4 * Copyright (c) 1999-2002 Vojtech Pavlik
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License version 2 as published by
10 * the Free Software Foundation.
13 #include <linux/init.h>
14 #include <linux/types.h>
15 #include <linux/input.h>
16 #include <linux/module.h>
17 #include <linux/random.h>
18 #include <linux/major.h>
19 #include <linux/proc_fs.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/poll.h>
23 #include <linux/device.h>
24 #include <linux/mutex.h>
25 #include <linux/rcupdate.h>
26 #include <linux/smp_lock.h>
27 #include "input-compat.h"
29 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
30 MODULE_DESCRIPTION("Input core");
31 MODULE_LICENSE("GPL");
33 #define INPUT_DEVICES 256
36 * EV_ABS events which should not be cached are listed here.
38 static unsigned int input_abs_bypass_init_data
[] __initdata
= {
51 static unsigned long input_abs_bypass
[BITS_TO_LONGS(ABS_CNT
)];
53 static LIST_HEAD(input_dev_list
);
54 static LIST_HEAD(input_handler_list
);
57 * input_mutex protects access to both input_dev_list and input_handler_list.
58 * This also causes input_[un]register_device and input_[un]register_handler
59 * be mutually exclusive which simplifies locking in drivers implementing
62 static DEFINE_MUTEX(input_mutex
);
64 static struct input_handler
*input_table
[8];
66 static inline int is_event_supported(unsigned int code
,
67 unsigned long *bm
, unsigned int max
)
69 return code
<= max
&& test_bit(code
, bm
);
72 static int input_defuzz_abs_event(int value
, int old_val
, int fuzz
)
75 if (value
> old_val
- fuzz
/ 2 && value
< old_val
+ fuzz
/ 2)
78 if (value
> old_val
- fuzz
&& value
< old_val
+ fuzz
)
79 return (old_val
* 3 + value
) / 4;
81 if (value
> old_val
- fuzz
* 2 && value
< old_val
+ fuzz
* 2)
82 return (old_val
+ value
) / 2;
89 * Pass event through all open handles. This function is called with
90 * dev->event_lock held and interrupts disabled.
92 static void input_pass_event(struct input_dev
*dev
,
93 unsigned int type
, unsigned int code
, int value
)
95 struct input_handle
*handle
;
99 handle
= rcu_dereference(dev
->grab
);
101 handle
->handler
->event(handle
, type
, code
, value
);
103 list_for_each_entry_rcu(handle
, &dev
->h_list
, d_node
)
105 handle
->handler
->event(handle
,
111 * Generate software autorepeat event. Note that we take
112 * dev->event_lock here to avoid racing with input_event
113 * which may cause keys get "stuck".
115 static void input_repeat_key(unsigned long data
)
117 struct input_dev
*dev
= (void *) data
;
120 spin_lock_irqsave(&dev
->event_lock
, flags
);
122 if (test_bit(dev
->repeat_key
, dev
->key
) &&
123 is_event_supported(dev
->repeat_key
, dev
->keybit
, KEY_MAX
)) {
125 input_pass_event(dev
, EV_KEY
, dev
->repeat_key
, 2);
129 * Only send SYN_REPORT if we are not in a middle
130 * of driver parsing a new hardware packet.
131 * Otherwise assume that the driver will send
132 * SYN_REPORT once it's done.
134 input_pass_event(dev
, EV_SYN
, SYN_REPORT
, 1);
137 if (dev
->rep
[REP_PERIOD
])
138 mod_timer(&dev
->timer
, jiffies
+
139 msecs_to_jiffies(dev
->rep
[REP_PERIOD
]));
142 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
145 static void input_start_autorepeat(struct input_dev
*dev
, int code
)
147 if (test_bit(EV_REP
, dev
->evbit
) &&
148 dev
->rep
[REP_PERIOD
] && dev
->rep
[REP_DELAY
] &&
150 dev
->repeat_key
= code
;
151 mod_timer(&dev
->timer
,
152 jiffies
+ msecs_to_jiffies(dev
->rep
[REP_DELAY
]));
156 static void input_stop_autorepeat(struct input_dev
*dev
)
158 del_timer(&dev
->timer
);
161 #define INPUT_IGNORE_EVENT 0
162 #define INPUT_PASS_TO_HANDLERS 1
163 #define INPUT_PASS_TO_DEVICE 2
164 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
166 static void input_handle_event(struct input_dev
*dev
,
167 unsigned int type
, unsigned int code
, int value
)
169 int disposition
= INPUT_IGNORE_EVENT
;
176 disposition
= INPUT_PASS_TO_ALL
;
182 disposition
= INPUT_PASS_TO_HANDLERS
;
187 disposition
= INPUT_PASS_TO_HANDLERS
;
193 if (is_event_supported(code
, dev
->keybit
, KEY_MAX
) &&
194 !!test_bit(code
, dev
->key
) != value
) {
197 __change_bit(code
, dev
->key
);
199 input_start_autorepeat(dev
, code
);
201 input_stop_autorepeat(dev
);
204 disposition
= INPUT_PASS_TO_HANDLERS
;
209 if (is_event_supported(code
, dev
->swbit
, SW_MAX
) &&
210 !!test_bit(code
, dev
->sw
) != value
) {
212 __change_bit(code
, dev
->sw
);
213 disposition
= INPUT_PASS_TO_HANDLERS
;
218 if (is_event_supported(code
, dev
->absbit
, ABS_MAX
)) {
220 if (test_bit(code
, input_abs_bypass
)) {
221 disposition
= INPUT_PASS_TO_HANDLERS
;
225 value
= input_defuzz_abs_event(value
,
226 dev
->abs
[code
], dev
->absfuzz
[code
]);
228 if (dev
->abs
[code
] != value
) {
229 dev
->abs
[code
] = value
;
230 disposition
= INPUT_PASS_TO_HANDLERS
;
236 if (is_event_supported(code
, dev
->relbit
, REL_MAX
) && value
)
237 disposition
= INPUT_PASS_TO_HANDLERS
;
242 if (is_event_supported(code
, dev
->mscbit
, MSC_MAX
))
243 disposition
= INPUT_PASS_TO_ALL
;
248 if (is_event_supported(code
, dev
->ledbit
, LED_MAX
) &&
249 !!test_bit(code
, dev
->led
) != value
) {
251 __change_bit(code
, dev
->led
);
252 disposition
= INPUT_PASS_TO_ALL
;
257 if (is_event_supported(code
, dev
->sndbit
, SND_MAX
)) {
259 if (!!test_bit(code
, dev
->snd
) != !!value
)
260 __change_bit(code
, dev
->snd
);
261 disposition
= INPUT_PASS_TO_ALL
;
266 if (code
<= REP_MAX
&& value
>= 0 && dev
->rep
[code
] != value
) {
267 dev
->rep
[code
] = value
;
268 disposition
= INPUT_PASS_TO_ALL
;
274 disposition
= INPUT_PASS_TO_ALL
;
278 disposition
= INPUT_PASS_TO_ALL
;
282 if (disposition
!= INPUT_IGNORE_EVENT
&& type
!= EV_SYN
)
285 if ((disposition
& INPUT_PASS_TO_DEVICE
) && dev
->event
)
286 dev
->event(dev
, type
, code
, value
);
288 if (disposition
& INPUT_PASS_TO_HANDLERS
)
289 input_pass_event(dev
, type
, code
, value
);
293 * input_event() - report new input event
294 * @dev: device that generated the event
295 * @type: type of the event
297 * @value: value of the event
299 * This function should be used by drivers implementing various input
300 * devices to report input events. See also input_inject_event().
