2 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 #include <linux/init.h>
20 #include <linux/module.h>
21 #include <linux/device.h>
22 #include <linux/ioport.h>
23 #include <linux/errno.h>
24 #include <linux/interrupt.h>
25 #include <linux/platform_device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/spi/spi.h>
28 #include <linux/workqueue.h>
29 #include <linux/delay.h>
30 #include <linux/clk.h>
31 #include <linux/gpio.h>
35 #include <asm/delay.h>
38 #include <mach/regs-ssp.h>
40 #include <mach/pxa2xx_spi.h>
42 MODULE_AUTHOR("Stephen Street");
43 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
44 MODULE_LICENSE("GPL");
45 MODULE_ALIAS("platform:pxa2xx-spi");
49 #define RX_THRESH_DFLT 8
50 #define TX_THRESH_DFLT 8
51 #define TIMOUT_DFLT 1000
53 #define DMA_INT_MASK (DCSR_ENDINTR | DCSR_STARTINTR | DCSR_BUSERR)
54 #define RESET_DMA_CHANNEL (DCSR_NODESC | DMA_INT_MASK)
55 #define IS_DMA_ALIGNED(x) ((((u32)(x)) & 0x07) == 0)
56 #define MAX_DMA_LEN 8191
57 #define DMA_ALIGNMENT 8
60 * for testing SSCR1 changes that require SSP restart, basically
61 * everything except the service and interrupt enables, the pxa270 developer
62 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
63 * list, but the PXA255 dev man says all bits without really meaning the
64 * service and interrupt enables
66 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
67 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
68 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
69 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
70 | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
71 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
73 #define DEFINE_SSP_REG(reg, off) \
74 static inline u32 read_##reg(void const __iomem *p) \
75 { return __raw_readl(p + (off)); } \
77 static inline void write_##reg(u32 v, void __iomem *p) \
78 { __raw_writel(v, p + (off)); }
80 DEFINE_SSP_REG(SSCR0
, 0x00)
81 DEFINE_SSP_REG(SSCR1
, 0x04)
82 DEFINE_SSP_REG(SSSR
, 0x08)
83 DEFINE_SSP_REG(SSITR
, 0x0c)
84 DEFINE_SSP_REG(SSDR
, 0x10)
85 DEFINE_SSP_REG(SSTO
, 0x28)
86 DEFINE_SSP_REG(SSPSP
, 0x2c)
88 #define START_STATE ((void*)0)
89 #define RUNNING_STATE ((void*)1)
90 #define DONE_STATE ((void*)2)
91 #define ERROR_STATE ((void*)-1)
93 #define QUEUE_RUNNING 0
94 #define QUEUE_STOPPED 1
97 /* Driver model hookup */
98 struct platform_device
*pdev
;
101 struct ssp_device
*ssp
;
103 /* SPI framework hookup */
104 enum pxa_ssp_type ssp_type
;
105 struct spi_master
*master
;
108 struct pxa2xx_spi_master
*master_info
;
110 /* DMA setup stuff */
115 /* SSP register addresses */
116 void __iomem
*ioaddr
;
125 /* Driver message queue */
126 struct workqueue_struct
*workqueue
;
127 struct work_struct pump_messages
;
129 struct list_head queue
;
133 /* Message Transfer pump */
134 struct tasklet_struct pump_transfers
;
136 /* Current message transfer state info */
137 struct spi_message
* cur_msg
;
138 struct spi_transfer
* cur_transfer
;
139 struct chip_data
*cur_chip
;
152 int (*write
)(struct driver_data
*drv_data
);
153 int (*read
)(struct driver_data
*drv_data
);
154 irqreturn_t (*transfer_handler
)(struct driver_data
*drv_data
);
155 void (*cs_control
)(u32 command
);
172 int gpio_cs_inverted
;
173 int (*write
)(struct driver_data
*drv_data
);
174 int (*read
)(struct driver_data
*drv_data
);
175 void (*cs_control
)(u32 command
);
178 static void pump_messages(struct work_struct
*work
);
180 static void cs_assert(struct driver_data
*drv_data
)
182 struct chip_data
*chip
= drv_data
->cur_chip
;
184 if (chip
->cs_control
) {
185 chip
->cs_control(PXA2XX_CS_ASSERT
);
189 if (gpio_is_valid(chip
->gpio_cs
))
190 gpio_set_value(chip
->gpio_cs
, chip
->gpio_cs_inverted
);
193 static void cs_deassert(struct driver_data
*drv_data
)
195 struct chip_data
*chip
= drv_data
->cur_chip
;
197 if (chip
->cs_control
) {
198 chip
->cs_control(PXA2XX_CS_DEASSERT
);
202 if (gpio_is_valid(chip
->gpio_cs
))
203 gpio_set_value(chip
->gpio_cs
, !chip
->gpio_cs_inverted
);
206 static int flush(struct driver_data
*drv_data
)
208 unsigned long limit
= loops_per_jiffy
<< 1;
210 void __iomem
*reg
= drv_data
->ioaddr
;
213 while (read_SSSR(reg
) & SSSR_RNE
) {
216 } while ((read_SSSR(reg
) & SSSR_BSY
) && --limit
);
217 write_SSSR(SSSR_ROR
, reg
);
222 static int null_writer(struct driver_data
*drv_data
)
224 void __iomem
*reg
= drv_data
->ioaddr
;
225 u8 n_bytes
= drv_data
->n_bytes
;
227 if (((read_SSSR(reg
) & 0x00000f00) == 0x00000f00)
228 || (drv_data
->tx
== drv_data
->tx_end
))
232 drv_data
->tx
+= n_bytes
;
237 static int null_reader(struct driver_data
*drv_data
)
239 void __iomem
*reg
= drv_data
->ioaddr
;
240 u8 n_bytes
= drv_data
->n_bytes
;
242 while ((read_SSSR(reg
) & SSSR_RNE
)
243 && (drv_data
->rx
< drv_data
->rx_end
)) {
245 drv_data
->rx
+= n_bytes
;
248 return drv_data
->rx
== drv_data
->rx_end
;
251 static int u8_writer(struct driver_data
*drv_data
)
253 void __iomem
*reg
= drv_data
->ioaddr
;
255 if (((read_SSSR(reg
