HWPOISON: mention HWPoison in Kconfig entry
[linux-2.6/linux-2.6-openrd.git] / drivers / pci / intel-iommu.c
blob8d6159426311bda6a5bcab491b282e5427d6eff2
1 /*
2 * Copyright (c) 2006, Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21 * Author: Fenghua Yu <fenghua.yu@intel.com>
24 #include <linux/init.h>
25 #include <linux/bitmap.h>
26 #include <linux/debugfs.h>
27 #include <linux/slab.h>
28 #include <linux/irq.h>
29 #include <linux/interrupt.h>
30 #include <linux/spinlock.h>
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/mempool.h>
35 #include <linux/timer.h>
36 #include <linux/iova.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/sysdev.h>
40 #include <linux/tboot.h>
41 #include <linux/dmi.h>
42 #include <asm/cacheflush.h>
43 #include <asm/iommu.h>
44 #include "pci.h"
46 #define ROOT_SIZE VTD_PAGE_SIZE
47 #define CONTEXT_SIZE VTD_PAGE_SIZE
49 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
50 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
51 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
53 #define IOAPIC_RANGE_START (0xfee00000)
54 #define IOAPIC_RANGE_END (0xfeefffff)
55 #define IOVA_START_ADDR (0x1000)
57 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
59 #define MAX_AGAW_WIDTH 64
61 #define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
62 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
64 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
65 to match. That way, we can use 'unsigned long' for PFNs with impunity. */
66 #define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \
67 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
68 #define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
70 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
71 #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
72 #define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
75 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
76 are never going to work. */
77 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
79 return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
82 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
84 return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
86 static inline unsigned long page_to_dma_pfn(struct page *pg)
88 return mm_to_dma_pfn(page_to_pfn(pg));
90 static inline unsigned long virt_to_dma_pfn(void *p)
92 return page_to_dma_pfn(virt_to_page(p));
95 /* global iommu list, set NULL for ignored DMAR units */
96 static struct intel_iommu **g_iommus;
98 static void __init check_tylersburg_isoch(void);
99 static int rwbf_quirk;
102 * 0: Present
103 * 1-11: Reserved
104 * 12-63: Context Ptr (12 - (haw-1))
105 * 64-127: Reserved
107 struct root_entry {
108 u64 val;
109 u64 rsvd1;
111 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
112 static inline bool root_present(struct root_entry *root)
114 return (root->val & 1);
116 static inline void set_root_present(struct root_entry *root)
118 root->val |= 1;
120 static inline void set_root_value(struct root_entry *root, unsigned long value)
122 root->val |= value & VTD_PAGE_MASK;
125 static inline struct context_entry *
126 get_context_addr_from_root(struct root_entry *root)
128 return (struct context_entry *)
129 (root_present(root)?phys_to_virt(
130 root->val & VTD_PAGE_MASK) :
131 NULL);
135 * low 64 bits:
136 * 0: present
137 * 1: fault processing disable
138 * 2-3: translation type
139 * 12-63: address space root
140 * high 64 bits:
141 * 0-2: address width
142 * 3-6: aval
143 * 8-23: domain id
145 struct context_entry {
146 u64 lo;
147 u64 hi;
150 static inline bool context_present(struct context_entry *context)
152 return (context->lo & 1);
154 static inline void context_set_present(struct context_entry *context)
156 context->lo |= 1;
159 static inline void context_set_fault_enable(struct context_entry *context)
161 context->lo &= (((u64)-1) << 2) | 1;
164 static inline void context_set_translation_type(struct context_entry *context,
165 unsigned long value)
167 context->lo &= (((u64)-1) << 4) | 3;
168 context->lo |= (value & 3) << 2;
171 static inline void context_set_address_root(struct context_entry *context,
172 unsigned long value)
174 context->lo |= value & VTD_PAGE_MASK;
177 static inline void context_set_address_width(struct context_entry *context,
178 unsigned long value)
180 context->hi |= value & 7;
183 static inline void context_set_domain_id(struct context_entry *context,
184 unsigned long value)
186 context->hi |= (value & ((1 << 16) - 1)) << 8;
189 static inline void context_clear_entry(struct context_entry *context)
191 context->lo = 0;
192 context->hi = 0;
196 * 0: readable
197 * 1: writable
198 * 2-6: reserved
199 * 7: super page
200 * 8-10: available
201 * 11: snoop behavior
202 * 12-63: Host physcial address
204 struct dma_pte {
205 u64 val;
208 static inline void dma_clear_pte(struct dma_pte *pte)
210 pte->val = 0;
213 static inline void dma_set_pte_readable(struct dma_pte *pte)
215 pte->val |= DMA_PTE_READ;
218 static inline void dma_set_pte_writable(struct dma_pte *pte)
220 pte->val |= DMA_PTE_WRITE;
223 static inline void dma_set_pte_snp(struct dma_pte *pte)
225 pte->val |= DMA_PTE_SNP;
228 static inline void dma_set_pte_prot(struct dma_pte *pte, unsigned long prot)
230 pte->val = (pte->val & ~3) | (prot & 3);
233 static inline u64 dma_pte_addr(struct dma_pte *pte)
235 #ifdef CONFIG_64BIT
236 return pte->val & VTD_PAGE_MASK;
237 #else
238 /* Must have a full atomic 64-bit read */
239 return __cmpxchg64(pte, 0ULL, 0ULL) & VTD_PAGE_MASK;
240 #endif
243 static inline void dma_set_pte_pfn(struct dma_pte *pte, unsigned long pfn)
245 pte->val |= (uint64_t)pfn << VTD_PAGE_SHIFT;
248 static inline bool dma_pte_present(struct dma_pte *pte)
250 return (pte->val & 3) != 0;
253 static inline int first_pte_in_page(struct dma_pte *pte)
255 return !((unsigned long)pte & ~VTD_PAGE_MASK);
259 * This domain is a statically identity mapping domain.
260 * 1. This domain creats a static 1:1 mapping to all usable memory.
261 * 2. It maps to each iommu if successful.
262 * 3. Each iommu mapps to this domain if successful.
264 static struct dmar_domain *si_domain;
265 static int hw_pass_through = 1;
267 /* devices under the same p2p bridge are owned in one domain */
268 #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
270 /* domain represents a virtual machine, more than one devices
271 * across iommus may be owned in one domain, e.g. kvm guest.
273 #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 1)
275 /* si_domain contains mulitple devices */
276 #define DOMAIN_FLAG_STATIC_IDENTITY (1 << 2)
278 struct dmar_domain {
279 int id; /* domain id */
280 unsigned long iommu_bmp; /* bitmap of iommus this domain uses*/
282 struct list_head devices; /* all devices' list */
283 struct iova_domain iovad; /* iova's that belong to this domain */
285 struct dma_pte *pgd; /* virtual address */
286 int gaw; /* max guest address width */
288 /* adjusted guest address width, 0 is level 2 30-bit */
289 int agaw;
291 int flags; /* flags to find out type of domain */
293 int iommu_coherency;/* indicate coherency of iommu access */
294 int iommu_snooping; /* indicate snooping control feature*/
295 int iommu_count; /* reference count of iommu */
296 spinlock_t iommu_lock; /* protect iommu set in domain */
297 u64 max_addr; /* maximum mapped address */
300 /* PCI domain-device relationship */
301 struct device_domain_info {
302 struct list_head link; /* link to domain siblings */
303 struct list_head global; /* link to global list */
304 int segment; /* PCI domain */
305 u8 bus; /* PCI bus number */
306 u8 devfn; /* PCI devfn number */
307 struct pci_dev *dev; /* it's NULL for PCIE-to-PCI bridge */
308 struct intel_iommu *iommu; /* IOMMU used by this device */
309 struct dmar_domain *domain; /* pointer to domain */
312 static void flush_unmaps_timeout(unsigned long data);
314 DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0);
316 #define HIGH_WATER_MARK 250
317 struct deferred_flush_tables {
318 int next;
319 struct iova *iova[HIGH_WATER_MARK];
320 struct dmar_domain *domain[HIGH_WATER_MARK];
323 static struct deferred_flush_tables *deferred_flush;
325 /* bitmap for indexing intel_iommus */
326 static int g_num_of_iommus;
328 static DEFINE_SPINLOCK(async_umap_flush_lock);
329 static LIST_HEAD(unmaps_to_do);
331 static int timer_on;
332 static long list_size;
334 static void domain_remove_dev_info(struct dmar_domain *domain);
336 #ifdef CONFIG_DMAR_DEFAULT_ON
337 int dmar_disabled = 0;
338 #else
339 int dmar_disabled = 1;
340 #endif /*CONFIG_DMAR_DEFAULT_ON*/
342 static int __initdata dmar_map_gfx = 1;
343 static int dmar_forcedac;
344 static int intel_iommu_strict;
346 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
347 static DEFINE_SPINLOCK(device_domain_lock);
348 static LIST_HEAD(device_domain_list);
350 static struct iommu_ops intel_iommu_ops;
352 static int __init intel_iommu_setup(char *str)
354 if (!str)
355 return -EINVAL;
356 while (*str) {
357 if (!strncmp(str, "on", 2)) {
358 dmar_disabled = 0;
359 printk(KERN_INFO "Intel-IOMMU: enabled\n");
360 } else if (!strncmp(str, "off", 3)) {
361 dmar_disabled = 1;
362 printk(KERN_INFO "Intel-IOMMU: disabled\n");
363 } else if (!strncmp(str, "igfx_off", 8)) {
364 dmar_map_gfx = 0;
365 printk(KERN_INFO
366 "Intel-IOMMU: disable GFX device mapping\n");
367 } else if (!strncmp(str, "forcedac", 8)) {
368 printk(KERN_INFO
369 "Intel-IOMMU: Forcing DAC for PCI devices\n");
370 dmar_forcedac = 1;
371 } else if (!strncmp(str, "strict", 6)) {
372 printk(KERN_INFO
373 "Intel-IOMMU: disable batched IOTLB flush\n");
374 intel_iommu_strict = 1;
377 str += strcspn(str, ",");
378 while (*str == ',')
379 str++;
381 return 0;
383 __setup("intel_iommu=", intel_iommu_setup);
385 static struct kmem_cache *iommu_domain_cache;
386 static struct kmem_cache *iommu_devinfo_cache;
387 static struct kmem_cache *iommu_iova_cache;
389 static inline void *iommu_kmem_cache_alloc(struct kmem_cache *cachep)
391 unsigned int flags;
392 void *vaddr;
394 /* trying to avoid low memory issues */
395 flags = current->flags & PF_MEMALLOC;
396 current->flags |= PF_MEMALLOC;
397 vaddr = kmem_cache_alloc(cachep, GFP_ATOMIC);
398 current->flags &= (~PF_MEMALLOC | flags);
399 return vaddr;
403 static inline void *alloc_pgtable_page(void)
405 unsigned int flags;
406 void *vaddr;
408 /* trying to avoid low memory issues */
409 flags = current->flags & PF_MEMALLOC;
410 current->flags |= PF_MEMALLOC;
411 vaddr = (void *)get_zeroed_page(GFP_ATOMIC);
412 current->flags &= (~PF_MEMALLOC | flags);
413 return vaddr;
416 static inline void free_pgtable_page(void *vaddr)
418 free_page((unsigned long)vaddr);
421 static inline void *alloc_domain_mem(void)
423 return iommu_kmem_cache_alloc(iommu_domain_cache);
426 static void free_domain_mem(void *vaddr)
428 kmem_cache_free(iommu_domain_cache, vaddr);
431 static inline void * alloc_devinfo_mem(void)
433 return iommu_kmem_cache_alloc(iommu_devinfo_cache);
436 static inline void free_devinfo_mem(void *vaddr)
438 kmem_cache_free(iommu_devinfo_cache, vaddr);
441 struct iova *alloc_iova_mem(void)
443 return iommu_kmem_cache_alloc(iommu_iova_cache);
446 void free_iova_mem(struct iova *iova)
448 kmem_cache_free(iommu_iova_cache, iova);
452 static inline int width_to_agaw(int width);
454 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
456 unsigned long sagaw;
457 int agaw = -1;
459 sagaw = cap_sagaw(iommu->cap);
460 for (agaw = width_to_agaw(max_gaw);
461 agaw >= 0; agaw--) {
462 if (test_bit(agaw, &sagaw))
463 break;
466 return agaw;
470 * Calculate max SAGAW for each iommu.
472 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
474 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
478 * calculate agaw for each iommu.
479 * "SAGAW" may be different across iommus, use a default agaw, and
480 * get a supported less agaw for iommus that don't support the default agaw.