302 * NOTE: input_event() may be safely used right after input device was
303 * allocated with input_allocate_device(), even before it is registered
304 * with input_register_device(), but the event will not reach any of the
305 * input handlers. Such early invocation of input_event() may be used
306 * to 'seed' initial state of a switch or initial position of absolute
309 void input_event(struct input_dev
*dev
,
310 unsigned int type
, unsigned int code
, int value
)
314 if (is_event_supported(type
, dev
->evbit
, EV_MAX
)) {
316 spin_lock_irqsave(&dev
->event_lock
, flags
);
317 add_input_randomness(type
, code
, value
);
318 input_handle_event(dev
, type
, code
, value
);
319 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
322 EXPORT_SYMBOL(input_event
);
325 * input_inject_event() - send input event from input handler
326 * @handle: input handle to send event through
327 * @type: type of the event
329 * @value: value of the event
331 * Similar to input_event() but will ignore event if device is
332 * "grabbed" and handle injecting event is not the one that owns
335 void input_inject_event(struct input_handle
*handle
,
336 unsigned int type
, unsigned int code
, int value
)
338 struct input_dev
*dev
= handle
->dev
;
339 struct input_handle
*grab
;
342 if (is_event_supported(type
, dev
->evbit
, EV_MAX
)) {
343 spin_lock_irqsave(&dev
->event_lock
, flags
);
346 grab
= rcu_dereference(dev
->grab
);
347 if (!grab
|| grab
== handle
)
348 input_handle_event(dev
, type
, code
, value
);
351 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
354 EXPORT_SYMBOL(input_inject_event
);
357 * input_grab_device - grabs device for exclusive use
358 * @handle: input handle that wants to own the device
360 * When a device is grabbed by an input handle all events generated by
361 * the device are delivered only to this handle. Also events injected
362 * by other input handles are ignored while device is grabbed.
364 int input_grab_device(struct input_handle
*handle
)
366 struct input_dev
*dev
= handle
->dev
;
369 retval
= mutex_lock_interruptible(&dev
->mutex
);
378 rcu_assign_pointer(dev
->grab
, handle
);
382 mutex_unlock(&dev
->mutex
);
385 EXPORT_SYMBOL(input_grab_device
);
387 static void __input_release_device(struct input_handle
*handle
)
389 struct input_dev
*dev
= handle
->dev
;
391 if (dev
->grab
== handle
) {
392 rcu_assign_pointer(dev
->grab
, NULL
);
393 /* Make sure input_pass_event() notices that grab is gone */
396 list_for_each_entry(handle
, &dev
->h_list
, d_node
)
397 if (handle
->open
&& handle
->handler
->start
)
398 handle
->handler
->start(handle
);
403 * input_release_device - release previously grabbed device
404 * @handle: input handle that owns the device
406 * Releases previously grabbed device so that other input handles can
407 * start receiving input events. Upon release all handlers attached
408 * to the device have their start() method called so they have a change
409 * to synchronize device state with the rest of the system.
411 void input_release_device(struct input_handle
*handle
)
413 struct input_dev
*dev
= handle
->dev
;
415 mutex_lock(&dev
->mutex
);
416 __input_release_device(handle
);
417 mutex_unlock(&dev
->mutex
);
419 EXPORT_SYMBOL(input_release_device
);
422 * input_open_device - open input device
423 * @handle: handle through which device is being accessed
425 * This function should be called by input handlers when they
426 * want to start receive events from given input device.
428 int input_open_device(struct input_handle
*handle
)
430 struct input_dev
*dev
= handle
->dev
;
433 retval
= mutex_lock_interruptible(&dev
->mutex
);
437 if (dev
->going_away
) {
444 if (!dev
->users
++ && dev
->open
)
445 retval
= dev
->open(dev
);
449 if (!--handle
->open
) {
451 * Make sure we are not delivering any more events
452 * through this handle
459 mutex_unlock(&dev
->mutex
);
462 EXPORT_SYMBOL(input_open_device
);
464 int input_flush_device(struct input_handle
*handle
, struct file
*file
)
466 struct input_dev
*dev
= handle
->dev
;
469 retval
= mutex_lock_interruptible(&dev
->mutex
);
474 retval
= dev
->flush(dev
, file
);
476 mutex_unlock(&dev
->mutex
);
479 EXPORT_SYMBOL(input_flush_device
);
482 * input_close_device - close input device
483 * @handle: handle through which device is being accessed
485 * This function should be called by input handlers when they
486 * want to stop receive events from given input device.
488 void input_close_device(struct input_handle
*handle
)
490 struct input_dev
*dev
= handle
->dev
;
492 mutex_lock(&dev
->mutex
);
494 __input_release_device(handle
);
496 if (!--dev
->users
&& dev
->close
)
499 if (!--handle
->open
) {
501 * synchronize_rcu() makes sure that input_pass_event()
502 * completed and that no more input events are delivered
503 * through this handle
508 mutex_unlock(&dev
->mutex
);
510 EXPORT_SYMBOL(input_close_device
);
513 * Prepare device for unregistering
515 static void input_disconnect_device(struct input_dev
*dev
)
517 struct input_handle
*handle
;
521 * Mark device as going away. Note that we take dev->mutex here
522 * not to protect access to dev->going_away but rather to ensure
523 * that there are no threads in the middle of input_open_device()
525 mutex_lock(&dev
->mutex
);
526 dev
->going_away
= true;
527 mutex_unlock(&dev
->mutex
);
529 spin_lock_irq(&dev
->event_lock
);
532 * Simulate keyup events for all pressed keys so that handlers
533 * are not left with "stuck" keys. The driver may continue
534 * generate events even after we done here but they will not
535 * reach any handlers.