) & 0x00000f00) == 0x00000f00)
256 || (drv_data
->tx
== drv_data
->tx_end
))
259 write_SSDR(*(u8
*)(drv_data
->tx
), reg
);
265 static int u8_reader(struct driver_data
*drv_data
)
267 void __iomem
*reg
= drv_data
->ioaddr
;
269 while ((read_SSSR(reg
) & SSSR_RNE
)
270 && (drv_data
->rx
< drv_data
->rx_end
)) {
271 *(u8
*)(drv_data
->rx
) = read_SSDR(reg
);
275 return drv_data
->rx
== drv_data
->rx_end
;
278 static int u16_writer(struct driver_data
*drv_data
)
280 void __iomem
*reg
= drv_data
->ioaddr
;
282 if (((read_SSSR(reg
) & 0x00000f00) == 0x00000f00)
283 || (drv_data
->tx
== drv_data
->tx_end
))
286 write_SSDR(*(u16
*)(drv_data
->tx
), reg
);
292 static int u16_reader(struct driver_data
*drv_data
)
294 void __iomem
*reg
= drv_data
->ioaddr
;
296 while ((read_SSSR(reg
) & SSSR_RNE
)
297 && (drv_data
->rx
< drv_data
->rx_end
)) {
298 *(u16
*)(drv_data
->rx
) = read_SSDR(reg
);
302 return drv_data
->rx
== drv_data
->rx_end
;
305 static int u32_writer(struct driver_data
*drv_data
)
307 void __iomem
*reg
= drv_data
->ioaddr
;
309 if (((read_SSSR(reg
) & 0x00000f00) == 0x00000f00)
310 || (drv_data
->tx
== drv_data
->tx_end
))
313 write_SSDR(*(u32
*)(drv_data
->tx
), reg
);
319 static int u32_reader(struct driver_data
*drv_data
)
321 void __iomem
*reg
= drv_data
->ioaddr
;
323 while ((read_SSSR(reg
) & SSSR_RNE
)
324 && (drv_data
->rx
< drv_data
->rx_end
)) {
325 *(u32
*)(drv_data
->rx
) = read_SSDR(reg
);
329 return drv_data
->rx
== drv_data
->rx_end
;
332 static void *next_transfer(struct driver_data
*drv_data
)
334 struct spi_message
*msg
= drv_data
->cur_msg
;
335 struct spi_transfer
*trans
= drv_data
->cur_transfer
;
337 /* Move to next transfer */
338 if (trans
->transfer_list
.next
!= &msg
->transfers
) {
339 drv_data
->cur_transfer
=
340 list_entry(trans
->transfer_list
.next
,
343 return RUNNING_STATE
;
348 static int map_dma_buffers(struct driver_data
*drv_data
)
350 struct spi_message
*msg
= drv_data
->cur_msg
;
351 struct device
*dev
= &msg
->spi
->dev
;
353 if (!drv_data
->cur_chip
->enable_dma
)
356 if (msg
->is_dma_mapped
)
357 return drv_data
->rx_dma
&& drv_data
->tx_dma
;
359 if (!IS_DMA_ALIGNED(drv_data
->rx
) || !IS_DMA_ALIGNED(drv_data
->tx
))
362 /* Modify setup if rx buffer is null */
363 if (drv_data
->rx
== NULL
) {
364 *drv_data
->null_dma_buf
= 0;
365 drv_data
->rx
= drv_data
->null_dma_buf
;
366 drv_data
->rx_map_len
= 4;
368 drv_data
->rx_map_len
= drv_data
->len
;
371 /* Modify setup if tx buffer is null */
372 if (drv_data
->tx
== NULL
) {
373 *drv_data
->null_dma_buf
= 0;
374 drv_data
->tx
= drv_data
->null_dma_buf
;
375 drv_data
->tx_map_len
= 4;
377 drv_data
->tx_map_len
= drv_data
->len
;
379 /* Stream map the tx buffer. Always do DMA_TO_DEVICE first
380 * so we flush the cache *before* invalidating it, in case
381 * the tx and rx buffers overlap.
383 drv_data
->tx_dma
= dma_map_single(dev
, drv_data
->tx
,
384 drv_data
->tx_map_len
, DMA_TO_DEVICE
);
385 if (dma_mapping_error(dev
, drv_data
->tx_dma
))
388 /* Stream map the rx buffer */
389 drv_data
->rx_dma
= dma_map_single(dev
, drv_data
->rx
,
390 drv_data
->rx_map_len
, DMA_FROM_DEVICE
);
391 if (dma_mapping_error(dev
, drv_data
->rx_dma
)) {
392 dma_unmap_single(dev
, drv_data
->tx_dma
,
393 drv_data
->tx_map_len
, DMA_TO_DEVICE
);
400 static void unmap_dma_buffers(struct driver_data
*drv_data
)
404 if (!drv_data
->dma_mapped
)
407 if (!drv_data
->cur_msg
->is_dma_mapped
) {
408 dev
= &drv_data
->cur_msg
->spi
->dev
;
409 dma_unmap_single(dev
, drv_data
->rx_dma
,
410 drv_data
->rx_map_len
, DMA_FROM_DEVICE
);
411 dma_unmap_single(dev
, drv_data
->tx_dma
,
412 drv_data
->tx_map_len
, DMA_TO_DEVICE
);
415 drv_data
->dma_mapped
= 0;
418 /* caller already set message->status; dma and pio irqs are blocked */
419 static void giveback(struct driver_data
*drv_data
)
421 struct spi_transfer
* last_transfer
;
423 struct spi_message
*msg
;
425 spin_lock_irqsave(&drv_data
->lock
, flags
);
426 msg
= drv_data
->cur_msg
;
427 drv_data
->cur_msg
= NULL
;
428 drv_data
->cur_transfer
= NULL
;
429 queue_work(drv_data
->workqueue
, &drv_data
->pump_messages
);
430 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
432 last_transfer
= list_entry(msg
->transfers
.prev
,
436 /* Delay if requested before any change in chip select */
437 if (last_transfer
->delay_usecs
)
438 udelay(last_transfer
->delay_usecs
);
440 /* Drop chip select UNLESS cs_change is true or we are returning
441 * a message with an error, or next message is for another chip
443 if (!last_transfer
->cs_change
)
444 cs_deassert(drv_data
);
446 struct spi_message
*next_msg
;
448 /* Holding of cs was hinted, but we need to make sure
449 * the next message is for the same chip. Don't waste
450 * time with the following tests unless this was hinted.
452 * We cannot postpone this until pump_messages, because
453 * after calling msg->complete (below) the driver that
454 * sent the current message could be unloaded, which
455 * could invalidate the cs_control() callback...
