2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * inode->i_alloc_sem (vmtruncate_range)
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_lock
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within inode_lock in __sync_single_inode)
42 #include <linux/pagemap.h>
43 #include <linux/swap.h>
44 #include <linux/swapops.h>
45 #include <linux/slab.h>
46 #include <linux/init.h>
47 #include <linux/rmap.h>
48 #include <linux/rcupdate.h>
49 #include <linux/module.h>
50 #include <linux/memcontrol.h>
51 #include <linux/mmu_notifier.h>
52 #include <linux/migrate.h>
54 #include <asm/tlbflush.h>
58 static struct kmem_cache
*anon_vma_cachep
;
60 static inline struct anon_vma
*anon_vma_alloc(void)
62 return kmem_cache_alloc(anon_vma_cachep
, GFP_KERNEL
);
65 static inline void anon_vma_free(struct anon_vma
*anon_vma
)
67 kmem_cache_free(anon_vma_cachep
, anon_vma
);
71 * anon_vma_prepare - attach an anon_vma to a memory region
72 * @vma: the memory region in question
74 * This makes sure the memory mapping described by 'vma' has
75 * an 'anon_vma' attached to it, so that we can associate the
76 * anonymous pages mapped into it with that anon_vma.
78 * The common case will be that we already have one, but if
79 * if not we either need to find an adjacent mapping that we
80 * can re-use the anon_vma from (very common when the only
81 * reason for splitting a vma has been mprotect()), or we
84 * Anon-vma allocations are very subtle, because we may have
85 * optimistically looked up an anon_vma in page_lock_anon_vma()
86 * and that may actually touch the spinlock even in the newly
87 * allocated vma (it depends on RCU to make sure that the
88 * anon_vma isn't actually destroyed).
90 * As a result, we need to do proper anon_vma locking even
91 * for the new allocation. At the same time, we do not want
92 * to do any locking for the common case of already having
95 * This must be called with the mmap_sem held for reading.
97 int anon_vma_prepare(struct vm_area_struct
*vma
)
99 struct anon_vma
*anon_vma
= vma
->anon_vma
;
102 if (unlikely(!anon_vma
)) {
103 struct mm_struct
*mm
= vma
->vm_mm
;
104 struct anon_vma
*allocated
;
106 anon_vma
= find_mergeable_anon_vma(vma
);
109 anon_vma
= anon_vma_alloc();
110 if (unlikely(!anon_vma
))
112 allocated
= anon_vma
;
114 spin_lock(&anon_vma
->lock
);
116 /* page_table_lock to protect against threads */
117 spin_lock(&mm
->page_table_lock
);
118 if (likely(!vma
->anon_vma
)) {
119 vma
->anon_vma
= anon_vma
;
120 list_add_tail(&vma
->anon_vma_node
, &anon_vma
->head
);
123 spin_unlock(&mm
->page_table_lock
);
125 spin_unlock(&anon_vma
->lock
);
126 if (unlikely(allocated
))
127 anon_vma_free(allocated
);
132 void __anon_vma_merge(struct vm_area_struct
*vma
, struct vm_area_struct
*next
)
134 BUG_ON(vma
->anon_vma
!= next
->anon_vma
);
135 list_del(&next
->anon_vma_node
);
138 void __anon_vma_link(struct vm_area_struct
*vma
)
140 struct anon_vma
*anon_vma
= vma
->anon_vma
;
143 list_add_tail(&vma
->anon_vma_node
, &anon_vma
->head
);
146 void anon_vma_link(struct vm_area_struct
*vma
)
148 struct anon_vma
*anon_vma
= vma
->anon_vma
;
151 spin_lock(&anon_vma
->lock
);
152 list_add_tail(&vma
->anon_vma_node
, &anon_vma
->head
);
153 spin_unlock(&anon_vma
->lock
);
157 void anon_vma_unlink(struct vm_area_struct
*vma
)
159 struct anon_vma
*anon_vma
= vma
->anon_vma
;
165 spin_lock(&anon_vma
->lock
);
166 list_del(&vma
->anon_vma_node
);
168 /* We must garbage collect the anon_vma if it's empty */
169 empty
= list_empty(&anon_vma
->head
);
170 spin_unlock(&anon_vma
->lock
);
173 anon_vma_free(anon_vma
);
176 static void anon_vma_ctor(void *data
)
178 struct anon_vma
*anon_vma
= data
;
180 spin_lock_init(&anon_vma
->lock
);
181 INIT_LIST_HEAD(&anon_vma
->head
);
184 void __init
anon_vma_init(void)
186 anon_vma_cachep
= kmem_cache_create("anon_vma", sizeof(struct anon_vma
),
187 0, SLAB_DESTROY_BY_RCU
|SLAB_PANIC
, anon_vma_ctor
);
191 * Getting a lock on a stable anon_vma from a page off the LRU is
192 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
194 static struct anon_vma
*page_lock_anon_vma(struct page
*page
)
196 struct anon_vma
*anon_vma
;
197 unsigned long anon_mapping
;
200 anon_mapping
= (unsigned long) page
->mapping
;
201 if (!(anon_mapping
& PAGE_MAPPING_ANON
))
203 if (!page_mapped(page
))
206 anon_vma
= (struct anon_vma
*) (anon_mapping
- PAGE_MAPPING_ANON
);
207 spin_lock(&anon_vma
->lock
);
214 static void page_unlock_anon_vma(struct anon_vma
*anon_vma
)
216 spin_unlock(&anon_vma
->lock
);
221 * At what user virtual address is page expected in @vma?