482 int iommu_calculate_agaw(struct intel_iommu *iommu)
484 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
487 /* This functionin only returns single iommu in a domain */
488 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
490 int iommu_id;
492 /* si_domain and vm domain should not get here. */
493 BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE);
494 BUG_ON(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY);
496 iommu_id = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
497 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
498 return NULL;
500 return g_iommus[iommu_id];
503 static void domain_update_iommu_coherency(struct dmar_domain *domain)
505 int i;
507 domain->iommu_coherency = 1;
509 i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
510 for (; i < g_num_of_iommus; ) {
511 if (!ecap_coherent(g_iommus[i]->ecap)) {
512 domain->iommu_coherency = 0;
513 break;
515 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
519 static void domain_update_iommu_snooping(struct dmar_domain *domain)
521 int i;
523 domain->iommu_snooping = 1;
525 i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
526 for (; i < g_num_of_iommus; ) {
527 if (!ecap_sc_support(g_iommus[i]->ecap)) {
528 domain->iommu_snooping = 0;
529 break;
531 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
535 /* Some capabilities may be different across iommus */
536 static void domain_update_iommu_cap(struct dmar_domain *domain)
538 domain_update_iommu_coherency(domain);
539 domain_update_iommu_snooping(domain);
542 static struct intel_iommu *device_to_iommu(int segment, u8 bus, u8 devfn)
544 struct dmar_drhd_unit *drhd = NULL;
545 int i;
547 for_each_drhd_unit(drhd) {
548 if (drhd->ignored)
549 continue;
550 if (segment != drhd->segment)
551 continue;
553 for (i = 0; i < drhd->devices_cnt; i++) {
554 if (drhd->devices[i] &&
555 drhd->devices[i]->bus->number == bus &&
556 drhd->devices[i]->devfn == devfn)
557 return drhd->iommu;
558 if (drhd->devices[i] &&
559 drhd->devices[i]->subordinate &&
560 drhd->devices[i]->subordinate->number <= bus &&
561 drhd->devices[i]->subordinate->subordinate >= bus)
562 return drhd->iommu;
565 if (drhd->include_all)
566 return drhd->iommu;
569 return NULL;
572 static void domain_flush_cache(struct dmar_domain *domain,
573 void *addr, int size)
575 if (!domain->iommu_coherency)
576 clflush_cache_range(addr, size);
579 /* Gets context entry for a given bus and devfn */
580 static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
581 u8 bus, u8 devfn)
583 struct root_entry *root;
584 struct context_entry *context;
585 unsigned long phy_addr;
586 unsigned long flags;
588 spin_lock_irqsave(&iommu->lock, flags);
589 root = &iommu->root_entry[bus];
590 context = get_context_addr_from_root(root);
591 if (!context) {
592 context = (struct context_entry *)alloc_pgtable_page();
593 if (!context) {
594 spin_unlock_irqrestore(&iommu->lock, flags);
595 return NULL;
597 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
598 phy_addr = virt_to_phys((void *)context);
599 set_root_value(root, phy_addr);
600 set_root_present(root);
601 __iommu_flush_cache(iommu, root, sizeof(*root));
603 spin_unlock_irqrestore(&iommu->lock, flags);
604 return &context[devfn];
607 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
609 struct root_entry *root;
610 struct context_entry *context;
611 int ret;
612 unsigned long flags;
614 spin_lock_irqsave(&iommu->lock, flags);
615 root = &iommu->root_entry[bus];
616 context = get_context_addr_from_root(root);
617 if (!context) {
618 ret = 0;
619 goto out;
621 ret = context_present(&context[devfn]);
622 out:
623 spin_unlock_irqrestore(&iommu->lock, flags);
624 return ret;
627 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
629 struct root_entry *root;
630 struct context_entry *context;
631 unsigned long flags;
633 spin_lock_irqsave(&iommu->lock, flags);
634 root = &iommu->root_entry[bus];
635 context = get_context_addr_from_root(root);
636 if (context) {
637 context_clear_entry(&context[devfn]);
638 __iommu_flush_cache(iommu, &context[devfn], \
639 sizeof(*context));
641 spin_unlock_irqrestore(&iommu->lock, flags);
644 static void free_context_table(struct intel_iommu *iommu)
646 struct root_entry *root;
647 int i;
648 unsigned long flags;
649 struct context_entry *context;
651 spin_lock_irqsave(&iommu->lock, flags);
652 if (!iommu->root_entry) {
653 goto out;
655 for (i = 0; i < ROOT_ENTRY_NR; i++) {
656 root = &iommu->root_entry[i];
657 context = get_context_addr_from_root(root);
658 if (context)
659 free_pgtable_page(context);
661 free_pgtable_page(iommu->root_entry);
662 iommu->root_entry = NULL;
663 out:
664 spin_unlock_irqrestore(&iommu->lock, flags);
667 /* page table handling */
668 #define LEVEL_STRIDE (9)
669 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
671 static inline int agaw_to_level(int agaw)
673 return agaw + 2;
676 static inline int agaw_to_width(int agaw)
678 return 30 + agaw * LEVEL_STRIDE;
682 static inline int width_to_agaw(int width)
684 return (width - 30) / LEVEL_STRIDE;
687 static inline unsigned int level_to_offset_bits(int level)
689 return (level - 1) * LEVEL_STRIDE;
692 static inline int pfn_level_offset(unsigned long pfn, int level)
694 return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
697 static inline unsigned long level_mask(int level)
699 return -1UL << level_to_offset_bits(level);
702 static inline unsigned long level_size(int level)
704 return 1UL << level_to_offset_bits(level);
707 static inline unsigned long align_to_level(unsigned long pfn, int level)
709 return (pfn + level_size(level) - 1) & level_mask(level);
712 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
713 unsigned long pfn)
715 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
716 struct dma_pte *parent, *pte = NULL;
717 int level = agaw_to_level(domain->agaw);
718 int offset;
720 BUG_ON(!domain->pgd);
721 BUG_ON(addr_width < BITS_PER_LONG && pfn >> addr_width);
722 parent = domain->pgd;
724 while (level > 0) {
725 void *tmp_page;
727 offset = pfn_level_offset(pfn, level);
728 pte = &parent[offset];
729 if (level == 1)
730 break;
732 if (!dma_pte_present(pte)) {
733 uint64_t pteval;
735 tmp_page = alloc_pgtable_page();
737 if (!tmp_page)
738 return NULL;
740 domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
741 pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
742 if (cmpxchg64(&pte->val, 0ULL, pteval)) {
743 /* Someone else set it while we were thinking; use theirs. */
744 free_pgtable_page(tmp_page);
745 } else {
746 dma_pte_addr(pte);
747 domain_flush_cache(domain, pte, sizeof(*pte));
750 parent = phys_to_virt(dma_pte_addr(pte));
751 level--;
754 return pte;
757 /* return address's pte at specific level */
758 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
759 unsigned long pfn,
760 int level)
762 struct dma_pte *parent, *pte = NULL;
763 int total = agaw_to_level(domain->agaw);
764 int offset;
766 parent = domain->pgd;
767 while (level <= total) {
768 offset = pfn_level_offset(pfn, total);
769 pte = &parent[offset];
770 if (level == total)
771 return pte;
773 if (!dma_pte_present(pte))
774 break;
775 parent = phys_to_virt(dma_pte_addr(pte));
776 total--;
778 return NULL;
781 /* clear last level pte, a tlb flush should be followed */
782 static void dma_pte_clear_range(struct dmar_domain *domain,
783 unsigned long start_pfn,
784 unsigned long last_pfn)
786 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
787 struct dma_pte *first_pte, *pte;
789 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
790 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
791 BUG_ON(start_pfn > last_pfn);
793 /* we don't need lock here; nobody else touches the iova range */
794 do {
795 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1);
796 if (!pte) {
797 start_pfn = align_to_level(start_pfn + 1, 2);
798 continue;
800 do {
801 dma_clear_pte(pte);
802 start_pfn++;
803 pte++;
804 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
806 domain_flush_cache(domain, first_pte,
807 (void *)pte - (void *)first_pte);
809 } while (start_pfn && start_pfn <= last_pfn);
812 /* free page table pages. last level pte should already be cleared */
813 static void dma_pte_free_pagetable(struct dmar_domain *domain,
814 unsigned long start_pfn,
815 unsigned long last_pfn)
817 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
818 struct dma_pte *first_pte, *pte;
819 int total = agaw_to_level(domain->agaw);
820 int level;
821 unsigned long tmp;
823 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
824 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
825 BUG_ON(start_pfn > last_pfn);
827 /* We don't need lock here; nobody else touches the iova range */
828 level = 2;
829 while (level <= total) {
830 tmp = align_to_level(start_pfn, level);
832 /* If we can't even clear one PTE at this level, we're done */
833 if (tmp + level_size(level) - 1 > last_pfn)
834 return;
836 do {
837 first_pte = pte = dma_pfn_level_pte(domain, tmp, level);
838 if (!pte) {
839 tmp = align_to_level(tmp + 1, level + 1);
840 continue;
842 do {
843 if (dma_pte_present(pte)) {
844 free_pgtable_page(phys_to_virt(dma_pte_addr(pte)));
845 dma_clear_pte(pte);
847 pte++;
848 tmp += level_size(level);
849 } while (!first_pte_in_page(pte) &&
850 tmp + level_size(level) - 1 <= last_pfn);
852 domain_flush_cache(domain, first_pte,
853 (void *)pte - (void *)first_pte);
855 } while (tmp && tmp + level_size(level) - 1 <= last_pfn);
856 level++;
858 /* free pgd */
859 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
860 free_pgtable_page(domain->pgd);
861 domain->pgd = NULL;
865 /* iommu handling */
866 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
868 struct root_entry *root;
869 unsigned long flags;
871 root = (struct root_entry *)alloc_pgtable_page();
872 if (!root)
873 return -ENOMEM;
875 __iommu_flush_cache(iommu, root, ROOT_SIZE);
877 spin_lock_irqsave(&iommu->lock, flags);
878 iommu->root_entry = root;
879 spin_unlock_irqrestore(&iommu->lock, flags);
881 return 0;
884 static void iommu_set_root_entry(struct intel_iommu *iommu)
886 void *addr;
887 u32 sts;
888 unsigned long flag;
890 addr = iommu->root_entry;
892 spin_lock_irqsave(&iommu->register_lock, flag);
893 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
895 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
897 /* Make sure hardware complete it */
898 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
899 readl, (sts & DMA_GSTS_RTPS), sts);
901 spin_unlock_irqrestore(&iommu->register_lock, flag);
904 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
906 u32 val;
907 unsigned long flag;
909 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
910 return;
912 spin_lock_irqsave(&iommu->register_lock, flag);
913 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
915 /* Make sure hardware complete it */
916 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
917 readl, (!(val & DMA_GSTS_WBFS)), val);
919 spin_unlock_irqrestore(&iommu->register_lock, flag);
922 /* return value determine if we need a write buffer flush */
923 static void __iommu_flush_context(struct intel_iommu *iommu,
924 u16 did, u16 source_id, u8 function_mask,
925 u64 type)
927 u64 val = 0;
928 unsigned long flag;
930 switch (type) {
931 case DMA_CCMD_GLOBAL_INVL:
932 val = DMA_CCMD_GLOBAL_INVL;
933 break;
934 case DMA_CCMD_DOMAIN_INVL:
935 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
936 break;
937 case DMA_CCMD_DEVICE_INVL:
938 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
939 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
940 break;
941 default:
942 BUG();
944 val |= DMA_CCMD_ICC;
946 spin_lock_irqsave(&iommu->register_lock, flag);
947 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
949 /* Make sure hardware complete it */
950 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
951 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
953 spin_unlock_irqrestore(&iommu->register_lock, flag);
956 /* return value determine if we need a write buffer flush */
957 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
958 u64 addr, unsigned int size_order, u64 type)
960 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
961 u64 val = 0, val_iva = 0;
962 unsigned long flag;
964 switch (type) {
965 case DMA_TLB_GLOBAL_FLUSH:
966 /* global flush doesn't need set IVA_REG */
967 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
968 break;
969 case DMA_TLB_DSI_FLUSH:
970 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
971 break;
972 case DMA_TLB_PSI_FLUSH:
973 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
974 /* Note: always flush non-leaf currently */
975 val_iva = size_order | addr;
976 break;
977 default:
978 BUG();
980 /* Note: set drain read/write */
981 #if 0
983 * This is probably to be super secure.. Looks like we can
984 * ignore it without any impact.
986 if (cap_read_drain(iommu->cap))
987 val |= DMA_TLB_READ_DRAIN;
988 #endif
989 if (cap_write_drain(iommu->cap))
990 val |= DMA_TLB_WRITE_DRAIN;
992 spin_lock_irqsave(&iommu->register_lock, flag);
993 /* Note: Only uses first TLB reg currently */
994 if (val_iva)
995 dmar_writeq(iommu->reg + tlb_offset, val_iva);
996 dmar_writeq(iommu->reg + tlb_offset + 8, val);
998 /* Make sure hardware complete it */
999 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1000 dmar_readq, (!(val & DMA_TLB_IVT)), val);
1002 spin_unlock_irqrestore(&iommu->register_lock, flag);
1004 /* check IOTLB invalidation granularity */
1005 if (DMA_TLB_IAIG(val) == 0)
1006 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
1007 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1008 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
1009 (unsigned long long)DMA_TLB_IIRG(type),
1010 (unsigned long long)DMA_TLB_IAIG(val));
1013 static struct device_domain_info *iommu_support_dev_iotlb(
1014 struct dmar_domain *domain, int segment, u8 bus, u8 devfn)
1016 int found = 0;
1017 unsigned long flags;
1018 struct device_domain_info *info;
1019 struct intel_iommu *iommu = device_to_iommu(segment, bus, devfn);
1021 if (!ecap_dev_iotlb_support(iommu->ecap))
1022 return NULL;
1024 if (!iommu->qi)
1025 return NULL;
1027 spin_lock_irqsave(&device_domain_lock, flags);
1028 list_for_each_entry(info, &domain->devices, link)
1029 if (info->bus == bus && info->devfn == devfn) {
1030 found = 1;
1031 break;
1033 spin_unlock_irqrestore(&device_domain_lock, flags);
1035 if (!found || !info->dev)
1036 return NULL;
1038 if (!pci_find_ext_capability(info->dev, PCI_EXT_CAP_ID_ATS))
1039 return NULL;
1041 if (!dmar_find_matched_atsr_unit(info->dev))
1042 return NULL;
1044 info->iommu = iommu;
1046 return info;
1049 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1051 if (!info)
1052 return;
1054 pci_enable_ats(info->dev, VTD_PAGE_SHIFT);
1057 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1059 if (!info->dev || !pci_ats_enabled(info->dev))
1060 return;
1062 pci_disable_ats(info->dev);
1065 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1066 u64 addr, unsigned mask)
1068 u16 sid, qdep;
1069 unsigned long flags;
1070 struct device_domain_info *info;
1072 spin_lock_irqsave(&device_domain_lock, flags);
1073 list_for_each_entry(info, &domain->devices, link) {
1074 if (!info->dev || !pci_ats_enabled(info->dev))
1075 continue;
1077 sid = info->bus << 8 | info->devfn;
1078 qdep = pci_ats_queue_depth(info->dev);
1079 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1081 spin_unlock_irqrestore(&device_domain_lock, flags);
1084 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
1085 unsigned long pfn, unsigned int pages)
1087 unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1088 uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1090 BUG_ON(pages == 0);
1093 * Fallback to domain selective flush if no PSI support or the size is
1094 * too big.