537 if (is_event_supported(EV_KEY
, dev
->evbit
, EV_MAX
)) {
538 for (code
= 0; code
<= KEY_MAX
; code
++) {
539 if (is_event_supported(code
, dev
->keybit
, KEY_MAX
) &&
540 __test_and_clear_bit(code
, dev
->key
)) {
541 input_pass_event(dev
, EV_KEY
, code
, 0);
544 input_pass_event(dev
, EV_SYN
, SYN_REPORT
, 1);
547 list_for_each_entry(handle
, &dev
->h_list
, d_node
)
550 spin_unlock_irq(&dev
->event_lock
);
553 static int input_fetch_keycode(struct input_dev
*dev
, int scancode
)
555 switch (dev
->keycodesize
) {
557 return ((u8
*)dev
->keycode
)[scancode
];
560 return ((u16
*)dev
->keycode
)[scancode
];
563 return ((u32
*)dev
->keycode
)[scancode
];
567 static int input_default_getkeycode(struct input_dev
*dev
,
568 int scancode
, int *keycode
)
570 if (!dev
->keycodesize
)
573 if (scancode
>= dev
->keycodemax
)
576 *keycode
= input_fetch_keycode(dev
, scancode
);
581 static int input_default_setkeycode(struct input_dev
*dev
,
582 int scancode
, int keycode
)
587 if (scancode
>= dev
->keycodemax
)
590 if (!dev
->keycodesize
)
593 if (dev
->keycodesize
< sizeof(keycode
) && (keycode
>> (dev
->keycodesize
* 8)))
596 switch (dev
->keycodesize
) {
598 u8
*k
= (u8
*)dev
->keycode
;
599 old_keycode
= k
[scancode
];
600 k
[scancode
] = keycode
;
604 u16
*k
= (u16
*)dev
->keycode
;
605 old_keycode
= k
[scancode
];
606 k
[scancode
] = keycode
;
610 u32
*k
= (u32
*)dev
->keycode
;
611 old_keycode
= k
[scancode
];
612 k
[scancode
] = keycode
;
617 clear_bit(old_keycode
, dev
->keybit
);
618 set_bit(keycode
, dev
->keybit
);
620 for (i
= 0; i
< dev
->keycodemax
; i
++) {
621 if (input_fetch_keycode(dev
, i
) == old_keycode
) {
622 set_bit(old_keycode
, dev
->keybit
);
623 break; /* Setting the bit twice is useless, so break */
631 * input_get_keycode - retrieve keycode currently mapped to a given scancode
632 * @dev: input device which keymap is being queried
633 * @scancode: scancode (or its equivalent for device in question) for which
637 * This function should be called by anyone interested in retrieving current
638 * keymap. Presently keyboard and evdev handlers use it.
640 int input_get_keycode(struct input_dev
*dev
, int scancode
, int *keycode
)
645 return dev
->getkeycode(dev
, scancode
, keycode
);
647 EXPORT_SYMBOL(input_get_keycode
);
650 * input_get_keycode - assign new keycode to a given scancode
651 * @dev: input device which keymap is being updated
652 * @scancode: scancode (or its equivalent for device in question)
653 * @keycode: new keycode to be assigned to the scancode
655 * This function should be called by anyone needing to update current
656 * keymap. Presently keyboard and evdev handlers use it.
658 int input_set_keycode(struct input_dev
*dev
, int scancode
, int keycode
)
667 if (keycode
< 0 || keycode
> KEY_MAX
)
670 spin_lock_irqsave(&dev
->event_lock
, flags
);
672 retval
= dev
->getkeycode(dev
, scancode
, &old_keycode
);
676 retval
= dev
->setkeycode(dev
, scancode
, keycode
);
681 * Simulate keyup event if keycode is not present
682 * in the keymap anymore
684 if (test_bit(EV_KEY
, dev
->evbit
) &&
685 !is_event_supported(old_keycode
, dev
->keybit
, KEY_MAX
) &&
686 __test_and_clear_bit(old_keycode
, dev
->key
)) {
688 input_pass_event(dev
, EV_KEY
, old_keycode
, 0);
690 input_pass_event(dev
, EV_SYN
, SYN_REPORT
, 1);
694 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
698 EXPORT_SYMBOL(input_set_keycode
);
700 #define MATCH_BIT(bit, max) \
701 for (i = 0; i < BITS_TO_LONGS(max); i++) \
702 if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
704 if (i != BITS_TO_LONGS(max)) \
707 static const struct input_device_id
*input_match_device(const struct input_device_id
*id
,
708 struct input_dev
*dev
)
712 for (; id
->flags
|| id
->driver_info
; id
++) {
714 if (id
->flags
& INPUT_DEVICE_ID_MATCH_BUS
)
715 if (id
->bustype
!= dev
->id
.bustype
)
718 if (id
->flags
& INPUT_DEVICE_ID_MATCH_VENDOR
)
719 if (id
->vendor
!= dev
->id
.vendor
)
722 if (id
->flags
& INPUT_DEVICE_ID_MATCH_PRODUCT
)
723 if (id
->product
!= dev
->id
.product
)
726 if (id
->flags
& INPUT_DEVICE_ID_MATCH_VERSION
)
727 if (id
->version
!= dev
->id
.version
)
730 MATCH_BIT(evbit
, EV_MAX
);
731 MATCH_BIT(keybit
, KEY_MAX
);
732 MATCH_BIT(relbit
, REL_MAX
);
733 MATCH_BIT(absbit
, ABS_MAX
);
734 MATCH_BIT(mscbit
, MSC_MAX
);
735 MATCH_BIT(ledbit
, LED_MAX
);
736 MATCH_BIT(sndbit
, SND_MAX
);
737 MATCH_BIT(ffbit
, FF_MAX
);
738 MATCH_BIT(swbit
, SW_MAX
);
746 static int input_attach_handler(struct input_dev
*dev
, struct input_handler
*handler
)
748 const struct input_device_id
*id
;
751 if (handler
->blacklist
&& input_match_device(handler
->blacklist
, dev
))
754 id
= input_match_device(handler
->id_table
, dev
);
758 error
= handler
->connect(handler
, dev
, id
);
759 if (error
&& error
!= -ENODEV
)
761 "input: failed to attach handler %s to device %s, "
763 handler
->name
, kobject_name(&dev
->dev
.kobj
), error
);
770 static int input_bits_to_string(char *buf
, int buf_size
,
771 unsigned long bits
, bool skip_empty
)
775 if (INPUT_COMPAT_TEST
) {
776 u32 dword
= bits
>> 32;
777 if (dword
|| !skip_empty
)
778 len
+= snprintf(buf
, buf_size
, "%x ", dword
);
780 dword
= bits
& 0xffffffffUL
;
781 if (dword
|| !skip_empty
|| len
)
782 len
+= snprintf(buf
+ len
, max(buf_size
- len
, 0),
785 if (bits
|| !skip_empty
)
786 len
+= snprintf(buf
, buf_size
, "%lx", bits
);
792 #else /* !CONFIG_COMPAT */
794 static int input_bits_to_string(char *buf
, int buf_size
,
795 unsigned long bits
, bool skip_empty
)
797 return bits
|| !skip_empty
?
