CRED: Wrap task credential accesses in the JFFS2 filesystem
[linux-2.6/linux-2.6-openrd.git] / kernel / sched_rt.c
blob552310798dadf13e3b2059d5f84e050f7e0926e2
1 /*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
6 #ifdef CONFIG_SMP
8 static inline int rt_overloaded(struct rq *rq)
10 return atomic_read(&rq->rd->rto_count);
13 static inline void rt_set_overload(struct rq *rq)
15 if (!rq->online)
16 return;
18 cpu_set(rq->cpu, rq->rd->rto_mask);
20 * Make sure the mask is visible before we set
21 * the overload count. That is checked to determine
22 * if we should look at the mask. It would be a shame
23 * if we looked at the mask, but the mask was not
24 * updated yet.
26 wmb();
27 atomic_inc(&rq->rd->rto_count);
30 static inline void rt_clear_overload(struct rq *rq)
32 if (!rq->online)
33 return;
35 /* the order here really doesn't matter */
36 atomic_dec(&rq->rd->rto_count);
37 cpu_clear(rq->cpu, rq->rd->rto_mask);
40 static void update_rt_migration(struct rq *rq)
42 if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
43 if (!rq->rt.overloaded) {
44 rt_set_overload(rq);
45 rq->rt.overloaded = 1;
47 } else if (rq->rt.overloaded) {
48 rt_clear_overload(rq);
49 rq->rt.overloaded = 0;
52 #endif /* CONFIG_SMP */
54 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
56 return container_of(rt_se, struct task_struct, rt);
59 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
61 return !list_empty(&rt_se->run_list);
64 #ifdef CONFIG_RT_GROUP_SCHED
66 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
68 if (!rt_rq->tg)
69 return RUNTIME_INF;
71 return rt_rq->rt_runtime;
74 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
76 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
79 #define for_each_leaf_rt_rq(rt_rq, rq) \
80 list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
82 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
84 return rt_rq->rq;
87 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
89 return rt_se->rt_rq;
92 #define for_each_sched_rt_entity(rt_se) \
93 for (; rt_se; rt_se = rt_se->parent)
95 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
97 return rt_se->my_q;
100 static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
101 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
103 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
105 struct sched_rt_entity *rt_se = rt_rq->rt_se;
107 if (rt_se && !on_rt_rq(rt_se) && rt_rq->rt_nr_running) {
108 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
110 enqueue_rt_entity(rt_se);
111 if (rt_rq->highest_prio < curr->prio)
112 resched_task(curr);
116 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
118 struct sched_rt_entity *rt_se = rt_rq->rt_se;
120 if (rt_se && on_rt_rq(rt_se))
121 dequeue_rt_entity(rt_se);
124 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
126 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
129 static int rt_se_boosted(struct sched_rt_entity *rt_se)
131 struct rt_rq *rt_rq = group_rt_rq(rt_se);
132 struct task_struct *p;
134 if (rt_rq)
135 return !!rt_rq->rt_nr_boosted;
137 p = rt_task_of(rt_se);
138 return p->prio != p->normal_prio;
141 #ifdef CONFIG_SMP
142 static inline cpumask_t sched_rt_period_mask(void)
144 return cpu_rq(smp_processor_id())->rd->span;
146 #else
147 static inline cpumask_t sched_rt_period_mask(void)
149 return cpu_online_map;
151 #endif
153 static inline
154 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