458 /* get a pointer to the next message, if any */
459 spin_lock_irqsave(&drv_data
->lock
, flags
);
460 if (list_empty(&drv_data
->queue
))
463 next_msg
= list_entry(drv_data
->queue
.next
,
464 struct spi_message
, queue
);
465 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
467 /* see if the next and current messages point
470 if (next_msg
&& next_msg
->spi
!= msg
->spi
)
472 if (!next_msg
|| msg
->state
== ERROR_STATE
)
473 cs_deassert(drv_data
);
478 msg
->complete(msg
->context
);
480 drv_data
->cur_chip
= NULL
;
483 static int wait_ssp_rx_stall(void const __iomem
*ioaddr
)
485 unsigned long limit
= loops_per_jiffy
<< 1;
487 while ((read_SSSR(ioaddr
) & SSSR_BSY
) && --limit
)
493 static int wait_dma_channel_stop(int channel
)
495 unsigned long limit
= loops_per_jiffy
<< 1;
497 while (!(DCSR(channel
) & DCSR_STOPSTATE
) && --limit
)
503 static void dma_error_stop(struct driver_data
*drv_data
, const char *msg
)
505 void __iomem
*reg
= drv_data
->ioaddr
;
508 DCSR(drv_data
->rx_channel
) = RESET_DMA_CHANNEL
;
509 DCSR(drv_data
->tx_channel
) = RESET_DMA_CHANNEL
;
510 write_SSSR(drv_data
->clear_sr
, reg
);
511 write_SSCR1(read_SSCR1(reg
) & ~drv_data
->dma_cr1
, reg
);
512 if (drv_data
->ssp_type
!= PXA25x_SSP
)
515 write_SSCR0(read_SSCR0(reg
) & ~SSCR0_SSE
, reg
);
517 unmap_dma_buffers(drv_data
);
519 dev_err(&drv_data
->pdev
->dev
, "%s\n", msg
);
521 drv_data
->cur_msg
->state
= ERROR_STATE
;
522 tasklet_schedule(&drv_data
->pump_transfers
);
525 static void dma_transfer_complete(struct driver_data
*drv_data
)
527 void __iomem
*reg
= drv_data
->ioaddr
;
528 struct spi_message
*msg
= drv_data
->cur_msg
;
530 /* Clear and disable interrupts on SSP and DMA channels*/
531 write_SSCR1(read_SSCR1(reg
) & ~drv_data
->dma_cr1
, reg
);
532 write_SSSR(drv_data
->clear_sr
, reg
);
533 DCSR(drv_data
->tx_channel
) = RESET_DMA_CHANNEL
;
534 DCSR(drv_data
->rx_channel
) = RESET_DMA_CHANNEL
;
536 if (wait_dma_channel_stop(drv_data
->rx_channel
) == 0)
537 dev_err(&drv_data
->pdev
->dev
,
538 "dma_handler: dma rx channel stop failed\n");
540 if (wait_ssp_rx_stall(drv_data
->ioaddr
) == 0)
541 dev_err(&drv_data
->pdev
->dev
,
542 "dma_transfer: ssp rx stall failed\n");
544 unmap_dma_buffers(drv_data
);
546 /* update the buffer pointer for the amount completed in dma */
547 drv_data
->rx
+= drv_data
->len
-
548 (DCMD(drv_data
->rx_channel
) & DCMD_LENGTH
);
550 /* read trailing data from fifo, it does not matter how many
551 * bytes are in the fifo just read until buffer is full
552 * or fifo is empty, which ever occurs first */
553 drv_data
->read(drv_data
);
555 /* return count of what was actually read */
556 msg
->actual_length
+= drv_data
->len
-
557 (drv_data
->rx_end
- drv_data
->rx
);
559 /* Transfer delays and chip select release are
560 * handled in pump_transfers or giveback
563 /* Move to next transfer */
564 msg
->state
= next_transfer(drv_data
);
566 /* Schedule transfer tasklet */
567 tasklet_schedule(&drv_data
->pump_transfers
);
570 static void dma_handler(int channel
, void *data
)
572 struct driver_data
*drv_data
= data
;
573 u32 irq_status
= DCSR(channel
) & DMA_INT_MASK
;
575 if (irq_status
& DCSR_BUSERR
) {
577 if (channel
== drv_data
->tx_channel
)
578 dma_error_stop(drv_data
,
580 "bad bus address on tx channel");
582 dma_error_stop(drv_data
,
584 "bad bus address on rx channel");
588 /* PXA255x_SSP has no timeout interrupt, wait for tailing bytes */
589 if ((channel
== drv_data
->tx_channel
)
590 && (irq_status
& DCSR_ENDINTR
)
591 && (drv_data
->ssp_type
== PXA25x_SSP
)) {
593 /* Wait for rx to stall */
594 if (wait_ssp_rx_stall(drv_data
->ioaddr
) == 0)
595 dev_err(&drv_data
->pdev
->dev
,
596 "dma_handler: ssp rx stall failed\n");
598 /* finish this transfer, start the next */
599 dma_transfer_complete(drv_data
);
603 static irqreturn_t
dma_transfer(struct driver_data
*drv_data
)
606 void __iomem
*reg
= drv_data
->ioaddr
;
608 irq_status
= read_SSSR(reg
) & drv_data
->mask_sr
;
609 if (irq_status
& SSSR_ROR
) {
610 dma_error_stop(drv_data
, "dma_transfer: fifo overrun");
614 /* Check for false positive timeout */
615 if ((irq_status
& SSSR_TINT
)
616 && (DCSR(drv_data
->tx_channel
) & DCSR_RUN
)) {
617 write_SSSR(SSSR_TINT
, reg
);
621 if (irq_status
& SSSR_TINT
|| drv_data
->rx
== drv_data
->rx_end
) {
623 /* Clear and disable timeout interrupt, do the rest in
624 * dma_transfer_complete */
625 if (drv_data
->ssp_type
!= PXA25x_SSP
)
628 /* finish this transfer, start the next */
629 dma_transfer_complete(drv_data
);
634 /* Opps problem detected */
638 static void int_error_stop(struct driver_data
*drv_data
, const char* msg
)
640 void __iomem
*reg
= drv_data
->ioaddr
;
642 /* Stop and reset SSP */
643 write_SSSR(drv_data
->clear_sr
, reg
);
644 write_SSCR1(read_SSCR1(reg
) & ~drv_data
->int_cr1
, reg
);
645 if (drv_data
->ssp_type
!= PXA25x_SSP
)
648 write_SSCR0(read_SSCR0(reg
) & ~SSCR0_SSE
, reg
);
650 dev_err(&drv_data
->pdev
->dev
, "%s\n", msg
);
652 drv_data
->cur_msg
->state
= ERROR_STATE
;
653 tasklet_schedule(&drv_data
->pump_transfers
);
656 static void int_transfer_complete(struct driver_data
*drv_data
)
658 void __iomem
*reg
= drv_data
->ioaddr
;
661 write_SSSR(drv_data
->clear_sr
, reg
);
662 write_SSCR1(read_SSCR1(reg
) & ~drv_data
->int_cr1
, reg
);
663 if (drv_data
->ssp_type
!= PXA25x_SSP
)
666 /* Update total byte transfered return count actual bytes read */
667 drv_data
->cur_msg
->actual_length
+= drv_data
->len
-
668 (drv_data
->rx_end
- drv_data
->rx
);
670 /* Transfer delays and chip select release are
671 * handled in pump_transfers or giveback
674 /* Move to next transfer */
675 drv_data
->cur_msg
->state
= next_transfer(drv_data
);
677 /* Schedule transfer tasklet */
678 tasklet_schedule(&drv_data
->pump_transfers
);
681 static irqreturn_t
interrupt_transfer(struct driver_data
*drv_data
)
683 void __iomem
*reg
= drv_data
->ioaddr
;
685 u32 irq_mask
= (read_SSCR1(reg
) & SSCR1_TIE
) ?