798 snprintf(buf
, buf_size
, "%lx", bits
) : 0;
803 #ifdef CONFIG_PROC_FS
805 static struct proc_dir_entry
*proc_bus_input_dir
;
806 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait
);
807 static int input_devices_state
;
809 static inline void input_wakeup_procfs_readers(void)
811 input_devices_state
++;
812 wake_up(&input_devices_poll_wait
);
815 static unsigned int input_proc_devices_poll(struct file
*file
, poll_table
*wait
)
817 poll_wait(file
, &input_devices_poll_wait
, wait
);
818 if (file
->f_version
!= input_devices_state
) {
819 file
->f_version
= input_devices_state
;
820 return POLLIN
| POLLRDNORM
;
826 union input_seq_state
{
834 static void *input_devices_seq_start(struct seq_file
*seq
, loff_t
*pos
)
836 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
839 /* We need to fit into seq->private pointer */
840 BUILD_BUG_ON(sizeof(union input_seq_state
) != sizeof(seq
->private));
842 error
= mutex_lock_interruptible(&input_mutex
);
844 state
->mutex_acquired
= false;
845 return ERR_PTR(error
);
848 state
->mutex_acquired
= true;
850 return seq_list_start(&input_dev_list
, *pos
);
853 static void *input_devices_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
855 return seq_list_next(v
, &input_dev_list
, pos
);
858 static void input_seq_stop(struct seq_file
*seq
, void *v
)
860 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
862 if (state
->mutex_acquired
)
863 mutex_unlock(&input_mutex
);
866 static void input_seq_print_bitmap(struct seq_file
*seq
, const char *name
,
867 unsigned long *bitmap
, int max
)
870 bool skip_empty
= true;
873 seq_printf(seq
, "B: %s=", name
);
875 for (i
= BITS_TO_LONGS(max
) - 1; i
>= 0; i
--) {
876 if (input_bits_to_string(buf
, sizeof(buf
),
877 bitmap
[i
], skip_empty
)) {
879 seq_printf(seq
, "%s%s", buf
, i
> 0 ? " " : "");
884 * If no output was produced print a single 0.
892 static int input_devices_seq_show(struct seq_file
*seq
, void *v
)
894 struct input_dev
*dev
= container_of(v
, struct input_dev
, node
);
895 const char *path
= kobject_get_path(&dev
->dev
.kobj
, GFP_KERNEL
);
896 struct input_handle
*handle
;
898 seq_printf(seq
, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
899 dev
->id
.bustype
, dev
->id
.vendor
, dev
->id
.product
, dev
->id
.version
);
901 seq_printf(seq
, "N: Name=\"%s\"\n", dev
->name
? dev
->name
: "");
902 seq_printf(seq
, "P: Phys=%s\n", dev
->phys
? dev
->phys
: "");
903 seq_printf(seq
, "S: Sysfs=%s\n", path
? path
: "");
904 seq_printf(seq
, "U: Uniq=%s\n", dev
->uniq
? dev
->uniq
: "");
905 seq_printf(seq
, "H: Handlers=");
907 list_for_each_entry(handle
, &dev
->h_list
, d_node
)
908 seq_printf(seq
, "%s ", handle
->name
);
911 input_seq_print_bitmap(seq
, "EV", dev
->evbit
, EV_MAX
);
912 if (test_bit(EV_KEY
, dev
->evbit
))
913 input_seq_print_bitmap(seq
, "KEY", dev
->keybit
, KEY_MAX
);
914 if (test_bit(EV_REL
, dev
->evbit
))
915 input_seq_print_bitmap(seq
, "REL", dev
->relbit
, REL_MAX
);
916 if (test_bit(EV_ABS
, dev
->evbit
))
917 input_seq_print_bitmap(seq
, "ABS", dev
->absbit
, ABS_MAX
);
918 if (test_bit(EV_MSC
, dev
->evbit
))
919 input_seq_print_bitmap(seq
, "MSC", dev
->mscbit
, MSC_MAX
);
920 if (test_bit(EV_LED
, dev
->evbit
))
921 input_seq_print_bitmap(seq
, "LED", dev
->ledbit
, LED_MAX
);
922 if (test_bit(EV_SND
, dev
->evbit
))
923 input_seq_print_bitmap(seq
, "SND", dev
->sndbit
, SND_MAX
);
924 if (test_bit(EV_FF
, dev
->evbit
))
925 input_seq_print_bitmap(seq
, "FF", dev
->ffbit
, FF_MAX
);
926 if (test_bit(EV_SW
, dev
->evbit
))
927 input_seq_print_bitmap(seq
, "SW", dev
->swbit
, SW_MAX
);
935 static const struct seq_operations input_devices_seq_ops
= {
936 .start
= input_devices_seq_start
,
937 .next
= input_devices_seq_next
,
938 .stop
= input_seq_stop
,
939 .show
= input_devices_seq_show
,
942 static int input_proc_devices_open(struct inode
*inode
, struct file
*file
)
944 return seq_open(file
, &input_devices_seq_ops
);
947 static const struct file_operations input_devices_fileops
= {
948 .owner
= THIS_MODULE
,
949 .open
= input_proc_devices_open
,
950 .poll
= input_proc_devices_poll
,
953 .release
= seq_release
,
956 static void *input_handlers_seq_start(struct seq_file
*seq
, loff_t
*pos
)
958 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
961 /* We need to fit into seq->private pointer */
962 BUILD_BUG_ON(sizeof(union input_seq_state
) != sizeof(seq
->private));
964 error
= mutex_lock_interruptible(&input_mutex
);
966 state
->mutex_acquired
= false;
967 return ERR_PTR(error
);
970 state
->mutex_acquired
= true;
973 return seq_list_start(&input_handler_list
, *pos
);
976 static void *input_handlers_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
978 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
980 state
->pos
= *pos
+ 1;
981 return seq_list_next(v
, &input_handler_list
, pos
);
984 static int input_handlers_seq_show(struct seq_file
*seq
, void *v
)
986 struct input_handler
*handler
= container_of(v
, struct input_handler
, node
);
987 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
989 seq_printf(seq
, "N: Number=%u Name=%s", state
->pos
, handler
->name
);
991 seq_printf(seq
, " Minor=%d", handler
->minor