222 * Returns virtual address or -EFAULT if page's index/offset is not
223 * within the range mapped the @vma.
225 static inline unsigned long
226 vma_address(struct page
*page
, struct vm_area_struct
*vma
)
228 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
229 unsigned long address
;
231 address
= vma
->vm_start
+ ((pgoff
- vma
->vm_pgoff
) << PAGE_SHIFT
);
232 if (unlikely(address
< vma
->vm_start
|| address
>= vma
->vm_end
)) {
233 /* page should be within @vma mapping range */
240 * At what user virtual address is page expected in vma? checking that the
241 * page matches the vma: currently only used on anon pages, by unuse_vma;
243 unsigned long page_address_in_vma(struct page
*page
, struct vm_area_struct
*vma
)
245 if (PageAnon(page
)) {
246 if ((void *)vma
->anon_vma
!=
247 (void *)page
->mapping
- PAGE_MAPPING_ANON
)
249 } else if (page
->mapping
&& !(vma
->vm_flags
& VM_NONLINEAR
)) {
251 vma
->vm_file
->f_mapping
!= page
->mapping
)
255 return vma_address(page
, vma
);
259 * Check that @page is mapped at @address into @mm.
261 * If @sync is false, page_check_address may perform a racy check to avoid
262 * the page table lock when the pte is not present (helpful when reclaiming
263 * highly shared pages).
265 * On success returns with pte mapped and locked.
267 pte_t
*page_check_address(struct page
*page
, struct mm_struct
*mm
,
268 unsigned long address
, spinlock_t
**ptlp
, int sync
)
276 pgd
= pgd_offset(mm
, address
);
277 if (!pgd_present(*pgd
))
280 pud
= pud_offset(pgd
, address
);
281 if (!pud_present(*pud
))
284 pmd
= pmd_offset(pud
, address
);
285 if (!pmd_present(*pmd
))
288 pte
= pte_offset_map(pmd
, address
);
289 /* Make a quick check before getting the lock */
290 if (!sync
&& !pte_present(*pte
)) {
295 ptl
= pte_lockptr(mm
, pmd
);
297 if (pte_present(*pte
) && page_to_pfn(page
) == pte_pfn(*pte
)) {
301 pte_unmap_unlock(pte
, ptl
);
306 * page_mapped_in_vma - check whether a page is really mapped in a VMA
307 * @page: the page to test
308 * @vma: the VMA to test
310 * Returns 1 if the page is mapped into the page tables of the VMA, 0
311 * if the page is not mapped into the page tables of this VMA. Only
312 * valid for normal file or anonymous VMAs.
314 static int page_mapped_in_vma(struct page
*page
, struct vm_area_struct
*vma
)
316 unsigned long address
;
320 address
= vma_address(page
, vma
);
321 if (address
== -EFAULT
) /* out of vma range */
323 pte
= page_check_address(page
, vma
->vm_mm
, address
, &ptl
, 1);
324 if (!pte
) /* the page is not in this mm */
326 pte_unmap_unlock(pte
, ptl
);
332 * Subfunctions of page_referenced: page_referenced_one called
333 * repeatedly from either page_referenced_anon or page_referenced_file.