686 drv_data
->mask_sr
: drv_data
->mask_sr
& ~SSSR_TFS
;
688 u32 irq_status
= read_SSSR(reg
) & irq_mask
;
690 if (irq_status
& SSSR_ROR
) {
691 int_error_stop(drv_data
, "interrupt_transfer: fifo overrun");
695 if (irq_status
& SSSR_TINT
) {
696 write_SSSR(SSSR_TINT
, reg
);
697 if (drv_data
->read(drv_data
)) {
698 int_transfer_complete(drv_data
);
703 /* Drain rx fifo, Fill tx fifo and prevent overruns */
705 if (drv_data
->read(drv_data
)) {
706 int_transfer_complete(drv_data
);
709 } while (drv_data
->write(drv_data
));
711 if (drv_data
->read(drv_data
)) {
712 int_transfer_complete(drv_data
);
716 if (drv_data
->tx
== drv_data
->tx_end
) {
717 write_SSCR1(read_SSCR1(reg
) & ~SSCR1_TIE
, reg
);
718 /* PXA25x_SSP has no timeout, read trailing bytes */
719 if (drv_data
->ssp_type
== PXA25x_SSP
) {
720 if (!wait_ssp_rx_stall(reg
))
722 int_error_stop(drv_data
, "interrupt_transfer: "
726 if (!drv_data
->read(drv_data
))
728 int_error_stop(drv_data
,
729 "interrupt_transfer: "
730 "trailing byte read failed");
733 int_transfer_complete(drv_data
);
737 /* We did something */
741 static irqreturn_t
ssp_int(int irq
, void *dev_id
)
743 struct driver_data
*drv_data
= dev_id
;
744 void __iomem
*reg
= drv_data
->ioaddr
;
746 if (!drv_data
->cur_msg
) {
748 write_SSCR0(read_SSCR0(reg
) & ~SSCR0_SSE
, reg
);
749 write_SSCR1(read_SSCR1(reg
) & ~drv_data
->int_cr1
, reg
);
750 if (drv_data
->ssp_type
!= PXA25x_SSP
)
752 write_SSSR(drv_data
->clear_sr
, reg
);
754 dev_err(&drv_data
->pdev
->dev
, "bad message state "
755 "in interrupt handler\n");
761 return drv_data
->transfer_handler(drv_data
);
764 static int set_dma_burst_and_threshold(struct chip_data
*chip
,
765 struct spi_device
*spi
,
766 u8 bits_per_word
, u32
*burst_code
,
769 struct pxa2xx_spi_chip
*chip_info
=
770 (struct pxa2xx_spi_chip
*)spi
->controller_data
;
777 /* Set the threshold (in registers) to equal the same amount of data
778 * as represented by burst size (in bytes). The computation below
779 * is (burst_size rounded up to nearest 8 byte, word or long word)
780 * divided by (bytes/register); the tx threshold is the inverse of
781 * the rx, so that there will always be enough data in the rx fifo
782 * to satisfy a burst, and there will always be enough space in the
783 * tx fifo to accept a burst (a tx burst will overwrite the fifo if
784 * there is not enough space), there must always remain enough empty
785 * space in the rx fifo for any data loaded to the tx fifo.
786 * Whenever burst_size (in bytes) equals bits/word, the fifo threshold
787 * will be 8, or half the fifo;
788 * The threshold can only be set to 2, 4 or 8, but not 16, because
789 * to burst 16 to the tx fifo, the fifo would have to be empty;
790 * however, the minimum fifo trigger level is 1, and the tx will
791 * request service when the fifo is at this level, with only 15 spaces.
794 /* find bytes/word */
795 if (bits_per_word
<= 8)
797 else if (bits_per_word
<= 16)
802 /* use struct pxa2xx_spi_chip->dma_burst_size if available */
804 req_burst_size
= chip_info
->dma_burst_size
;
806 switch (chip
->dma_burst_size
) {
808 /* if the default burst size is not set,
810 chip
->dma_burst_size
= DCMD_BURST8
;
822 if (req_burst_size
<= 8) {
823 *burst_code
= DCMD_BURST8
;
825 } else if (req_burst_size
<= 16) {
826 if (bytes_per_word
== 1) {
827 /* don't burst more than 1/2 the fifo */
828 *burst_code
= DCMD_BURST8
;
832 *burst_code
= DCMD_BURST16
;
836 if (bytes_per_word
== 1) {
837 /* don't burst more than 1/2 the fifo */
838 *burst_code
= DCMD_BURST8
;
841 } else if (bytes_per_word
== 2) {
842 /* don't burst more than 1/2 the fifo */
843 *burst_code
= DCMD_BURST16
;
847 *burst_code
= DCMD_BURST32
;
852 thresh_words
= burst_bytes
/ bytes_per_word
;
854 /* thresh_words will be between 2 and 8 */
855 *threshold
= (SSCR1_RxTresh(thresh_words
) & SSCR1_RFT
)
856 | (SSCR1_TxTresh(16-thresh_words
) & SSCR1_TFT
);
861 static unsigned int ssp_get_clk_div(struct ssp_device
*ssp
, int rate
)
863 unsigned long ssp_clk
= clk_get_rate(ssp
->clk
);
865 if (ssp
->type
== PXA25x_SSP
)
866 return ((ssp_clk
/ (2 * rate
) - 1) & 0xff) << 8;
868 return ((ssp_clk
/ rate
- 1) & 0xfff) << 8;
871 static void pump_transfers(unsigned long data
)
873 struct driver_data
*drv_data
= (struct driver_data
*)data
;
874 struct spi_message
*message
= NULL
;
875 struct spi_transfer
*transfer
= NULL
;
876 struct spi_transfer
*previous
= NULL
;
877 struct chip_data
*chip
= NULL
;
878 struct ssp_device
*ssp
= drv_data
->ssp
;
879 void __iomem
*reg
= drv_data
->ioaddr
;
885 u32 dma_thresh
= drv_data
->cur_chip
->dma_threshold
;
886 u32 dma_burst
= drv_data
->cur_chip
->dma_burst_size
;
888 /* Get current state information */
889 message
= drv_data
->cur_msg
;
890 transfer
= drv_data
->cur_transfer
;
891 chip
= drv_data
->cur_chip
;
893 /* Handle for abort */
894 if (message
->state
== ERROR_STATE
) {
895 message
->status
= -EIO
;
900 /* Handle end of message */
901 if (message
->state
== DONE_STATE
) {
907 /* Delay if requested at end of transfer before CS change */
908 if (message
->state
== RUNNING_STATE
) {
909 previous
= list_entry(transfer
->transfer_list
.prev
,
912 if (previous
->delay_usecs
)
913 udelay(previous
->delay_usecs
);
915 /* Drop chip select only if cs_change is requested */
916 if (previous
->cs_change
)
917 cs_deassert(drv_data
);
920 /* Check for transfers that need multiple DMA segments */
921 if (transfer
->len
> MAX_DMA_LEN
&& chip
->enable_dma
) {
923 /* reject already-mapped transfers; PIO won't always work */
924 if (message
->is_dma_mapped
925 || transfer
->rx_dma
|| transfer
->tx_dma
) {
926 dev_err(&drv_data
->pdev
->dev
,
927 "pump_transfers: mapped transfer length "
928 "of %u is greater than %d\n",
929 transfer
->len
, MAX_DMA_LEN
);
930 message
->status
= -EINVAL
;
935 /* warn ... we force this to PIO mode */
936 if (printk_ratelimit())
937 dev_warn(&message
->spi
->dev
, "pump_transfers: "
938 "DMA disabled for transfer length %ld "
940 (long)drv_data
->len
, MAX_DMA_LEN
);
943 /* Setup the transfer state based on the type of transfer */
944 if (flush(drv_data
) == 0) {
945 dev_err(&drv_data
->pdev
->dev
, "pump_transfers: flush failed\n");
946 message
->status
= -EIO
;
950 drv_data
->n_bytes
= chip
->n_bytes
;
951 drv_data
->dma_width
= chip
->dma_width
;
952 drv_data
->tx
= (void *)transfer
->tx_buf
;
953 drv_data
->tx_end
= drv_data
->tx
+ transfer
->len
;
954 drv_data
->rx
= transfer
->rx_buf
;
955 drv_data
->rx_end
= drv_data
->rx
+ transfer
->len
;
956 drv_data
->rx_dma
= transfer
->rx_dma
;
957 drv_data
->tx_dma
= transfer
->tx_dma
;
958 drv_data
->len
= transfer
->len
& DCMD_LENGTH
;
959 drv_data
->write
= drv_data
->tx
? chip
->write
: null_writer
;
960 drv_data
->read
= drv_data
->rx
? chip
->read
: null_reader
;
962 /* Change speed and bit per word on a per transfer */
964 if (transfer
->speed_hz
|| transfer
->bits_per_word
) {
966 bits
= chip
->bits_per_word
;
967 speed
= chip
->speed_hz
;
969 if (transfer
->speed_hz
)
970 speed
= transfer
->speed_hz
;
972 if (transfer
->bits_per_word
)
973 bits
= transfer
->bits_per_word
;
975 clk_div
= ssp_get_clk_div(ssp
, speed
);
978 drv_data
->n_bytes
= 1;
979 drv_data
->dma_width
= DCMD_WIDTH1
;
980 drv_data
->read
= drv_data
->read
!= null_reader
?