1095 * PSI requires page size to be 2 ^ x, and the base address is naturally
1096 * aligned to the size
1098 if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1099 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1100 DMA_TLB_DSI_FLUSH);
1101 else
1102 iommu->flush.flush_iotlb(iommu, did, addr, mask,
1103 DMA_TLB_PSI_FLUSH);
1106 * In caching mode, domain ID 0 is reserved for non-present to present
1107 * mapping flush. Device IOTLB doesn't need to be flushed in this case.
1109 if (!cap_caching_mode(iommu->cap) || did)
1110 iommu_flush_dev_iotlb(iommu->domains[did], addr, mask);
1113 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1115 u32 pmen;
1116 unsigned long flags;
1118 spin_lock_irqsave(&iommu->register_lock, flags);
1119 pmen = readl(iommu->reg + DMAR_PMEN_REG);
1120 pmen &= ~DMA_PMEN_EPM;
1121 writel(pmen, iommu->reg + DMAR_PMEN_REG);
1123 /* wait for the protected region status bit to clear */
1124 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1125 readl, !(pmen & DMA_PMEN_PRS), pmen);
1127 spin_unlock_irqrestore(&iommu->register_lock, flags);
1130 static int iommu_enable_translation(struct intel_iommu *iommu)
1132 u32 sts;
1133 unsigned long flags;
1135 spin_lock_irqsave(&iommu->register_lock, flags);
1136 iommu->gcmd |= DMA_GCMD_TE;
1137 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1139 /* Make sure hardware complete it */
1140 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1141 readl, (sts & DMA_GSTS_TES), sts);
1143 spin_unlock_irqrestore(&iommu->register_lock, flags);
1144 return 0;
1147 static int iommu_disable_translation(struct intel_iommu *iommu)
1149 u32 sts;
1150 unsigned long flag;
1152 spin_lock_irqsave(&iommu->register_lock, flag);
1153 iommu->gcmd &= ~DMA_GCMD_TE;
1154 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1156 /* Make sure hardware complete it */
1157 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1158 readl, (!(sts & DMA_GSTS_TES)), sts);
1160 spin_unlock_irqrestore(&iommu->register_lock, flag);
1161 return 0;
1165 static int iommu_init_domains(struct intel_iommu *iommu)
1167 unsigned long ndomains;
1168 unsigned long nlongs;
1170 ndomains = cap_ndoms(iommu->cap);
1171 pr_debug("Number of Domains supportd <%ld>\n", ndomains);
1172 nlongs = BITS_TO_LONGS(ndomains);
1174 spin_lock_init(&iommu->lock);
1176 /* TBD: there might be 64K domains,
1177 * consider other allocation for future chip
1179 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1180 if (!iommu->domain_ids) {
1181 printk(KERN_ERR "Allocating domain id array failed\n");
1182 return -ENOMEM;
1184 iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1185 GFP_KERNEL);
1186 if (!iommu->domains) {
1187 printk(KERN_ERR "Allocating domain array failed\n");
1188 return -ENOMEM;
1192 * if Caching mode is set, then invalid translations are tagged
1193 * with domainid 0. Hence we need to pre-allocate it.
1195 if (cap_caching_mode(iommu->cap))
1196 set_bit(0, iommu->domain_ids);
1197 return 0;
1201 static void domain_exit(struct dmar_domain *domain);
1202 static void vm_domain_exit(struct dmar_domain *domain);
1204 void free_dmar_iommu(struct intel_iommu *iommu)
1206 struct dmar_domain *domain;
1207 int i;
1208 unsigned long flags;
1210 if ((iommu->domains) && (iommu->domain_ids)) {
1211 i = find_first_bit(iommu->domain_ids, cap_ndoms(iommu->cap));
1212 for (; i < cap_ndoms(iommu->cap); ) {
1213 domain = iommu->domains[i];
1214 clear_bit(i, iommu->domain_ids);
1216 spin_lock_irqsave(&domain->iommu_lock, flags);
1217 if (--domain->iommu_count == 0) {
1218 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
1219 vm_domain_exit(domain);
1220 else
1221 domain_exit(domain);
1223 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1225 i = find_next_bit(iommu->domain_ids,
1226 cap_ndoms(iommu->cap), i+1);
1230 if (iommu->gcmd & DMA_GCMD_TE)
1231 iommu_disable_translation(iommu);
1233 if (iommu->irq) {
1234 set_irq_data(iommu->irq, NULL);
1235 /* This will mask the irq */
1236 free_irq(iommu->irq, iommu);
1237 destroy_irq(iommu->irq);
1240 kfree(iommu->domains);
1241 kfree(iommu->domain_ids);
1243 g_iommus[iommu->seq_id] = NULL;
1245 /* if all iommus are freed, free g_iommus */
1246 for (i = 0; i < g_num_of_iommus; i++) {
1247 if (g_iommus[i])
1248 break;
1251 if (i == g_num_of_iommus)
1252 kfree(g_iommus);
1254 /* free context mapping */
1255 free_context_table(iommu);
1258 static struct dmar_domain *alloc_domain(void)
1260 struct dmar_domain *domain;
1262 domain = alloc_domain_mem();
1263 if (!domain)
1264 return NULL;
1266 memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
1267 domain->flags = 0;
1269 return domain;
1272 static int iommu_attach_domain(struct dmar_domain *domain,
1273 struct intel_iommu *iommu)
1275 int num;
1276 unsigned long ndomains;
1277 unsigned long flags;
1279 ndomains = cap_ndoms(iommu->cap);
1281 spin_lock_irqsave(&iommu->lock, flags);
1283 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1284 if (num >= ndomains) {
1285 spin_unlock_irqrestore(&iommu->lock, flags);
1286 printk(KERN_ERR "IOMMU: no free domain ids\n");
1287 return -ENOMEM;
1290 domain->id = num;
1291 set_bit(num, iommu->domain_ids);
1292 set_bit(iommu->seq_id, &domain->iommu_bmp);
1293 iommu->domains[num] = domain;
1294 spin_unlock_irqrestore(&iommu->lock, flags);
1296 return 0;
1299 static void iommu_detach_domain(struct dmar_domain *domain,
1300 struct intel_iommu *iommu)
1302 unsigned long flags;
1303 int num, ndomains;
1304 int found = 0;
1306 spin_lock_irqsave(&iommu->lock, flags);
1307 ndomains = cap_ndoms(iommu->cap);
1308 num = find_first_bit(iommu->domain_ids, ndomains);
1309 for (; num < ndomains; ) {
1310 if (iommu->domains[num] == domain) {
1311 found = 1;
1312 break;
1314 num = find_next_bit(iommu->domain_ids,
1315 cap_ndoms(iommu->cap), num+1);
1318 if (found) {
1319 clear_bit(num, iommu->domain_ids);
1320 clear_bit(iommu->seq_id, &domain->iommu_bmp);
1321 iommu->domains[num] = NULL;
1323 spin_unlock_irqrestore(&iommu->lock, flags);
1326 static struct iova_domain reserved_iova_list;
1327 static struct lock_class_key reserved_rbtree_key;
1329 static void dmar_init_reserved_ranges(void)
1331 struct pci_dev *pdev = NULL;
1332 struct iova *iova;
1333 int i;
1335 init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
1337 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1338 &reserved_rbtree_key);
1340 /* IOAPIC ranges shouldn't be accessed by DMA */
1341 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1342 IOVA_PFN(IOAPIC_RANGE_END));
1343 if (!iova)
1344 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1346 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1347 for_each_pci_dev(pdev) {
1348 struct resource *r;
1350 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1351 r = &pdev->resource[i];
1352 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1353 continue;
1354 iova = reserve_iova(&reserved_iova_list,
1355 IOVA_PFN(r->start),
1356 IOVA_PFN(r->end));
1357 if (!iova)
1358 printk(KERN_ERR "Reserve iova failed\n");
1364 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1366 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1369 static inline int guestwidth_to_adjustwidth(int gaw)
1371 int agaw;
1372 int r = (gaw - 12) % 9;
1374 if (r == 0)
1375 agaw = gaw;
1376 else
1377 agaw = gaw + 9 - r;
1378 if (agaw > 64)
1379 agaw = 64;
1380 return agaw;
1383 static int domain_init(struct dmar_domain *domain, int guest_width)
1385 struct intel_iommu *iommu;
1386 int adjust_width, agaw;
1387 unsigned long sagaw;
1389 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
1390 spin_lock_init(&domain->iommu_lock);
1392 domain_reserve_special_ranges(domain);
1394 /* calculate AGAW */
1395 iommu = domain_get_iommu(domain);
1396 if (guest_width > cap_mgaw(iommu->cap))
1397 guest_width = cap_mgaw(iommu->cap);
1398 domain->gaw = guest_width;
1399 adjust_width = guestwidth_to_adjustwidth(guest_width);
1400 agaw = width_to_agaw(adjust_width);
1401 sagaw = cap_sagaw(iommu->cap);
1402 if (!test_bit(agaw, &sagaw)) {
1403 /* hardware doesn't support it, choose a bigger one */
1404 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1405 agaw = find_next_bit(&sagaw, 5, agaw);
1406 if (agaw >= 5)
1407 return -ENODEV;
1409 domain->agaw = agaw;
1410 INIT_LIST_HEAD(&domain->devices);
1412 if (ecap_coherent(iommu->ecap))
1413 domain->iommu_coherency = 1;
1414 else
1415 domain->iommu_coherency = 0;
1417 if (ecap_sc_support(iommu->ecap))
1418 domain->iommu_snooping = 1;
1419 else
1420 domain->iommu_snooping = 0;
1422 domain->iommu_count = 1;
1424 /* always allocate the top pgd */
1425 domain->pgd = (struct dma_pte *)alloc_pgtable_page();
1426 if (!domain->pgd)
1427 return -ENOMEM;
1428 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1429 return 0;
1432 static void domain_exit(struct dmar_domain *domain)
1434 struct dmar_drhd_unit *drhd;
1435 struct intel_iommu *iommu;
1437 /* Domain 0 is reserved, so dont process it */
1438 if (!domain)
1439 return;
1441 domain_remove_dev_info(domain);
1442 /* destroy iovas */
1443 put_iova_domain(&domain->iovad);
1445 /* clear ptes */
1446 dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1448 /* free page tables */
1449 dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1451 for_each_active_iommu(iommu, drhd)
1452 if (test_bit(iommu->seq_id, &domain->iommu_bmp))
1453 iommu_detach_domain(domain, iommu);
1455 free_domain_mem(domain);
1458 static int domain_context_mapping_one(struct dmar_domain *domain, int segment,
1459 u8 bus, u8 devfn, int translation)
1461 struct context_entry *context;
1462 unsigned long flags;
1463 struct intel_iommu *iommu;
1464 struct dma_pte *pgd;
1465 unsigned long num;
1466 unsigned long ndomains;
1467 int id;
1468 int agaw;
1469 struct device_domain_info *info = NULL;
1471 pr_debug("Set context mapping for %02x:%02x.%d\n",
1472 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1474 BUG_ON(!domain->pgd);
1475 BUG_ON(translation != CONTEXT_TT_PASS_THROUGH &&
1476 translation != CONTEXT_TT_MULTI_LEVEL);
1478 iommu = device_to_iommu(segment, bus, devfn);
1479 if (!iommu)
1480 return -ENODEV;
1482 context = device_to_context_entry(iommu, bus, devfn);
1483 if (!context)
1484 return -ENOMEM;
1485 spin_lock_irqsave(&iommu->lock, flags);
1486 if (context_present(context)) {
1487 spin_unlock_irqrestore(&iommu->lock, flags);
1488 return 0;
1491 id = domain->id;
1492 pgd = domain->pgd;
1494 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
1495 domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) {
1496 int found = 0;
1498 /* find an available domain id for this device in iommu */
1499 ndomains = cap_ndoms(iommu->cap);
1500 num = find_first_bit(iommu->domain_ids, ndomains);
1501 for (; num < ndomains; ) {
1502 if (iommu->domains[num] == domain) {
1503 id = num;
1504 found = 1;
1505 break;
1507 num = find_next_bit(iommu->domain_ids,
1508 cap_ndoms(iommu->cap), num+1);
1511 if (found == 0) {
1512 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1513 if (num >= ndomains) {
1514 spin_unlock_irqrestore(&iommu->lock, flags);
1515 printk(KERN_ERR "IOMMU: no free domain ids\n");
1516 return -EFAULT;
1519 set_bit(num, iommu->domain_ids);
1520 iommu->domains[num] = domain;
1521 id = num;
1524 /* Skip top levels of page tables for
1525 * iommu which has less agaw than default.
