2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
10 #include <linux/seq_file.h>
11 #include <linux/sysctl.h>
12 #include <linux/highmem.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/nodemask.h>
15 #include <linux/pagemap.h>
16 #include <linux/mempolicy.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/bootmem.h>
20 #include <linux/sysfs.h>
23 #include <asm/pgtable.h>
26 #include <linux/hugetlb.h>
29 const unsigned long hugetlb_zero
= 0, hugetlb_infinity
= ~0UL;
30 static gfp_t htlb_alloc_mask
= GFP_HIGHUSER
;
31 unsigned long hugepages_treat_as_movable
;
33 static int max_hstate
;
34 unsigned int default_hstate_idx
;
35 struct hstate hstates
[HUGE_MAX_HSTATE
];
37 __initdata
LIST_HEAD(huge_boot_pages
);
39 /* for command line parsing */
40 static struct hstate
* __initdata parsed_hstate
;
41 static unsigned long __initdata default_hstate_max_huge_pages
;
42 static unsigned long __initdata default_hstate_size
;
44 #define for_each_hstate(h) \
45 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
48 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
50 static DEFINE_SPINLOCK(hugetlb_lock
);
53 * Region tracking -- allows tracking of reservations and instantiated pages
54 * across the pages in a mapping.
56 * The region data structures are protected by a combination of the mmap_sem
57 * and the hugetlb_instantion_mutex. To access or modify a region the caller
58 * must either hold the mmap_sem for write, or the mmap_sem for read and
59 * the hugetlb_instantiation mutex:
61 * down_write(&mm->mmap_sem);
63 * down_read(&mm->mmap_sem);
64 * mutex_lock(&hugetlb_instantiation_mutex);
67 struct list_head link
;
72 static long region_add(struct list_head
*head
, long f
, long t
)
74 struct file_region
*rg
, *nrg
, *trg
;
76 /* Locate the region we are either in or before. */
77 list_for_each_entry(rg
, head
, link
)
81 /* Round our left edge to the current segment if it encloses us. */
85 /* Check for and consume any regions we now overlap with. */
87 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
88 if (&rg
->link
== head
)
93 /* If this area reaches higher then extend our area to
94 * include it completely. If this is not the first area
95 * which we intend to reuse, free it. */
108 static long region_chg(struct list_head
*head
, long f
, long t
)
110 struct file_region
*rg
, *nrg
;
113 /* Locate the region we are before or in. */
114 list_for_each_entry(rg
, head
, link
)
118 /* If we are below the current region then a new region is required.
119 * Subtle, allocate a new region at the position but make it zero
120 * size such that we can guarantee to record the reservation. */
121 if (&rg
->link
== head
|| t
< rg
->from
) {
122 nrg
= kmalloc(sizeof(*nrg
), GFP_KERNEL
);
127 INIT_LIST_HEAD(&nrg
->link
);
128 list_add(&nrg
->link
, rg
->link
.prev
);
133 /* Round our left edge to the current segment if it encloses us. */
138 /* Check for and consume any regions we now overlap with. */
139 list_for_each_entry(rg
, rg
->link
.prev
, link
) {
140 if (&rg
->link
== head
)
145 /* We overlap with this area, if it extends futher than
146 * us then we must extend ourselves. Account for its
147 * existing reservation. */
152 chg
-= rg
->to
- rg
->from
;
157 static long region_truncate(struct list_head
*head
, long end
)
159 struct file_region
*rg
, *trg
;
162 /* Locate the region we are either in or before. */
163 list_for_each_entry(rg
, head
, link
)
166 if (&rg
->link
== head
)
169 /* If we are in the middle of a region then adjust it. */
170 if (end
> rg
->from
) {
173 rg
= list_entry(rg
->link
.next
, typeof(*rg
), link
);
176 /* Drop any remaining regions. */
177 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
178 if (&rg
->link
== head
)
180 chg
+= rg
->to
- rg
->from
;
187 static long region_count(struct list_head
*head
, long f
, long t
)
189 struct file_region
*rg
;
192 /* Locate each segment we overlap with, and count that overlap. */
193 list_for_each_entry(rg
, head
, link
) {
202 seg_from
= max(rg
->from
, f
);
203 seg_to
= min(rg
->to
, t
);
205 chg
+= seg_to
- seg_from
;
212 * Convert the address within this vma to the page offset within
213 * the mapping, in pagecache page units; huge pages here.
215 static pgoff_t
vma_hugecache_offset(struct hstate
*h
,
216 struct vm_area_struct
*vma
, unsigned long address
)
218 return ((address
- vma
->vm_start
) >> huge_page_shift(h
)) +
219 (vma
->vm_pgoff
>> huge_page_order(h
));
223 * Return the size of the pages allocated when backing a VMA. In the majority
224 * cases this will be same size as used by the page table entries.
226 unsigned long vma_kernel_pagesize(struct vm_area_struct
*vma
)
228 struct hstate
*hstate
;
230 if (!is_vm_hugetlb_page(vma
))
233 hstate
= hstate_vma(vma
);
235 return 1UL << (hstate
->order
+ PAGE_SHIFT
);
237 EXPORT_SYMBOL_GPL(vma_kernel_pagesize
);
240 * Return the page size being used by the MMU to back a VMA. In the majority
241 * of cases, the page size used by the kernel matches the MMU size. On
242 * architectures where it differs, an architecture-specific version of this
243 * function is required.
245 #ifndef vma_mmu_pagesize
246 unsigned long vma_mmu_pagesize(struct vm_area_struct
*vma
)
248 return vma_kernel_pagesize(vma
);
253 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
254 * bits of the reservation map pointer, which are always clear due to
257 #define HPAGE_RESV_OWNER (1UL << 0)
258 #define HPAGE_RESV_UNMAPPED (1UL << 1)
259 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
262 * These helpers are used to track how many pages are reserved for
263 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
264 * is guaranteed to have their future faults succeed.
266 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
267 * the reserve counters are updated with the hugetlb_lock held. It is safe
268 * to reset the VMA at fork() time as it is not in use yet and there is no
269 * chance of the global counters getting corrupted as a result of the values.
271 * The private mapping reservation is represented in a subtly different
272 * manner to a shared mapping. A shared mapping has a region map associated
273 * with the underlying file, this region map represents the backing file
274 * pages which have ever had a reservation assigned which this persists even
275 * after the page is instantiated. A private mapping has a region map
276 * associated with the original mmap which is attached to all VMAs which
277 * reference it, this region map represents those offsets which have consumed
278 * reservation ie. where pages have been instantiated.