981 u8_reader
: null_reader
;
982 drv_data
->write
= drv_data
->write
!= null_writer
?
983 u8_writer
: null_writer
;
984 } else if (bits
<= 16) {
985 drv_data
->n_bytes
= 2;
986 drv_data
->dma_width
= DCMD_WIDTH2
;
987 drv_data
->read
= drv_data
->read
!= null_reader
?
988 u16_reader
: null_reader
;
989 drv_data
->write
= drv_data
->write
!= null_writer
?
990 u16_writer
: null_writer
;
991 } else if (bits
<= 32) {
992 drv_data
->n_bytes
= 4;
993 drv_data
->dma_width
= DCMD_WIDTH4
;
994 drv_data
->read
= drv_data
->read
!= null_reader
?
995 u32_reader
: null_reader
;
996 drv_data
->write
= drv_data
->write
!= null_writer
?
997 u32_writer
: null_writer
;
999 /* if bits/word is changed in dma mode, then must check the
1000 * thresholds and burst also */
1001 if (chip
->enable_dma
) {
1002 if (set_dma_burst_and_threshold(chip
, message
->spi
,
1005 if (printk_ratelimit())
1006 dev_warn(&message
->spi
->dev
,
1008 "DMA burst size reduced to "
1009 "match bits_per_word\n");
1014 | SSCR0_DataSize(bits
> 16 ? bits
- 16 : bits
)
1016 | (bits
> 16 ? SSCR0_EDSS
: 0);
1019 message
->state
= RUNNING_STATE
;
1021 /* Try to map dma buffer and do a dma transfer if successful, but
1022 * only if the length is non-zero and less than MAX_DMA_LEN.
1024 * Zero-length non-descriptor DMA is illegal on PXA2xx; force use
1025 * of PIO instead. Care is needed above because the transfer may
1026 * have have been passed with buffers that are already dma mapped.
1027 * A zero-length transfer in PIO mode will not try to write/read
1028 * to/from the buffers
1030 * REVISIT large transfers are exactly where we most want to be
1031 * using DMA. If this happens much, split those transfers into
1032 * multiple DMA segments rather than forcing PIO.
1034 drv_data
->dma_mapped
= 0;
1035 if (drv_data
->len
> 0 && drv_data
->len
<= MAX_DMA_LEN
)
1036 drv_data
->dma_mapped
= map_dma_buffers(drv_data
);
1037 if (drv_data
->dma_mapped
) {
1039 /* Ensure we have the correct interrupt handler */
1040 drv_data
->transfer_handler
= dma_transfer
;
1042 /* Setup rx DMA Channel */
1043 DCSR(drv_data
->rx_channel
) = RESET_DMA_CHANNEL
;
1044 DSADR(drv_data
->rx_channel
) = drv_data
->ssdr_physical
;
1045 DTADR(drv_data
->rx_channel
) = drv_data
->rx_dma
;
1046 if (drv_data
->rx
== drv_data
->null_dma_buf
)
1047 /* No target address increment */
1048 DCMD(drv_data
->rx_channel
) = DCMD_FLOWSRC
1049 | drv_data
->dma_width
1053 DCMD(drv_data
->rx_channel
) = DCMD_INCTRGADDR
1055 | drv_data
->dma_width
1059 /* Setup tx DMA Channel */
1060 DCSR(drv_data
->tx_channel
) = RESET_DMA_CHANNEL
;
1061 DSADR(drv_data
->tx_channel
) = drv_data
->tx_dma
;
1062 DTADR(drv_data
->tx_channel
) = drv_data
->ssdr_physical
;
1063 if (drv_data
->tx
== drv_data
->null_dma_buf
)
1064 /* No source address increment */
1065 DCMD(drv_data
->tx_channel
) = DCMD_FLOWTRG
1066 | drv_data
->dma_width
1070 DCMD(drv_data
->tx_channel
) = DCMD_INCSRCADDR
1072 | drv_data
->dma_width
1076 /* Enable dma end irqs on SSP to detect end of transfer */
1077 if (drv_data
->ssp_type
== PXA25x_SSP
)
1078 DCMD(drv_data
->tx_channel
) |= DCMD_ENDIRQEN
;
1080 /* Clear status and start DMA engine */
1081 cr1
= chip
->cr1
| dma_thresh
| drv_data
->dma_cr1
;
1082 write_SSSR(drv_data
->clear_sr
, reg
);
1083 DCSR(drv_data
->rx_channel
) |= DCSR_RUN
;
1084 DCSR(drv_data
->tx_channel
) |= DCSR_RUN
;
1086 /* Ensure we have the correct interrupt handler */
1087 drv_data
->transfer_handler
= interrupt_transfer
;
1090 cr1
= chip
->cr1
| chip
->threshold
| drv_data
->int_cr1
;
1091 write_SSSR(drv_data
->clear_sr
, reg
);
1094 /* see if we need to reload the config registers */
1095 if ((read_SSCR0(reg
) != cr0
)
1096 || (read_SSCR1(reg
) & SSCR1_CHANGE_MASK
) !=
1097 (cr1
& SSCR1_CHANGE_MASK
)) {
1099 /* stop the SSP, and update the other bits */
1100 write_SSCR0(cr0
& ~SSCR0_SSE
, reg
);
1101 if (drv_data
->ssp_type
!= PXA25x_SSP
)
1102 write_SSTO(chip
->timeout
, reg
);
1103 /* first set CR1 without interrupt and service enables */
1104 write_SSCR1(cr1
& SSCR1_CHANGE_MASK
, reg
);
1105 /* restart the SSP */
1106 write_SSCR0(cr0
, reg
);
1109 if (drv_data
->ssp_type
!= PXA25x_SSP
)
1110 write_SSTO(chip
->timeout
, reg
);
1113 cs_assert(drv_data
);
1115 /* after chip select, release the data by enabling service
1116 * requests and interrupts, without changing any mode bits */
1117 write_SSCR1(cr1
, reg
);
1120 static void pump_messages(struct work_struct
*work
)
1122 struct driver_data
*drv_data
=
1123 container_of(work
, struct driver_data
, pump_messages
);
1124 unsigned long flags
;
1126 /* Lock queue and check for queue work */
1127 spin_lock_irqsave(&drv_data
->lock
, flags
);
1128 if (list_empty(&drv_data
->queue
) || drv_data
->run
== QUEUE_STOPPED
) {
1130 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1134 /* Make sure we are not already running a message */
1135 if (drv_data
->cur_msg
) {