156 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
159 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
161 return &rt_rq->tg->rt_bandwidth;
164 #else /* !CONFIG_RT_GROUP_SCHED */
166 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
168 return rt_rq->rt_runtime;
171 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
173 return ktime_to_ns(def_rt_bandwidth.rt_period);
176 #define for_each_leaf_rt_rq(rt_rq, rq) \
177 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
179 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
181 return container_of(rt_rq, struct rq, rt);
184 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
186 struct task_struct *p = rt_task_of(rt_se);
187 struct rq *rq = task_rq(p);
189 return &rq->rt;
192 #define for_each_sched_rt_entity(rt_se) \
193 for (; rt_se; rt_se = NULL)
195 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
197 return NULL;
200 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
202 if (rt_rq->rt_nr_running)
203 resched_task(rq_of_rt_rq(rt_rq)->curr);
206 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
210 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
212 return rt_rq->rt_throttled;
215 static inline cpumask_t sched_rt_period_mask(void)
217 return cpu_online_map;
220 static inline
221 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
223 return &cpu_rq(cpu)->rt;
226 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
228 return &def_rt_bandwidth;
231 #endif /* CONFIG_RT_GROUP_SCHED */
233 #ifdef CONFIG_SMP
234 static int do_balance_runtime(struct rt_rq *rt_rq)
236 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
237 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
238 int i, weight, more = 0;
239 u64 rt_period;
241 weight = cpus_weight(rd->span);
243 spin_lock(&rt_b->rt_runtime_lock);
244 rt_period = ktime_to_ns(rt_b->rt_period);
245 for_each_cpu_mask_nr(i, rd->span) {
246 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
247 s64 diff;
249 if (iter == rt_rq)
250 continue;
252 spin_lock(&iter->rt_runtime_lock);
253 if (iter->rt_runtime == RUNTIME_INF)
254 goto next;
256 diff = iter->rt_runtime - iter->rt_time;
257 if (diff > 0) {
258 diff = div_u64((u64)diff, weight);
259 if (rt_rq->rt_runtime + diff > rt_period)
260 diff = rt_period - rt_rq->rt_runtime;
261 iter->rt_runtime -= diff;
262 rt_rq->rt_runtime += diff;
263 more = 1;
264 if (rt_rq->rt_runtime == rt_period) {
265 spin_unlock(&iter->rt_runtime_lock);
266 break;
269 next:
270 spin_unlock(&iter->rt_runtime_lock);
272 spin_unlock(&rt_b->rt_runtime_lock);
274 return more;
277 static void __disable_runtime(struct rq *rq)
279 struct root_domain *rd = rq->rd;
280 struct rt_rq *rt_rq;
282 if (unlikely(!scheduler_running))
283 return;
285 for_each_leaf_rt_rq(rt_rq, rq) {
286 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
287 s64 want;
288 int i;
290 spin_lock(&rt_b->rt_runtime_lock);
291 spin_lock(&rt_rq->rt_runtime_lock);
292 if (rt_rq->rt_runtime == RUNTIME_INF ||
293 rt_rq->rt_runtime == rt_b->rt_runtime)
294 goto balanced;
295 spin_unlock(&rt_rq->rt_runtime_lock);
297 want = rt_b->rt_runtime - rt_rq->rt_runtime;
299 for_each_cpu_mask(i, rd->span) {
300 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
301 s64 diff;
303 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
304 continue;
306 spin_lock(&iter->rt_runtime_lock);
307 if (want > 0) {