1527 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1528 pgd = phys_to_virt(dma_pte_addr(pgd));
1529 if (!dma_pte_present(pgd)) {
1530 spin_unlock_irqrestore(&iommu->lock, flags);
1531 return -ENOMEM;
1536 context_set_domain_id(context, id);
1538 if (translation != CONTEXT_TT_PASS_THROUGH) {
1539 info = iommu_support_dev_iotlb(domain, segment, bus, devfn);
1540 translation = info ? CONTEXT_TT_DEV_IOTLB :
1541 CONTEXT_TT_MULTI_LEVEL;
1544 * In pass through mode, AW must be programmed to indicate the largest
1545 * AGAW value supported by hardware. And ASR is ignored by hardware.
1547 if (unlikely(translation == CONTEXT_TT_PASS_THROUGH))
1548 context_set_address_width(context, iommu->msagaw);
1549 else {
1550 context_set_address_root(context, virt_to_phys(pgd));
1551 context_set_address_width(context, iommu->agaw);
1554 context_set_translation_type(context, translation);
1555 context_set_fault_enable(context);
1556 context_set_present(context);
1557 domain_flush_cache(domain, context, sizeof(*context));
1560 * It's a non-present to present mapping. If hardware doesn't cache
1561 * non-present entry we only need to flush the write-buffer. If the
1562 * _does_ cache non-present entries, then it does so in the special
1563 * domain #0, which we have to flush:
1565 if (cap_caching_mode(iommu->cap)) {
1566 iommu->flush.flush_context(iommu, 0,
1567 (((u16)bus) << 8) | devfn,
1568 DMA_CCMD_MASK_NOBIT,
1569 DMA_CCMD_DEVICE_INVL);
1570 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_DSI_FLUSH);
1571 } else {
1572 iommu_flush_write_buffer(iommu);
1574 iommu_enable_dev_iotlb(info);
1575 spin_unlock_irqrestore(&iommu->lock, flags);
1577 spin_lock_irqsave(&domain->iommu_lock, flags);
1578 if (!test_and_set_bit(iommu->seq_id, &domain->iommu_bmp)) {
1579 domain->iommu_count++;
1580 domain_update_iommu_cap(domain);
1582 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1583 return 0;
1586 static int
1587 domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev,
1588 int translation)
1590 int ret;
1591 struct pci_dev *tmp, *parent;
1593 ret = domain_context_mapping_one(domain, pci_domain_nr(pdev->bus),
1594 pdev->bus->number, pdev->devfn,
1595 translation);
1596 if (ret)
1597 return ret;
1599 /* dependent device mapping */
1600 tmp = pci_find_upstream_pcie_bridge(pdev);
1601 if (!tmp)
1602 return 0;
1603 /* Secondary interface's bus number and devfn 0 */
1604 parent = pdev->bus->self;
1605 while (parent != tmp) {
1606 ret = domain_context_mapping_one(domain,
1607 pci_domain_nr(parent->bus),
1608 parent->bus->number,
1609 parent->devfn, translation);
1610 if (ret)
1611 return ret;
1612 parent = parent->bus->self;
1614 if (pci_is_pcie(tmp)) /* this is a PCIE-to-PCI bridge */
1615 return domain_context_mapping_one(domain,
1616 pci_domain_nr(tmp->subordinate),
1617 tmp->subordinate->number, 0,
1618 translation);
1619 else /* this is a legacy PCI bridge */
1620 return domain_context_mapping_one(domain,
1621 pci_domain_nr(tmp->bus),
1622 tmp->bus->number,
1623 tmp->devfn,
1624 translation);
1627 static int domain_context_mapped(struct pci_dev *pdev)
1629 int ret;
1630 struct pci_dev *tmp, *parent;
1631 struct intel_iommu *iommu;
1633 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
1634 pdev->devfn);
1635 if (!iommu)
1636 return -ENODEV;
1638 ret = device_context_mapped(iommu, pdev->bus->number, pdev->devfn);
1639 if (!ret)
1640 return ret;
1641 /* dependent device mapping */
1642 tmp = pci_find_upstream_pcie_bridge(pdev);
1643 if (!tmp)
1644 return ret;
1645 /* Secondary interface's bus number and devfn 0 */
1646 parent = pdev->bus->self;
1647 while (parent != tmp) {
1648 ret = device_context_mapped(iommu, parent->bus->number,
1649 parent->devfn);
1650 if (!ret)
1651 return ret;
1652 parent = parent->bus->self;
1654 if (pci_is_pcie(tmp))
1655 return device_context_mapped(iommu, tmp->subordinate->number,
1657 else
1658 return device_context_mapped(iommu, tmp->bus->number,
1659 tmp->devfn);
1662 /* Returns a number of VTD pages, but aligned to MM page size */
1663 static inline unsigned long aligned_nrpages(unsigned long host_addr,
1664 size_t size)
1666 host_addr &= ~PAGE_MASK;
1667 return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
1670 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1671 struct scatterlist *sg, unsigned long phys_pfn,
1672 unsigned long nr_pages, int prot)
1674 struct dma_pte *first_pte = NULL, *pte = NULL;
1675 phys_addr_t uninitialized_var(pteval);
1676 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
1677 unsigned long sg_res;
1679 BUG_ON(addr_width < BITS_PER_LONG && (iov_pfn + nr_pages - 1) >> addr_width);
1681 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1682 return -EINVAL;
1684 prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
1686 if (sg)
1687 sg_res = 0;
1688 else {
1689 sg_res = nr_pages + 1;
1690 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
1693 while (nr_pages--) {
1694 uint64_t tmp;
1696 if (!sg_res) {
1697 sg_res = aligned_nrpages(sg->offset, sg->length);
1698 sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
1699 sg->dma_length = sg->length;
1700 pteval = page_to_phys(sg_page(sg)) | prot;
1702 if (!pte) {
1703 first_pte = pte = pfn_to_dma_pte(domain, iov_pfn);
1704 if (!pte)
1705 return -ENOMEM;
1707 /* We don't need lock here, nobody else
1708 * touches the iova range
1710 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
1711 if (tmp) {
1712 static int dumps = 5;
1713 printk(KERN_CRIT "ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
1714 iov_pfn, tmp, (unsigned long long)pteval);
1715 if (dumps) {
1716 dumps--;
1717 debug_dma_dump_mappings(NULL);
1719 WARN_ON(1);
1721 pte++;
1722 if (!nr_pages || first_pte_in_page(pte)) {
1723 domain_flush_cache(domain, first_pte,
1724 (void *)pte - (void *)first_pte);
1725 pte = NULL;
1727 iov_pfn++;
1728 pteval += VTD_PAGE_SIZE;
1729 sg_res--;
1730 if (!sg_res)
1731 sg = sg_next(sg);
1733 return 0;
1736 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1737 struct scatterlist *sg, unsigned long nr_pages,
1738 int prot)
1740 return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
1743 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1744 unsigned long phys_pfn, unsigned long nr_pages,
1745 int prot)
1747 return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
1750 static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
1752 if (!iommu)
1753 return;
1755 clear_context_table(iommu, bus, devfn);
1756 iommu->flush.flush_context(iommu, 0, 0, 0,
1757 DMA_CCMD_GLOBAL_INVL);
1758 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
1761 static void domain_remove_dev_info(struct dmar_domain *domain)
1763 struct device_domain_info *info;
1764 unsigned long flags;
1765 struct intel_iommu *iommu;
1767 spin_lock_irqsave(&device_domain_lock, flags);
1768 while (!list_empty(&domain->devices)) {
1769 info = list_entry(domain->devices.next,
1770 struct device_domain_info, link);
1771 list_del(&info->link);
1772 list_del(&info->global);
1773 if (info->dev)
1774 info->dev->dev.archdata.iommu = NULL;
1775 spin_unlock_irqrestore(&device_domain_lock, flags);
1777 iommu_disable_dev_iotlb(info);
1778 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
1779 iommu_detach_dev(iommu, info->bus, info->devfn);
1780 free_devinfo_mem(info);
1782 spin_lock_irqsave(&device_domain_lock, flags);
1784 spin_unlock_irqrestore(&device_domain_lock, flags);
1788 * find_domain
1789 * Note: we use struct pci_dev->dev.archdata.iommu stores the info
1791 static struct dmar_domain *
1792 find_domain(struct pci_dev *pdev)
1794 struct device_domain_info *info;
1796 /* No lock here, assumes no domain exit in normal case */
1797 info = pdev->dev.archdata.iommu;
1798 if (info)
1799 return info->domain;
1800 return NULL;
1803 /* domain is initialized */
1804 static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
1806 struct dmar_domain *domain, *found = NULL;
1807 struct intel_iommu *iommu;
1808 struct dmar_drhd_unit *drhd;
1809 struct device_domain_info *info, *tmp;
1810 struct pci_dev *dev_tmp;
1811 unsigned long flags;
1812 int bus = 0, devfn = 0;
1813 int segment;
1814 int ret;
1816 domain = find_domain(pdev);
1817 if (domain)
1818 return domain;
1820 segment = pci_domain_nr(pdev->bus);
1822 dev_tmp = pci_find_upstream_pcie_bridge(pdev);
1823 if (dev_tmp) {
1824 if (pci_is_pcie(dev_tmp)) {
1825 bus = dev_tmp->subordinate->number;
1826 devfn = 0;
1827 } else {
1828 bus = dev_tmp->bus->number;
1829 devfn = dev_tmp->devfn;
1831 spin_lock_irqsave(&device_domain_lock, flags);
1832 list_for_each_entry(info, &device_domain_list, global) {
1833 if (info->segment == segment &&
1834 info->bus == bus && info->devfn == devfn) {
1835 found = info->domain;
1836 break;
1839 spin_unlock_irqrestore(&device_domain_lock, flags);
1840 /* pcie-pci bridge already has a domain, uses it */
1841 if (found) {
1842 domain = found;
1843 goto found_domain;
1847 domain = alloc_domain();
1848 if (!domain)
1849 goto error;
1851 /* Allocate new domain for the device */
1852 drhd = dmar_find_matched_drhd_unit(pdev);
1853 if (!drhd) {
1854 printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
1855 pci_name(pdev));
1856 return NULL;
1858 iommu = drhd->iommu;
1860 ret = iommu_attach_domain(domain, iommu);
1861 if (ret) {
1862 domain_exit(domain);
1863 goto error;
1866 if (domain_init(domain, gaw)) {
1867 domain_exit(domain);
1868 goto error;
1871 /* register pcie-to-pci device */
1872 if (dev_tmp) {
1873 info = alloc_devinfo_mem();
1874 if (!info) {
1875 domain_exit(domain);
1876 goto error;
1878 info->segment = segment;
1879 info->bus = bus;
1880 info->devfn = devfn;
1881 info->dev = NULL;
1882 info->domain = domain;
1883 /* This domain is shared by devices under p2p bridge */
1884 domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES;
1886 /* pcie-to-pci bridge already has a domain, uses it */
1887 found = NULL;
1888 spin_lock_irqsave(&device_domain_lock, flags);
1889 list_for_each_entry(tmp, &device_domain_list, global) {
1890 if (tmp->segment == segment &&
1891 tmp->bus == bus && tmp->devfn == devfn) {
1892 found = tmp->domain;
1893 break;
1896 if (found) {
1897 free_devinfo_mem(info);
1898 domain_exit(domain);
1899 domain = found;
1900 } else {
1901 list_add(&info->link, &domain->devices);
1902 list_add(&info->global, &device_domain_list);
1904 spin_unlock_irqrestore(&device_domain_lock, flags);
1907 found_domain:
1908 info = alloc_devinfo_mem();
1909 if (!info)
1910 goto error;
1911 info->segment = segment;
1912 info->bus = pdev->bus->number;
1913 info->devfn = pdev->devfn;
1914 info->dev = pdev;
1915 info->domain = domain;
1916 spin_lock_irqsave(&device_domain_lock, flags);
1917 /* somebody is fast */
1918 found = find_domain(pdev);
1919 if (found != NULL) {
1920 spin_unlock_irqrestore(&device_domain_lock, flags);
1921 if (found != domain) {
1922 domain_exit(domain);
1923 domain = found;
1925 free_devinfo_mem(info);
1926 return domain;
1928 list_add(&info->link, &domain->devices);
1929 list_add(&info->global, &device_domain_list);
1930 pdev->dev.archdata.iommu = info;
1931 spin_unlock_irqrestore(&device_domain_lock, flags);
1932 return domain;
1933 error:
1934 /* recheck it here, maybe others set it */
1935 return find_domain(pdev);
1938 static int iommu_identity_mapping;
1939 #define IDENTMAP_ALL 1
1940 #define IDENTMAP_GFX 2
