmel_lcdfb0_data;
966 static struct resource atmel_lcdfb0_resource[] = {
968 .start = 0xff000000,
969 .end = 0xff000fff,
970 .flags = IORESOURCE_MEM,
972 IRQ(1),
974 /* Placeholder for pre-allocated fb memory */
975 .start = 0x00000000,
976 .end = 0x00000000,
977 .flags = 0,
980 DEFINE_DEV_DATA(atmel_lcdfb, 0);
981 DEV_CLK(hck1, atmel_lcdfb0, hsb, 7);
982 static struct clk atmel_lcdfb0_pixclk = {
983 .name = "lcdc_clk",
984 .dev = &atmel_lcdfb0_device.dev,
985 .mode = genclk_mode,
986 .get_rate = genclk_get_rate,
987 .set_rate = genclk_set_rate,
988 .set_parent = genclk_set_parent,
989 .index = 7,
992 struct platform_device *__init
993 at32_add_device_lcdc(unsigned int id, struct atmel_lcdfb_info *data,
994 unsigned long fbmem_start, unsigned long fbmem_len)
996 struct platform_device *pdev;
997 struct atmel_lcdfb_info *info;
998 struct fb_monspecs *monspecs;
999 struct fb_videomode *modedb;
1000 unsigned int modedb_size;
1003 * Do a deep copy of the fb data, monspecs and modedb. Make
1004 * sure all allocations are done before setting up the
1005 * portmux.
1007 monspecs = kmemdup(data->default_monspecs,
1008 sizeof(struct fb_monspecs), GFP_KERNEL);
1009 if (!monspecs)
1010 return NULL;
1012 modedb_size = sizeof(struct fb_videomode) * monspecs->modedb_len;
1013 modedb = kmemdup(monspecs->modedb, modedb_size, GFP_KERNEL);
1014 if (!modedb)
1015 goto err_dup_modedb;
1016 monspecs->modedb = modedb;
1018 switch (id) {
1019 case 0:
1020 pdev = &atmel_lcdfb0_device;
1021 select_peripheral(PC(19), PERIPH_A, 0); /* CC */
1022 select_peripheral(PC(20), PERIPH_A, 0); /* HSYNC */
1023 select_peripheral(PC(21), PERIPH_A, 0); /* PCLK */
1024 select_peripheral(PC(22), PERIPH_A, 0); /* VSYNC */
1025 select_peripheral(PC(23), PERIPH_A, 0); /* DVAL */
1026 select_peripheral(PC(24), PERIPH_A, 0); /* MODE */
1027 select_peripheral(PC(25), PERIPH_A, 0); /* PWR */
1028 select_peripheral(PC(26), PERIPH_A, 0); /* DATA0 */
1029 select_peripheral(PC(27), PERIPH_A, 0); /* DATA1 */
1030 select_peripheral(PC(28), PERIPH_A, 0); /* DATA2 */
1031 select_peripheral(PC(29), PERIPH_A, 0); /* DATA3 */
1032 select_peripheral(PC(30), PERIPH_A, 0); /* DATA4 */
1033 select_peripheral(PC(31), PERIPH_A, 0); /* DATA5 */
1034 select_peripheral(PD(0), PERIPH_A, 0); /* DATA6 */
1035 select_peripheral(PD(1), PERIPH_A, 0); /* DATA7 */
1036 select_peripheral(PD(2), PERIPH_A, 0); /* DATA8 */
1037 select_peripheral(PD(3), PERIPH_A, 0); /* DATA9 */
1038 select_peripheral(PD(4), PERIPH_A, 0); /* DATA10 */
1039 select_peripheral(PD(5), PERIPH_A, 0); /* DATA11 */
1040 select_peripheral(PD(6), PERIPH_A, 0); /* DATA12 */
1041 select_peripheral(PD(7), PERIPH_A, 0); /* DATA13 */