280 static unsigned long get_vma_private_data(struct vm_area_struct
*vma
)
282 return (unsigned long)vma
->vm_private_data
;
285 static void set_vma_private_data(struct vm_area_struct
*vma
,
288 vma
->vm_private_data
= (void *)value
;
293 struct list_head regions
;
296 static struct resv_map
*resv_map_alloc(void)
298 struct resv_map
*resv_map
= kmalloc(sizeof(*resv_map
), GFP_KERNEL
);
302 kref_init(&resv_map
->refs
);
303 INIT_LIST_HEAD(&resv_map
->regions
);
308 static void resv_map_release(struct kref
*ref
)
310 struct resv_map
*resv_map
= container_of(ref
, struct resv_map
, refs
);
312 /* Clear out any active regions before we release the map. */
313 region_truncate(&resv_map
->regions
, 0);
317 static struct resv_map
*vma_resv_map(struct vm_area_struct
*vma
)
319 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
320 if (!(vma
->vm_flags
& VM_MAYSHARE
))
321 return (struct resv_map
*)(get_vma_private_data(vma
) &
326 static void set_vma_resv_map(struct vm_area_struct
*vma
, struct resv_map
*map
)
328 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
329 VM_BUG_ON(vma
->vm_flags
& VM_MAYSHARE
);
331 set_vma_private_data(vma
, (get_vma_private_data(vma
) &
332 HPAGE_RESV_MASK
) | (unsigned long)map
);
335 static void set_vma_resv_flags(struct vm_area_struct
*vma
, unsigned long flags
)
337 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
338 VM_BUG_ON(vma
->vm_flags
& VM_MAYSHARE
);
340 set_vma_private_data(vma
, get_vma_private_data(vma
) | flags
);
343 static int is_vma_resv_set(struct vm_area_struct
*vma
, unsigned long flag
)
345 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
347 return (get_vma_private_data(vma
) & flag
) != 0;
350 /* Decrement the reserved pages in the hugepage pool by one */
351 static void decrement_hugepage_resv_vma(struct hstate
*h
,
352 struct vm_area_struct
*vma
)
354 if (vma
->vm_flags
& VM_NORESERVE
)
357 if (vma
->vm_flags
& VM_MAYSHARE
) {
358 /* Shared mappings always use reserves */
359 h
->resv_huge_pages
--;
360 } else if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
362 * Only the process that called mmap() has reserves for
365 h
->resv_huge_pages
--;
369 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
370 void reset_vma_resv_huge_pages(struct vm_area_struct
*vma
)
372 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
373 if (!(vma
->vm_flags
& VM_MAYSHARE
))
374 vma
->vm_private_data
= (void *)0;
377 /* Returns true if the VMA has associated reserve pages */
378 static int vma_has_reserves(struct vm_area_struct
*vma
)
380 if (vma
->vm_flags
& VM_MAYSHARE
)
382 if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
387 static void clear_gigantic_page(struct page
*page
,
388 unsigned long addr
, unsigned long sz
)
391 struct page
*p
= page
;
394 for (i
= 0; i
< sz
/PAGE_SIZE
; i
++, p
= mem_map_next(p
, page
, i
)) {
396 clear_user_highpage(p
, addr
+ i
* PAGE_SIZE
);
399 static void clear_huge_page(struct page
*page
,
400 unsigned long addr
, unsigned long sz
)
404 if (unlikely(sz
> MAX_ORDER_NR_PAGES
)) {
405 clear_gigantic_page(page
, addr
, sz
);
410 for (i
= 0; i
< sz
/PAGE_SIZE
; i
++) {
412 clear_user_highpage(page
+ i
, addr
+ i
* PAGE_SIZE
);
416 static void copy_gigantic_page(struct page
*dst
, struct page
*src
,
417 unsigned long addr
, struct vm_area_struct
*vma
)
420 struct hstate
*h
= hstate_vma(vma
);
421 struct page
*dst_base
= dst
;
422 struct page
*src_base
= src
;
424 for (i
= 0; i
< pages_per_huge_page(h
); ) {
426 copy_user_highpage(dst
, src
, addr
+ i
*PAGE_SIZE
, vma
);
429 dst
= mem_map_next(dst
, dst_base
, i
);
430 src
= mem_map_next(src
, src_base
, i
);
433 static void copy_huge_page(struct page
*dst
, struct page
*src
,
434 unsigned long addr
, struct vm_area_struct
*vma
)
437 struct hstate
*h
= hstate_vma(vma
);
439 if (unlikely(pages_per_huge_page(h
) > MAX_ORDER_NR_PAGES
)) {
440 copy_gigantic_page(dst
, src
, addr
, vma
);
445 for (i
= 0; i
< pages_per_huge_page(h
); i
++) {
447 copy_user_highpage(dst
+ i
, src
+ i
, addr
+ i
*PAGE_SIZE
, vma
);
451 static void enqueue_huge_page(struct hstate
*h
, struct page
*page
)
453 int nid
= page_to_nid(page
);
454 list_add(&page
->lru
, &h
->hugepage_freelists
[nid
]);
455 h
->free_huge_pages
++;
456 h
->free_huge_pages_node
[nid
]++;
459 static struct page
*dequeue_huge_page_vma(struct hstate
*h
,
460 struct vm_area_struct
*vma
,
461 unsigned long address
, int avoid_reserve
)
464 struct page
*page
= NULL
;
465 struct mempolicy
*mpol
;
466 nodemask_t
*nodemask
;
467 struct zonelist
*zonelist
= huge_zonelist(vma
, address
,
468 htlb_alloc_mask
, &mpol
, &nodemask
);
473 * A child process with MAP_PRIVATE mappings created by their parent
474 * have no page reserves. This check ensures that reservations are
475 * not "stolen". The child may still get SIGKILLed
477 if (!vma_has_reserves(vma
) &&
478 h
->free_huge_pages
- h
->resv_huge_pages
== 0)
481 /* If reserves cannot be used, ensure enough pages are in the pool */
482 if (avoid_reserve
&& h
->free_huge_pages
- h
->resv_huge_pages
== 0)
485 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
486 MAX_NR_ZONES
- 1, nodemask
) {
487 nid
= zone_to_nid(zone
);
488 if (cpuset_zone_allowed_softwall(zone
, htlb_alloc_mask
) &&
489 !list_empty(&h
->hugepage_freelists
[nid
])) {
490 page
= list_entry(h
->hugepage_freelists
[nid
].next
,
492 list_del(&page
->lru
);
493 h
->free_huge_pages
--;
494 h
->free_huge_pages_node
[nid
]--;
497 decrement_hugepage_resv_vma(h
, vma
);
506 static void update_and_free_page(struct hstate
*h
, struct page
*page
)
510 VM_BUG_ON(h
->order
>= MAX_ORDER
);
513 h
->nr_huge_pages_node
[page_to_nid(page
)]--;
514 for (i
= 0; i
< pages_per_huge_page(h
); i
++) {
515 page
[i
].flags
&= ~(1 << PG_locked
| 1 << PG_error
| 1 << PG_referenced
|
516 1 << PG_dirty
| 1 << PG_active
| 1 << PG_reserved
|
517 1 << PG_private
| 1<< PG_writeback
);
519 set_compound_page_dtor(page
, NULL
);
520 set_page_refcounted(page
);
521 arch_release_hugepage(page
);
522 __free_pages(page
, huge_page_order(h
));
525 struct hstate
*size_to_hstate(unsigned long size
)
530 if (huge_page_size(h
) == size
)
536 static void free_huge_page(struct page
*page
)
539 * Can't pass hstate in here because it is called from the
540 * compound page destructor.
542 struct hstate
*h
= page_hstate(page
);
543 int nid
= page_to_nid(page
);
544 struct address_space
*mapping
;
546 mapping
= (struct address_space
*) page_private(page
);
547 set_page_private(page
, 0);
548 BUG_ON(page_count(page
));
549 INIT_LIST_HEAD(&page
->lru
);
551 spin_lock(&hugetlb_lock
);
552 if (h
->surplus_huge_pages_node
[nid
] && huge_page_order(h
) < MAX_ORDER
) {
553 update_and_free_page(h
, page
);
554 h
->surplus_huge_pages
--;
555 h
->surplus_huge_pages_node
[nid
]--;
557 enqueue_huge_page(h
, page
);
559 spin_unlock(&hugetlb_lock
);
561 hugetlb_put_quota(mapping
, 1);
564 static void prep_new_huge_page(struct hstate
*h
, struct page
*page
, int nid
)
566 set_compound_page_dtor(page
, free_huge_page
);
567 spin_lock(&hugetlb_lock
);
569 h
->nr_huge_pages_node
[nid
]++;
570 spin_unlock(&hugetlb_lock
);
571 put_page(page
); /* free it into the hugepage allocator */
574 static void prep_compound_gigantic_page(struct page
*page
, unsigned long order
)
577 int nr_pages
= 1 << order
;
578 struct page
*p
= page
+ 1;
580 /* we rely on prep_new_huge_page to set the destructor */
581 set_compound_order(page
, order
);
583 for (i
= 1; i
< nr_pages
; i
++, p
= mem_map_next(p
, page
, i
)) {
585 p
->first_page
= page
;
589 int PageHuge(struct page
*page
)
591 compound_page_dtor
*dtor
;
593 if (!PageCompound(page
))
596 page
= compound_head(page
);
597 dtor
= get_compound_page_dtor(page
);
599 return dtor
== free_huge_page
;
602 static struct page
*alloc_fresh_huge_page_node(struct hstate
*h
, int nid
)
606 if (h
->order
>= MAX_ORDER
)
609 page
= alloc_pages_exact_node(nid
,
610 htlb_alloc_mask
|__GFP_COMP
|__GFP_THISNODE
|
611 __GFP_REPEAT
|__GFP_NOWARN
,
614 if (arch_prepare_hugepage(page
)) {
615 __free_pages(page
, huge_page_order(h
));
618 prep_new_huge_page(h
, page
, nid
);
625 * Use a helper variable to find the next node and then
626 * copy it back to next_nid_to_alloc afterwards:
627 * otherwise there's a window in which a racer might
628 * pass invalid nid MAX_NUMNODES to alloc_pages_exact_node.
629 * But we don't need to use a spin_lock here: it really
630 * doesn't matter if occasionally a racer chooses the
631 * same nid as we do. Move nid forward in the mask even
632 * if we just successfully allocated a hugepage so that
633 * the next caller gets hugepages on the next node.