);
997 static const struct seq_operations input_handlers_seq_ops
= {
998 .start
= input_handlers_seq_start
,
999 .next
= input_handlers_seq_next
,
1000 .stop
= input_seq_stop
,
1001 .show
= input_handlers_seq_show
,
1004 static int input_proc_handlers_open(struct inode
*inode
, struct file
*file
)
1006 return seq_open(file
, &input_handlers_seq_ops
);
1009 static const struct file_operations input_handlers_fileops
= {
1010 .owner
= THIS_MODULE
,
1011 .open
= input_proc_handlers_open
,
1013 .llseek
= seq_lseek
,
1014 .release
= seq_release
,
1017 static int __init
input_proc_init(void)
1019 struct proc_dir_entry
*entry
;
1021 proc_bus_input_dir
= proc_mkdir("bus/input", NULL
);
1022 if (!proc_bus_input_dir
)
1025 entry
= proc_create("devices", 0, proc_bus_input_dir
,
1026 &input_devices_fileops
);
1030 entry
= proc_create("handlers", 0, proc_bus_input_dir
,
1031 &input_handlers_fileops
);
1037 fail2
: remove_proc_entry("devices", proc_bus_input_dir
);
1038 fail1
: remove_proc_entry("bus/input", NULL
);
1042 static void input_proc_exit(void)
1044 remove_proc_entry("devices", proc_bus_input_dir
);
1045 remove_proc_entry("handlers", proc_bus_input_dir
);
1046 remove_proc_entry("bus/input", NULL
);
1049 #else /* !CONFIG_PROC_FS */
1050 static inline void input_wakeup_procfs_readers(void) { }
1051 static inline int input_proc_init(void) { return 0; }
1052 static inline void input_proc_exit(void) { }
1055 #define INPUT_DEV_STRING_ATTR_SHOW(name) \
1056 static ssize_t input_dev_show_##name(struct device *dev, \
1057 struct device_attribute *attr, \
1060 struct input_dev *input_dev = to_input_dev(dev); \
1062 return scnprintf(buf, PAGE_SIZE, "%s\n", \
1063 input_dev->name ? input_dev->name : ""); \
1065 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1067 INPUT_DEV_STRING_ATTR_SHOW(name
);
1068 INPUT_DEV_STRING_ATTR_SHOW(phys
);
1069 INPUT_DEV_STRING_ATTR_SHOW(uniq
);
1071 static int input_print_modalias_bits(char *buf
, int size
,
1072 char name
, unsigned long *bm
,
1073 unsigned int min_bit
, unsigned int max_bit
)
1077 len
+= snprintf(buf
, max(size
, 0), "%c", name
);
1078 for (i
= min_bit
; i
< max_bit
; i
++)
1079 if (bm
[BIT_WORD(i
)] & BIT_MASK(i
))
1080 len
+= snprintf(buf
+ len
, max(size
- len
, 0), "%X,", i
);
1084 static int input_print_modalias(char *buf
, int size
, struct input_dev
*id
,
1089 len
= snprintf(buf
, max(size
, 0),
1090 "input:b%04Xv%04Xp%04Xe%04X-",
1091 id
->id
.bustype
, id
->id
.vendor
,
1092 id
->id
.product
, id
->id
.version
);
1094 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1095 'e', id
->evbit
, 0, EV_MAX
);
1096 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1097 'k', id
->keybit
, KEY_MIN_INTERESTING
, KEY_MAX
);
1098 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1099 'r', id
->relbit
, 0, REL_MAX
);
1100 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1101 'a', id
->absbit
, 0, ABS_MAX
);
1102 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1103 'm', id
->mscbit
, 0, MSC_MAX
);
1104 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1105 'l', id
->ledbit
, 0, LED_MAX
);
1106 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1107 's', id
->sndbit
, 0, SND_MAX
);
1108 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1109 'f', id
->ffbit
, 0, FF_MAX
);
1110 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1111 'w', id
->swbit
, 0, SW_MAX
);
1114 len
+= snprintf(buf
+ len
, max(size
- len
, 0), "\n");
1119 static ssize_t
input_dev_show_modalias(struct device
*dev
,
1120 struct device_attribute
*attr
,
1123 struct input_dev
*id
= to_input_dev(dev
);
1126 len
= input_print_modalias(buf
, PAGE_SIZE
, id
, 1);
1128 return min_t(int, len
, PAGE_SIZE
);
1130 static DEVICE_ATTR(modalias
, S_IRUGO
, input_dev_show_modalias
, NULL
);
1132 static struct attribute
*input_dev_attrs
[] = {
1133 &dev_attr_name
.attr
,
1134 &dev_attr_phys
.attr
,
1135 &dev_attr_uniq
.attr
,
1136 &dev_attr_modalias
.attr
,
1140 static struct attribute_group input_dev_attr_group
= {
1141 .attrs
= input_dev_attrs
,
1144 #define INPUT_DEV_ID_ATTR(name) \
1145 static ssize_t input_dev_show_id_##name(struct device *dev, \
1146 struct device_attribute *attr, \
1149 struct input_dev *input_dev = to_input_dev(dev); \
1150 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1152 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1154 INPUT_DEV_ID_ATTR(bustype
);
1155 INPUT_DEV_ID_ATTR(vendor
);
1156 INPUT_DEV_ID_ATTR(product
);
1157 INPUT_DEV_ID_ATTR(version
);
1159 static struct attribute
*input_dev_id_attrs
[] = {
1160 &dev_attr_bustype
.attr
,
1161 &dev_attr_vendor
.attr
,
1162 &dev_attr_product
.attr
,
1163 &dev_attr_version
.attr
,
1167 static struct attribute_group input_dev_id_attr_group
= {
1169 .attrs
= input_dev_id_attrs
,
1172 static int input_print_bitmap(char *buf
, int buf_size
, unsigned long *bitmap
,
1173 int max
, int add_cr
)
1177 bool skip_empty
= true;
1179 for (i
= BITS_TO_LONGS(max
) - 1; i
>= 0; i
--) {
1180 len
+= input_bits_to_string(buf
+ len
, max(buf_size
- len
, 0),
1181 bitmap
[i
], skip_empty
);
1185 len
+= snprintf(buf
+ len
, max(buf_size
- len
, 0), " ");
1190 * If no output was produced print a single 0.