308 diff = min_t(s64, iter->rt_runtime, want);
309 iter->rt_runtime -= diff;
310 want -= diff;
311 } else {
312 iter->rt_runtime -= want;
313 want -= want;
315 spin_unlock(&iter->rt_runtime_lock);
317 if (!want)
318 break;
321 spin_lock(&rt_rq->rt_runtime_lock);
322 BUG_ON(want);
323 balanced:
324 rt_rq->rt_runtime = RUNTIME_INF;
325 spin_unlock(&rt_rq->rt_runtime_lock);
326 spin_unlock(&rt_b->rt_runtime_lock);
330 static void disable_runtime(struct rq *rq)
332 unsigned long flags;
334 spin_lock_irqsave(&rq->lock, flags);
335 __disable_runtime(rq);
336 spin_unlock_irqrestore(&rq->lock, flags);
339 static void __enable_runtime(struct rq *rq)
341 struct rt_rq *rt_rq;
343 if (unlikely(!scheduler_running))
344 return;
346 for_each_leaf_rt_rq(rt_rq, rq) {
347 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
349 spin_lock(&rt_b->rt_runtime_lock);
350 spin_lock(&rt_rq->rt_runtime_lock);
351 rt_rq->rt_runtime = rt_b->rt_runtime;
352 rt_rq->rt_time = 0;
353 spin_unlock(&rt_rq->rt_runtime_lock);
354 spin_unlock(&rt_b->rt_runtime_lock);
358 static void enable_runtime(struct rq *rq)
360 unsigned long flags;
362 spin_lock_irqsave(&rq->lock, flags);
363 __enable_runtime(rq);
364 spin_unlock_irqrestore(&rq->lock, flags);
367 static int balance_runtime(struct rt_rq *rt_rq)
369 int more = 0;
371 if (rt_rq->rt_time > rt_rq->rt_runtime) {
372 spin_unlock(&rt_rq->rt_runtime_lock);
373 more = do_balance_runtime(rt_rq);
374 spin_lock(&rt_rq->rt_runtime_lock);
377 return more;
379 #else /* !CONFIG_SMP */
380 static inline int balance_runtime(struct rt_rq *rt_rq)
382 return 0;
384 #endif /* CONFIG_SMP */
386 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
388 int i, idle = 1;
389 cpumask_t span;
391 if (rt_b->rt_runtime == RUNTIME_INF)
392 return 1;
394 span = sched_rt_period_mask();
395 for_each_cpu_mask(i, span) {
396 int enqueue = 0;
397 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
398 struct rq *rq = rq_of_rt_rq(rt_rq);
400 spin_lock(&rq->lock);
401 if (rt_rq->rt_time) {
402 u64 runtime;
404 spin_lock(&rt_rq->rt_runtime_lock);
405 if (rt_rq->rt_throttled)
406 balance_runtime(rt_rq);
407 runtime = rt_rq->rt_runtime;
408 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
409 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
410 rt_rq->rt_throttled = 0;
411 enqueue = 1;
413 if (rt_rq->rt_time || rt_rq->rt_nr_running)
414 idle = 0;
415 spin_unlock(&rt_rq->rt_runtime_lock);
416 } else if (rt_rq->rt_nr_running)
417 idle = 0;
419 if (enqueue)
420 sched_rt_rq_enqueue(rt_rq);
421 spin_unlock(&rq->lock);
424 return idle;
427 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
429 #ifdef CONFIG_RT_GROUP_SCHED
430 struct rt_rq *rt_rq = group_rt_rq(rt_se);
432 if (rt_rq)
433 return rt_rq->highest_prio;
434 #endif
436 return rt_task_of(rt_se)->prio;
439 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
441 u64 runtime = sched_rt_runtime(rt_rq);
443 if (rt_rq->rt_throttled)
444 return rt_rq_throttled(rt_rq);
446 if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
447 return 0;
449 balance_runtime(rt_rq);
450 runtime = sched_rt_runtime(rt_rq);
451 if (runtime == RUNTIME_INF)
452 return 0;
454 if (rt_rq->rt_time > runtime) {
455 rt_rq->rt_throttled = 1;
456 if (rt_rq_throttled(rt_rq)) {
457 sched_rt_rq_dequeue(rt_rq);
458 return 1;
462 return 0;
466 * Update the current task's runtime statistics. Skip current tasks that
467 * are not in our scheduling class.