635 static int hstate_next_node_to_alloc(struct hstate
*h
)
638 next_nid
= next_node(h
->next_nid_to_alloc
, node_online_map
);
639 if (next_nid
== MAX_NUMNODES
)
640 next_nid
= first_node(node_online_map
);
641 h
->next_nid_to_alloc
= next_nid
;
645 static int alloc_fresh_huge_page(struct hstate
*h
)
652 start_nid
= h
->next_nid_to_alloc
;
653 next_nid
= start_nid
;
656 page
= alloc_fresh_huge_page_node(h
, next_nid
);
659 next_nid
= hstate_next_node_to_alloc(h
);
660 } while (!page
&& next_nid
!= start_nid
);
663 count_vm_event(HTLB_BUDDY_PGALLOC
);
665 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
671 * helper for free_pool_huge_page() - find next node
672 * from which to free a huge page
674 static int hstate_next_node_to_free(struct hstate
*h
)
677 next_nid
= next_node(h
->next_nid_to_free
, node_online_map
);
678 if (next_nid
== MAX_NUMNODES
)
679 next_nid
= first_node(node_online_map
);
680 h
->next_nid_to_free
= next_nid
;
685 * Free huge page from pool from next node to free.
686 * Attempt to keep persistent huge pages more or less
687 * balanced over allowed nodes.
688 * Called with hugetlb_lock locked.
690 static int free_pool_huge_page(struct hstate
*h
, bool acct_surplus
)
696 start_nid
= h
->next_nid_to_free
;
697 next_nid
= start_nid
;
701 * If we're returning unused surplus pages, only examine
702 * nodes with surplus pages.
704 if ((!acct_surplus
|| h
->surplus_huge_pages_node
[next_nid
]) &&
705 !list_empty(&h
->hugepage_freelists
[next_nid
])) {
707 list_entry(h
->hugepage_freelists
[next_nid
].next
,
709 list_del(&page
->lru
);
710 h
->free_huge_pages
--;
711 h
->free_huge_pages_node
[next_nid
]--;
713 h
->surplus_huge_pages
--;
714 h
->surplus_huge_pages_node
[next_nid
]--;
716 update_and_free_page(h
, page
);
719 next_nid
= hstate_next_node_to_free(h
);
720 } while (!ret
&& next_nid
!= start_nid
);
725 static struct page
*alloc_buddy_huge_page(struct hstate
*h
,
726 struct vm_area_struct
*vma
, unsigned long address
)
731 if (h
->order
>= MAX_ORDER
)
735 * Assume we will successfully allocate the surplus page to
736 * prevent racing processes from causing the surplus to exceed
739 * This however introduces a different race, where a process B
740 * tries to grow the static hugepage pool while alloc_pages() is
741 * called by process A. B will only examine the per-node
742 * counters in determining if surplus huge pages can be
743 * converted to normal huge pages in adjust_pool_surplus(). A
744 * won't be able to increment the per-node counter, until the
745 * lock is dropped by B, but B doesn't drop hugetlb_lock until
746 * no more huge pages can be converted from surplus to normal
747 * state (and doesn't try to convert again). Thus, we have a
748 * case where a surplus huge page exists, the pool is grown, and
749 * the surplus huge page still exists after, even though it
750 * should just have been converted to a normal huge page. This
751 * does not leak memory, though, as the hugepage will be freed
752 * once it is out of use. It also does not allow the counters to
753 * go out of whack in adjust_pool_surplus() as we don't modify
754 * the node values until we've gotten the hugepage and only the
755 * per-node value is checked there.
757 spin_lock(&hugetlb_lock
);
758 if (h
->surplus_huge_pages
>= h
->nr_overcommit_huge_pages
) {
759 spin_unlock(&hugetlb_lock
);
763 h
->surplus_huge_pages
++;
765 spin_unlock(&hugetlb_lock
);
767 page
= alloc_pages(htlb_alloc_mask
|__GFP_COMP
|
768 __GFP_REPEAT
|__GFP_NOWARN
,
771 if (page
&& arch_prepare_hugepage(page
)) {
772 __free_pages(page
, huge_page_order(h
));
776 spin_lock(&hugetlb_lock
);
779 * This page is now managed by the hugetlb allocator and has
780 * no users -- drop the buddy allocator's reference.
782 put_page_testzero(page
);
783 VM_BUG_ON(page_count(page
));
784 nid
= page_to_nid(page
);
785 set_compound_page_dtor(page
, free_huge_page
);
787 * We incremented the global counters already
789 h
->nr_huge_pages_node
[nid
]++;
790 h
->surplus_huge_pages_node
[nid
]++;
791 __count_vm_event(HTLB_BUDDY_PGALLOC
);
794 h
->surplus_huge_pages
--;
795 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
797 spin_unlock(&hugetlb_lock
);
803 * Increase the hugetlb pool such that it can accomodate a reservation
806 static int gather_surplus_pages(struct hstate
*h
, int delta
)
808 struct list_head surplus_list
;
809 struct page
*page
, *tmp
;
811 int needed
, allocated
;
813 needed
= (h
->resv_huge_pages
+ delta
) - h
->free_huge_pages
;
815 h
->resv_huge_pages
+= delta
;
820 INIT_LIST_HEAD(&surplus_list
);
824 spin_unlock(&hugetlb_lock
);
825 for (i
= 0; i
< needed
; i
++) {
826 page
= alloc_buddy_huge_page(h
, NULL
, 0);
829 * We were not able to allocate enough pages to
830 * satisfy the entire reservation so we free what
831 * we've allocated so far.
833 spin_lock(&hugetlb_lock
);
838 list_add(&page
->lru
, &surplus_list
);
843 * After retaking hugetlb_lock, we need to recalculate 'needed'
844 * because either resv_huge_pages or free_huge_pages may have changed.
846 spin_lock(&hugetlb_lock
);
847 needed
= (h
->resv_huge_pages
+ delta
) -
848 (h
->free_huge_pages
+ allocated
);
853 * The surplus_list now contains _at_least_ the number of extra pages
854 * needed to accomodate the reservation. Add the appropriate number
855 * of pages to the hugetlb pool and free the extras back to the buddy
856 * allocator. Commit the entire reservation here to prevent another
857 * process from stealing the pages as they are added to the pool but
858 * before they are reserved.
861 h
->resv_huge_pages
+= delta
;
864 /* Free the needed pages to the hugetlb pool */
865 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
) {
868 list_del(&page
->lru
);
869 enqueue_huge_page(h
, page
);
872 /* Free unnecessary surplus pages to the buddy allocator */
873 if (!list_empty(&surplus_list
)) {
874 spin_unlock(&hugetlb_lock
);
875 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
) {
876 list_del(&page
->lru
);
878 * The page has a reference count of zero already, so
879 * call free_huge_page directly instead of using
880 * put_page. This must be done with hugetlb_lock
881 * unlocked which is safe because free_huge_page takes
882 * hugetlb_lock before deciding how to free the page.
884 free_huge_page(page
);
886 spin_lock(&hugetlb_lock
);
893 * When releasing a hugetlb pool reservation, any surplus pages that were
894 * allocated to satisfy the reservation must be explicitly freed if they were
896 * Called with hugetlb_lock held.
898 static void return_unused_surplus_pages(struct hstate
*h
,
899 unsigned long unused_resv_pages
)
901 unsigned long nr_pages
;
903 /* Uncommit the reservation */
904 h
->resv_huge_pages
-= unused_resv_pages
;
906 /* Cannot return gigantic pages currently */
907 if (h
->order
>= MAX_ORDER
)
910 nr_pages
= min(unused_resv_pages
, h
->surplus_huge_pages
);
913 * We want to release as many surplus pages as possible, spread
914 * evenly across all nodes. Iterate across all nodes until we
915 * can no longer free unreserved surplus pages. This occurs when
916 * the nodes with surplus pages have no free pages.
917 * free_pool_huge_page() will balance the the frees across the
918 * on-line nodes for us and will handle the hstate accounting.
921 if (!free_pool_huge_page(h
, 1))
927 * Determine if the huge page at addr within the vma has an associated
928 * reservation. Where it does not we will need to logically increase
929 * reservation and actually increase quota before an allocation can occur.
930 * Where any new reservation would be required the reservation change is
931 * prepared, but not committed. Once the page has been quota'd allocated
932 * an instantiated the change should be committed via vma_commit_reservation.
933 * No action is required on failure.
935 static long vma_needs_reservation(struct hstate
*h
,
936 struct vm_area_struct
*vma
, unsigned long addr
)
938 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
939 struct inode
*inode
= mapping
->host
;
941 if (vma
->vm_flags
& VM_MAYSHARE
) {
942 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
943 return region_chg(&inode
->i_mapping
->private_list
,
946 } else if (!is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
951 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
952 struct resv_map
*reservations
= vma_resv_map(vma
);
954 err
= region_chg(&reservations
->regions
, idx
, idx
+ 1);
960 static void vma_commit_reservation(struct hstate
*h
,
961 struct vm_area_struct
*vma
, unsigned long addr
)
963 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
964 struct inode
*inode
= mapping
->host
;
966 if (vma
->vm_flags
& VM_MAYSHARE
) {
967 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
968 region_add(&inode
->i_mapping
->private_list
, idx
, idx
+ 1);
970 } else if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
971 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
972 struct resv_map
*reservations
= vma_resv_map(vma
);
974 /* Mark this page used in the map. */
975 region_add(&reservations
->regions
, idx
, idx
+ 1);
979 static struct page
*alloc_huge_page(struct vm_area_struct
*vma
,
980 unsigned long addr
, int avoid_reserve
)
982 struct hstate
*h
= hstate_vma(vma
);
984 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
985 struct inode
*inode
= mapping
->host
;
989 * Processes that did not create the mapping will have no reserves and
990 * will not have accounted against quota. Check that the quota can be
991 * made before satisfying the allocation
992 * MAP_NORESERVE mappings may also need pages and quota allocated
993 * if no reserve mapping overlaps.