1042 select_peripheral(PD(8), PERIPH_A, 0); /* DATA14 */
1043 select_peripheral(PD(9), PERIPH_A, 0); /* DATA15 */
1044 select_peripheral(PD(10), PERIPH_A, 0); /* DATA16 */
1045 select_peripheral(PD(11), PERIPH_A, 0); /* DATA17 */
1046 select_peripheral(PD(12), PERIPH_A, 0); /* DATA18 */
1047 select_peripheral(PD(13), PERIPH_A, 0); /* DATA19 */
1048 select_peripheral(PD(14), PERIPH_A, 0); /* DATA20 */
1049 select_peripheral(PD(15), PERIPH_A, 0); /* DATA21 */
1050 select_peripheral(PD(16), PERIPH_A, 0); /* DATA22 */
1051 select_peripheral(PD(17), PERIPH_A, 0); /* DATA23 */
1053 clk_set_parent(&atmel_lcdfb0_pixclk, &pll0);
1054 clk_set_rate(&atmel_lcdfb0_pixclk, clk_get_rate(&pll0));
1055 break;
1057 default:
1058 goto err_invalid_id;
1061 if (fbmem_len) {
1062 pdev->resource[2].start = fbmem_start;
1063 pdev->resource[2].end = fbmem_start + fbmem_len - 1;
1064 pdev->resource[2].flags = IORESOURCE_MEM;
1067 info = pdev->dev.platform_data;
1068 memcpy(info, data, sizeof(struct atmel_lcdfb_info));
1069 info->default_monspecs = monspecs;
1071 platform_device_register(pdev);
1072 return pdev;
1074 err_invalid_id:
1075 kfree(modedb);
1076 err_dup_modedb:
1077 kfree(monspecs);
1078 return NULL;
1081 /* --------------------------------------------------------------------
1082 * SSC
1083 * -------------------------------------------------------------------- */
1084 static struct resource ssc0_resource[] = {
1085 PBMEM(0xffe01c00),
1086 IRQ(10),
1088 DEFINE_DEV(ssc, 0);
1089 DEV_CLK(pclk, ssc0, pba, 7);
1091 static struct resource ssc1_resource[] = {
1092 PBMEM(0xffe02000),
1093 IRQ(11),
1095 DEFINE_DEV(ssc, 1);
1096 DEV_CLK(pclk, ssc1, pba, 8);
1098 static struct resource ssc2_resource[] = {
1099 PBMEM(0xffe02400),
1100 IRQ(12),
1102 DEFINE_DEV(ssc, 2);
1103 DEV_CLK(pclk, ssc2, pba, 9);
1105 struct platform_device *__init
1106 at32_add_device_ssc(unsigned int id, unsigned int flags)
1108 struct platform_device *pdev;
1110 switch (id) {
1111 case 0:
1112 pdev = &ssc0_device;
1113 if (flags & ATMEL_SSC_RF)
1114 select_peripheral(PA(21), PERIPH_A, 0); /* RF */
1115 if (flags & ATMEL_SSC_RK)
1116 select_peripheral(PA(22), PERIPH_A, 0); /* RK */
1117 if (flags & ATMEL_SSC_TK)
1118 select_peripheral(PA(23), PERIPH_A, 0); /* TK */
1119 if (flags & ATMEL_SSC_TF)
1120 select_peripheral(PA(24), PERIPH_A, 0); /* TF */
1121 if (flags & ATMEL_SSC_TD)
1122 select_peripheral(PA(25), PERIPH_A, 0); /* TD */
1123 if (flags & ATMEL_SSC_RD)
1124 select_peripheral(PA(26), PERIPH_A, 0); /* RD */
1125 break;
1126 case 1:
1127 pdev = &ssc1_device;
1128 if (flags & ATMEL_SSC_RF)
1129 select_peripheral(PA(0), PERIPH_B, 0); /* RF */
1130 if (flags & ATMEL_SSC_RK)
1131 select_peripheral(PA(1), PERIPH_B, 0); /* RK */