469 static void update_curr_rt(struct rq *rq)
471 struct task_struct *curr = rq->curr;
472 struct sched_rt_entity *rt_se = &curr->rt;
473 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
474 u64 delta_exec;
476 if (!task_has_rt_policy(curr))
477 return;
479 delta_exec = rq->clock - curr->se.exec_start;
480 if (unlikely((s64)delta_exec < 0))
481 delta_exec = 0;
483 schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
485 curr->se.sum_exec_runtime += delta_exec;
486 curr->se.exec_start = rq->clock;
487 cpuacct_charge(curr, delta_exec);
489 for_each_sched_rt_entity(rt_se) {
490 rt_rq = rt_rq_of_se(rt_se);
492 spin_lock(&rt_rq->rt_runtime_lock);
493 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
494 rt_rq->rt_time += delta_exec;
495 if (sched_rt_runtime_exceeded(rt_rq))
496 resched_task(curr);
498 spin_unlock(&rt_rq->rt_runtime_lock);
502 static inline
503 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
505 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
506 rt_rq->rt_nr_running++;
507 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
508 if (rt_se_prio(rt_se) < rt_rq->highest_prio) {
509 #ifdef CONFIG_SMP
510 struct rq *rq = rq_of_rt_rq(rt_rq);
511 #endif
513 rt_rq->highest_prio = rt_se_prio(rt_se);
514 #ifdef CONFIG_SMP
515 if (rq->online)
516 cpupri_set(&rq->rd->cpupri, rq->cpu,
517 rt_se_prio(rt_se));
518 #endif
520 #endif
521 #ifdef CONFIG_SMP
522 if (rt_se->nr_cpus_allowed > 1) {
523 struct rq *rq = rq_of_rt_rq(rt_rq);
525 rq->rt.rt_nr_migratory++;
528 update_rt_migration(rq_of_rt_rq(rt_rq));
529 #endif
530 #ifdef CONFIG_RT_GROUP_SCHED
531 if (rt_se_boosted(rt_se))
532 rt_rq->rt_nr_boosted++;
534 if (rt_rq->tg)
535 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
536 #else
537 start_rt_bandwidth(&def_rt_bandwidth);
538 #endif
541 static inline
542 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
544 #ifdef CONFIG_SMP
545 int highest_prio = rt_rq->highest_prio;
546 #endif
548 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
549 WARN_ON(!rt_rq->rt_nr_running);
550 rt_rq->rt_nr_running--;
551 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
552 if (rt_rq->rt_nr_running) {
553 struct rt_prio_array *array;
555 WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio);
556 if (rt_se_prio(rt_se) == rt_rq->highest_prio) {
557 /* recalculate */
558 array = &rt_rq->active;
559 rt_rq->highest_prio =
560 sched_find_first_bit(array->bitmap);
561 } /* otherwise leave rq->highest prio alone */
562 } else
563 rt_rq->highest_prio = MAX_RT_PRIO;
564 #endif
565 #ifdef CONFIG_SMP
566 if (rt_se->nr_cpus_allowed > 1) {
567 struct rq *rq = rq_of_rt_rq(rt_rq);
568 rq->rt.rt_nr_migratory--;
571 if (rt_rq->highest_prio != highest_prio) {
572 struct rq *rq = rq_of_rt_rq(rt_rq);
574 if (rq->online)
575 cpupri_set(&rq->rd->cpupri, rq->cpu,
576 rt_rq->highest_prio);
579 update_rt_migration(rq_of_rt_rq(rt_rq));
580 #endif /* CONFIG_SMP */
581 #ifdef CONFIG_RT_GROUP_SCHED
582 if (rt_se_boosted(rt_se))
583 rt_rq->rt_nr_boosted--;
585 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
586 #endif
589 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se)
591 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
592 struct rt_prio_array *array = &rt_rq->active;
593 struct rt_rq *group_rq = group_rt_rq(rt_se);
594 struct list_head *queue = array->queue + rt_se_prio(rt_se);
597 * Don't enqueue the group if its throttled, or when empty.
598 * The latter is a consequence of the former when a child group
599 * get throttled and the current group doesn't have any other
600 * active members.
602 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
603 return;
605 list_add_tail(&rt_se->run_list, queue);
606 __set_bit(rt_se_prio(rt_se), array->bitmap);
608 inc_rt_tasks(rt_se, rt_rq);
611 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
613 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
614 struct rt_prio_array *array = &rt_rq->active;
616 list_del_init(&rt_se->run_list);
617 if (list_empty(array->queue + rt_se_prio(rt_se)))
618 __clear_bit(rt_se_prio(rt_se), array->bitmap);
620 dec_rt_tasks(rt_se, rt_rq);
624 * Because the prio of an upper entry depends on the lower
625 * entries, we must remove entries top - down.