995 chg
= vma_needs_reservation(h
, vma
, addr
);
999 if (hugetlb_get_quota(inode
->i_mapping
, chg
))
1000 return ERR_PTR(-ENOSPC
);
1002 spin_lock(&hugetlb_lock
);
1003 page
= dequeue_huge_page_vma(h
, vma
, addr
, avoid_reserve
);
1004 spin_unlock(&hugetlb_lock
);
1007 page
= alloc_buddy_huge_page(h
, vma
, addr
);
1009 hugetlb_put_quota(inode
->i_mapping
, chg
);
1010 return ERR_PTR(-VM_FAULT_OOM
);
1014 set_page_refcounted(page
);
1015 set_page_private(page
, (unsigned long) mapping
);
1017 vma_commit_reservation(h
, vma
, addr
);
1022 int __weak
alloc_bootmem_huge_page(struct hstate
*h
)
1024 struct huge_bootmem_page
*m
;
1025 int nr_nodes
= nodes_weight(node_online_map
);
1030 addr
= __alloc_bootmem_node_nopanic(
1031 NODE_DATA(h
->next_nid_to_alloc
),
1032 huge_page_size(h
), huge_page_size(h
), 0);
1034 hstate_next_node_to_alloc(h
);
1037 * Use the beginning of the huge page to store the
1038 * huge_bootmem_page struct (until gather_bootmem
1039 * puts them into the mem_map).
1049 BUG_ON((unsigned long)virt_to_phys(m
) & (huge_page_size(h
) - 1));
1050 /* Put them into a private list first because mem_map is not up yet */
1051 list_add(&m
->list
, &huge_boot_pages
);
1056 static void prep_compound_huge_page(struct page
*page
, int order
)
1058 if (unlikely(order
> (MAX_ORDER
- 1)))
1059 prep_compound_gigantic_page(page
, order
);
1061 prep_compound_page(page
, order
);
1064 /* Put bootmem huge pages into the standard lists after mem_map is up */
1065 static void __init
gather_bootmem_prealloc(void)
1067 struct huge_bootmem_page
*m
;
1069 list_for_each_entry(m
, &huge_boot_pages
, list
) {
1070 struct page
*page
= virt_to_page(m
);
1071 struct hstate
*h
= m
->hstate
;
1072 __ClearPageReserved(page
);
1073 WARN_ON(page_count(page
) != 1);
1074 prep_compound_huge_page(page
, h
->order
);
1075 prep_new_huge_page(h
, page
, page_to_nid(page
));
1079 static void __init
hugetlb_hstate_alloc_pages(struct hstate
*h
)
1083 for (i
= 0; i
< h
->max_huge_pages
; ++i
) {
1084 if (h
->order
>= MAX_ORDER
) {
1085 if (!alloc_bootmem_huge_page(h
))
1087 } else if (!alloc_fresh_huge_page(h
))
1090 h
->max_huge_pages
= i
;
1093 static void __init
hugetlb_init_hstates(void)
1097 for_each_hstate(h
) {
1098 /* oversize hugepages were init'ed in early boot */
1099 if (h
->order
< MAX_ORDER
)
1100 hugetlb_hstate_alloc_pages(h
);
1104 static char * __init
memfmt(char *buf
, unsigned long n
)
1106 if (n
>= (1UL << 30))
1107 sprintf(buf
, "%lu GB", n
>> 30);
1108 else if (n
>= (1UL << 20))
1109 sprintf(buf
, "%lu MB", n
>> 20);
1111 sprintf(buf
, "%lu KB", n
>> 10);
1115 static void __init
report_hugepages(void)
1119 for_each_hstate(h
) {
1121 printk(KERN_INFO
"HugeTLB registered %s page size, "
1122 "pre-allocated %ld pages\n",
1123 memfmt(buf
, huge_page_size(h
)),
1124 h
->free_huge_pages
);
1128 #ifdef CONFIG_HIGHMEM
1129 static void try_to_free_low(struct hstate
*h
, unsigned long count
)
1133 if (h
->order
>= MAX_ORDER
)
1136 for (i
= 0; i
< MAX_NUMNODES
; ++i
) {
1137 struct page
*page
, *next
;
1138 struct list_head
*freel
= &h
->hugepage_freelists
[i
];
1139 list_for_each_entry_safe(page
, next
, freel
, lru
) {
1140 if (count
>= h
->nr_huge_pages
)
1142 if (PageHighMem(page
))
1144 list_del(&page
->lru
);
1145 update_and_free_page(h
, page
);
1146 h
->free_huge_pages
--;
1147 h
->free_huge_pages_node
[page_to_nid(page
)]--;
1152 static inline void try_to_free_low(struct hstate
*h
, unsigned long count
)
1158 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1159 * balanced by operating on them in a round-robin fashion.
1160 * Returns 1 if an adjustment was made.
1162 static int adjust_pool_surplus(struct hstate
*h
, int delta
)
1164 int start_nid
, next_nid
;
1167 VM_BUG_ON(delta
!= -1 && delta
!= 1);
1170 start_nid
= h
->next_nid_to_alloc
;
1172 start_nid
= h
->next_nid_to_free
;
1173 next_nid
= start_nid
;
1178 next_nid
= hstate_next_node_to_alloc(h
);
1180 * To shrink on this node, there must be a surplus page
1182 if (!h
->surplus_huge_pages_node
[nid
])
1186 next_nid
= hstate_next_node_to_free(h
);
1188 * Surplus cannot exceed the total number of pages
1190 if (h
->surplus_huge_pages_node
[nid
] >=
1191 h
->nr_huge_pages_node
[nid
])
1195 h
->surplus_huge_pages
+= delta
;
1196 h
->surplus_huge_pages_node
[nid
] += delta
;
1199 } while (next_nid
!= start_nid
);
1204 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1205 static unsigned long set_max_huge_pages(struct hstate
*h
, unsigned long count
)
1207 unsigned long min_count
, ret
;
1209 if (h
->order
>= MAX_ORDER
)
1210 return h
->max_huge_pages
;
1213 * Increase the pool size
1214 * First take pages out of surplus state. Then make up the
1215 * remaining difference by allocating fresh huge pages.
1217 * We might race with alloc_buddy_huge_page() here and be unable
1218 * to convert a surplus huge page to a normal huge page. That is
1219 * not critical, though, it just means the overall size of the
1220 * pool might be one hugepage larger than it needs to be, but
1221 * within all the constraints specified by the sysctls.
1223 spin_lock(&hugetlb_lock
);
1224 while (h
->surplus_huge_pages
&& count
> persistent_huge_pages(h
)) {
1225 if (!adjust_pool_surplus(h
, -1))
1229 while (count
> persistent_huge_pages(h
)) {
1231 * If this allocation races such that we no longer need the
1232 * page, free_huge_page will handle it by freeing the page
1233 * and reducing the surplus.
1235 spin_unlock(&hugetlb_lock
);
1236 ret
= alloc_fresh_huge_page(h
);
1237 spin_lock(&hugetlb_lock
);
1244 * Decrease the pool size
1245 * First return free pages to the buddy allocator (being careful
1246 * to keep enough around to satisfy reservations). Then place
1247 * pages into surplus state as needed so the pool will shrink
1248 * to the desired size as pages become free.
1250 * By placing pages into the surplus state independent of the
1251 * overcommit value, we are allowing the surplus pool size to
1252 * exceed overcommit. There are few sane options here. Since
1253 * alloc_buddy_huge_page() is checking the global counter,
1254 * though, we'll note that we're not allowed to exceed surplus
1255 * and won't grow the pool anywhere else. Not until one of the
1256 * sysctls are changed, or the surplus pages go out of use.