335 static int page_referenced_one(struct page
*page
,
336 struct vm_area_struct
*vma
,
337 unsigned int *mapcount
,
338 unsigned long *vm_flags
)
340 struct mm_struct
*mm
= vma
->vm_mm
;
341 unsigned long address
;
346 address
= vma_address(page
, vma
);
347 if (address
== -EFAULT
)
350 pte
= page_check_address(page
, mm
, address
, &ptl
, 0);
355 * Don't want to elevate referenced for mlocked page that gets this far,
356 * in order that it progresses to try_to_unmap and is moved to the
359 if (vma
->vm_flags
& VM_LOCKED
) {
360 *mapcount
= 1; /* break early from loop */
364 if (ptep_clear_flush_young_notify(vma
, address
, pte
)) {
366 * Don't treat a reference through a sequentially read
367 * mapping as such. If the page has been used in
368 * another mapping, we will catch it; if this other
369 * mapping is already gone, the unmap path will have
370 * set PG_referenced or activated the page.
372 if (likely(!VM_SequentialReadHint(vma
)))
376 /* Pretend the page is referenced if the task has the
377 swap token and is in the middle of a page fault. */
378 if (mm
!= current
->mm
&& has_swap_token(mm
) &&
379 rwsem_is_locked(&mm
->mmap_sem
))
384 pte_unmap_unlock(pte
, ptl
);
387 *vm_flags
|= vma
->vm_flags
;
391 static int page_referenced_anon(struct page
*page
,
392 struct mem_cgroup
*mem_cont
,
393 unsigned long *vm_flags
)
395 unsigned int mapcount
;
396 struct anon_vma
*anon_vma
;
397 struct vm_area_struct
*vma
;
400 anon_vma
= page_lock_anon_vma(page
);
404 mapcount
= page_mapcount(page
);
405 list_for_each_entry(vma
, &anon_vma
->head
, anon_vma_node
) {
407 * If we are reclaiming on behalf of a cgroup, skip
408 * counting on behalf of references from different
411 if (mem_cont
&& !mm_match_cgroup(vma
->vm_mm
, mem_cont
))
413 referenced
+= page_referenced_one(page
, vma
,
414 &mapcount
, vm_flags
);
419 page_unlock_anon_vma(anon_vma
);
424 * page_referenced_file - referenced check for object-based rmap
425 * @page: the page we're checking references on.
426 * @mem_cont: target memory controller
427 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
429 * For an object-based mapped page, find all the places it is mapped and
430 * check/clear the referenced flag. This is done by following the page->mapping
431 * pointer, then walking the chain of vmas it holds. It returns the number
432 * of references it found.
434 * This function is only called from page_referenced for object-based pages.
436 static int page_referenced_file(struct page
*page
,
437 struct mem_cgroup
*mem_cont
,
438 unsigned long *vm_flags
)
440 unsigned int mapcount
;
441 struct address_space
*mapping
= page
->mapping
;
442 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
443 struct vm_area_struct
*vma
;
444 struct prio_tree_iter iter
;
448 * The caller's checks on page->mapping and !PageAnon have made
449 * sure that this is a file page: the check for page->mapping
450 * excludes the case just before it gets set on an anon page.
452 BUG_ON(PageAnon(page
));
455 * The page lock not only makes sure that page->mapping cannot
456 * suddenly be NULLified by truncation, it makes sure that the
457 * structure at mapping cannot be freed and reused yet,
458 * so we can safely take mapping->i_mmap_lock.
460 BUG_ON(!PageLocked(page
));
462 spin_lock(&mapping
->i_mmap_lock
);
465 * i_mmap_lock does not stabilize mapcount at all, but mapcount
466 * is more likely to be accurate if we note it after spinning.
468 mapcount
= page_mapcount(page
);
470 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
472 * If we are reclaiming on behalf of a cgroup, skip
473 * counting on behalf of references from different
476 if (mem_cont
&& !mm_match_cgroup(vma
->vm_mm
, mem_cont
))
478 referenced
+= page_referenced_one(page
, vma
,
479 &mapcount
, vm_flags
);
484 spin_unlock(&mapping
->i_mmap_lock
);
489 * page_referenced - test if the page was referenced
490 * @page: the page to test
491 * @is_locked: caller holds lock on the page
492 * @mem_cont: target memory controller
493 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
495 * Quick test_and_clear_referenced for all mappings to a page,
496 * returns the number of ptes which referenced the page.