627 static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
629 struct sched_rt_entity *back = NULL;
631 for_each_sched_rt_entity(rt_se) {
632 rt_se->back = back;
633 back = rt_se;
636 for (rt_se = back; rt_se; rt_se = rt_se->back) {
637 if (on_rt_rq(rt_se))
638 __dequeue_rt_entity(rt_se);
642 static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
644 dequeue_rt_stack(rt_se);
645 for_each_sched_rt_entity(rt_se)
646 __enqueue_rt_entity(rt_se);
649 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
651 dequeue_rt_stack(rt_se);
653 for_each_sched_rt_entity(rt_se) {
654 struct rt_rq *rt_rq = group_rt_rq(rt_se);
656 if (rt_rq && rt_rq->rt_nr_running)
657 __enqueue_rt_entity(rt_se);
662 * Adding/removing a task to/from a priority array:
664 static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
666 struct sched_rt_entity *rt_se = &p->rt;
668 if (wakeup)
669 rt_se->timeout = 0;
671 enqueue_rt_entity(rt_se);
673 inc_cpu_load(rq, p->se.load.weight);
676 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
678 struct sched_rt_entity *rt_se = &p->rt;
680 update_curr_rt(rq);
681 dequeue_rt_entity(rt_se);
683 dec_cpu_load(rq, p->se.load.weight);
687 * Put task to the end of the run list without the overhead of dequeue
688 * followed by enqueue.
690 static void
691 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
693 if (on_rt_rq(rt_se)) {
694 struct rt_prio_array *array = &rt_rq->active;
695 struct list_head *queue = array->queue + rt_se_prio(rt_se);
697 if (head)
698 list_move(&rt_se->run_list, queue);
699 else
700 list_move_tail(&rt_se->run_list, queue);
704 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
706 struct sched_rt_entity *rt_se = &p->rt;
707 struct rt_rq *rt_rq;
709 for_each_sched_rt_entity(rt_se) {
710 rt_rq = rt_rq_of_se(rt_se);
711 requeue_rt_entity(rt_rq, rt_se, head);
715 static void yield_task_rt(struct rq *rq)
717 requeue_task_rt(rq, rq->curr, 0);
720 #ifdef CONFIG_SMP
721 static int find_lowest_rq(struct task_struct *task);
723 static int select_task_rq_rt(struct task_struct *p, int sync)
725 struct rq *rq = task_rq(p);
728 * If the current task is an RT task, then
729 * try to see if we can wake this RT task up on another
730 * runqueue. Otherwise simply start this RT task
731 * on its current runqueue.
733 * We want to avoid overloading runqueues. Even if
734 * the RT task is of higher priority than the current RT task.
735 * RT tasks behave differently than other tasks. If
736 * one gets preempted, we try to push it off to another queue.
737 * So trying to keep a preempting RT task on the same
738 * cache hot CPU will force the running RT task to
739 * a cold CPU. So we waste all the cache for the lower
740 * RT task in hopes of saving some of a RT task
741 * that is just being woken and probably will have
742 * cold cache anyway.
744 if (unlikely(rt_task(rq->curr)) &&
745 (p->rt.nr_cpus_allowed > 1)) {
746 int cpu = find_lowest_rq(p);
748 return (cpu == -1) ? task_cpu(p) : cpu;
752 * Otherwise, just let it ride on the affined RQ and the
753 * post-schedule router will push the preempted task away
755 return task_cpu(p);
758 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
760 cpumask_t mask;
762 if (rq->curr->rt.nr_cpus_allowed == 1)
763 return;
765 if (p->rt.nr_cpus_allowed != 1
766 && cpupri_find(&rq->rd->cpupri, p, &mask))
767 return;
769 if (!cpupri_find(&rq->rd->cpupri, rq->curr, &mask))
770 return;
773 * There appears to be other cpus that can accept
774 * current and none to run 'p', so lets reschedule
775 * to try and push current away:
777 requeue_task_rt(rq, p, 1);
778 resched_task(rq->curr);
781 #endif /* CONFIG_SMP */
784 * Preempt the current task with a newly woken task if needed:
786 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
788 if (p->prio < rq->curr->prio) {
789 resched_task(rq->curr);
790 return;
793 #ifdef CONFIG_SMP
795 * If:
797 * - the newly woken task is of equal priority to the current task
798 * - the newly woken task is non-migratable while current is migratable
799 * - current will be preempted on the next reschedule
801 * we should check to see if current can readily move to a different
802 * cpu. If so, we will reschedule to allow the push logic to try
803 * to move current somewhere else, making room for our non-migratable
804 * task.