1258 min_count
= h
->resv_huge_pages
+ h
->nr_huge_pages
- h
->free_huge_pages
;
1259 min_count
= max(count
, min_count
);
1260 try_to_free_low(h
, min_count
);
1261 while (min_count
< persistent_huge_pages(h
)) {
1262 if (!free_pool_huge_page(h
, 0))
1265 while (count
< persistent_huge_pages(h
)) {
1266 if (!adjust_pool_surplus(h
, 1))
1270 ret
= persistent_huge_pages(h
);
1271 spin_unlock(&hugetlb_lock
);
1275 #define HSTATE_ATTR_RO(_name) \
1276 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1278 #define HSTATE_ATTR(_name) \
1279 static struct kobj_attribute _name##_attr = \
1280 __ATTR(_name, 0644, _name##_show, _name##_store)
1282 static struct kobject
*hugepages_kobj
;
1283 static struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
1285 static struct hstate
*kobj_to_hstate(struct kobject
*kobj
)
1288 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
1289 if (hstate_kobjs
[i
] == kobj
)
1295 static ssize_t
nr_hugepages_show(struct kobject
*kobj
,
1296 struct kobj_attribute
*attr
, char *buf
)
1298 struct hstate
*h
= kobj_to_hstate(kobj
);
1299 return sprintf(buf
, "%lu\n", h
->nr_huge_pages
);
1301 static ssize_t
nr_hugepages_store(struct kobject
*kobj
,
1302 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
1305 unsigned long input
;
1306 struct hstate
*h
= kobj_to_hstate(kobj
);
1308 err
= strict_strtoul(buf
, 10, &input
);
1312 h
->max_huge_pages
= set_max_huge_pages(h
, input
);
1316 HSTATE_ATTR(nr_hugepages
);
1318 static ssize_t
nr_overcommit_hugepages_show(struct kobject
*kobj
,
1319 struct kobj_attribute
*attr
, char *buf
)
1321 struct hstate
*h
= kobj_to_hstate(kobj
);
1322 return sprintf(buf
, "%lu\n", h
->nr_overcommit_huge_pages
);
1324 static ssize_t
nr_overcommit_hugepages_store(struct kobject
*kobj
,
1325 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
1328 unsigned long input
;
1329 struct hstate
*h
= kobj_to_hstate(kobj
);
1331 err
= strict_strtoul(buf
, 10, &input
);
1335 spin_lock(&hugetlb_lock
);
1336 h
->nr_overcommit_huge_pages
= input
;
1337 spin_unlock(&hugetlb_lock
);
1341 HSTATE_ATTR(nr_overcommit_hugepages
);
1343 static ssize_t
free_hugepages_show(struct kobject
*kobj
,
1344 struct kobj_attribute
*attr
, char *buf
)
1346 struct hstate
*h
= kobj_to_hstate(kobj
);
1347 return sprintf(buf
, "%lu\n", h
->free_huge_pages
);
1349 HSTATE_ATTR_RO(free_hugepages
);
1351 static ssize_t
resv_hugepages_show(struct kobject
*kobj
,
1352 struct kobj_attribute
*attr
, char *buf
)
1354 struct hstate
*h
= kobj_to_hstate(kobj
);
1355 return sprintf(buf
, "%lu\n", h
->resv_huge_pages
);
1357 HSTATE_ATTR_RO(resv_hugepages
);
1359 static ssize_t
surplus_hugepages_show(struct kobject
*kobj
,
1360 struct kobj_attribute
*attr
, char *buf
)
1362 struct hstate
*h
= kobj_to_hstate(kobj
);
1363 return sprintf(buf
, "%lu\n", h
->surplus_huge_pages
);
1365 HSTATE_ATTR_RO(surplus_hugepages
);
1367 static struct attribute
*hstate_attrs
[] = {
1368 &nr_hugepages_attr
.attr
,
1369 &nr_overcommit_hugepages_attr
.attr
,
1370 &free_hugepages_attr
.attr
,
1371 &resv_hugepages_attr
.attr
,
1372 &surplus_hugepages_attr
.attr
,
1376 static struct attribute_group hstate_attr_group
= {
1377 .attrs
= hstate_attrs
,
1380 static int __init
hugetlb_sysfs_add_hstate(struct hstate
*h
)
1384 hstate_kobjs
[h
- hstates
] = kobject_create_and_add(h
->name
,
1386 if (!hstate_kobjs
[h
- hstates
])
1389 retval
= sysfs_create_group(hstate_kobjs
[h
- hstates
],
1390 &hstate_attr_group
);
1392 kobject_put(hstate_kobjs
[h
- hstates
]);
1397 static void __init
hugetlb_sysfs_init(void)
1402 hugepages_kobj
= kobject_create_and_add("hugepages", mm_kobj
);
1403 if (!hugepages_kobj
)
1406 for_each_hstate(h
) {
1407 err
= hugetlb_sysfs_add_hstate(h
);
1409 printk(KERN_ERR
"Hugetlb: Unable to add hstate %s",
1414 static void __exit
hugetlb_exit(void)
1418 for_each_hstate(h
) {
1419 kobject_put(hstate_kobjs
[h
- hstates
]);
1422 kobject_put(hugepages_kobj
);
1424 module_exit(hugetlb_exit
);
1426 static int __init
hugetlb_init(void)
1428 /* Some platform decide whether they support huge pages at boot
1429 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1430 * there is no such support
1432 if (HPAGE_SHIFT
== 0)
1435 if (!size_to_hstate(default_hstate_size
)) {
1436 default_hstate_size
= HPAGE_SIZE
;
1437 if (!size_to_hstate(default_hstate_size
))
1438 hugetlb_add_hstate(HUGETLB_PAGE_ORDER
);
1440 default_hstate_idx
= size_to_hstate(default_hstate_size
) - hstates
;
1441 if (default_hstate_max_huge_pages
)
1442 default_hstate
.max_huge_pages
= default_hstate_max_huge_pages
;
1444 hugetlb_init_hstates();
1446 gather_bootmem_prealloc();
1450 hugetlb_sysfs_init();
1454 module_init(hugetlb_init
);
1456 /* Should be called on processing a hugepagesz=... option */
1457 void __init
hugetlb_add_hstate(unsigned order
)
1462 if (size_to_hstate(PAGE_SIZE
<< order
)) {
1463 printk(KERN_WARNING
"hugepagesz= specified twice, ignoring\n");
1466 BUG_ON(max_hstate
>= HUGE_MAX_HSTATE
);
1468 h
= &hstates
[max_hstate
++];
1470 h
->mask
= ~((1ULL << (order
+ PAGE_SHIFT
)) - 1);
1471 h
->nr_huge_pages
= 0;
1472 h
->free_huge_pages
= 0;
1473 for (i
= 0; i
< MAX_NUMNODES
; ++i
)
1474 INIT_LIST_HEAD(&h
->hugepage_freelists
[i
]);
1475 h
->next_nid_to_alloc
= first_node(node_online_map
);
1476 h
->next_nid_to_free
= first_node(node_online_map
);
1477 snprintf(h
->name
, HSTATE_NAME_LEN
, "hugepages-%lukB",
1478 huge_page_size(h
)/1024);
1483 static int __init
hugetlb_nrpages_setup(char *s
)
1486 static unsigned long *last_mhp
;
1489 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1490 * so this hugepages= parameter goes to the "default hstate".
1493 mhp
= &default_hstate_max_huge_pages
;
1495 mhp
= &parsed_hstate
->max_huge_pages
;
1497 if (mhp
== last_mhp
) {
1498 printk(KERN_WARNING
"hugepages= specified twice without "
1499 "interleaving hugepagesz=, ignoring\n");
1503 if (sscanf(s
, "%lu", mhp
) <= 0)
1507 * Global state is always initialized later in hugetlb_init.
1508 * But we need to allocate >= MAX_ORDER hstates here early to still
1509 * use the bootmem allocator.