1193 len
= snprintf(buf
, buf_size
, "%d", 0);
1196 len
+= snprintf(buf
+ len
, max(buf_size
- len
, 0), "\n");
1201 #define INPUT_DEV_CAP_ATTR(ev, bm) \
1202 static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1203 struct device_attribute *attr, \
1206 struct input_dev *input_dev = to_input_dev(dev); \
1207 int len = input_print_bitmap(buf, PAGE_SIZE, \
1208 input_dev->bm##bit, ev##_MAX, \
1210 return min_t(int, len, PAGE_SIZE); \
1212 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1214 INPUT_DEV_CAP_ATTR(EV
, ev
);
1215 INPUT_DEV_CAP_ATTR(KEY
, key
);
1216 INPUT_DEV_CAP_ATTR(REL
, rel
);
1217 INPUT_DEV_CAP_ATTR(ABS
, abs
);
1218 INPUT_DEV_CAP_ATTR(MSC
, msc
);
1219 INPUT_DEV_CAP_ATTR(LED
, led
);
1220 INPUT_DEV_CAP_ATTR(SND
, snd
);
1221 INPUT_DEV_CAP_ATTR(FF
, ff
);
1222 INPUT_DEV_CAP_ATTR(SW
, sw
);
1224 static struct attribute
*input_dev_caps_attrs
[] = {
1237 static struct attribute_group input_dev_caps_attr_group
= {
1238 .name
= "capabilities",
1239 .attrs
= input_dev_caps_attrs
,
1242 static const struct attribute_group
*input_dev_attr_groups
[] = {
1243 &input_dev_attr_group
,
1244 &input_dev_id_attr_group
,
1245 &input_dev_caps_attr_group
,
1249 static void input_dev_release(struct device
*device
)
1251 struct input_dev
*dev
= to_input_dev(device
);
1253 input_ff_destroy(dev
);
1256 module_put(THIS_MODULE
);
1260 * Input uevent interface - loading event handlers based on
1263 static int input_add_uevent_bm_var(struct kobj_uevent_env
*env
,
1264 const char *name
, unsigned long *bitmap
, int max
)
1268 if (add_uevent_var(env
, "%s=", name
))
1271 len
= input_print_bitmap(&env
->buf
[env
->buflen
- 1],
1272 sizeof(env
->buf
) - env
->buflen
,
1273 bitmap
, max
, false);
1274 if (len
>= (sizeof(env
->buf
) - env
->buflen
))
1281 static int input_add_uevent_modalias_var(struct kobj_uevent_env
*env
,
1282 struct input_dev
*dev
)
1286 if (add_uevent_var(env
, "MODALIAS="))
1289 len
= input_print_modalias(&env
->buf
[env
->buflen
- 1],
1290 sizeof(env
->buf
) - env
->buflen
,
1292 if (len
>= (sizeof(env
->buf
) - env
->buflen
))
1299 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1301 int err = add_uevent_var(env, fmt, val); \
1306 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1308 int err = input_add_uevent_bm_var(env, name, bm, max); \
1313 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1315 int err = input_add_uevent_modalias_var(env, dev); \
1320 static int input_dev_uevent(struct device
*device
, struct kobj_uevent_env
*env
)
1322 struct input_dev
*dev
= to_input_dev(device
);
1324 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1325 dev
->id
.bustype
, dev
->id
.vendor
,
1326 dev
->id
.product
, dev
->id
.version
);
1328 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev
->name
);
1330 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev
->phys
);
1332 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev
->uniq
);
1334 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev
->evbit
, EV_MAX
);
1335 if (test_bit(EV_KEY
, dev
->evbit
))
1336 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev
->keybit
, KEY_MAX
);
1337 if (test_bit(EV_REL
, dev
->evbit
))
1338 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev
->relbit
, REL_MAX
);
1339 if (test_bit(EV_ABS
, dev
->evbit
))
1340 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev
->absbit
, ABS_MAX
);
1341 if (test_bit(EV_MSC
, dev
->evbit
))
1342 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev
->mscbit
, MSC_MAX
);
1343 if (test_bit(EV_LED
, dev
->evbit
))
1344 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev
->ledbit
, LED_MAX
);
1345 if (test_bit(EV_SND
, dev
->evbit
))
1346 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev
->sndbit
, SND_MAX
);
1347 if (test_bit(EV_FF
, dev
->evbit
))
1348 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev
->ffbit
, FF_MAX
);
1349 if (test_bit(EV_SW
, dev
->evbit
))
1350 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev
->swbit
, SW_MAX
);
1352 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev
);
1357 #define INPUT_DO_TOGGLE(dev, type, bits, on) \
1362 if (!test_bit(EV_##type, dev->evbit)) \
1365 for (i = 0; i < type##_MAX; i++) { \
1366 if (!test_bit(i, dev->bits##bit)) \
1369 active = test_bit(i, dev->bits); \
1370 if (!active && !on) \
1373 dev->event(dev, EV_##type, i, on ? active : 0); \
1378 static void input_dev_reset(struct input_dev
*dev
, bool activate
)
1383 INPUT_DO_TOGGLE(dev
, LED
, led
, activate
);
1384 INPUT_DO_TOGGLE(dev
, SND
, snd
, activate
);
1386 if (activate
&& test_bit(EV_REP
, dev
->evbit
)) {
1387 dev
->event(dev
, EV_REP
, REP_PERIOD
, dev
->rep
[REP_PERIOD
]);
1388 dev
->event(dev
, EV_REP
, REP_DELAY
, dev
->rep
[REP_DELAY
]);
1392 static int input_dev_suspend(struct device
*dev
)
1394 struct input_dev
*input_dev
= to_input_dev(dev
);
1396 mutex_lock(&input_dev
->mutex
);
1397 input_dev_reset(input_dev
, false);
1398 mutex_unlock(&input_dev
->mutex
);
1403 static int input_dev_resume(struct device
*dev
)
1405 struct input_dev
*input_dev
= to_input_dev(dev
);
1407 mutex_lock(&input_dev
->mutex
);
1408 input_dev_reset(input_dev
, true);
1409 mutex_unlock(&input_dev
->mutex
);
1414 static const struct dev_pm_ops input_dev_pm_ops
= {
1415 .suspend
= input_dev_suspend
,
1416 .resume
= input_dev_resume
,
1417 .poweroff
= input_dev_suspend
,
1418 .restore
= input_dev_resume
,
1420 #endif /* CONFIG_PM */
1422 static struct device_type input_dev_type
= {
1423 .groups
= input_dev_attr_groups
,
1424 .release
= input_dev_release
,
1425 .uevent
= input_dev_uevent
,
1427 .pm
= &input_dev_pm_ops
,
1431 static char *input_devnode(struct device
*dev
, mode_t
*mode
)
1433 return kasprintf(GFP_KERNEL
, "input/%s", dev_name(dev
));
1436 struct class input_class
= {
1438 .devnode
= input_devnode
,
1440 EXPORT_SYMBOL_GPL(input_class
);
1443 * input_allocate_device - allocate memory for new input device
1445 * Returns prepared struct input_dev or NULL.