806 if (p->prio == rq->curr->prio && !need_resched())
807 check_preempt_equal_prio(rq, p);
808 #endif
811 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
812 struct rt_rq *rt_rq)
814 struct rt_prio_array *array = &rt_rq->active;
815 struct sched_rt_entity *next = NULL;
816 struct list_head *queue;
817 int idx;
819 idx = sched_find_first_bit(array->bitmap);
820 BUG_ON(idx >= MAX_RT_PRIO);
822 queue = array->queue + idx;
823 next = list_entry(queue->next, struct sched_rt_entity, run_list);
825 return next;
828 static struct task_struct *pick_next_task_rt(struct rq *rq)
830 struct sched_rt_entity *rt_se;
831 struct task_struct *p;
832 struct rt_rq *rt_rq;
834 rt_rq = &rq->rt;
836 if (unlikely(!rt_rq->rt_nr_running))
837 return NULL;
839 if (rt_rq_throttled(rt_rq))
840 return NULL;
842 do {
843 rt_se = pick_next_rt_entity(rq, rt_rq);
844 BUG_ON(!rt_se);
845 rt_rq = group_rt_rq(rt_se);
846 } while (rt_rq);
848 p = rt_task_of(rt_se);
849 p->se.exec_start = rq->clock;
850 return p;
853 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
855 update_curr_rt(rq);
856 p->se.exec_start = 0;
859 #ifdef CONFIG_SMP
861 /* Only try algorithms three times */
862 #define RT_MAX_TRIES 3
864 static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
865 static void double_unlock_balance(struct rq *this_rq, struct rq *busiest);
867 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
869 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
871 if (!task_running(rq, p) &&
872 (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
873 (p->rt.nr_cpus_allowed > 1))
874 return 1;
875 return 0;
878 /* Return the second highest RT task, NULL otherwise */
879 static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
881 struct task_struct *next = NULL;
882 struct sched_rt_entity *rt_se;
883 struct rt_prio_array *array;
884 struct rt_rq *rt_rq;
885 int idx;
887 for_each_leaf_rt_rq(rt_rq, rq) {
888 array = &rt_rq->active;
889 idx = sched_find_first_bit(array->bitmap);
890 next_idx:
891 if (idx >= MAX_RT_PRIO)
892 continue;
893 if (next && next->prio < idx)
894 continue;
895 list_for_each_entry(rt_se, array->queue + idx, run_list) {
896 struct task_struct *p = rt_task_of(rt_se);
897 if (pick_rt_task(rq, p, cpu)) {
898 next = p;
899 break;
902 if (!next) {
903 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
904 goto next_idx;
908 return next;
911 static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);
913 static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
915 int first;
917 /* "this_cpu" is cheaper to preempt than a remote processor */
918 if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
919 return this_cpu;
921 first = first_cpu(*mask);
922 if (first != NR_CPUS)
923 return first;
925 return -1;
928 static int find_lowest_rq(struct task_struct *task)
930 struct sched_domain *sd;
931 cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
932 int this_cpu = smp_processor_id();
933 int cpu = task_cpu(task);
935 if (task->rt.nr_cpus_allowed == 1)
936 return -1; /* No other targets possible */
938 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
939 return -1; /* No targets found */
942 * Only consider CPUs that are usable for migration.