1136 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1140 /* Extract head of queue */
1141 drv_data
->cur_msg
= list_entry(drv_data
->queue
.next
,
1142 struct spi_message
, queue
);
1143 list_del_init(&drv_data
->cur_msg
->queue
);
1145 /* Initial message state*/
1146 drv_data
->cur_msg
->state
= START_STATE
;
1147 drv_data
->cur_transfer
= list_entry(drv_data
->cur_msg
->transfers
.next
,
1148 struct spi_transfer
,
1151 /* prepare to setup the SSP, in pump_transfers, using the per
1152 * chip configuration */
1153 drv_data
->cur_chip
= spi_get_ctldata(drv_data
->cur_msg
->spi
);
1155 /* Mark as busy and launch transfers */
1156 tasklet_schedule(&drv_data
->pump_transfers
);
1159 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1162 static int transfer(struct spi_device
*spi
, struct spi_message
*msg
)
1164 struct driver_data
*drv_data
= spi_master_get_devdata(spi
->master
);
1165 unsigned long flags
;
1167 spin_lock_irqsave(&drv_data
->lock
, flags
);
1169 if (drv_data
->run
== QUEUE_STOPPED
) {
1170 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1174 msg
->actual_length
= 0;
1175 msg
->status
= -EINPROGRESS
;
1176 msg
->state
= START_STATE
;
1178 list_add_tail(&msg
->queue
, &drv_data
->queue
);
1180 if (drv_data
->run
== QUEUE_RUNNING
&& !drv_data
->busy
)
1181 queue_work(drv_data
->workqueue
, &drv_data
->pump_messages
);
1183 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1188 static int setup_cs(struct spi_device
*spi
, struct chip_data
*chip
,
1189 struct pxa2xx_spi_chip
*chip_info
)
1193 if (chip
== NULL
|| chip_info
== NULL
)
1196 /* NOTE: setup() can be called multiple times, possibly with
1197 * different chip_info, release previously requested GPIO
1199 if (gpio_is_valid(chip
->gpio_cs
))
1200 gpio_free(chip
->gpio_cs
);
1202 /* If (*cs_control) is provided, ignore GPIO chip select */
1203 if (chip_info
->cs_control
) {
1204 chip
->cs_control
= chip_info
->cs_control
;
1208 if (gpio_is_valid(chip_info
->gpio_cs
)) {
1209 err
= gpio_request(chip_info
->gpio_cs
, "SPI_CS");
1211 dev_err(&spi
->dev
, "failed to request chip select "
1212 "GPIO%d\n", chip_info
->gpio_cs
);
1216 chip
->gpio_cs
= chip_info
->gpio_cs
;
1217 chip
->gpio_cs_inverted
= spi
->mode
& SPI_CS_HIGH
;
1219 err
= gpio_direction_output(chip
->gpio_cs
,
1220 !chip
->gpio_cs_inverted
);
1226 static int setup(struct spi_device
*spi
)
1228 struct pxa2xx_spi_chip
*chip_info
= NULL
;
1229 struct chip_data
*chip
;
1230 struct driver_data
*drv_data
= spi_master_get_devdata(spi
->master
);
1231 struct ssp_device
*ssp
= drv_data
->ssp
;
1232 unsigned int clk_div
;
1233 uint tx_thres
= TX_THRESH_DFLT
;
1234 uint rx_thres
= RX_THRESH_DFLT
;
1236 if (drv_data
->ssp_type
!= PXA25x_SSP
1237 && (spi
->bits_per_word
< 4 || spi
->bits_per_word
> 32)) {
1238 dev_err(&spi
->dev
, "failed setup: ssp_type=%d, bits/wrd=%d "
1239 "b/w not 4-32 for type non-PXA25x_SSP\n",
1240 drv_data
->ssp_type
, spi
->bits_per_word
);
1243 else if (drv_data
->ssp_type
== PXA25x_SSP
1244 && (spi
->bits_per_word
< 4
1245 || spi
->bits_per_word
> 16)) {
1246 dev_err(&spi
->dev
, "failed setup: ssp_type=%d, bits/wrd=%d "
1247 "b/w not 4-16 for type PXA25x_SSP\n",
1248 drv_data
->ssp_type
, spi
->bits_per_word
);
1252 /* Only alloc on first setup */
1253 chip
= spi_get_ctldata(spi
);
1255 chip
= kzalloc(sizeof(struct chip_data
), GFP_KERNEL
);
1258 "failed setup: can't allocate chip data\n");
1263 chip
->enable_dma
= 0;
1264 chip
->timeout
= TIMOUT_DFLT
;
1265 chip
->dma_burst_size
= drv_data
->master_info
->enable_dma
?
1269 /* protocol drivers may change the chip settings, so...
1270 * if chip_info exists, use it */
1271 chip_info
= spi
->controller_data
;
1273 /* chip_info isn't always needed */
1276 if (chip_info
->timeout
)
1277 chip
->timeout
= chip_info
->timeout
;
1278 if (chip_info
->tx_threshold
)
1279 tx_thres
= chip_info
->tx_threshold
;
1280 if (chip_info
->rx_threshold
)
1281 rx_thres
= chip_info
->rx_threshold
;
1282 chip
->enable_dma
= drv_data
->master_info
->enable_dma
;
1283 chip
->dma_threshold
= 0;
1284 if (chip_info
->enable_loopback
)
1285 chip
->cr1
= SSCR1_LBM
;
1288 chip
->threshold
= (SSCR1_RxTresh(rx_thres
) & SSCR1_RFT
) |
1289 (SSCR1_TxTresh(tx_thres
) & SSCR1_TFT
);
1291 /* set dma burst and threshold outside of chip_info path so that if
1292 * chip_info goes away after setting chip->enable_dma, the
1293 * burst and threshold can still respond to changes in bits_per_word */
1294 if (chip
->enable_dma
) {
1295 /* set up legal burst and threshold for dma */
1296 if (set_dma_burst_and_threshold(chip
, spi
, spi
->bits_per_word
,
1297 &chip
->dma_burst_size
,
1298 &chip
->dma_threshold
)) {
1299 dev_warn(&spi
->dev
, "in setup: DMA burst size reduced "
1300 "to match bits_per_word\n");
1304 clk_div
= ssp_get_clk_div(ssp
, spi
->max_speed_hz
);
1305 chip
->speed_hz
= spi
->max_speed_hz
;
1309 | SSCR0_DataSize(spi
->bits_per_word
> 16 ?