1941 #define IDENTMAP_AZALIA 4
1943 static int iommu_domain_identity_map(struct dmar_domain *domain,
1944 unsigned long long start,
1945 unsigned long long end)
1947 unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
1948 unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
1950 if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
1951 dma_to_mm_pfn(last_vpfn))) {
1952 printk(KERN_ERR "IOMMU: reserve iova failed\n");
1953 return -ENOMEM;
1956 pr_debug("Mapping reserved region %llx-%llx for domain %d\n",
1957 start, end, domain->id);
1959 * RMRR range might have overlap with physical memory range,
1960 * clear it first
1962 dma_pte_clear_range(domain, first_vpfn, last_vpfn);
1964 return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
1965 last_vpfn - first_vpfn + 1,
1966 DMA_PTE_READ|DMA_PTE_WRITE);
1969 static int iommu_prepare_identity_map(struct pci_dev *pdev,
1970 unsigned long long start,
1971 unsigned long long end)
1973 struct dmar_domain *domain;
1974 int ret;
1976 domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
1977 if (!domain)
1978 return -ENOMEM;
1980 /* For _hardware_ passthrough, don't bother. But for software
1981 passthrough, we do it anyway -- it may indicate a memory
1982 range which is reserved in E820, so which didn't get set
1983 up to start with in si_domain */
1984 if (domain == si_domain && hw_pass_through) {
1985 printk("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
1986 pci_name(pdev), start, end);
1987 return 0;
1990 printk(KERN_INFO
1991 "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
1992 pci_name(pdev), start, end);
1994 if (end >> agaw_to_width(domain->agaw)) {
1995 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
1996 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
1997 agaw_to_width(domain->agaw),
1998 dmi_get_system_info(DMI_BIOS_VENDOR),
1999 dmi_get_system_info(DMI_BIOS_VERSION),
2000 dmi_get_system_info(DMI_PRODUCT_VERSION));
2001 ret = -EIO;
2002 goto error;
2005 ret = iommu_domain_identity_map(domain, start, end);
2006 if (ret)
2007 goto error;
2009 /* context entry init */
2010 ret = domain_context_mapping(domain, pdev, CONTEXT_TT_MULTI_LEVEL);
2011 if (ret)
2012 goto error;
2014 return 0;
2016 error:
2017 domain_exit(domain);
2018 return ret;
2021 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2022 struct pci_dev *pdev)
2024 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2025 return 0;
2026 return iommu_prepare_identity_map(pdev, rmrr->base_address,
2027 rmrr->end_address + 1);
2030 #ifdef CONFIG_DMAR_FLOPPY_WA
2031 static inline void iommu_prepare_isa(void)
2033 struct pci_dev *pdev;
2034 int ret;
2036 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2037 if (!pdev)
2038 return;
2040 printk(KERN_INFO "IOMMU: Prepare 0-16MiB unity mapping for LPC\n");
2041 ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024);
2043 if (ret)
2044 printk(KERN_ERR "IOMMU: Failed to create 0-16MiB identity map; "
2045 "floppy might not work\n");
2048 #else
2049 static inline void iommu_prepare_isa(void)
2051 return;
2053 #endif /* !CONFIG_DMAR_FLPY_WA */
2055 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2057 static int __init si_domain_work_fn(unsigned long start_pfn,
2058 unsigned long end_pfn, void *datax)
2060 int *ret = datax;
2062 *ret = iommu_domain_identity_map(si_domain,
2063 (uint64_t)start_pfn << PAGE_SHIFT,
2064 (uint64_t)end_pfn << PAGE_SHIFT);
2065 return *ret;
2069 static int __init si_domain_init(int hw)
2071 struct dmar_drhd_unit *drhd;
2072 struct intel_iommu *iommu;
2073 int nid, ret = 0;
2075 si_domain = alloc_domain();
2076 if (!si_domain)
2077 return -EFAULT;
2079 pr_debug("Identity mapping domain is domain %d\n", si_domain->id);
2081 for_each_active_iommu(iommu, drhd) {
2082 ret = iommu_attach_domain(si_domain, iommu);
2083 if (ret) {
2084 domain_exit(si_domain);
2085 return -EFAULT;
2089 if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2090 domain_exit(si_domain);
2091 return -EFAULT;
2094 si_domain->flags = DOMAIN_FLAG_STATIC_IDENTITY;
2096 if (hw)
2097 return 0;
2099 for_each_online_node(nid) {
2100 work_with_active_regions(nid, si_domain_work_fn, &ret);
2101 if (ret)
2102 return ret;
2105 return 0;
2108 static void domain_remove_one_dev_info(struct dmar_domain *domain,
2109 struct pci_dev *pdev);
2110 static int identity_mapping(struct pci_dev *pdev)
2112 struct device_domain_info *info;
2114 if (likely(!iommu_identity_mapping))
2115 return 0;
2118 list_for_each_entry(info, &si_domain->devices, link)
2119 if (info->dev == pdev)
2120 return 1;
2121 return 0;
2124 static int domain_add_dev_info(struct dmar_domain *domain,
2125 struct pci_dev *pdev,
2126 int translation)
2128 struct device_domain_info *info;
2129 unsigned long flags;
2130 int ret;
2132 info = alloc_devinfo_mem();
2133 if (!info)
2134 return -ENOMEM;
2136 ret = domain_context_mapping(domain, pdev, translation);
2137 if (ret) {
2138 free_devinfo_mem(info);
2139 return ret;
2142 info->segment = pci_domain_nr(pdev->bus);
2143 info->bus = pdev->bus->number;
2144 info->devfn = pdev->devfn;
2145 info->dev = pdev;
2146 info->domain = domain;
2148 spin_lock_irqsave(&device_domain_lock, flags);
2149 list_add(&info->link, &domain->devices);
2150 list_add(&info->global, &device_domain_list);
2151 pdev->dev.archdata.iommu = info;
2152 spin_unlock_irqrestore(&device_domain_lock, flags);
2154 return 0;
2157 static int iommu_should_identity_map(struct pci_dev *pdev, int startup)
2159 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2160 return 1;
2162 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2163 return 1;
2165 if (!(iommu_identity_mapping & IDENTMAP_ALL))
2166 return 0;
2169 * We want to start off with all devices in the 1:1 domain, and
2170 * take them out later if we find they can't access all of memory.
2172 * However, we can't do this for PCI devices behind bridges,
2173 * because all PCI devices behind the same bridge will end up
2174 * with the same source-id on their transactions.
2176 * Practically speaking, we can't change things around for these
2177 * devices at run-time, because we can't be sure there'll be no
2178 * DMA transactions in flight for any of their siblings.
2180 * So PCI devices (unless they're on the root bus) as well as
2181 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2182 * the 1:1 domain, just in _case_ one of their siblings turns out
2183 * not to be able to map all of memory.
2185 if (!pci_is_pcie(pdev)) {
2186 if (!pci_is_root_bus(pdev->bus))
2187 return 0;
2188 if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2189 return 0;
2190 } else if (pdev->pcie_type == PCI_EXP_TYPE_PCI_BRIDGE)
2191 return 0;
2194 * At boot time, we don't yet know if devices will be 64-bit capable.
2195 * Assume that they will -- if they turn out not to be, then we can
2196 * take them out of the 1:1 domain later.
2198 if (!startup)
2199 return pdev->dma_mask > DMA_BIT_MASK(32);
2201 return 1;
2204 static int __init iommu_prepare_static_identity_mapping(int hw)
2206 struct pci_dev *pdev = NULL;
2207 int ret;
2209 ret = si_domain_init(hw);
2210 if (ret)
2211 return -EFAULT;
2213 for_each_pci_dev(pdev) {
2214 if (iommu_should_identity_map(pdev, 1)) {
2215 printk(KERN_INFO "IOMMU: %s identity mapping for device %s\n",
2216 hw ? "hardware" : "software", pci_name(pdev));
2218 ret = domain_add_dev_info(si_domain, pdev,
2219 hw ? CONTEXT_TT_PASS_THROUGH :
2220 CONTEXT_TT_MULTI_LEVEL);
2221 if (ret)
2222 return ret;
2226 return 0;
2229 int __init init_dmars(void)
2231 struct dmar_drhd_unit *drhd;
2232 struct dmar_rmrr_unit *rmrr;
2233 struct pci_dev *pdev;
2234 struct intel_iommu *iommu;
2235 int i, ret;
2238 * for each drhd
2239 * allocate root
2240 * initialize and program root entry to not present
2241 * endfor
2243 for_each_drhd_unit(drhd) {
2244 g_num_of_iommus++;
2246 * lock not needed as this is only incremented in the single
2247 * threaded kernel __init code path all other access are read
2248 * only
2252 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
2253 GFP_KERNEL);
2254 if (!g_iommus) {
2255 printk(KERN_ERR "Allocating global iommu array failed\n");
2256 ret = -ENOMEM;
2257 goto error;
2260 deferred_flush = kzalloc(g_num_of_iommus *
2261 sizeof(struct deferred_flush_tables), GFP_KERNEL);
2262 if (!deferred_flush) {
2263 ret = -ENOMEM;
2264 goto error;
2267 for_each_drhd_unit(drhd) {
2268 if (drhd->ignored)
2269 continue;
2271 iommu = drhd->iommu;
2272 g_iommus[iommu->seq_id] = iommu;
2274 ret = iommu_init_domains(iommu);
2275 if (ret)
2276 goto error;
2279 * TBD:
2280 * we could share the same root & context tables
2281 * amoung all IOMMU's. Need to Split it later.
2283 ret = iommu_alloc_root_entry(iommu);
2284 if (ret) {
2285 printk(KERN_ERR "IOMMU: allocate root entry failed\n");
2286 goto error;
2288 if (!ecap_pass_through(iommu->ecap))
2289 hw_pass_through = 0;
2293 * Start from the sane iommu hardware state.
2295 for_each_drhd_unit(drhd) {
2296 if (drhd->ignored)
2297 continue;
2299 iommu = drhd->iommu;
2302 * If the queued invalidation is already initialized by us
2303 * (for example, while enabling interrupt-remapping) then
2304 * we got the things already rolling from a sane state.
2306 if (iommu->qi)
2307 continue;
2310 * Clear any previous faults.
2312 dmar_fault(-1, iommu);
2314 * Disable queued invalidation if supported and already enabled
2315 * before OS handover.
2317 dmar_disable_qi(iommu);
2320 for_each_drhd_unit(drhd) {
2321 if (drhd->ignored)
2322 continue;
2324 iommu = drhd->iommu;
2326 if (dmar_enable_qi(iommu)) {
2328 * Queued Invalidate not enabled, use Register Based
2329 * Invalidate
2331 iommu->flush.flush_context = __iommu_flush_context;
2332 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2333 printk(KERN_INFO "IOMMU 0x%Lx: using Register based "
2334 "invalidation\n",
2335 (unsigned long long)drhd->reg_base_addr);
2336 } else {
2337 iommu->flush.flush_context = qi_flush_context;
2338 iommu->flush.flush_iotlb = qi_flush_iotlb;
2339 printk(KERN_INFO "IOMMU 0x%Lx: using Queued "
2340 "invalidation\n",
2341 (unsigned long long)drhd->reg_base_addr);
2345 if (iommu_pass_through)
2346 iommu_identity_mapping |= IDENTMAP_ALL;
2348 #ifdef CONFIG_DMAR_BROKEN_GFX_WA
2349 iommu_identity_mapping |= IDENTMAP_GFX;
2350 #endif
2352 check_tylersburg_isoch();
2355 * If pass through is not set or not enabled, setup context entries for
2356 * identity mappings for rmrr, gfx, and isa and may fall back to static
2357 * identity mapping if iommu_identity_mapping is set.
2359 if (iommu_identity_mapping) {
2360 ret = iommu_prepare_static_identity_mapping(hw_pass_through);
2361 if (ret) {
2362 printk(KERN_CRIT "Failed to setup IOMMU pass-through\n");
2363 goto error;
2367 * For each rmrr
2368 * for each dev attached to rmrr
2369 * do
2370 * locate drhd for dev, alloc domain for dev
2371 * allocate free domain
2372 * allocate page table entries for rmrr
2373 * if context not allocated for bus
2374 * allocate and init context
2375 * set present in root table for this bus
2376 * init context with domain, translation etc
2377 * endfor
2378 * endfor
2380 printk(KERN_INFO "IOMMU: Setting RMRR:\n");
2381 for_each_rmrr_units(rmrr) {
2382 for (i = 0; i < rmrr->devices_cnt; i++) {
2383 pdev = rmrr->devices[i];
2385 * some BIOS lists non-exist devices in DMAR
2386 * table.