498 int page_referenced(struct page
*page
,
500 struct mem_cgroup
*mem_cont
,
501 unsigned long *vm_flags
)
505 if (TestClearPageReferenced(page
))
509 if (page_mapped(page
) && page
->mapping
) {
511 referenced
+= page_referenced_anon(page
, mem_cont
,
514 referenced
+= page_referenced_file(page
, mem_cont
,
516 else if (!trylock_page(page
))
520 referenced
+= page_referenced_file(page
,
526 if (page_test_and_clear_young(page
))
532 static int page_mkclean_one(struct page
*page
, struct vm_area_struct
*vma
)
534 struct mm_struct
*mm
= vma
->vm_mm
;
535 unsigned long address
;
540 address
= vma_address(page
, vma
);
541 if (address
== -EFAULT
)
544 pte
= page_check_address(page
, mm
, address
, &ptl
, 1);
548 if (pte_dirty(*pte
) || pte_write(*pte
)) {
551 flush_cache_page(vma
, address
, pte_pfn(*pte
));
552 entry
= ptep_clear_flush_notify(vma
, address
, pte
);
553 entry
= pte_wrprotect(entry
);
554 entry
= pte_mkclean(entry
);
555 set_pte_at(mm
, address
, pte
, entry
);
559 pte_unmap_unlock(pte
, ptl
);
564 static int page_mkclean_file(struct address_space
*mapping
, struct page
*page
)
566 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
567 struct vm_area_struct
*vma
;
568 struct prio_tree_iter iter
;
571 BUG_ON(PageAnon(page
));
573 spin_lock(&mapping
->i_mmap_lock
);
574 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
575 if (vma
->vm_flags
& VM_SHARED
)
576 ret
+= page_mkclean_one(page
, vma
);
578 spin_unlock(&mapping
->i_mmap_lock
);
582 int page_mkclean(struct page
*page
)
586 BUG_ON(!PageLocked(page
));
588 if (page_mapped(page
)) {
589 struct address_space
*mapping
= page_mapping(page
);
591 ret
= page_mkclean_file(mapping
, page
);
592 if (page_test_dirty(page
)) {
593 page_clear_dirty(page
);
601 EXPORT_SYMBOL_GPL(page_mkclean
);
604 * __page_set_anon_rmap - setup new anonymous rmap
605 * @page: the page to add the mapping to
606 * @vma: the vm area in which the mapping is added
607 * @address: the user virtual address mapped
609 static void __page_set_anon_rmap(struct page
*page
,
610 struct vm_area_struct
*vma
, unsigned long address
)
612 struct anon_vma
*anon_vma
= vma
->anon_vma
;
615 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
616 page
->mapping
= (struct address_space
*) anon_vma
;
618 page
->index
= linear_page_index(vma
, address
);
621 * nr_mapped state can be updated without turning off
622 * interrupts because it is not modified via interrupt.
624 __inc_zone_page_state(page
, NR_ANON_PAGES
);
628 * __page_check_anon_rmap - sanity check anonymous rmap addition
629 * @page: the page to add the mapping to
630 * @vma: the vm area in which the mapping is added
631 * @address: the user virtual address mapped
633 static void __page_check_anon_rmap(struct page
*page
,
634 struct vm_area_struct
*vma
, unsigned long address
)
636 #ifdef CONFIG_DEBUG_VM
638 * The page's anon-rmap details (mapping and index) are guaranteed to
639 * be set up correctly at this point.
641 * We have exclusion against page_add_anon_rmap because the caller
642 * always holds the page locked, except if called from page_dup_rmap,
643 * in which case the page is already known to be setup.
645 * We have exclusion against page_add_new_anon_rmap because those pages
646 * are initially only visible via the pagetables, and the pte is locked
647 * over the call to page_add_new_anon_rmap.
649 struct anon_vma
*anon_vma
= vma
->anon_vma
;
650 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
651 BUG_ON(page
->mapping
!= (struct address_space
*)anon_vma
);
652 BUG_ON(page
->index
!= linear_page_index(vma
, address
));
657 * page_add_anon_rmap - add pte mapping to an anonymous page
658 * @page: the page to add the mapping to
659 * @vma: the vm area in which the mapping is added
660 * @address: the user virtual address mapped
662 * The caller needs to hold the pte lock and the page must be locked.
664 void page_add_anon_rmap(struct page
*page
,
665 struct vm_area_struct
*vma
, unsigned long address
)
667 VM_BUG_ON(!PageLocked(page
));
668 VM_BUG_ON(address
< vma
->vm_start
|| address
>= vma
->vm_end
);
669 if (atomic_inc_and_test(&page
->_mapcount
))
670 __page_set_anon_rmap(page
, vma
, address
);
672 __page_check_anon_rmap(page
, vma
, address
);
676 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
677 * @page: the page to add the mapping to
678 * @vma: the vm area in which the mapping is added
679 * @address: the user virtual address mapped
681 * Same as page_add_anon_rmap but must only be called on *new* pages.
682 * This means the inc-and-test can be bypassed.
683 * Page does not have to be locked.