1511 if (max_hstate
&& parsed_hstate
->order
>= MAX_ORDER
)
1512 hugetlb_hstate_alloc_pages(parsed_hstate
);
1518 __setup("hugepages=", hugetlb_nrpages_setup
);
1520 static int __init
hugetlb_default_setup(char *s
)
1522 default_hstate_size
= memparse(s
, &s
);
1525 __setup("default_hugepagesz=", hugetlb_default_setup
);
1527 static unsigned int cpuset_mems_nr(unsigned int *array
)
1530 unsigned int nr
= 0;
1532 for_each_node_mask(node
, cpuset_current_mems_allowed
)
1538 #ifdef CONFIG_SYSCTL
1539 int hugetlb_sysctl_handler(struct ctl_table
*table
, int write
,
1540 struct file
*file
, void __user
*buffer
,
1541 size_t *length
, loff_t
*ppos
)
1543 struct hstate
*h
= &default_hstate
;
1547 tmp
= h
->max_huge_pages
;
1550 table
->maxlen
= sizeof(unsigned long);
1551 proc_doulongvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
1554 h
->max_huge_pages
= set_max_huge_pages(h
, tmp
);
1559 int hugetlb_treat_movable_handler(struct ctl_table
*table
, int write
,
1560 struct file
*file
, void __user
*buffer
,
1561 size_t *length
, loff_t
*ppos
)
1563 proc_dointvec(table
, write
, file
, buffer
, length
, ppos
);
1564 if (hugepages_treat_as_movable
)
1565 htlb_alloc_mask
= GFP_HIGHUSER_MOVABLE
;
1567 htlb_alloc_mask
= GFP_HIGHUSER
;
1571 int hugetlb_overcommit_handler(struct ctl_table
*table
, int write
,
1572 struct file
*file
, void __user
*buffer
,
1573 size_t *length
, loff_t
*ppos
)
1575 struct hstate
*h
= &default_hstate
;
1579 tmp
= h
->nr_overcommit_huge_pages
;
1582 table
->maxlen
= sizeof(unsigned long);
1583 proc_doulongvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
1586 spin_lock(&hugetlb_lock
);
1587 h
->nr_overcommit_huge_pages
= tmp
;
1588 spin_unlock(&hugetlb_lock
);
1594 #endif /* CONFIG_SYSCTL */
1596 void hugetlb_report_meminfo(struct seq_file
*m
)
1598 struct hstate
*h
= &default_hstate
;
1600 "HugePages_Total: %5lu\n"
1601 "HugePages_Free: %5lu\n"
1602 "HugePages_Rsvd: %5lu\n"
1603 "HugePages_Surp: %5lu\n"
1604 "Hugepagesize: %8lu kB\n",
1608 h
->surplus_huge_pages
,
1609 1UL << (huge_page_order(h
) + PAGE_SHIFT
- 10));
1612 int hugetlb_report_node_meminfo(int nid
, char *buf
)
1614 struct hstate
*h
= &default_hstate
;
1616 "Node %d HugePages_Total: %5u\n"
1617 "Node %d HugePages_Free: %5u\n"
1618 "Node %d HugePages_Surp: %5u\n",
1619 nid
, h
->nr_huge_pages_node
[nid
],
1620 nid
, h
->free_huge_pages_node
[nid
],
1621 nid
, h
->surplus_huge_pages_node
[nid
]);
1624 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1625 unsigned long hugetlb_total_pages(void)
1627 struct hstate
*h
= &default_hstate
;
1628 return h
->nr_huge_pages
* pages_per_huge_page(h
);
1631 static int hugetlb_acct_memory(struct hstate
*h
, long delta
)
1635 spin_lock(&hugetlb_lock
);
1637 * When cpuset is configured, it breaks the strict hugetlb page
1638 * reservation as the accounting is done on a global variable. Such
1639 * reservation is completely rubbish in the presence of cpuset because
1640 * the reservation is not checked against page availability for the
1641 * current cpuset. Application can still potentially OOM'ed by kernel
1642 * with lack of free htlb page in cpuset that the task is in.
1643 * Attempt to enforce strict accounting with cpuset is almost
1644 * impossible (or too ugly) because cpuset is too fluid that
1645 * task or memory node can be dynamically moved between cpusets.
1647 * The change of semantics for shared hugetlb mapping with cpuset is
1648 * undesirable. However, in order to preserve some of the semantics,
1649 * we fall back to check against current free page availability as
1650 * a best attempt and hopefully to minimize the impact of changing
1651 * semantics that cpuset has.
1654 if (gather_surplus_pages(h
, delta
) < 0)
1657 if (delta
> cpuset_mems_nr(h
->free_huge_pages_node
)) {
1658 return_unused_surplus_pages(h
, delta
);
1665 return_unused_surplus_pages(h
, (unsigned long) -delta
);
1668 spin_unlock(&hugetlb_lock
);
1672 static void hugetlb_vm_op_open(struct vm_area_struct
*vma
)
1674 struct resv_map
*reservations
= vma_resv_map(vma
);
1677 * This new VMA should share its siblings reservation map if present.
1678 * The VMA will only ever have a valid reservation map pointer where
1679 * it is being copied for another still existing VMA. As that VMA
1680 * has a reference to the reservation map it cannot dissappear until
1681 * after this open call completes. It is therefore safe to take a
1682 * new reference here without additional locking.
1685 kref_get(&reservations
->refs
);
1688 static void hugetlb_vm_op_close(struct vm_area_struct
*vma
)
1690 struct hstate
*h
= hstate_vma(vma
);
1691 struct resv_map
*reservations
= vma_resv_map(vma
);
1692 unsigned long reserve
;
1693 unsigned long start
;
1697 start
= vma_hugecache_offset(h
, vma
, vma
->vm_start
);
1698 end
= vma_hugecache_offset(h
, vma
, vma
->vm_end
);
1700 reserve
= (end
- start
) -
1701 region_count(&reservations
->regions
, start
, end
);
1703 kref_put(&reservations
->refs
, resv_map_release
);
1706 hugetlb_acct_memory(h
, -reserve
);
1707 hugetlb_put_quota(vma
->vm_file
->f_mapping
, reserve
);
1713 * We cannot handle pagefaults against hugetlb pages at all. They cause
1714 * handle_mm_fault() to try to instantiate regular-sized pages in the
1715 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
1718 static int hugetlb_vm_op_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1724 struct vm_operations_struct hugetlb_vm_ops
= {
1725 .fault
= hugetlb_vm_op_fault
,
1726 .open
= hugetlb_vm_op_open
,
1727 .close
= hugetlb_vm_op_close
,
1730 static pte_t
make_huge_pte(struct vm_area_struct
*vma
, struct page
*page
,
1737 pte_mkwrite(pte_mkdirty(mk_pte(page
, vma
->vm_page_prot
)));
1739 entry
= huge_pte_wrprotect(mk_pte(page
, vma
->vm_page_prot
));
1741 entry
= pte_mkyoung(entry
);
1742 entry
= pte_mkhuge(entry
);
1747 static void set_huge_ptep_writable(struct vm_area_struct
*vma
,
1748 unsigned long address
, pte_t
*ptep
)
1752 entry
= pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep
)));
1753 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
, 1)) {
1754 update_mmu_cache(vma
, address
, entry
);
1759 int copy_hugetlb_page_range(struct mm_struct
*dst
, struct mm_struct
*src
,
1760 struct vm_area_struct
*vma
)
1762 pte_t
*src_pte
, *dst_pte
, entry
;
1763 struct page
*ptepage
;
1766 struct hstate
*h
= hstate_vma(vma
);
1767 unsigned long sz
= huge_page_size(h
);
1769 cow
= (vma
->vm_flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
1771 for (addr
= vma
->vm_start
; addr
< vma
->vm_end
; addr
+= sz
) {
1772 src_pte
= huge_pte_offset(src
, addr
);
1775 dst_pte
= huge_pte_alloc(dst
, addr
, sz
);
1779 /* If the pagetables are shared don't copy or take references */
1780 if (dst_pte
== src_pte
)
1783 spin_lock(&dst
->page_table_lock
);
1784 spin_lock_nested(&src
->page_table_lock
, SINGLE_DEPTH_NESTING
);
1785 if (!huge_pte_none(huge_ptep_get(src_pte
))) {
1787 huge_ptep_set_wrprotect(src
, addr
, src_pte
);
1788 entry
= huge_ptep_get(src_pte
);
1789 ptepage
= pte_page(entry
);
1791 set_huge_pte_at(dst
, addr
, dst_pte
, entry
);
1793 spin_unlock(&src
->page_table_lock
);
1794 spin_unlock(&dst
->page_table_lock
);
1802 void __unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
1803 unsigned long end
, struct page
*ref_page
)
1805 struct mm_struct
*mm
= vma
->vm_mm
;
1806 unsigned long address
;
1811 struct hstate
*h
= hstate_vma(vma
);
1812 unsigned long sz
= huge_page_size(h
);
1815 * A page gathering list, protected by per file i_mmap_lock. The
1816 * lock is used to avoid list corruption from multiple unmapping
1817 * of the same page since we are using page->lru.
1819 LIST_HEAD(page_list
);
1821 WARN_ON(!is_vm_hugetlb_page(vma
));
1822 BUG_ON(start
& ~huge_page_mask(h
));
1823 BUG_ON(end
& ~huge_page_mask(h
));
1825 mmu_notifier_invalidate_range_start(mm
, start
, end
);
1826 spin_lock(&mm
->page_table_lock
);
1827 for (address
= start
; address
< end
; address
+= sz
) {
1828 ptep
= huge_pte_offset(mm
, address
);
1832 if (huge_pmd_unshare(mm
, &address
, ptep
))
1836 * If a reference page is supplied, it is because a specific
1837 * page is being unmapped, not a range. Ensure the page we
1838 * are about to unmap is the actual page of interest.