1132 if (flags & ATMEL_SSC_TK)
1133 select_peripheral(PA(2), PERIPH_B, 0); /* TK */
1134 if (flags & ATMEL_SSC_TF)
1135 select_peripheral(PA(3), PERIPH_B, 0); /* TF */
1136 if (flags & ATMEL_SSC_TD)
1137 select_peripheral(PA(4), PERIPH_B, 0); /* TD */
1138 if (flags & ATMEL_SSC_RD)
1139 select_peripheral(PA(5), PERIPH_B, 0); /* RD */
1140 break;
1141 case 2:
1142 pdev = &ssc2_device;
1143 if (flags & ATMEL_SSC_TD)
1144 select_peripheral(PB(13), PERIPH_A, 0); /* TD */
1145 if (flags & ATMEL_SSC_RD)
1146 select_peripheral(PB(14), PERIPH_A, 0); /* RD */
1147 if (flags & ATMEL_SSC_TK)
1148 select_peripheral(PB(15), PERIPH_A, 0); /* TK */
1149 if (flags & ATMEL_SSC_TF)
1150 select_peripheral(PB(16), PERIPH_A, 0); /* TF */
1151 if (flags & ATMEL_SSC_RF)
1152 select_peripheral(PB(17), PERIPH_A, 0); /* RF */
1153 if (flags & ATMEL_SSC_RK)
1154 select_peripheral(PB(18), PERIPH_A, 0); /* RK */
1155 break;
1156 default:
1157 return NULL;
1160 platform_device_register(pdev);
1161 return pdev;
1164 /* --------------------------------------------------------------------
1165 * USB Device Controller
1166 * -------------------------------------------------------------------- */
1167 static struct resource usba0_resource[] __initdata = {
1169 .start = 0xff300000,
1170 .end = 0xff3fffff,
1171 .flags = IORESOURCE_MEM,
1172 }, {
1173 .start = 0xfff03000,
1174 .end = 0xfff033ff,
1175 .flags = IORESOURCE_MEM,
1177 IRQ(31),
1179 static struct clk usba0_pclk = {
1180 .name = "pclk",
1181 .parent = &pbb_clk,
1182 .mode = pbb_clk_mode,
1183 .get_rate = pbb_clk_get_rate,
1184 .index = 12,
1186 static struct clk usba0_hclk = {
1187 .name = "hclk",
1188 .parent = &hsb_clk,
1189 .mode = hsb_clk_mode,
1190 .get_rate = hsb_clk_get_rate,
1191 .index = 6,
1194 struct platform_device *__init
1195 at32_add_device_usba(unsigned int id, struct usba_platform_data *data)
1197 struct platform_device *pdev;
1199 if (id != 0)
1200 return NULL;
1202 pdev = platform_device_alloc("atmel_usba_udc", 0);
1203 if (!pdev)
1204 return NULL;
1206 if (platform_device_add_resources(pdev, usba0_resource,
1207 ARRAY_SIZE(usba0_resource)))
1208 goto out_free_pdev;
1210 if (data) {
1211 if (platform_device_add_data(pdev, data, sizeof(*data)))
1212 goto out_free_pdev;
1214 if (data->vbus_pin != GPIO_PIN_NONE)
1215 at32_select_gpio(data->vbus_pin, 0);
1218 usba0_pclk.dev = &pdev->dev;
1219 usba0_hclk.dev = &pdev->dev;
1221 platform_device_add(pdev);
1223 return pdev;
1225 out_free_pdev:
1226 platform_device_put(pdev);
1227 return NULL;
1230 /* --------------------------------------------------------------------
1231 * IDE
1232 * -------------------------------------------------------------------- */