685 void page_add_new_anon_rmap(struct page
*page
,
686 struct vm_area_struct
*vma
, unsigned long address
)
688 VM_BUG_ON(address
< vma
->vm_start
|| address
>= vma
->vm_end
);
689 SetPageSwapBacked(page
);
690 atomic_set(&page
->_mapcount
, 0); /* increment count (starts at -1) */
691 __page_set_anon_rmap(page
, vma
, address
);
692 if (page_evictable(page
, vma
))
693 lru_cache_add_lru(page
, LRU_ACTIVE_ANON
);
695 add_page_to_unevictable_list(page
);
699 * page_add_file_rmap - add pte mapping to a file page
700 * @page: the page to add the mapping to
702 * The caller needs to hold the pte lock.
704 void page_add_file_rmap(struct page
*page
)
706 if (atomic_inc_and_test(&page
->_mapcount
))
707 __inc_zone_page_state(page
, NR_FILE_MAPPED
);
710 #ifdef CONFIG_DEBUG_VM
712 * page_dup_rmap - duplicate pte mapping to a page
713 * @page: the page to add the mapping to
714 * @vma: the vm area being duplicated
715 * @address: the user virtual address mapped
717 * For copy_page_range only: minimal extract from page_add_file_rmap /
718 * page_add_anon_rmap, avoiding unnecessary tests (already checked) so it's
721 * The caller needs to hold the pte lock.
723 void page_dup_rmap(struct page
*page
, struct vm_area_struct
*vma
, unsigned long address
)
726 __page_check_anon_rmap(page
, vma
, address
);
727 atomic_inc(&page
->_mapcount
);
732 * page_remove_rmap - take down pte mapping from a page
733 * @page: page to remove mapping from
735 * The caller needs to hold the pte lock.
737 void page_remove_rmap(struct page
*page
)
739 if (atomic_add_negative(-1, &page
->_mapcount
)) {
741 * Now that the last pte has gone, s390 must transfer dirty
742 * flag from storage key to struct page. We can usually skip
743 * this if the page is anon, so about to be freed; but perhaps
744 * not if it's in swapcache - there might be another pte slot
745 * containing the swap entry, but page not yet written to swap.
747 if ((!PageAnon(page
) || PageSwapCache(page
)) &&
748 page_test_dirty(page
)) {
749 page_clear_dirty(page
);
750 set_page_dirty(page
);
753 mem_cgroup_uncharge_page(page
);
754 __dec_zone_page_state(page
,
755 PageAnon(page
) ? NR_ANON_PAGES
: NR_FILE_MAPPED
);
757 * It would be tidy to reset the PageAnon mapping here,
758 * but that might overwrite a racing page_add_anon_rmap
759 * which increments mapcount after us but sets mapping
760 * before us: so leave the reset to free_hot_cold_page,
761 * and remember that it's only reliable while mapped.
762 * Leaving it set also helps swapoff to reinstate ptes
763 * faster for those pages still in swapcache.
769 * Subfunctions of try_to_unmap: try_to_unmap_one called
770 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
772 static int try_to_unmap_one(struct page
*page
, struct vm_area_struct
*vma
,
775 struct mm_struct
*mm
= vma
->vm_mm
;
776 unsigned long address
;
780 int ret
= SWAP_AGAIN
;
782 address
= vma_address(page
, vma
);
783 if (address
== -EFAULT
)
786 pte
= page_check_address(page
, mm
, address
, &ptl
, 0);
791 * If the page is mlock()d, we cannot swap it out.
792 * If it's recently referenced (perhaps page_referenced
793 * skipped over this mm) then we should reactivate it.
796 if (vma
->vm_flags
& VM_LOCKED
) {
800 if (ptep_clear_flush_young_notify(vma
, address
, pte
)) {
806 /* Nuke the page table entry. */
807 flush_cache_page(vma
, address
, page_to_pfn(page
));
808 pteval
= ptep_clear_flush_notify(vma
, address
, pte
);
810 /* Move the dirty bit to the physical page now the pte is gone. */
811 if (pte_dirty(pteval
))
812 set_page_dirty(page
);
814 /* Update high watermark before we lower rss */
815 update_hiwater_rss(mm
);
817 if (PageAnon(page
)) {
818 swp_entry_t entry
= { .val
= page_private(page
) };
820 if (PageSwapCache(page
)) {
822 * Store the swap location in the pte.
823 * See handle_pte_fault() ...