1310 spi
->bits_per_word
- 16 : spi
->bits_per_word
)
1312 | (spi
->bits_per_word
> 16 ? SSCR0_EDSS
: 0);
1313 chip
->cr1
&= ~(SSCR1_SPO
| SSCR1_SPH
);
1314 chip
->cr1
|= (((spi
->mode
& SPI_CPHA
) != 0) ? SSCR1_SPH
: 0)
1315 | (((spi
->mode
& SPI_CPOL
) != 0) ? SSCR1_SPO
: 0);
1317 /* NOTE: PXA25x_SSP _could_ use external clocking ... */
1318 if (drv_data
->ssp_type
!= PXA25x_SSP
)
1319 dev_dbg(&spi
->dev
, "%ld Hz actual, %s\n",
1320 clk_get_rate(ssp
->clk
)
1321 / (1 + ((chip
->cr0
& SSCR0_SCR
) >> 8)),
1322 chip
->enable_dma
? "DMA" : "PIO");
1324 dev_dbg(&spi
->dev
, "%ld Hz actual, %s\n",
1325 clk_get_rate(ssp
->clk
) / 2
1326 / (1 + ((chip
->cr0
& SSCR0_SCR
) >> 8)),
1327 chip
->enable_dma
? "DMA" : "PIO");
1329 if (spi
->bits_per_word
<= 8) {
1331 chip
->dma_width
= DCMD_WIDTH1
;
1332 chip
->read
= u8_reader
;
1333 chip
->write
= u8_writer
;
1334 } else if (spi
->bits_per_word
<= 16) {
1336 chip
->dma_width
= DCMD_WIDTH2
;
1337 chip
->read
= u16_reader
;
1338 chip
->write
= u16_writer
;
1339 } else if (spi
->bits_per_word
<= 32) {
1340 chip
->cr0
|= SSCR0_EDSS
;
1342 chip
->dma_width
= DCMD_WIDTH4
;
1343 chip
->read
= u32_reader
;
1344 chip
->write
= u32_writer
;
1346 dev_err(&spi
->dev
, "invalid wordsize\n");
1349 chip
->bits_per_word
= spi
->bits_per_word
;
1351 spi_set_ctldata(spi
, chip
);
1353 return setup_cs(spi
, chip
, chip_info
);
1356 static void cleanup(struct spi_device
*spi
)
1358 struct chip_data
*chip
= spi_get_ctldata(spi
);
1363 if (gpio_is_valid(chip
->gpio_cs
))
1364 gpio_free(chip
->gpio_cs
);
1369 static int __init
init_queue(struct driver_data
*drv_data
)
1371 INIT_LIST_HEAD(&drv_data
->queue
);
1372 spin_lock_init(&drv_data
->lock
);
1374 drv_data
->run
= QUEUE_STOPPED
;
1377 tasklet_init(&drv_data
->pump_transfers
,
1378 pump_transfers
, (unsigned long)drv_data
);
1380 INIT_WORK(&drv_data
->pump_messages
, pump_messages
);
1381 drv_data
->workqueue
= create_singlethread_workqueue(
1382 dev_name(drv_data
->master
->dev
.parent
));
1383 if (drv_data
->workqueue
== NULL
)
1389 static int start_queue(struct driver_data
*drv_data
)
1391 unsigned long flags
;
1393 spin_lock_irqsave(&drv_data
->lock
, flags
);
1395 if (drv_data
->run
== QUEUE_RUNNING
|| drv_data
->busy
) {
1396 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1400 drv_data
->run
= QUEUE_RUNNING
;
1401 drv_data
->cur_msg
= NULL
;
1402 drv_data
->cur_transfer
= NULL
;
1403 drv_data
->cur_chip
= NULL
;
1404 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1406 queue_work(drv_data
->workqueue
, &drv_data
->pump_messages
);
1411 static int stop_queue(struct driver_data
*drv_data
)
1413 unsigned long flags
;
1414 unsigned limit
= 500;
1417 spin_lock_irqsave(&drv_data
->lock
, flags
);
1419 /* This is a bit lame, but is optimized for the common execution path.
1420 * A wait_queue on the drv_data->busy could be used, but then the common
1421 * execution path (pump_messages) would be required to call wake_up or
1422 * friends on every SPI message. Do this instead */
1423 drv_data
->run
= QUEUE_STOPPED
;
1424 while (!list_empty(&drv_data
->queue
) && drv_data
->busy
&& limit
--) {
1425 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1427 spin_lock_irqsave(&drv_data
->lock
, flags
);
1430 if (!list_empty(&drv_data
->queue
) || drv_data
->busy
)
1433 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1438 static int destroy_queue(struct driver_data
*drv_data
)
1442 status
= stop_queue(drv_data
);
1443 /* we are unloading the module or failing to load (only two calls
1444 * to this routine), and neither call can handle a return value.
1445 * However, destroy_workqueue calls flush_workqueue, and that will
1446 * block until all work is done. If the reason that stop_queue
1447 * timed out is that the work will never finish, then it does no
1448 * good to call destroy_workqueue, so return anyway. */
1452 destroy_workqueue(drv_data
->workqueue
);
1457 static int __init
pxa2xx_spi_probe(struct platform_device
*pdev
)
1459 struct device
*dev
= &pdev
->dev
;
1460 struct pxa2xx_spi_master
*platform_info
;
1461 struct spi_master
*master
;
1462 struct driver_data
*drv_data
;
1463 struct ssp_device
*ssp
;
1466 platform_info
= dev
->platform_data
;
1468 ssp
= ssp_request(pdev
->id
, pdev
->name
);
1470 dev_err(&pdev
->dev
, "failed to request SSP%d\n", pdev
->id
);
1474 /* Allocate master with space for drv_data and null dma buffer */
1475 master
= spi_alloc_master(dev
, sizeof(struct driver_data
) + 16);
1477 dev_err(&pdev
->dev
, "cannot alloc spi_master\n");
1481 drv_data
= spi_master_get_devdata(master
);
1482 drv_data
->master
= master
;
1483 drv_data
->master_info
= platform_info
;
1484 drv_data
->pdev
= pdev
;
1485 drv_data
->ssp
= ssp
;
1487 /* the spi->mode bits understood by this driver: */
1488 master
->mode_bits
= SPI_CPOL
| SPI_CPHA
| SPI_CS_HIGH
;
1490 master
->bus_num
= pdev
->id
;
1491 master
->num_chipselect
= platform_info
->num_chipselect
;
1492 master
->dma_alignment
= DMA_ALIGNMENT
;
1493 master
->cleanup
= cleanup
;
1494 master
->setup
= setup
;
1495 master
->transfer
= transfer
;
1497 drv_data
->ssp_type
= ssp
->type
;
1498 drv_data
->null_dma_buf
= (u32
*)ALIGN((u32
)(drv_data
+
1499 sizeof(struct driver_data
)), 8);
1501 drv_data
->ioaddr
= ssp
->mmio_base
;
1502 drv_data
->ssdr_physical
= ssp
->phys_base
+ SSDR
;
1503 if (ssp
->type
== PXA25x_SSP
) {
1504 drv_data
->int_cr1
= SSCR1_TIE
| SSCR1_RIE
;
1505 drv_data
->dma_cr1
= 0;
1506 drv_data
->clear_sr
= SSSR_ROR
;
1507 drv_data
->mask_sr
= SSSR_RFS
| SSSR_TFS
| SSSR_ROR
;
1509 drv_data
->int_cr1