1447 * NOTE: Use input_free_device() to free devices that have not been
1448 * registered; input_unregister_device() should be used for already
1449 * registered devices.
1451 struct input_dev
*input_allocate_device(void)
1453 struct input_dev
*dev
;
1455 dev
= kzalloc(sizeof(struct input_dev
), GFP_KERNEL
);
1457 dev
->dev
.type
= &input_dev_type
;
1458 dev
->dev
.class = &input_class
;
1459 device_initialize(&dev
->dev
);
1460 mutex_init(&dev
->mutex
);
1461 spin_lock_init(&dev
->event_lock
);
1462 INIT_LIST_HEAD(&dev
->h_list
);
1463 INIT_LIST_HEAD(&dev
->node
);
1465 __module_get(THIS_MODULE
);
1470 EXPORT_SYMBOL(input_allocate_device
);
1473 * input_free_device - free memory occupied by input_dev structure
1474 * @dev: input device to free
1476 * This function should only be used if input_register_device()
1477 * was not called yet or if it failed. Once device was registered
1478 * use input_unregister_device() and memory will be freed once last
1479 * reference to the device is dropped.
1481 * Device should be allocated by input_allocate_device().
1483 * NOTE: If there are references to the input device then memory
1484 * will not be freed until last reference is dropped.
1486 void input_free_device(struct input_dev
*dev
)
1489 input_put_device(dev
);
1491 EXPORT_SYMBOL(input_free_device
);
1494 * input_set_capability - mark device as capable of a certain event
1495 * @dev: device that is capable of emitting or accepting event
1496 * @type: type of the event (EV_KEY, EV_REL, etc...)
1499 * In addition to setting up corresponding bit in appropriate capability
1500 * bitmap the function also adjusts dev->evbit.
1502 void input_set_capability(struct input_dev
*dev
, unsigned int type
, unsigned int code
)
1506 __set_bit(code
, dev
->keybit
);
1510 __set_bit(code
, dev
->relbit
);
1514 __set_bit(code
, dev
->absbit
);
1518 __set_bit(code
, dev
->mscbit
);
1522 __set_bit(code
, dev
->swbit
);
1526 __set_bit(code
, dev
->ledbit
);
1530 __set_bit(code
, dev
->sndbit
);
1534 __set_bit(code
, dev
->ffbit
);
1543 "input_set_capability: unknown type %u (code %u)\n",
1549 __set_bit(type
, dev
->evbit
);
1551 EXPORT_SYMBOL(input_set_capability
);
1554 * input_register_device - register device with input core
1555 * @dev: device to be registered
1557 * This function registers device with input core. The device must be
1558 * allocated with input_allocate_device() and all it's capabilities
1559 * set up before registering.
1560 * If function fails the device must be freed with input_free_device().
1561 * Once device has been successfully registered it can be unregistered
1562 * with input_unregister_device(); input_free_device() should not be
1563 * called in this case.
1565 int input_register_device(struct input_dev
*dev
)
1567 static atomic_t input_no
= ATOMIC_INIT(0);
1568 struct input_handler
*handler
;
1572 __set_bit(EV_SYN
, dev
->evbit
);
1575 * If delay and period are pre-set by the driver, then autorepeating
1576 * is handled by the driver itself and we don't do it in input.c.
1579 init_timer(&dev
->timer
);
1580 if (!dev
->rep
[REP_DELAY
] && !dev
->rep
[REP_PERIOD
]) {
1581 dev
->timer
.data
= (long) dev
;
1582 dev
->timer
.function
= input_repeat_key
;
1583 dev
->rep
[REP_DELAY
] = 250;
1584 dev
->rep
[REP_PERIOD
] = 33;
1587 if (!dev
->getkeycode
)
1588 dev
->getkeycode
= input_default_getkeycode
;
1590 if (!dev
->setkeycode
)
1591 dev
->setkeycode
= input_default_setkeycode
;
1593 dev_set_name(&dev
->dev
, "input%ld",
1594 (unsigned long) atomic_inc_return(&input_no
) - 1);
1596 error
= device_add(&dev
->dev
);
1600 path
= kobject_get_path(&dev
->dev
.kobj
, GFP_KERNEL
);
1601 printk(KERN_INFO
"input: %s as %s\n",
1602 dev
->name
? dev
->name
: "Unspecified device", path
? path
: "N/A");
1605 error
= mutex_lock_interruptible(&input_mutex
);
1607 device_del(&dev
->dev
);
1611 list_add_tail(&dev
->node
, &input_dev_list
);
1613 list_for_each_entry(handler
, &input_handler_list
, node
)
1614 input_attach_handler(dev
, handler
);
1616 input_wakeup_procfs_readers();
1618 mutex_unlock(&input_mutex
);
1622 EXPORT_SYMBOL(input_register_device
);
1625 * input_unregister_device - unregister previously registered device
1626 * @dev: device to be unregistered
1628 * This function unregisters an input device. Once device is unregistered
1629 * the caller should not try to access it as it may get freed at any moment.
1631 void input_unregister_device(struct input_dev
*dev
)
1633 struct input_handle
*handle
, *next
;
1635 input_disconnect_device(dev
);
1637 mutex_lock(&input_mutex
);
1639 list_for_each_entry_safe(handle
, next
, &dev
->h_list
, d_node
)
1640 handle
->handler
->disconnect(handle
);
1641 WARN_ON(!list_empty(&dev
->h_list
));
1643 del_timer_sync(&dev
->timer
);
1644 list_del_init(&dev
->node
);
1646 input_wakeup_procfs_readers();
1648 mutex_unlock(&input_mutex
);
1650 device_unregister(&dev
->dev
);
1652 EXPORT_SYMBOL(input_unregister_device
);
1655 * input_register_handler - register a new input handler
1656 * @handler: handler to be registered
1658 * This function registers a new input handler (interface) for input
1659 * devices in the system and attaches it to all input devices that
1660 * are compatible with the handler.