825 swap_duplicate(entry
);
826 if (list_empty(&mm
->mmlist
)) {
827 spin_lock(&mmlist_lock
);
828 if (list_empty(&mm
->mmlist
))
829 list_add(&mm
->mmlist
, &init_mm
.mmlist
);
830 spin_unlock(&mmlist_lock
);
832 dec_mm_counter(mm
, anon_rss
);
833 } else if (PAGE_MIGRATION
) {
835 * Store the pfn of the page in a special migration
836 * pte. do_swap_page() will wait until the migration
837 * pte is removed and then restart fault handling.
840 entry
= make_migration_entry(page
, pte_write(pteval
));
842 set_pte_at(mm
, address
, pte
, swp_entry_to_pte(entry
));
843 BUG_ON(pte_file(*pte
));
844 } else if (PAGE_MIGRATION
&& migration
) {
845 /* Establish migration entry for a file page */
847 entry
= make_migration_entry(page
, pte_write(pteval
));
848 set_pte_at(mm
, address
, pte
, swp_entry_to_pte(entry
));
850 dec_mm_counter(mm
, file_rss
);
853 page_remove_rmap(page
);
854 page_cache_release(page
);
857 pte_unmap_unlock(pte
, ptl
);
863 * objrmap doesn't work for nonlinear VMAs because the assumption that
864 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
865 * Consequently, given a particular page and its ->index, we cannot locate the
866 * ptes which are mapping that page without an exhaustive linear search.
868 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
869 * maps the file to which the target page belongs. The ->vm_private_data field
870 * holds the current cursor into that scan. Successive searches will circulate
871 * around the vma's virtual address space.
873 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
874 * more scanning pressure is placed against them as well. Eventually pages
875 * will become fully unmapped and are eligible for eviction.
877 * For very sparsely populated VMAs this is a little inefficient - chances are
878 * there there won't be many ptes located within the scan cluster. In this case
879 * maybe we could scan further - to the end of the pte page, perhaps.
881 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
882 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
883 * rather than unmapping them. If we encounter the "check_page" that vmscan is
884 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
886 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
887 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
889 static int try_to_unmap_cluster(unsigned long cursor
, unsigned int *mapcount
,
890 struct vm_area_struct
*vma
, struct page
*check_page
)
892 struct mm_struct
*mm
= vma
->vm_mm
;
900 unsigned long address
;
902 int ret
= SWAP_AGAIN
;
905 address
= (vma
->vm_start
+ cursor
) & CLUSTER_MASK
;
906 end
= address
+ CLUSTER_SIZE
;
907 if (address
< vma
->vm_start
)
908 address
= vma
->vm_start
;
909 if (end
> vma
->vm_end
)
912 pgd
= pgd_offset(mm
, address
);
913 if (!pgd_present(*pgd
))
916 pud
= pud_offset(pgd
, address
);
917 if (!pud_present(*pud
))
920 pmd
= pmd_offset(pud
, address
);
921 if (!pmd_present(*pmd
))
925 * MLOCK_PAGES => feature is configured.
926 * if we can acquire the mmap_sem for read, and vma is VM_LOCKED,
927 * keep the sem while scanning the cluster for mlocking pages.
929 if (MLOCK_PAGES
&& down_read_trylock(&vma
->vm_mm
->mmap_sem
)) {
930 locked_vma
= (vma
->vm_flags
& VM_LOCKED
);
932 up_read(&vma
->vm_mm
->mmap_sem
); /* don't need it */
935 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
937 /* Update high watermark before we lower rss */
938 update_hiwater_rss(mm
);
940 for (; address
< end
; pte
++, address
+= PAGE_SIZE
) {
941 if (!pte_present(*pte
))
943 page
= vm_normal_page(vma
, address
, *pte
);
944 BUG_ON(!page
|| PageAnon(page
));
947 mlock_vma_page(page
); /* no-op if already mlocked */
948 if (page
== check_page
)
950 continue; /* don't unmap */
953 if (ptep_clear_flush_young_notify(vma
, address
, pte
))
956 /* Nuke the page table entry. */
957 flush_cache_page(vma
, address
, pte_pfn(*pte
));
958 pteval
= ptep_clear_flush_notify(vma
, address
, pte
);
960 /* If nonlinear, store the file page offset in the pte. */
961 if (page
->index
!= linear_page_index(vma
, address
))
962 set_pte_at(mm
, address
, pte
, pgoff_to_pte(page
->index
));
964 /* Move the dirty bit to the physical page now the pte is gone. */
965 if (pte_dirty(pteval
))
966 set_page_dirty(page
);
968 page_remove_rmap(page
);
969 page_cache_release(page
);
970 dec_mm_counter(mm
, file_rss
);
973 pte_unmap_unlock(pte
- 1, ptl
);
975 up_read(&vma
->vm_mm
->mmap_sem
);
980 * common handling for pages mapped in VM_LOCKED vmas
982 static int try_to_mlock_page(struct page
*page
, struct vm_area_struct
*vma
)
986 if (down_read_trylock(&vma
->vm_mm
->mmap_sem
)) {
987 if (vma
->vm_flags
& VM_LOCKED
) {
988 mlock_vma_page(page
);
989 mlocked
++; /* really mlocked the page */
991 up_read(&vma
->vm_mm
->mmap_sem
);
997 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
999 * @page: the page to unmap/unlock
1000 * @unlock: request for unlock rather than unmap [unlikely]
1001 * @migration: unmapping for migration - ignored if @unlock
1003 * Find all the mappings of a page using the mapping pointer and the vma chains
1004 * contained in the anon_vma struct it points to.