2388 if (!pdev)
2389 continue;
2390 ret = iommu_prepare_rmrr_dev(rmrr, pdev);
2391 if (ret)
2392 printk(KERN_ERR
2393 "IOMMU: mapping reserved region failed\n");
2397 iommu_prepare_isa();
2400 * for each drhd
2401 * enable fault log
2402 * global invalidate context cache
2403 * global invalidate iotlb
2404 * enable translation
2406 for_each_drhd_unit(drhd) {
2407 if (drhd->ignored)
2408 continue;
2409 iommu = drhd->iommu;
2411 iommu_flush_write_buffer(iommu);
2413 ret = dmar_set_interrupt(iommu);
2414 if (ret)
2415 goto error;
2417 iommu_set_root_entry(iommu);
2419 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
2420 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2422 ret = iommu_enable_translation(iommu);
2423 if (ret)
2424 goto error;
2426 iommu_disable_protect_mem_regions(iommu);
2429 return 0;
2430 error:
2431 for_each_drhd_unit(drhd) {
2432 if (drhd->ignored)
2433 continue;
2434 iommu = drhd->iommu;
2435 free_iommu(iommu);
2437 kfree(g_iommus);
2438 return ret;
2441 /* This takes a number of _MM_ pages, not VTD pages */
2442 static struct iova *intel_alloc_iova(struct device *dev,
2443 struct dmar_domain *domain,
2444 unsigned long nrpages, uint64_t dma_mask)
2446 struct pci_dev *pdev = to_pci_dev(dev);
2447 struct iova *iova = NULL;
2449 /* Restrict dma_mask to the width that the iommu can handle */
2450 dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
2452 if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
2454 * First try to allocate an io virtual address in
2455 * DMA_BIT_MASK(32) and if that fails then try allocating
2456 * from higher range
2458 iova = alloc_iova(&domain->iovad, nrpages,
2459 IOVA_PFN(DMA_BIT_MASK(32)), 1);
2460 if (iova)
2461 return iova;
2463 iova = alloc_iova(&domain->iovad, nrpages, IOVA_PFN(dma_mask), 1);
2464 if (unlikely(!iova)) {
2465 printk(KERN_ERR "Allocating %ld-page iova for %s failed",
2466 nrpages, pci_name(pdev));
2467 return NULL;
2470 return iova;
2473 static struct dmar_domain *__get_valid_domain_for_dev(struct pci_dev *pdev)
2475 struct dmar_domain *domain;
2476 int ret;
2478 domain = get_domain_for_dev(pdev,
2479 DEFAULT_DOMAIN_ADDRESS_WIDTH);
2480 if (!domain) {
2481 printk(KERN_ERR
2482 "Allocating domain for %s failed", pci_name(pdev));
2483 return NULL;
2486 /* make sure context mapping is ok */
2487 if (unlikely(!domain_context_mapped(pdev))) {
2488 ret = domain_context_mapping(domain, pdev,
2489 CONTEXT_TT_MULTI_LEVEL);
2490 if (ret) {
2491 printk(KERN_ERR
2492 "Domain context map for %s failed",
2493 pci_name(pdev));
2494 return NULL;
2498 return domain;
2501 static inline struct dmar_domain *get_valid_domain_for_dev(struct pci_dev *dev)
2503 struct device_domain_info *info;
2505 /* No lock here, assumes no domain exit in normal case */
2506 info = dev->dev.archdata.iommu;
2507 if (likely(info))
2508 return info->domain;
2510 return __get_valid_domain_for_dev(dev);
2513 static int iommu_dummy(struct pci_dev *pdev)
2515 return pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
2518 /* Check if the pdev needs to go through non-identity map and unmap process.*/
2519 static int iommu_no_mapping(struct device *dev)
2521 struct pci_dev *pdev;
2522 int found;
2524 if (unlikely(dev->bus != &pci_bus_type))
2525 return 1;
2527 pdev = to_pci_dev(dev);
2528 if (iommu_dummy(pdev))
2529 return 1;
2531 if (!iommu_identity_mapping)
2532 return 0;
2534 found = identity_mapping(pdev);
2535 if (found) {
2536 if (iommu_should_identity_map(pdev, 0))
2537 return 1;
2538 else {
2540 * 32 bit DMA is removed from si_domain and fall back
2541 * to non-identity mapping.
2543 domain_remove_one_dev_info(si_domain, pdev);
2544 printk(KERN_INFO "32bit %s uses non-identity mapping\n",
2545 pci_name(pdev));
2546 return 0;
2548 } else {
2550 * In case of a detached 64 bit DMA device from vm, the device
2551 * is put into si_domain for identity mapping.
2553 if (iommu_should_identity_map(pdev, 0)) {
2554 int ret;
2555 ret = domain_add_dev_info(si_domain, pdev,
2556 hw_pass_through ?
2557 CONTEXT_TT_PASS_THROUGH :
2558 CONTEXT_TT_MULTI_LEVEL);
2559 if (!ret) {
2560 printk(KERN_INFO "64bit %s uses identity mapping\n",
2561 pci_name(pdev));
2562 return 1;
2567 return 0;
2570 static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr,
2571 size_t size, int dir, u64 dma_mask)
2573 struct pci_dev *pdev = to_pci_dev(hwdev);
2574 struct dmar_domain *domain;
2575 phys_addr_t start_paddr;
2576 struct iova *iova;
2577 int prot = 0;
2578 int ret;
2579 struct intel_iommu *iommu;
2580 unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
2582 BUG_ON(dir == DMA_NONE);
2584 if (iommu_no_mapping(hwdev))
2585 return paddr;
2587 domain = get_valid_domain_for_dev(pdev);
2588 if (!domain)
2589 return 0;
2591 iommu = domain_get_iommu(domain);
2592 size = aligned_nrpages(paddr, size);
2594 iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size),
2595 pdev->dma_mask);
2596 if (!iova)
2597 goto error;
2600 * Check if DMAR supports zero-length reads on write only
2601 * mappings..
2603 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2604 !cap_zlr(iommu->cap))
2605 prot |= DMA_PTE_READ;
2606 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2607 prot |= DMA_PTE_WRITE;
2609 * paddr - (paddr + size) might be partial page, we should map the whole
2610 * page. Note: if two part of one page are separately mapped, we
2611 * might have two guest_addr mapping to the same host paddr, but this
2612 * is not a big problem
2614 ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova->pfn_lo),
2615 mm_to_dma_pfn(paddr_pfn), size, prot);
2616 if (ret)
2617 goto error;
2619 /* it's a non-present to present mapping. Only flush if caching mode */
2620 if (cap_caching_mode(iommu->cap))
2621 iommu_flush_iotlb_psi(iommu, 0, mm_to_dma_pfn(iova->pfn_lo), size);
2622 else
2623 iommu_flush_write_buffer(iommu);
2625 start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
2626 start_paddr += paddr & ~PAGE_MASK;
2627 return start_paddr;
2629 error:
2630 if (iova)
2631 __free_iova(&domain->iovad, iova);
2632 printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n",
2633 pci_name(pdev), size, (unsigned long long)paddr, dir);
2634 return 0;
2637 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
2638 unsigned long offset, size_t size,
2639 enum dma_data_direction dir,
2640 struct dma_attrs *attrs)
2642 return __intel_map_single(dev, page_to_phys(page) + offset, size,
2643 dir, to_pci_dev(dev)->dma_mask);
2646 static void flush_unmaps(void)
2648 int i, j;
2650 timer_on = 0;
2652 /* just flush them all */
2653 for (i = 0; i < g_num_of_iommus; i++) {
2654 struct intel_iommu *iommu = g_iommus[i];
2655 if (!iommu)
2656 continue;
2658 if (!deferred_flush[i].next)
2659 continue;
2661 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2662 DMA_TLB_GLOBAL_FLUSH);
2663 for (j = 0; j < deferred_flush[i].next; j++) {
2664 unsigned long mask;
2665 struct iova *iova = deferred_flush[i].iova[j];
2667 mask = ilog2(mm_to_dma_pfn(iova->pfn_hi - iova->pfn_lo + 1));
2668 iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
2669 (uint64_t)iova->pfn_lo << PAGE_SHIFT, mask);
2670 __free_iova(&deferred_flush[i].domain[j]->iovad, iova);
2672 deferred_flush[i].next = 0;
2675 list_size = 0;
2678 static void flush_unmaps_timeout(unsigned long data)
2680 unsigned long flags;
2682 spin_lock_irqsave(&async_umap_flush_lock, flags);
2683 flush_unmaps();
2684 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2687 static void add_unmap(struct dmar_domain *dom, struct iova *iova)
2689 unsigned long flags;
2690 int next, iommu_id;
2691 struct intel_iommu *iommu;
2693 spin_lock_irqsave(&async_umap_flush_lock, flags);
2694 if (list_size == HIGH_WATER_MARK)
2695 flush_unmaps();
2697 iommu = domain_get_iommu(dom);
2698 iommu_id = iommu->seq_id;
2700 next = deferred_flush[iommu_id].next;
2701 deferred_flush[iommu_id].domain[next] = dom;
2702 deferred_flush[iommu_id].iova[next] = iova;
2703 deferred_flush[iommu_id].next++;
2705 if (!timer_on) {
2706 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
2707 timer_on = 1;
2709 list_size++;
2710 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2713 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
2714 size_t size, enum dma_data_direction dir,
2715 struct dma_attrs *attrs)
2717 struct pci_dev *pdev = to_pci_dev(dev);
2718 struct dmar_domain *domain;
2719 unsigned long start_pfn, last_pfn;
2720 struct iova *iova;
2721 struct intel_iommu *iommu;
2723 if (iommu_no_mapping(dev))
2724 return;
2726 domain = find_domain(pdev);
2727 BUG_ON(!domain);
2729 iommu = domain_get_iommu(domain);
2731 iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
2732 if (WARN_ONCE(!iova, "Driver unmaps unmatched page at PFN %llx\n",
2733 (unsigned long long)dev_addr))
2734 return;
2736 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
2737 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
2739 pr_debug("Device %s unmapping: pfn %lx-%lx\n",
2740 pci_name(pdev), start_pfn, last_pfn);
2742 /* clear the whole page */
2743 dma_pte_clear_range(domain, start_pfn, last_pfn);
2745 /* free page tables */
2746 dma_pte_free_pagetable(domain, start_pfn, last_pfn);
2748 if (intel_iommu_strict) {
2749 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
2750 last_pfn - start_pfn + 1);
2751 /* free iova */
2752 __free_iova(&domain->iovad, iova);
2753 } else {
2754 add_unmap(domain, iova);
2756 * queue up the release of the unmap to save the 1/6th of the
2757 * cpu used up by the iotlb flush operation...
2762 static void *intel_alloc_coherent(struct device *hwdev, size_t size,
2763 dma_addr_t *dma_handle, gfp_t flags)
2765 void *vaddr;
2766 int order;
2768 size = PAGE_ALIGN(size);
2769 order = get_order(size);
2771 if (!iommu_no_mapping(hwdev))
2772 flags &= ~(GFP_DMA | GFP_DMA32);
2773 else if (hwdev->coherent_dma_mask < dma_get_required_mask(hwdev)) {
2774 if (hwdev->coherent_dma_mask < DMA_BIT_MASK(32))
2775 flags |= GFP_DMA;
2776 else
2777 flags |= GFP_DMA32;
2780 vaddr = (void *)__get_free_pages(flags, order);
2781 if (!vaddr)
2782 return NULL;
2783 memset(vaddr, 0, size);
2785 *dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size,
2786 DMA_BIDIRECTIONAL,
2787 hwdev->coherent_dma_mask);
2788 if (*dma_handle)
2789 return vaddr;
2790 free_pages((unsigned long)vaddr, order);
2791 return NULL;
2794 static void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr,
2795 dma_addr_t dma_handle)
2797 int order;
2799 size = PAGE_ALIGN(size);
2800 order = get_order(size);
2802 intel_unmap_page(hwdev, dma_handle, size, DMA_BIDIRECTIONAL, NULL);
2803 free_pages((unsigned long)vaddr, order);
2806 static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist,
2807 int nelems, enum dma_data_direction dir,
2808 struct dma_attrs *attrs)
2810 struct pci_dev *pdev = to_pci_dev(hwdev);
2811 struct dmar_domain *domain;
2812 unsigned long start_pfn, last_pfn;
2813 struct iova *iova;
2814 struct intel_iommu *iommu;
2816 if (iommu_no_mapping(hwdev))
2817 return;
2819 domain = find_domain(pdev);
2820 BUG_ON(!domain);
2822 iommu = domain_get_iommu(domain);
2824 iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
2825 if (WARN_ONCE(!iova, "Driver unmaps unmatched sglist at PFN %llx\n",
2826 (unsigned long long)sglist[0].dma_address))
2827 return;
2829 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
2830 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
2832 /* clear the whole page */
2833 dma_pte_clear_range(domain, start_pfn, last_pfn);
2835 /* free page tables */
2836 dma_pte_free_pagetable(domain, start_pfn, last_pfn);
2838 if (intel_iommu_strict) {
2839 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
2840 last_pfn - start_pfn + 1);
2841 /* free iova */
2842 __free_iova(&domain->iovad, iova);
2843 } else {
2844 add_unmap(domain, iova);
2846 * queue up the release of the unmap to save the 1/6th of the
2847 * cpu used up by the iotlb flush operation...
2852 static int intel_nontranslate_map_sg(struct device *hddev,
2853 struct scatterlist *sglist, int nelems, int dir)
2855 int i;
2856 struct scatterlist *sg;
2858 for_each_sg(sglist, sg, nelems, i) {
2859 BUG_ON(!sg_page(sg));
2860 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
2861 sg->dma_length = sg->length;
2863 return nelems;
2866 static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems,
2867 enum dma_data_direction dir, struct dma_attrs *attrs)
2869 int i;
2870 struct pci_dev *pdev = to_pci_dev(hwdev);
2871 struct dmar_domain *domain;
2872 size_t size = 0;
2873 int prot = 0;
2874 size_t offset_pfn = 0;
2875 struct iova *iova = NULL;
2876 int ret;
2877 struct scatterlist *sg;
2878 unsigned long start_vpfn;
2879 struct intel_iommu *iommu;
2881 BUG_ON(dir == DMA_NONE);
2882 if (iommu_no_mapping(hwdev))
2883 return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir);
2885 domain = get_valid_domain_for_dev(pdev);
2886 if (!domain)
2887 return 0;
2889 iommu = domain_get_iommu(domain);
2891 for_each_sg(sglist, sg, nelems, i)
2892 size += aligned_nrpages(sg->offset, sg->length);
2894 iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size),
2895 pdev->dma_mask);
2896 if (!iova) {
2897 sglist->dma_length = 0;
2898 return 0;
2902 * Check if DMAR supports zero-length reads on write only
2903 * mappings..