1233 static struct ide_platform_data at32_ide0_data;
1234 static struct resource at32_ide0_resource[] = {
1236 .start = 0x04000000,
1237 .end = 0x07ffffff,
1238 .flags = IORESOURCE_MEM,
1240 IRQ(~0UL), /* Magic IRQ will be overridden */
1242 DEFINE_DEV_DATA(at32_ide, 0);
1244 struct platform_device *__init
1245 at32_add_device_ide(unsigned int id, unsigned int extint,
1246 struct ide_platform_data *data)
1248 struct platform_device *pdev;
1249 unsigned int extint_pin;
1251 switch (extint) {
1252 case 0:
1253 extint_pin = GPIO_PIN_PB(25);
1254 break;
1255 case 1:
1256 extint_pin = GPIO_PIN_PB(26);
1257 break;
1258 case 2:
1259 extint_pin = GPIO_PIN_PB(27);
1260 break;
1261 case 3:
1262 extint_pin = GPIO_PIN_PB(28);
1263 break;
1264 default:
1265 return NULL;
1268 switch (id) {
1269 case 0:
1270 pdev = &at32_ide0_device;
1271 select_peripheral(PE(19), PERIPH_A, 0); /* CFCE1 -> CS0_N */
1272 select_peripheral(PE(20), PERIPH_A, 0); /* CFCE2 -> CS1_N */
1273 select_peripheral(PE(21), PERIPH_A, 0); /* NCS4 -> OE_N */
1274 select_peripheral(PE(23), PERIPH_A, 0); /* CFRNW -> DIR */
1275 select_peripheral(PE(24), PERIPH_A, 0); /* NWAIT <- IORDY */
1276 set_ebi_sfr_bits(HMATRIX_BIT(CS4A));
1277 data->cs = 4;
1278 break;
1279 default:
1280 return NULL;
1283 at32_select_periph(extint_pin, GPIO_PERIPH_A, AT32_GPIOF_DEGLITCH);
1285 pdev->resource[1].start = EIM_IRQ_BASE + extint;
1286 pdev->resource[1].end = pdev->resource[1].start;
1288 memcpy(pdev->dev.platform_data, data, sizeof(struct ide_platform_data));
1290 platform_device_register(pdev);
1292 return pdev;
1295 /* --------------------------------------------------------------------
1296 * GCLK
1297 * -------------------------------------------------------------------- */
1298 static struct clk gclk0 = {
1299 .name = "gclk0",
1300 .mode = genclk_mode,
1301 .get_rate = genclk_get_rate,
1302 .set_rate = genclk_set_rate,
1303 .set_parent = genclk_set_parent,
1304 .index = 0,
1306 static struct clk gclk1 = {
1307 .name = "gclk1",
1308 .mode = genclk_mode,
1309 .get_rate = genclk_get_rate,
1310 .set_rate = genclk_set_rate,
1311 .set_parent = genclk_set_parent,
1312 .index = 1,
1314 static struct clk gclk2 = {
1315 .name = "gclk2",
1316 .mode = genclk_mode,
1317 .get_rate = genclk_get_rate,
1318 .set_rate = genclk_set_rate,
1319 .set_parent = genclk_set_parent,
1320 .index = 2,
1322 static struct clk gclk3 = {
1323 .name = "gclk3",
1324 .mode = genclk_mode,
1325 .get_rate = genclk_get_rate,
1326 .set_rate = genclk_set_rate,
1327 .set_parent = genclk_set_parent,
1328 .index = 3,
1330 static struct clk gclk4 = {
1331 .name = "gclk4",
1332 .mode = genclk_mode,
1333 .get_rate = genclk_get_rate,
1334 .set_rate = genclk_set_rate,