1006 * This function is only called from try_to_unmap/try_to_munlock for
1008 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1009 * where the page was found will be held for write. So, we won't recheck
1010 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1013 static int try_to_unmap_anon(struct page
*page
, int unlock
, int migration
)
1015 struct anon_vma
*anon_vma
;
1016 struct vm_area_struct
*vma
;
1017 unsigned int mlocked
= 0;
1018 int ret
= SWAP_AGAIN
;
1020 if (MLOCK_PAGES
&& unlikely(unlock
))
1021 ret
= SWAP_SUCCESS
; /* default for try_to_munlock() */
1023 anon_vma
= page_lock_anon_vma(page
);
1027 list_for_each_entry(vma
, &anon_vma
->head
, anon_vma_node
) {
1028 if (MLOCK_PAGES
&& unlikely(unlock
)) {
1029 if (!((vma
->vm_flags
& VM_LOCKED
) &&
1030 page_mapped_in_vma(page
, vma
)))
1031 continue; /* must visit all unlocked vmas */
1032 ret
= SWAP_MLOCK
; /* saw at least one mlocked vma */
1034 ret
= try_to_unmap_one(page
, vma
, migration
);
1035 if (ret
== SWAP_FAIL
|| !page_mapped(page
))
1038 if (ret
== SWAP_MLOCK
) {
1039 mlocked
= try_to_mlock_page(page
, vma
);
1041 break; /* stop if actually mlocked page */
1045 page_unlock_anon_vma(anon_vma
);
1048 ret
= SWAP_MLOCK
; /* actually mlocked the page */
1049 else if (ret
== SWAP_MLOCK
)
1050 ret
= SWAP_AGAIN
; /* saw VM_LOCKED vma */
1056 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1057 * @page: the page to unmap/unlock
1058 * @unlock: request for unlock rather than unmap [unlikely]
1059 * @migration: unmapping for migration - ignored if @unlock
1061 * Find all the mappings of a page using the mapping pointer and the vma chains
1062 * contained in the address_space struct it points to.
1064 * This function is only called from try_to_unmap/try_to_munlock for
1065 * object-based pages.
1066 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1067 * where the page was found will be held for write. So, we won't recheck
1068 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1071 static int try_to_unmap_file(struct page
*page
, int unlock
, int migration
)
1073 struct address_space
*mapping
= page
->mapping
;
1074 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
1075 struct vm_area_struct
*vma
;
1076 struct prio_tree_iter iter
;
1077 int ret
= SWAP_AGAIN
;
1078 unsigned long cursor
;
1079 unsigned long max_nl_cursor
= 0;
1080 unsigned long max_nl_size
= 0;
1081 unsigned int mapcount
;
1082 unsigned int mlocked
= 0;
1084 if (MLOCK_PAGES
&& unlikely(unlock
))
1085 ret
= SWAP_SUCCESS
; /* default for try_to_munlock() */
1087 spin_lock(&mapping
->i_mmap_lock
);
1088 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
1089 if (MLOCK_PAGES
&& unlikely(unlock
)) {
1090 if (!((vma
->vm_flags
& VM_LOCKED
) &&
1091 page_mapped_in_vma(page
, vma
)))
1092 continue; /* must visit all vmas */
1095 ret
= try_to_unmap_one(page
, vma
, migration
);
1096 if (ret
== SWAP_FAIL
|| !page_mapped(page
))
1099 if (ret
== SWAP_MLOCK
) {
1100 mlocked
= try_to_mlock_page(page
, vma
);
1102 break; /* stop if actually mlocked page */
1109 if (list_empty(&mapping
->i_mmap_nonlinear
))
1112 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
,
1113 shared
.vm_set
.list
) {
1114 if (MLOCK_PAGES
&& unlikely(unlock
)) {
1115 if (!(vma
->vm_flags
& VM_LOCKED
))
1116 continue; /* must visit all vmas */
1117 ret
= SWAP_MLOCK
; /* leave mlocked == 0 */
1118 goto out
; /* no need to look further */
1120 if (!MLOCK_PAGES
&& !migration
&& (vma
->vm_flags
& VM_LOCKED
))
1122 cursor
= (unsigned long) vma
->vm_private_data
;
1123 if (cursor
> max_nl_cursor
)
1124 max_nl_cursor
= cursor
;
1125 cursor
= vma
->vm_end
- vma
->vm_start
;
1126 if (cursor
> max_nl_size
)
1127 max_nl_size
= cursor
;
1130 if (max_nl_size
== 0) { /* all nonlinears locked or reserved ? */
1136 * We don't try to search for this page in the nonlinear vmas,
1137 * and page_referenced wouldn't have found it anyway. Instead
1138 * just walk the nonlinear vmas trying to age and unmap some.