2905 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2906 !cap_zlr(iommu->cap))
2907 prot |= DMA_PTE_READ;
2908 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2909 prot |= DMA_PTE_WRITE;
2911 start_vpfn = mm_to_dma_pfn(iova->pfn_lo);
2913 ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
2914 if (unlikely(ret)) {
2915 /* clear the page */
2916 dma_pte_clear_range(domain, start_vpfn,
2917 start_vpfn + size - 1);
2918 /* free page tables */
2919 dma_pte_free_pagetable(domain, start_vpfn,
2920 start_vpfn + size - 1);
2921 /* free iova */
2922 __free_iova(&domain->iovad, iova);
2923 return 0;
2926 /* it's a non-present to present mapping. Only flush if caching mode */
2927 if (cap_caching_mode(iommu->cap))
2928 iommu_flush_iotlb_psi(iommu, 0, start_vpfn, offset_pfn);
2929 else
2930 iommu_flush_write_buffer(iommu);
2932 return nelems;
2935 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
2937 return !dma_addr;
2940 struct dma_map_ops intel_dma_ops = {
2941 .alloc_coherent = intel_alloc_coherent,
2942 .free_coherent = intel_free_coherent,
2943 .map_sg = intel_map_sg,
2944 .unmap_sg = intel_unmap_sg,
2945 .map_page = intel_map_page,
2946 .unmap_page = intel_unmap_page,
2947 .mapping_error = intel_mapping_error,
2950 static inline int iommu_domain_cache_init(void)
2952 int ret = 0;
2954 iommu_domain_cache = kmem_cache_create("iommu_domain",
2955 sizeof(struct dmar_domain),
2957 SLAB_HWCACHE_ALIGN,
2959 NULL);
2960 if (!iommu_domain_cache) {
2961 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
2962 ret = -ENOMEM;
2965 return ret;
2968 static inline int iommu_devinfo_cache_init(void)
2970 int ret = 0;
2972 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
2973 sizeof(struct device_domain_info),
2975 SLAB_HWCACHE_ALIGN,
2976 NULL);
2977 if (!iommu_devinfo_cache) {
2978 printk(KERN_ERR "Couldn't create devinfo cache\n");
2979 ret = -ENOMEM;
2982 return ret;
2985 static inline int iommu_iova_cache_init(void)
2987 int ret = 0;
2989 iommu_iova_cache = kmem_cache_create("iommu_iova",
2990 sizeof(struct iova),
2992 SLAB_HWCACHE_ALIGN,
2993 NULL);
2994 if (!iommu_iova_cache) {
2995 printk(KERN_ERR "Couldn't create iova cache\n");
2996 ret = -ENOMEM;
2999 return ret;
3002 static int __init iommu_init_mempool(void)
3004 int ret;
3005 ret = iommu_iova_cache_init();
3006 if (ret)
3007 return ret;
3009 ret = iommu_domain_cache_init();
3010 if (ret)
3011 goto domain_error;
3013 ret = iommu_devinfo_cache_init();
3014 if (!ret)
3015 return ret;
3017 kmem_cache_destroy(iommu_domain_cache);
3018 domain_error:
3019 kmem_cache_destroy(iommu_iova_cache);
3021 return -ENOMEM;
3024 static void __init iommu_exit_mempool(void)
3026 kmem_cache_destroy(iommu_devinfo_cache);
3027 kmem_cache_destroy(iommu_domain_cache);
3028 kmem_cache_destroy(iommu_iova_cache);
3032 static void __init init_no_remapping_devices(void)
3034 struct dmar_drhd_unit *drhd;
3036 for_each_drhd_unit(drhd) {
3037 if (!drhd->include_all) {
3038 int i;
3039 for (i = 0; i < drhd->devices_cnt; i++)
3040 if (drhd->devices[i] != NULL)
3041 break;
3042 /* ignore DMAR unit if no pci devices exist */
3043 if (i == drhd->devices_cnt)
3044 drhd->ignored = 1;
3048 if (dmar_map_gfx)
3049 return;
3051 for_each_drhd_unit(drhd) {
3052 int i;
3053 if (drhd->ignored || drhd->include_all)
3054 continue;
3056 for (i = 0; i < drhd->devices_cnt; i++)
3057 if (drhd->devices[i] &&
3058 !IS_GFX_DEVICE(drhd->devices[i]))
3059 break;
3061 if (i < drhd->devices_cnt)
3062 continue;
3064 /* bypass IOMMU if it is just for gfx devices */
3065 drhd->ignored = 1;
3066 for (i = 0; i < drhd->devices_cnt; i++) {
3067 if (!drhd->devices[i])
3068 continue;
3069 drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3074 #ifdef CONFIG_SUSPEND
3075 static int init_iommu_hw(void)
3077 struct dmar_drhd_unit *drhd;
3078 struct intel_iommu *iommu = NULL;
3080 for_each_active_iommu(iommu, drhd)
3081 if (iommu->qi)
3082 dmar_reenable_qi(iommu);
3084 for_each_active_iommu(iommu, drhd) {
3085 iommu_flush_write_buffer(iommu);
3087 iommu_set_root_entry(iommu);
3089 iommu->flush.flush_context(iommu, 0, 0, 0,
3090 DMA_CCMD_GLOBAL_INVL);
3091 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3092 DMA_TLB_GLOBAL_FLUSH);
3093 iommu_enable_translation(iommu);
3094 iommu_disable_protect_mem_regions(iommu);
3097 return 0;
3100 static void iommu_flush_all(void)
3102 struct dmar_drhd_unit *drhd;
3103 struct intel_iommu *iommu;
3105 for_each_active_iommu(iommu, drhd) {
3106 iommu->flush.flush_context(iommu, 0, 0, 0,
3107 DMA_CCMD_GLOBAL_INVL);
3108 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3109 DMA_TLB_GLOBAL_FLUSH);
3113 static int iommu_suspend(struct sys_device *dev, pm_message_t state)
3115 struct dmar_drhd_unit *drhd;
3116 struct intel_iommu *iommu = NULL;
3117 unsigned long flag;
3119 for_each_active_iommu(iommu, drhd) {
3120 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
3121 GFP_ATOMIC);
3122 if (!iommu->iommu_state)
3123 goto nomem;
3126 iommu_flush_all();
3128 for_each_active_iommu(iommu, drhd) {
3129 iommu_disable_translation(iommu);
3131 spin_lock_irqsave(&iommu->register_lock, flag);
3133 iommu->iommu_state[SR_DMAR_FECTL_REG] =
3134 readl(iommu->reg + DMAR_FECTL_REG);
3135 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3136 readl(iommu->reg + DMAR_FEDATA_REG);
3137 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3138 readl(iommu->reg + DMAR_FEADDR_REG);
3139 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3140 readl(iommu->reg + DMAR_FEUADDR_REG);
3142 spin_unlock_irqrestore(&iommu->register_lock, flag);
3144 return 0;
3146 nomem:
3147 for_each_active_iommu(iommu, drhd)
3148 kfree(iommu->iommu_state);
3150 return -ENOMEM;
3153 static int iommu_resume(struct sys_device *dev)
3155 struct dmar_drhd_unit *drhd;
3156 struct intel_iommu *iommu = NULL;
3157 unsigned long flag;
3159 if (init_iommu_hw()) {
3160 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3161 return -EIO;
3164 for_each_active_iommu(iommu, drhd) {
3166 spin_lock_irqsave(&iommu->register_lock, flag);
3168 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3169 iommu->reg + DMAR_FECTL_REG);
3170 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3171 iommu->reg + DMAR_FEDATA_REG);
3172 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3173 iommu->reg + DMAR_FEADDR_REG);
3174 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3175 iommu->reg + DMAR_FEUADDR_REG);
3177 spin_unlock_irqrestore(&iommu->register_lock, flag);
3180 for_each_active_iommu(iommu, drhd)
3181 kfree(iommu->iommu_state);
3183 return 0;
3186 static struct sysdev_class iommu_sysclass = {
3187 .name = "iommu",
3188 .resume = iommu_resume,
3189 .suspend = iommu_suspend,
3192 static struct sys_device device_iommu = {
3193 .cls = &iommu_sysclass,
3196 static int __init init_iommu_sysfs(void)
3198 int error;
3200 error = sysdev_class_register(&iommu_sysclass);
3201 if (error)
3202 return error;
3204 error = sysdev_register(&device_iommu);
3205 if (error)
3206 sysdev_class_unregister(&iommu_sysclass);
3208 return error;
3211 #else
3212 static int __init init_iommu_sysfs(void)
3214 return 0;
3216 #endif /* CONFIG_PM */
3219 * Here we only respond to action of unbound device from driver.
3221 * Added device is not attached to its DMAR domain here yet. That will happen
3222 * when mapping the device to iova.
3224 static int device_notifier(struct notifier_block *nb,
3225 unsigned long action, void *data)
3227 struct device *dev = data;
3228 struct pci_dev *pdev = to_pci_dev(dev);
3229 struct dmar_domain *domain;
3231 domain = find_domain(pdev);
3232 if (!domain)
3233 return 0;
3235 if (action == BUS_NOTIFY_UNBOUND_DRIVER && !iommu_pass_through)
3236 domain_remove_one_dev_info(domain, pdev);
3238 return 0;
3241 static struct notifier_block device_nb = {
3242 .notifier_call = device_notifier,
3245 int __init intel_iommu_init(void)
3247 int ret = 0;
3248 int force_on = 0;
3250 /* VT-d is required for a TXT/tboot launch, so enforce that */
3251 force_on = tboot_force_iommu();
3253 if (dmar_table_init()) {
3254 if (force_on)
3255 panic("tboot: Failed to initialize DMAR table\n");
3256 return -ENODEV;
3259 if (dmar_dev_scope_init()) {
3260 if (force_on)
3261 panic("tboot: Failed to initialize DMAR device scope\n");
3262 return -ENODEV;
3266 * Check the need for DMA-remapping initialization now.
3267 * Above initialization will also be used by Interrupt-remapping.