1335 .set_parent = genclk_set_parent,
1336 .index = 4,
1339 struct clk *at32_clock_list[] = {
1340 &osc32k,
1341 &osc0,
1342 &osc1,
1343 &pll0,
1344 &pll1,
1345 &cpu_clk,
1346 &hsb_clk,
1347 &pba_clk,
1348 &pbb_clk,
1349 &at32_pm_pclk,
1350 &at32_intc0_pclk,
1351 &hmatrix_clk,
1352 &ebi_clk,
1353 &hramc_clk,
1354 &smc0_pclk,
1355 &smc0_mck,
1356 &pdc_hclk,
1357 &pdc_pclk,
1358 &pico_clk,
1359 &pio0_mck,
1360 &pio1_mck,
1361 &pio2_mck,
1362 &pio3_mck,
1363 &pio4_mck,
1364 &at32_systc0_pclk,
1365 &atmel_usart0_usart,
1366 &atmel_usart1_usart,
1367 &atmel_usart2_usart,
1368 &atmel_usart3_usart,
1369 &macb0_hclk,
1370 &macb0_pclk,
1371 &macb1_hclk,
1372 &macb1_pclk,
1373 &atmel_spi0_spi_clk,
1374 &atmel_spi1_spi_clk,
1375 &atmel_lcdfb0_hck1,
1376 &atmel_lcdfb0_pixclk,
1377 &ssc0_pclk,
1378 &ssc1_pclk,
1379 &ssc2_pclk,
1380 &usba0_hclk,
1381 &usba0_pclk,
1382 &gclk0,
1383 &gclk1,
1384 &gclk2,
1385 &gclk3,
1386 &gclk4,
1388 unsigned int at32_nr_clocks = ARRAY_SIZE(at32_clock_list);
1390 void __init at32_portmux_init(void)
1392 at32_init_pio(&pio0_device);
1393 at32_init_pio(&pio1_device);
1394 at32_init_pio(&pio2_device);
1395 at32_init_pio(&pio3_device);
1396 at32_init_pio(&pio4_device);
1399 void __init at32_clock_init(void)
1401 u32 cpu_mask = 0, hsb_mask = 0, pba_mask = 0, pbb_mask = 0;
1402 int i;
1404 if (pm_readl(MCCTRL) & PM_BIT(PLLSEL)) {
1405 main_clock = &pll0;
1406 cpu_clk.parent = &pll0;
1407 } else {
1408 main_clock = &osc0;
1409 cpu_clk.parent = &osc0;
1412 if (pm_readl(PLL0) & PM_BIT(PLLOSC))
1413 pll0.parent = &osc1;
1414 if (pm_readl(PLL1) & PM_BIT(PLLOSC))
1415 pll1.parent = &osc1;
1417 genclk_init_parent(&gclk0);
1418 genclk_init_parent(&gclk1);
1419 genclk_init_parent(&gclk2);
1420 genclk_init_parent(&gclk3);
1421 genclk_init_parent(&gclk4);
1422 genclk_init_parent(&atmel_lcdfb0_pixclk);
1425 * Turn on all clocks that have at least one user already, and
1426 * turn off everything else. We only do this for module
1427 * clocks, and even though it isn't particularly pretty to
1428 * check the address of the mode function, it should do the
1429 * trick...
1431 for (i = 0; i < ARRAY_SIZE(at32_clock_list); i++) {
1432 struct clk *clk = at32_clock_list[i];
1434 if (clk->users == 0)
1435 continue;
1437 if (clk->mode == &cpu_clk_mode)
1438 cpu_mask |= 1 << clk->index;
1439 else if (clk->mode == &hsb_clk_mode)
1440 hsb_mask |= 1 << clk->index;
1441 else if (clk->mode == &pba_clk_mode)
1442 pba_mask |= 1 << clk->index;
1443 else if (clk->mode == &pbb_clk_mode)
1444 pbb_mask |= 1 << clk->index;
1447 pm_writel(CPU_MASK, cpu_mask);
1448 pm_writel(HSB_MASK, hsb_mask);
1449 pm_writel(PBA_MASK, pba_mask);
1450 pm_writel(PBB_MASK, pbb_mask);