1139 * The mapcount of the page we came in with is irrelevant,
1140 * but even so use it as a guide to how hard we should try?
1142 mapcount
= page_mapcount(page
);
1145 cond_resched_lock(&mapping
->i_mmap_lock
);
1147 max_nl_size
= (max_nl_size
+ CLUSTER_SIZE
- 1) & CLUSTER_MASK
;
1148 if (max_nl_cursor
== 0)
1149 max_nl_cursor
= CLUSTER_SIZE
;
1152 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
,
1153 shared
.vm_set
.list
) {
1154 if (!MLOCK_PAGES
&& !migration
&&
1155 (vma
->vm_flags
& VM_LOCKED
))
1157 cursor
= (unsigned long) vma
->vm_private_data
;
1158 while ( cursor
< max_nl_cursor
&&
1159 cursor
< vma
->vm_end
- vma
->vm_start
) {
1160 ret
= try_to_unmap_cluster(cursor
, &mapcount
,
1162 if (ret
== SWAP_MLOCK
)
1163 mlocked
= 2; /* to return below */
1164 cursor
+= CLUSTER_SIZE
;
1165 vma
->vm_private_data
= (void *) cursor
;
1166 if ((int)mapcount
<= 0)
1169 vma
->vm_private_data
= (void *) max_nl_cursor
;
1171 cond_resched_lock(&mapping
->i_mmap_lock
);
1172 max_nl_cursor
+= CLUSTER_SIZE
;
1173 } while (max_nl_cursor
<= max_nl_size
);
1176 * Don't loop forever (perhaps all the remaining pages are
1177 * in locked vmas). Reset cursor on all unreserved nonlinear
1178 * vmas, now forgetting on which ones it had fallen behind.
1180 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
, shared
.vm_set
.list
)
1181 vma
->vm_private_data
= NULL
;
1183 spin_unlock(&mapping
->i_mmap_lock
);
1185 ret
= SWAP_MLOCK
; /* actually mlocked the page */
1186 else if (ret
== SWAP_MLOCK
)
1187 ret
= SWAP_AGAIN
; /* saw VM_LOCKED vma */
1192 * try_to_unmap - try to remove all page table mappings to a page
1193 * @page: the page to get unmapped
1194 * @migration: migration flag
1196 * Tries to remove all the page table entries which are mapping this
1197 * page, used in the pageout path. Caller must hold the page lock.
1198 * Return values are:
1200 * SWAP_SUCCESS - we succeeded in removing all mappings
1201 * SWAP_AGAIN - we missed a mapping, try again later
1202 * SWAP_FAIL - the page is unswappable
1203 * SWAP_MLOCK - page is mlocked.
1205 int try_to_unmap(struct page
*page
, int migration
)
1209 BUG_ON(!PageLocked(page
));
1212 ret
= try_to_unmap_anon(page
, 0, migration
);
1214 ret
= try_to_unmap_file(page
, 0, migration
);
1215 if (ret
!= SWAP_MLOCK
&& !page_mapped(page
))
1221 * try_to_munlock - try to munlock a page
1222 * @page: the page to be munlocked
1224 * Called from munlock code. Checks all of the VMAs mapping the page
1225 * to make sure nobody else has this page mlocked. The page will be
1226 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1228 * Return values are:
1230 * SWAP_SUCCESS - no vma's holding page mlocked.
1231 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1232 * SWAP_MLOCK - page is now mlocked.
1234 int try_to_munlock(struct page
*page
)
1236 VM_BUG_ON(!PageLocked(page
) || PageLRU(page
));
1239 return try_to_unmap_anon(page
, 1, 0);
1241 return try_to_unmap_file(page
, 1, 0);