= SSCR1_TIE
| SSCR1_RIE
| SSCR1_TINTE
;
1510 drv_data
->dma_cr1
= SSCR1_TSRE
| SSCR1_RSRE
| SSCR1_TINTE
;
1511 drv_data
->clear_sr
= SSSR_ROR
| SSSR_TINT
;
1512 drv_data
->mask_sr
= SSSR_TINT
| SSSR_RFS
| SSSR_TFS
| SSSR_ROR
;
1515 status
= request_irq(ssp
->irq
, ssp_int
, 0, dev_name(dev
), drv_data
);
1517 dev_err(&pdev
->dev
, "cannot get IRQ %d\n", ssp
->irq
);
1518 goto out_error_master_alloc
;
1521 /* Setup DMA if requested */
1522 drv_data
->tx_channel
= -1;
1523 drv_data
->rx_channel
= -1;
1524 if (platform_info
->enable_dma
) {
1526 /* Get two DMA channels (rx and tx) */
1527 drv_data
->rx_channel
= pxa_request_dma("pxa2xx_spi_ssp_rx",
1531 if (drv_data
->rx_channel
< 0) {
1532 dev_err(dev
, "problem (%d) requesting rx channel\n",
1533 drv_data
->rx_channel
);
1535 goto out_error_irq_alloc
;
1537 drv_data
->tx_channel
= pxa_request_dma("pxa2xx_spi_ssp_tx",
1541 if (drv_data
->tx_channel
< 0) {
1542 dev_err(dev
, "problem (%d) requesting tx channel\n",
1543 drv_data
->tx_channel
);
1545 goto out_error_dma_alloc
;
1548 DRCMR(ssp
->drcmr_rx
) = DRCMR_MAPVLD
| drv_data
->rx_channel
;
1549 DRCMR(ssp
->drcmr_tx
) = DRCMR_MAPVLD
| drv_data
->tx_channel
;
1552 /* Enable SOC clock */
1553 clk_enable(ssp
->clk
);
1555 /* Load default SSP configuration */
1556 write_SSCR0(0, drv_data
->ioaddr
);
1557 write_SSCR1(SSCR1_RxTresh(RX_THRESH_DFLT
) |
1558 SSCR1_TxTresh(TX_THRESH_DFLT
),
1560 write_SSCR0(SSCR0_SerClkDiv(2)
1562 | SSCR0_DataSize(8),
1564 if (drv_data
->ssp_type
!= PXA25x_SSP
)
1565 write_SSTO(0, drv_data
->ioaddr
);
1566 write_SSPSP(0, drv_data
->ioaddr
);
1568 /* Initial and start queue */
1569 status
= init_queue(drv_data
);
1571 dev_err(&pdev
->dev
, "problem initializing queue\n");
1572 goto out_error_clock_enabled
;
1574 status
= start_queue(drv_data
);
1576 dev_err(&pdev
->dev
, "problem starting queue\n");
1577 goto out_error_clock_enabled
;
1580 /* Register with the SPI framework */
1581 platform_set_drvdata(pdev
, drv_data
);
1582 status
= spi_register_master(master
);
1584 dev_err(&pdev
->dev
, "problem registering spi master\n");
1585 goto out_error_queue_alloc
;
1590 out_error_queue_alloc
:
1591 destroy_queue(drv_data
);
1593 out_error_clock_enabled
:
1594 clk_disable(ssp
->clk
);
1596 out_error_dma_alloc
:
1597 if (drv_data
->tx_channel
!= -1)
1598 pxa_free_dma(drv_data
->tx_channel
);
1599 if (drv_data
->rx_channel
!= -1)
1600 pxa_free_dma(drv_data
->rx_channel
);
1602 out_error_irq_alloc
:
1603 free_irq(ssp
->irq
, drv_data
);
1605 out_error_master_alloc
:
1606 spi_master_put(master
);
1611 static int pxa2xx_spi_remove(struct platform_device
*pdev
)
1613 struct driver_data
*drv_data
= platform_get_drvdata(pdev
);
1614 struct ssp_device
*ssp
;
1619 ssp
= drv_data
->ssp
;
1621 /* Remove the queue */
1622 status
= destroy_queue(drv_data
);
1624 /* the kernel does not check the return status of this
1625 * this routine (mod->exit, within the kernel). Therefore
1626 * nothing is gained by returning from here, the module is
1627 * going away regardless, and we should not leave any more
1628 * resources allocated than necessary. We cannot free the
1629 * message memory in drv_data->queue, but we can release the
1630 * resources below. I think the kernel should honor -EBUSY
1632 dev_err(&pdev
->dev
, "pxa2xx_spi_remove: workqueue will not "
1633 "complete, message memory not freed\n");
1635 /* Disable the SSP at the peripheral and SOC level */
1636 write_SSCR0(0, drv_data
->ioaddr
);
1637 clk_disable(ssp
->clk
);
1640 if (drv_data
->master_info
->enable_dma
) {
1641 DRCMR(ssp
->drcmr_rx
) = 0;
1642 DRCMR(ssp
->drcmr_tx
) = 0;
1643 pxa_free_dma(drv_data
->tx_channel
);
1644 pxa_free_dma(drv_data
->rx_channel
);
1648 free_irq(ssp
->irq
, drv_data
);
1653 /* Disconnect from the SPI framework */
1654 spi_unregister_master(drv_data
->master
);
1656 /* Prevent double remove */
1657 platform_set_drvdata(pdev
, NULL
);
1662 static void pxa2xx_spi_shutdown(struct platform_device
*pdev
)
1666 if ((status
= pxa2xx_spi_remove(pdev
)) != 0)
1667 dev_err(&pdev
->dev
, "shutdown failed with %d\n", status
);
1671 static int pxa2xx_spi_suspend(struct device
*dev
)
1673 struct driver_data
*drv_data
= dev_get_drvdata(dev
);
1674 struct ssp_device
*ssp
= drv_data
->ssp
;
1677 status
= stop_queue(drv_data
);
1680 write_SSCR0(0, drv_data
->ioaddr
);
1681 clk_disable(ssp
->clk
);
1686 static int pxa2xx_spi_resume(struct device
*dev
)
1688 struct driver_data
*drv_data
= dev_get_drvdata(dev
);
1689 struct ssp_device
*ssp
= drv_data
->ssp
;
1692 if (drv_data
->rx_channel
!= -1)
1693 DRCMR(drv_data
->ssp
->drcmr_rx
) =
1694 DRCMR_MAPVLD
| drv_data
->rx_channel
;
1695 if (drv_data
->tx_channel
!= -1)
1696 DRCMR(drv_data
->ssp
->drcmr_tx
) =
1697 DRCMR_MAPVLD
| drv_data
->tx_channel
;
1699 /* Enable the SSP clock */
1700 clk_enable(ssp
->clk
);
1702 /* Start the queue running */
1703 status
= start_queue(drv_data
);
1705 dev_err(dev
, "problem starting queue (%d)\n", status
);
1712 static struct dev_pm_ops pxa2xx_spi_pm_ops
= {
1713 .suspend
= pxa2xx_spi_suspend
,
1714 .resume
= pxa2xx_spi_resume
,
1718 static struct platform_driver driver
= {
1720 .name
= "pxa2xx-spi",
1721 .owner
= THIS_MODULE
,
1723 .pm
= &pxa2xx_spi_pm_ops
,
1726 .remove
= pxa2xx_spi_remove
,
1727 .shutdown
= pxa2xx_spi_shutdown
,
1730 static int __init
pxa2xx_spi_init(void)
1732 return platform_driver_probe(&driver
, pxa2xx_spi_probe
);
1734 subsys_initcall(pxa2xx_spi_init
);
1736 static void __exit
pxa2xx_spi_exit(void)
1738 platform_driver_unregister(&driver
);
1740 module_exit(pxa2xx_spi_exit
);