1662 int input_register_handler(struct input_handler
*handler
)
1664 struct input_dev
*dev
;
1667 retval
= mutex_lock_interruptible(&input_mutex
);
1671 INIT_LIST_HEAD(&handler
->h_list
);
1673 if (handler
->fops
!= NULL
) {
1674 if (input_table
[handler
->minor
>> 5]) {
1678 input_table
[handler
->minor
>> 5] = handler
;
1681 list_add_tail(&handler
->node
, &input_handler_list
);
1683 list_for_each_entry(dev
, &input_dev_list
, node
)
1684 input_attach_handler(dev
, handler
);
1686 input_wakeup_procfs_readers();
1689 mutex_unlock(&input_mutex
);
1692 EXPORT_SYMBOL(input_register_handler
);
1695 * input_unregister_handler - unregisters an input handler
1696 * @handler: handler to be unregistered
1698 * This function disconnects a handler from its input devices and
1699 * removes it from lists of known handlers.
1701 void input_unregister_handler(struct input_handler
*handler
)
1703 struct input_handle
*handle
, *next
;
1705 mutex_lock(&input_mutex
);
1707 list_for_each_entry_safe(handle
, next
, &handler
->h_list
, h_node
)
1708 handler
->disconnect(handle
);
1709 WARN_ON(!list_empty(&handler
->h_list
));
1711 list_del_init(&handler
->node
);
1713 if (handler
->fops
!= NULL
)
1714 input_table
[handler
->minor
>> 5] = NULL
;
1716 input_wakeup_procfs_readers();
1718 mutex_unlock(&input_mutex
);
1720 EXPORT_SYMBOL(input_unregister_handler
);
1723 * input_handler_for_each_handle - handle iterator
1724 * @handler: input handler to iterate
1725 * @data: data for the callback
1726 * @fn: function to be called for each handle
1728 * Iterate over @bus's list of devices, and call @fn for each, passing
1729 * it @data and stop when @fn returns a non-zero value. The function is
1730 * using RCU to traverse the list and therefore may be usind in atonic
1731 * contexts. The @fn callback is invoked from RCU critical section and
1732 * thus must not sleep.
1734 int input_handler_for_each_handle(struct input_handler
*handler
, void *data
,
1735 int (*fn
)(struct input_handle
*, void *))
1737 struct input_handle
*handle
;
1742 list_for_each_entry_rcu(handle
, &handler
->h_list
, h_node
) {
1743 retval
= fn(handle
, data
);
1752 EXPORT_SYMBOL(input_handler_for_each_handle
);
1755 * input_register_handle - register a new input handle
1756 * @handle: handle to register
1758 * This function puts a new input handle onto device's
1759 * and handler's lists so that events can flow through
1760 * it once it is opened using input_open_device().
1762 * This function is supposed to be called from handler's
1765 int input_register_handle(struct input_handle
*handle
)
1767 struct input_handler
*handler
= handle
->handler
;
1768 struct input_dev
*dev
= handle
->dev
;
1772 * We take dev->mutex here to prevent race with
1773 * input_release_device().
1775 error
= mutex_lock_interruptible(&dev
->mutex
);
1778 list_add_tail_rcu(&handle
->d_node
, &dev
->h_list
);
1779 mutex_unlock(&dev
->mutex
);
1782 * Since we are supposed to be called from ->connect()
1783 * which is mutually exclusive with ->disconnect()
1784 * we can't be racing with input_unregister_handle()
1785 * and so separate lock is not needed here.
1787 list_add_tail_rcu(&handle
->h_node
, &handler
->h_list
);
1790 handler
->start(handle
);
1794 EXPORT_SYMBOL(input_register_handle
);
1797 * input_unregister_handle - unregister an input handle
1798 * @handle: handle to unregister
1800 * This function removes input handle from device's
1801 * and handler's lists.
1803 * This function is supposed to be called from handler's
1804 * disconnect() method.
1806 void input_unregister_handle(struct input_handle
*handle
)
1808 struct input_dev
*dev
= handle
->dev
;
1810 list_del_rcu(&handle
->h_node
);
1813 * Take dev->mutex to prevent race with input_release_device().
1815 mutex_lock(&dev
->mutex
);
1816 list_del_rcu(&handle
->d_node
);
1817 mutex_unlock(&dev
->mutex
);
1821 EXPORT_SYMBOL(input_unregister_handle
);
1823 static int input_open_file(struct inode
*inode
, struct file
*file
)
1825 struct input_handler
*handler
;
1826 const struct file_operations
*old_fops
, *new_fops
= NULL
;
1830 /* No load-on-demand here? */
1831 handler
= input_table
[iminor(inode
) >> 5];
1832 if (!handler
|| !(new_fops
= fops_get(handler
->fops
))) {
1838 * That's _really_ odd. Usually NULL ->open means "nothing special",
1839 * not "no device". Oh, well...
1841 if (!new_fops
->open
) {
1846 old_fops
= file
->f_op
;
1847 file
->f_op
= new_fops
;
1849 err
= new_fops
->open(inode
, file
);
1852 fops_put(file
->f_op
);
1853 file
->f_op
= fops_get(old_fops
);
1861 static const struct file_operations input_fops
= {
1862 .owner
= THIS_MODULE
,
1863 .open
= input_open_file
,
1866 static void __init
input_init_abs_bypass(void)
1868 const unsigned int *p
;
1870 for (p
= input_abs_bypass_init_data
; *p
; p
++)
1871 input_abs_bypass
[BIT_WORD(*p
)] |= BIT_MASK(*p
);
1874 static int __init
input_init(void)
1878 input_init_abs_bypass();
1880 err
= class_register(&input_class
);
1882 printk(KERN_ERR
"input: unable to register input_dev class\n");
1886 err
= input_proc_init();
1890 err
= register_chrdev(INPUT_MAJOR
, "input", &input_fops
);
1892 printk(KERN_ERR
"input: unable to register char major %d", INPUT_MAJOR
);
1898 fail2
: input_proc_exit();
1899 fail1
: class_unregister(&input_class
);
1903 static void __exit
input_exit(void)
1906 unregister_chrdev(INPUT_MAJOR
, "input");
1907 class_unregister(&input_class
);
1910 subsys_initcall(input_init
);
1911 module_exit(input_exit
);