1841 pte
= huge_ptep_get(ptep
);
1842 if (huge_pte_none(pte
))
1844 page
= pte_page(pte
);
1845 if (page
!= ref_page
)
1849 * Mark the VMA as having unmapped its page so that
1850 * future faults in this VMA will fail rather than
1851 * looking like data was lost
1853 set_vma_resv_flags(vma
, HPAGE_RESV_UNMAPPED
);
1856 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
1857 if (huge_pte_none(pte
))
1860 page
= pte_page(pte
);
1862 set_page_dirty(page
);
1863 list_add(&page
->lru
, &page_list
);
1865 spin_unlock(&mm
->page_table_lock
);
1866 flush_tlb_range(vma
, start
, end
);
1867 mmu_notifier_invalidate_range_end(mm
, start
, end
);
1868 list_for_each_entry_safe(page
, tmp
, &page_list
, lru
) {
1869 list_del(&page
->lru
);
1874 void unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
1875 unsigned long end
, struct page
*ref_page
)
1877 spin_lock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
1878 __unmap_hugepage_range(vma
, start
, end
, ref_page
);
1879 spin_unlock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
1883 * This is called when the original mapper is failing to COW a MAP_PRIVATE
1884 * mappping it owns the reserve page for. The intention is to unmap the page
1885 * from other VMAs and let the children be SIGKILLed if they are faulting the
1888 static int unmap_ref_private(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1889 struct page
*page
, unsigned long address
)
1891 struct hstate
*h
= hstate_vma(vma
);
1892 struct vm_area_struct
*iter_vma
;
1893 struct address_space
*mapping
;
1894 struct prio_tree_iter iter
;
1898 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
1899 * from page cache lookup which is in HPAGE_SIZE units.
1901 address
= address
& huge_page_mask(h
);
1902 pgoff
= ((address
- vma
->vm_start
) >> PAGE_SHIFT
)
1903 + (vma
->vm_pgoff
>> PAGE_SHIFT
);
1904 mapping
= (struct address_space
*)page_private(page
);
1906 vma_prio_tree_foreach(iter_vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
1907 /* Do not unmap the current VMA */
1908 if (iter_vma
== vma
)
1912 * Unmap the page from other VMAs without their own reserves.
1913 * They get marked to be SIGKILLed if they fault in these
1914 * areas. This is because a future no-page fault on this VMA
1915 * could insert a zeroed page instead of the data existing
1916 * from the time of fork. This would look like data corruption
1918 if (!is_vma_resv_set(iter_vma
, HPAGE_RESV_OWNER
))
1919 unmap_hugepage_range(iter_vma
,
1920 address
, address
+ huge_page_size(h
),
1927 static int hugetlb_cow(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1928 unsigned long address
, pte_t
*ptep
, pte_t pte
,
1929 struct page
*pagecache_page
)
1931 struct hstate
*h
= hstate_vma(vma
);
1932 struct page
*old_page
, *new_page
;
1934 int outside_reserve
= 0;
1936 old_page
= pte_page(pte
);
1939 /* If no-one else is actually using this page, avoid the copy
1940 * and just make the page writable */
1941 avoidcopy
= (page_count(old_page
) == 1);
1943 set_huge_ptep_writable(vma
, address
, ptep
);
1948 * If the process that created a MAP_PRIVATE mapping is about to
1949 * perform a COW due to a shared page count, attempt to satisfy
1950 * the allocation without using the existing reserves. The pagecache
1951 * page is used to determine if the reserve at this address was
1952 * consumed or not. If reserves were used, a partial faulted mapping
1953 * at the time of fork() could consume its reserves on COW instead
1954 * of the full address range.
1956 if (!(vma
->vm_flags
& VM_MAYSHARE
) &&
1957 is_vma_resv_set(vma
, HPAGE_RESV_OWNER
) &&
1958 old_page
!= pagecache_page
)
1959 outside_reserve
= 1;
1961 page_cache_get(old_page
);
1962 new_page
= alloc_huge_page(vma
, address
, outside_reserve
);
1964 if (IS_ERR(new_page
)) {
1965 page_cache_release(old_page
);
1968 * If a process owning a MAP_PRIVATE mapping fails to COW,
1969 * it is due to references held by a child and an insufficient
1970 * huge page pool. To guarantee the original mappers
1971 * reliability, unmap the page from child processes. The child
1972 * may get SIGKILLed if it later faults.
1974 if (outside_reserve
) {
1975 BUG_ON(huge_pte_none(pte
));
1976 if (unmap_ref_private(mm
, vma
, old_page
, address
)) {
1977 BUG_ON(page_count(old_page
) != 1);
1978 BUG_ON(huge_pte_none(pte
));
1979 goto retry_avoidcopy
;
1984 return -PTR_ERR(new_page
);
1987 spin_unlock(&mm
->page_table_lock
);
1988 copy_huge_page(new_page
, old_page
, address
, vma
);
1989 __SetPageUptodate(new_page
);
1990 spin_lock(&mm
->page_table_lock
);
1992 ptep
= huge_pte_offset(mm
, address
& huge_page_mask(h
));
1993 if (likely(pte_same(huge_ptep_get(ptep
), pte
))) {
1995 huge_ptep_clear_flush(vma
, address
, ptep
);
1996 set_huge_pte_at(mm
, address
, ptep
,
1997 make_huge_pte(vma
, new_page
, 1));
1998 /* Make the old page be freed below */
1999 new_page
= old_page
;
2001 page_cache_release(new_page
);
2002 page_cache_release(old_page
);
2006 /* Return the pagecache page at a given address within a VMA */
2007 static struct page
*hugetlbfs_pagecache_page(struct hstate
*h
,
2008 struct vm_area_struct
*vma
, unsigned long address
)
2010 struct address_space
*mapping
;
2013 mapping
= vma
->vm_file
->f_mapping
;
2014 idx
= vma_hugecache_offset(h
, vma
, address
);
2016 return find_lock_page(mapping
, idx
);
2020 * Return whether there is a pagecache page to back given address within VMA.
2021 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2023 static bool hugetlbfs_pagecache_present(struct hstate
*h
,
2024 struct vm_area_struct
*vma
, unsigned long address
)
2026 struct address_space
*mapping
;
2030 mapping
= vma
->vm_file
->f_mapping
;
2031 idx
= vma_hugecache_offset(h
, vma
, address
);
2033 page
= find_get_page(mapping
, idx
);
2036 return page
!= NULL
;
2039 static int hugetlb_no_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2040 unsigned long address
, pte_t
*ptep
, unsigned int flags
)
2042 struct hstate
*h
= hstate_vma(vma
);
2043 int ret
= VM_FAULT_SIGBUS
;
2047 struct address_space
*mapping
;
2051 * Currently, we are forced to kill the process in the event the
2052 * original mapper has unmapped pages from the child due to a failed
2053 * COW. Warn that such a situation has occured as it may not be obvious
2055 if (is_vma_resv_set(vma
, HPAGE_RESV_UNMAPPED
)) {
2057 "PID %d killed due to inadequate hugepage pool\n",
2062 mapping
= vma
->vm_file
->f_mapping
;
2063 idx
= vma_hugecache_offset(h
, vma
, address
);
2066 * Use page lock to guard against racing truncation
2067 * before we get page_table_lock.
2070 page
= find_lock_page(mapping
, idx
);
2072 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
2075 page
= alloc_huge_page(vma
, address
, 0);
2077 ret
= -PTR_ERR(page
);
2080 clear_huge_page(page
, address
, huge_page_size(h
));
2081 __SetPageUptodate(page
);
2083 if (vma
->vm_flags
& VM_MAYSHARE
) {
2085 struct inode
*inode
= mapping
->host
;
2087 err
= add_to_page_cache(page
, mapping
, idx
, GFP_KERNEL
);
2095 spin_lock(&inode
->i_lock
);
2096 inode
->i_blocks
+= blocks_per_huge_page(h
);
2097 spin_unlock(&inode
->i_lock
);
2103 * If we are going to COW a private mapping later, we examine the
2104 * pending reservations for this page now. This will ensure that
2105 * any allocations necessary to record that reservation occur outside
2108 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
))
2109 if (vma_needs_reservation(h
, vma
, address
) < 0) {
2111 goto backout_unlocked
;
2114 spin_lock(&mm
->page_table_lock
);
2115 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
2120 if (!huge_pte_none(huge_ptep_get(ptep
)))
2123 new_pte
= make_huge_pte(vma
, page
, ((vma
->vm_flags
& VM_WRITE
)
2124 && (vma
->vm_flags
& VM_SHARED
)));
2125 set_huge_pte_at(mm
, address
, ptep
, new_pte
);
2127 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
)) {
2128 /* Optimization, do the COW without a second fault */
2129 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, new_pte
, page
);
2132 spin_unlock(&mm
->page_table_lock
);
2138 spin_unlock(&mm
->page_table_lock
);
2145 int hugetlb_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2146 unsigned long address
, unsigned int flags
)
2151 struct page
*pagecache_page
= NULL
;
2152 static DEFINE_MUTEX(hugetlb_instantiation_mutex
);
2153 struct hstate
*h
= hstate_vma(vma
);
2155 ptep
= huge_pte_alloc(mm
, address
, huge_page_size(h
));
2157 return VM_FAULT_OOM
;
2160 * Serialize hugepage allocation and instantiation, so that we don't
2161 * get spurious allocation failures if two CPUs race to instantiate
2162 * the same page in the page cache.