3269 if (no_iommu || dmar_disabled)
3270 return -ENODEV;
3272 iommu_init_mempool();
3273 dmar_init_reserved_ranges();
3275 init_no_remapping_devices();
3277 ret = init_dmars();
3278 if (ret) {
3279 if (force_on)
3280 panic("tboot: Failed to initialize DMARs\n");
3281 printk(KERN_ERR "IOMMU: dmar init failed\n");
3282 put_iova_domain(&reserved_iova_list);
3283 iommu_exit_mempool();
3284 return ret;
3286 printk(KERN_INFO
3287 "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
3289 init_timer(&unmap_timer);
3290 #ifdef CONFIG_SWIOTLB
3291 swiotlb = 0;
3292 #endif
3293 dma_ops = &intel_dma_ops;
3295 init_iommu_sysfs();
3297 register_iommu(&intel_iommu_ops);
3299 bus_register_notifier(&pci_bus_type, &device_nb);
3301 return 0;
3304 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
3305 struct pci_dev *pdev)
3307 struct pci_dev *tmp, *parent;
3309 if (!iommu || !pdev)
3310 return;
3312 /* dependent device detach */
3313 tmp = pci_find_upstream_pcie_bridge(pdev);
3314 /* Secondary interface's bus number and devfn 0 */
3315 if (tmp) {
3316 parent = pdev->bus->self;
3317 while (parent != tmp) {
3318 iommu_detach_dev(iommu, parent->bus->number,
3319 parent->devfn);
3320 parent = parent->bus->self;
3322 if (pci_is_pcie(tmp)) /* this is a PCIE-to-PCI bridge */
3323 iommu_detach_dev(iommu,
3324 tmp->subordinate->number, 0);
3325 else /* this is a legacy PCI bridge */
3326 iommu_detach_dev(iommu, tmp->bus->number,
3327 tmp->devfn);
3331 static void domain_remove_one_dev_info(struct dmar_domain *domain,
3332 struct pci_dev *pdev)
3334 struct device_domain_info *info;
3335 struct intel_iommu *iommu;
3336 unsigned long flags;
3337 int found = 0;
3338 struct list_head *entry, *tmp;
3340 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3341 pdev->devfn);
3342 if (!iommu)
3343 return;
3345 spin_lock_irqsave(&device_domain_lock, flags);
3346 list_for_each_safe(entry, tmp, &domain->devices) {
3347 info = list_entry(entry, struct device_domain_info, link);
3348 /* No need to compare PCI domain; it has to be the same */
3349 if (info->bus == pdev->bus->number &&
3350 info->devfn == pdev->devfn) {
3351 list_del(&info->link);
3352 list_del(&info->global);
3353 if (info->dev)
3354 info->dev->dev.archdata.iommu = NULL;
3355 spin_unlock_irqrestore(&device_domain_lock, flags);
3357 iommu_disable_dev_iotlb(info);
3358 iommu_detach_dev(iommu, info->bus, info->devfn);
3359 iommu_detach_dependent_devices(iommu, pdev);
3360 free_devinfo_mem(info);
3362 spin_lock_irqsave(&device_domain_lock, flags);
3364 if (found)
3365 break;
3366 else
3367 continue;
3370 /* if there is no other devices under the same iommu
3371 * owned by this domain, clear this iommu in iommu_bmp
3372 * update iommu count and coherency
3374 if (iommu == device_to_iommu(info->segment, info->bus,
3375 info->devfn))
3376 found = 1;
3379 if (found == 0) {
3380 unsigned long tmp_flags;
3381 spin_lock_irqsave(&domain->iommu_lock, tmp_flags);
3382 clear_bit(iommu->seq_id, &domain->iommu_bmp);
3383 domain->iommu_count--;
3384 domain_update_iommu_cap(domain);
3385 spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags);
3388 spin_unlock_irqrestore(&device_domain_lock, flags);
3391 static void vm_domain_remove_all_dev_info(struct dmar_domain *domain)
3393 struct device_domain_info *info;
3394 struct intel_iommu *iommu;
3395 unsigned long flags1, flags2;
3397 spin_lock_irqsave(&device_domain_lock, flags1);
3398 while (!list_empty(&domain->devices)) {
3399 info = list_entry(domain->devices.next,
3400 struct device_domain_info, link);
3401 list_del(&info->link);
3402 list_del(&info->global);
3403 if (info->dev)
3404 info->dev->dev.archdata.iommu = NULL;
3406 spin_unlock_irqrestore(&device_domain_lock, flags1);
3408 iommu_disable_dev_iotlb(info);
3409 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
3410 iommu_detach_dev(iommu, info->bus, info->devfn);
3411 iommu_detach_dependent_devices(iommu, info->dev);
3413 /* clear this iommu in iommu_bmp, update iommu count
3414 * and capabilities
3416 spin_lock_irqsave(&domain->iommu_lock, flags2);
3417 if (test_and_clear_bit(iommu->seq_id,
3418 &domain->iommu_bmp)) {
3419 domain->iommu_count--;
3420 domain_update_iommu_cap(domain);
3422 spin_unlock_irqrestore(&domain->iommu_lock, flags2);
3424 free_devinfo_mem(info);
3425 spin_lock_irqsave(&device_domain_lock, flags1);
3427 spin_unlock_irqrestore(&device_domain_lock, flags1);
3430 /* domain id for virtual machine, it won't be set in context */
3431 static unsigned long vm_domid;
3433 static int vm_domain_min_agaw(struct dmar_domain *domain)
3435 int i;
3436 int min_agaw = domain->agaw;
3438 i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
3439 for (; i < g_num_of_iommus; ) {
3440 if (min_agaw > g_iommus[i]->agaw)
3441 min_agaw = g_iommus[i]->agaw;
3443 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
3446 return min_agaw;
3449 static struct dmar_domain *iommu_alloc_vm_domain(void)
3451 struct dmar_domain *domain;
3453 domain = alloc_domain_mem();
3454 if (!domain)
3455 return NULL;
3457 domain->id = vm_domid++;
3458 memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
3459 domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE;
3461 return domain;
3464 static int md_domain_init(struct dmar_domain *domain, int guest_width)
3466 int adjust_width;
3468 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
3469 spin_lock_init(&domain->iommu_lock);
3471 domain_reserve_special_ranges(domain);
3473 /* calculate AGAW */
3474 domain->gaw = guest_width;
3475 adjust_width = guestwidth_to_adjustwidth(guest_width);
3476 domain->agaw = width_to_agaw(adjust_width);
3478 INIT_LIST_HEAD(&domain->devices);
3480 domain->iommu_count = 0;
3481 domain->iommu_coherency = 0;
3482 domain->iommu_snooping = 0;
3483 domain->max_addr = 0;
3485 /* always allocate the top pgd */
3486 domain->pgd = (struct dma_pte *)alloc_pgtable_page();
3487 if (!domain->pgd)
3488 return -ENOMEM;
3489 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
3490 return 0;
3493 static void iommu_free_vm_domain(struct dmar_domain *domain)
3495 unsigned long flags;
3496 struct dmar_drhd_unit *drhd;
3497 struct intel_iommu *iommu;
3498 unsigned long i;
3499 unsigned long ndomains;
3501 for_each_drhd_unit(drhd) {
3502 if (drhd->ignored)
3503 continue;
3504 iommu = drhd->iommu;
3506 ndomains = cap_ndoms(iommu->cap);
3507 i = find_first_bit(iommu->domain_ids, ndomains);
3508 for (; i < ndomains; ) {
3509 if (iommu->domains[i] == domain) {
3510 spin_lock_irqsave(&iommu->lock, flags);
3511 clear_bit(i, iommu->domain_ids);
3512 iommu->domains[i] = NULL;
3513 spin_unlock_irqrestore(&iommu->lock, flags);
3514 break;
3516 i = find_next_bit(iommu->domain_ids, ndomains, i+1);
3521 static void vm_domain_exit(struct dmar_domain *domain)
3523 /* Domain 0 is reserved, so dont process it */
3524 if (!domain)
3525 return;
3527 vm_domain_remove_all_dev_info(domain);
3528 /* destroy iovas */
3529 put_iova_domain(&domain->iovad);
3531 /* clear ptes */
3532 dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3534 /* free page tables */
3535 dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3537 iommu_free_vm_domain(domain);
3538 free_domain_mem(domain);
3541 static int intel_iommu_domain_init(struct iommu_domain *domain)
3543 struct dmar_domain *dmar_domain;
3545 dmar_domain = iommu_alloc_vm_domain();
3546 if (!dmar_domain) {
3547 printk(KERN_ERR
3548 "intel_iommu_domain_init: dmar_domain == NULL\n");
3549 return -ENOMEM;
3551 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
3552 printk(KERN_ERR
3553 "intel_iommu_domain_init() failed\n");
3554 vm_domain_exit(dmar_domain);
3555 return -ENOMEM;
3557 domain->priv = dmar_domain;
3559 return 0;
3562 static void intel_iommu_domain_destroy(struct iommu_domain *domain)
3564 struct dmar_domain *dmar_domain = domain->priv;
3566 domain->priv = NULL;
3567 vm_domain_exit(dmar_domain);
3570 static int intel_iommu_attach_device(struct iommu_domain *domain,
3571 struct device *dev)
3573 struct dmar_domain *dmar_domain = domain->priv;
3574 struct pci_dev *pdev = to_pci_dev(dev);
3575 struct intel_iommu *iommu;
3576 int addr_width;
3577 u64 end;
3579 /* normally pdev is not mapped */
3580 if (unlikely(domain_context_mapped(pdev))) {
3581 struct dmar_domain *old_domain;
3583 old_domain = find_domain(pdev);
3584 if (old_domain) {
3585 if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
3586 dmar_domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)
3587 domain_remove_one_dev_info(old_domain, pdev);
3588 else
3589 domain_remove_dev_info(old_domain);
3593 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3594 pdev->devfn);
3595 if (!iommu)
3596 return -ENODEV;
3598 /* check if this iommu agaw is sufficient for max mapped address */
3599 addr_width = agaw_to_width(iommu->agaw);
3600 end = DOMAIN_MAX_ADDR(addr_width);
3601 end = end & VTD_PAGE_MASK;
3602 if (end < dmar_domain->max_addr) {
3603 printk(KERN_ERR "%s: iommu agaw (%d) is not "
3604 "sufficient for the mapped address (%llx)\n",
3605 __func__, iommu->agaw, dmar_domain->max_addr);
3606 return -EFAULT;
3609 return domain_add_dev_info(dmar_domain, pdev, CONTEXT_TT_MULTI_LEVEL);
3612 static void intel_iommu_detach_device(struct iommu_domain *domain,
3613 struct device *dev)
3615 struct dmar_domain *dmar_domain = domain->priv;
3616 struct pci_dev *pdev = to_pci_dev(dev);
3618 domain_remove_one_dev_info(dmar_domain, pdev);
3621 static int intel_iommu_map_range(struct iommu_domain *domain,
3622 unsigned long iova, phys_addr_t hpa,
3623 size_t size, int iommu_prot)
3625 struct dmar_domain *dmar_domain = domain->priv;
3626 u64 max_addr;
3627 int addr_width;
3628 int prot = 0;
3629 int ret;
3631 if (iommu_prot & IOMMU_READ)
3632 prot |= DMA_PTE_READ;
3633 if (iommu_prot & IOMMU_WRITE)
3634 prot |= DMA_PTE_WRITE;
3635 if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
3636 prot |= DMA_PTE_SNP;
3638 max_addr = iova + size;
3639 if (dmar_domain->max_addr < max_addr) {
3640 int min_agaw;
3641 u64 end;
3643 /* check if minimum agaw is sufficient for mapped address */
3644 min_agaw = vm_domain_min_agaw(dmar_domain);
3645 addr_width = agaw_to_width(min_agaw);
3646 end = DOMAIN_MAX_ADDR(addr_width);
3647 end = end & VTD_PAGE_MASK;
3648 if (end < max_addr) {
3649 printk(KERN_ERR "%s: iommu agaw (%d) is not "
3650 "sufficient for the mapped address (%llx)\n",
3651 __func__, min_agaw, max_addr);
3652 return -EFAULT;
3654 dmar_domain->max_addr = max_addr;
3656 /* Round up size to next multiple of PAGE_SIZE, if it and
3657 the low bits of hpa would take us onto the next page */
3658 size = aligned_nrpages(hpa, size);
3659 ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
3660 hpa >> VTD_PAGE_SHIFT, size, prot);
3661 return ret;
3664 static void intel_iommu_unmap_range(struct iommu_domain *domain,
3665 unsigned long iova, size_t size)
3667 struct dmar_domain *dmar_domain = domain->priv;
3669 if (!size)
3670 return;
3672 dma_pte_clear_range(dmar_domain, iova >> VTD_PAGE_SHIFT,
3673 (iova + size - 1) >> VTD_PAGE_SHIFT);
3675 if (dmar_domain->max_addr == iova + size)
3676 dmar_domain->max_addr = iova;
3679 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
3680 unsigned long iova)
3682 struct dmar_domain *dmar_domain = domain->priv;
3683 struct dma_pte *pte;
3684 u64 phys = 0;
3686 pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT);
3687 if (pte)
3688 phys = dma_pte_addr(pte);
3690 return phys;
3693 static int intel_iommu_domain_has_cap(struct iommu_domain *domain,
3694 unsigned long cap)
3696 struct dmar_domain *dmar_domain = domain->priv;
3698 if (cap == IOMMU_CAP_CACHE_COHERENCY)
3699 return dmar_domain->iommu_snooping;
3701 return 0;
3704 static struct iommu_ops intel_iommu_ops = {
3705 .domain_init = intel_iommu_domain_init,
3706 .domain_destroy = intel_iommu_domain_destroy,
3707 .attach_dev = intel_iommu_attach_device,
3708 .detach_dev = intel_iommu_detach_device,
3709 .map = intel_iommu_map_range,
3710 .unmap = intel_iommu_unmap_range,
3711 .iova_to_phys = intel_iommu_iova_to_phys,
3712 .domain_has_cap = intel_iommu_domain_has_cap,
3715 static void __devinit quirk_iommu_rwbf(struct pci_dev *dev)
3718 * Mobile 4 Series Chipset neglects to set RWBF capability,
3719 * but needs it:
3721 printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n");
3722 rwbf_quirk = 1;
3725 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
3727 /* On Tylersburg chipsets, some BIOSes have been known to enable the
3728 ISOCH DMAR unit for the Azalia sound device, but not give it any
3729 TLB entries, which causes it to deadlock. Check for that. We do
3730 this in a function called from init_dmars(), instead of in a PCI
3731 quirk, because we don't want to print the obnoxious "BIOS broken"
3732 message if VT-d is actually disabled.
3734 static void __init check_tylersburg_isoch(void)
3736 struct pci_dev *pdev;
3737 uint32_t vtisochctrl;
3739 /* If there's no Azalia in the system anyway, forget it. */
3740 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
3741 if (!pdev)
3742 return;
3743 pci_dev_put(pdev);
3745 /* System Management Registers. Might be hidden, in which case
3746 we can't do the sanity check. But that's OK, because the
3747 known-broken BIOSes _don't_ actually hide it, so far. */
3748 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
3749 if (!pdev)
3750 return;
3752 if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
3753 pci_dev_put(pdev);
3754 return;
3757 pci_dev_put(pdev);
3759 /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
3760 if (vtisochctrl & 1)
3761 return;
3763 /* Drop all bits other than the number of TLB entries */
3764 vtisochctrl &= 0x1c;
3766 /* If we have the recommended number of TLB entries (16), fine. */
3767 if (vtisochctrl == 0x10)
3768 return;
3770 /* Zero TLB entries? You get to ride the short bus to school. */
3771 if (!vtisochctrl) {
3772 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
3773 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
3774 dmi_get_system_info(DMI_BIOS_VENDOR),
3775 dmi_get_system_info(DMI_BIOS_VERSION),
3776 dmi_get_system_info(DMI_PRODUCT_VERSION));
3777 iommu_identity_mapping |= IDENTMAP_AZALIA;
3778 return;
3781 printk(KERN_WARNING "DMAR: Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
3782 vtisochctrl);