2164 mutex_lock(&hugetlb_instantiation_mutex
);
2165 entry
= huge_ptep_get(ptep
);
2166 if (huge_pte_none(entry
)) {
2167 ret
= hugetlb_no_page(mm
, vma
, address
, ptep
, flags
);
2174 * If we are going to COW the mapping later, we examine the pending
2175 * reservations for this page now. This will ensure that any
2176 * allocations necessary to record that reservation occur outside the
2177 * spinlock. For private mappings, we also lookup the pagecache
2178 * page now as it is used to determine if a reservation has been
2181 if ((flags
& FAULT_FLAG_WRITE
) && !pte_write(entry
)) {
2182 if (vma_needs_reservation(h
, vma
, address
) < 0) {
2187 if (!(vma
->vm_flags
& VM_MAYSHARE
))
2188 pagecache_page
= hugetlbfs_pagecache_page(h
,
2192 spin_lock(&mm
->page_table_lock
);
2193 /* Check for a racing update before calling hugetlb_cow */
2194 if (unlikely(!pte_same(entry
, huge_ptep_get(ptep
))))
2195 goto out_page_table_lock
;
2198 if (flags
& FAULT_FLAG_WRITE
) {
2199 if (!pte_write(entry
)) {
2200 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, entry
,
2202 goto out_page_table_lock
;
2204 entry
= pte_mkdirty(entry
);
2206 entry
= pte_mkyoung(entry
);
2207 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
,
2208 flags
& FAULT_FLAG_WRITE
))
2209 update_mmu_cache(vma
, address
, entry
);
2211 out_page_table_lock
:
2212 spin_unlock(&mm
->page_table_lock
);
2214 if (pagecache_page
) {
2215 unlock_page(pagecache_page
);
2216 put_page(pagecache_page
);
2220 mutex_unlock(&hugetlb_instantiation_mutex
);
2225 /* Can be overriden by architectures */
2226 __attribute__((weak
)) struct page
*
2227 follow_huge_pud(struct mm_struct
*mm
, unsigned long address
,
2228 pud_t
*pud
, int write
)
2234 int follow_hugetlb_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2235 struct page
**pages
, struct vm_area_struct
**vmas
,
2236 unsigned long *position
, int *length
, int i
,
2239 unsigned long pfn_offset
;
2240 unsigned long vaddr
= *position
;
2241 int remainder
= *length
;
2242 struct hstate
*h
= hstate_vma(vma
);
2244 spin_lock(&mm
->page_table_lock
);
2245 while (vaddr
< vma
->vm_end
&& remainder
) {
2251 * Some archs (sparc64, sh*) have multiple pte_ts to
2252 * each hugepage. We have to make sure we get the
2253 * first, for the page indexing below to work.
2255 pte
= huge_pte_offset(mm
, vaddr
& huge_page_mask(h
));
2256 absent
= !pte
|| huge_pte_none(huge_ptep_get(pte
));
2259 * When coredumping, it suits get_dump_page if we just return
2260 * an error where there's an empty slot with no huge pagecache
2261 * to back it. This way, we avoid allocating a hugepage, and
2262 * the sparse dumpfile avoids allocating disk blocks, but its
2263 * huge holes still show up with zeroes where they need to be.
2265 if (absent
&& (flags
& FOLL_DUMP
) &&
2266 !hugetlbfs_pagecache_present(h
, vma
, vaddr
)) {
2272 ((flags
& FOLL_WRITE
) && !pte_write(huge_ptep_get(pte
)))) {
2275 spin_unlock(&mm
->page_table_lock
);
2276 ret
= hugetlb_fault(mm
, vma
, vaddr
,
2277 (flags
& FOLL_WRITE
) ? FAULT_FLAG_WRITE
: 0);
2278 spin_lock(&mm
->page_table_lock
);
2279 if (!(ret
& VM_FAULT_ERROR
))
2286 pfn_offset
= (vaddr
& ~huge_page_mask(h
)) >> PAGE_SHIFT
;
2287 page
= pte_page(huge_ptep_get(pte
));
2290 pages
[i
] = mem_map_offset(page
, pfn_offset
);
2301 if (vaddr
< vma
->vm_end
&& remainder
&&
2302 pfn_offset
< pages_per_huge_page(h
)) {
2304 * We use pfn_offset to avoid touching the pageframes
2305 * of this compound page.
2310 spin_unlock(&mm
->page_table_lock
);
2311 *length
= remainder
;
2314 return i
? i
: -EFAULT
;
2317 void hugetlb_change_protection(struct vm_area_struct
*vma
,
2318 unsigned long address
, unsigned long end
, pgprot_t newprot
)
2320 struct mm_struct
*mm
= vma
->vm_mm
;
2321 unsigned long start
= address
;
2324 struct hstate
*h
= hstate_vma(vma
);
2326 BUG_ON(address
>= end
);
2327 flush_cache_range(vma
, address
, end
);
2329 spin_lock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
2330 spin_lock(&mm
->page_table_lock
);
2331 for (; address
< end
; address
+= huge_page_size(h
)) {
2332 ptep
= huge_pte_offset(mm
, address
);
2335 if (huge_pmd_unshare(mm
, &address
, ptep
))
2337 if (!huge_pte_none(huge_ptep_get(ptep
))) {
2338 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
2339 pte
= pte_mkhuge(pte_modify(pte
, newprot
));
2340 set_huge_pte_at(mm
, address
, ptep
, pte
);
2343 spin_unlock(&mm
->page_table_lock
);
2344 spin_unlock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
2346 flush_tlb_range(vma
, start
, end
);
2349 int hugetlb_reserve_pages(struct inode
*inode
,
2351 struct vm_area_struct
*vma
,
2355 struct hstate
*h
= hstate_inode(inode
);
2358 * Only apply hugepage reservation if asked. At fault time, an
2359 * attempt will be made for VM_NORESERVE to allocate a page
2360 * and filesystem quota without using reserves
2362 if (acctflag
& VM_NORESERVE
)
2366 * Shared mappings base their reservation on the number of pages that
2367 * are already allocated on behalf of the file. Private mappings need
2368 * to reserve the full area even if read-only as mprotect() may be
2369 * called to make the mapping read-write. Assume !vma is a shm mapping
2371 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
)
2372 chg
= region_chg(&inode
->i_mapping
->private_list
, from
, to
);
2374 struct resv_map
*resv_map
= resv_map_alloc();
2380 set_vma_resv_map(vma
, resv_map
);
2381 set_vma_resv_flags(vma
, HPAGE_RESV_OWNER
);
2387 /* There must be enough filesystem quota for the mapping */
2388 if (hugetlb_get_quota(inode
->i_mapping
, chg
))
2392 * Check enough hugepages are available for the reservation.
2393 * Hand back the quota if there are not
2395 ret
= hugetlb_acct_memory(h
, chg
);
2397 hugetlb_put_quota(inode
->i_mapping
, chg
);
2402 * Account for the reservations made. Shared mappings record regions
2403 * that have reservations as they are shared by multiple VMAs.
2404 * When the last VMA disappears, the region map says how much
2405 * the reservation was and the page cache tells how much of
2406 * the reservation was consumed. Private mappings are per-VMA and
2407 * only the consumed reservations are tracked. When the VMA
2408 * disappears, the original reservation is the VMA size and the
2409 * consumed reservations are stored in the map. Hence, nothing
2410 * else has to be done for private mappings here
2412 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
)
2413 region_add(&inode
->i_mapping
->private_list
, from
, to
);
2417 void hugetlb_unreserve_pages(struct inode
*inode
, long offset
, long freed
)
2419 struct hstate
*h
= hstate_inode(inode
);
2420 long chg
= region_truncate(&inode
->i_mapping
->private_list
, offset
);
2422 spin_lock(&inode
->i_lock
);
2423 inode
->i_blocks
-= (blocks_per_huge_page(h
) * freed
);
2424 spin_unlock(&inode
->i_lock
);
2426 hugetlb_put_quota(inode
->i_mapping
, (chg
- freed
));
2427 hugetlb_acct_memory(h
, -(chg
- freed
));