943 * I guess we might want to change cpupri_find() to ignore those
944 * in the first place.
946 cpus_and(*lowest_mask, *lowest_mask, cpu_active_map);
949 * At this point we have built a mask of cpus representing the
950 * lowest priority tasks in the system. Now we want to elect
951 * the best one based on our affinity and topology.
953 * We prioritize the last cpu that the task executed on since
954 * it is most likely cache-hot in that location.
956 if (cpu_isset(cpu, *lowest_mask))
957 return cpu;
960 * Otherwise, we consult the sched_domains span maps to figure
961 * out which cpu is logically closest to our hot cache data.
963 if (this_cpu == cpu)
964 this_cpu = -1; /* Skip this_cpu opt if the same */
966 for_each_domain(cpu, sd) {
967 if (sd->flags & SD_WAKE_AFFINE) {
968 cpumask_t domain_mask;
969 int best_cpu;
971 cpus_and(domain_mask, sd->span, *lowest_mask);
973 best_cpu = pick_optimal_cpu(this_cpu,
974 &domain_mask);
975 if (best_cpu != -1)
976 return best_cpu;
981 * And finally, if there were no matches within the domains
982 * just give the caller *something* to work with from the compatible
983 * locations.
985 return pick_optimal_cpu(this_cpu, lowest_mask);
988 /* Will lock the rq it finds */
989 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
991 struct rq *lowest_rq = NULL;
992 int tries;
993 int cpu;
995 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
996 cpu = find_lowest_rq(task);
998 if ((cpu == -1) || (cpu == rq->cpu))
999 break;
1001 lowest_rq = cpu_rq(cpu);
1003 /* if the prio of this runqueue changed, try again */
1004 if (double_lock_balance(rq, lowest_rq)) {
1006 * We had to unlock the run queue. In
1007 * the mean time, task could have
1008 * migrated already or had its affinity changed.
1009 * Also make sure that it wasn't scheduled on its rq.
1011 if (unlikely(task_rq(task) != rq ||
1012 !cpu_isset(lowest_rq->cpu,
1013 task->cpus_allowed) ||
1014 task_running(rq, task) ||
1015 !task->se.on_rq)) {
1017 spin_unlock(&lowest_rq->lock);
1018 lowest_rq = NULL;
1019 break;
1023 /* If this rq is still suitable use it. */
1024 if (lowest_rq->rt.highest_prio > task->prio)
1025 break;
1027 /* try again */
1028 double_unlock_balance(rq, lowest_rq);
1029 lowest_rq = NULL;
1032 return lowest_rq;
1036 * If the current CPU has more than one RT task, see if the non
1037 * running task can migrate over to a CPU that is running a task
1038 * of lesser priority.
1040 static int push_rt_task(struct rq *rq)
1042 struct task_struct *next_task;
1043 struct rq *lowest_rq;
1044 int ret = 0;
1045 int paranoid = RT_MAX_TRIES;
1047 if (!rq->rt.overloaded)
1048 return 0;
1050 next_task = pick_next_highest_task_rt(rq, -1);
1051 if (!next_task)
1052 return 0;
1054 retry:
1055 if (unlikely(next_task == rq->curr)) {
1056 WARN_ON(1);
1057 return 0;
1061 * It's possible that the next_task slipped in of
1062 * higher priority than current. If that's the case
1063 * just reschedule current.
1065 if (unlikely(next_task->prio < rq->curr->prio)) {
1066 resched_task(rq->curr);
1067 return 0;
1070 /* We might release rq lock */
1071 get_task_struct(next_task);
1073 /* find_lock_lowest_rq locks the rq if found */
1074 lowest_rq = find_lock_lowest_rq(next_task, rq);
1075 if (!lowest_rq) {
1076 struct task_struct *task;
1078 * find lock_lowest_rq releases rq->lock
1079 * so it is possible that next_task has changed.
1080 * If it has, then try again.
1082 task = pick_next_highest_task_rt(rq, -1);
1083 if (unlikely(task != next_task) && task && paranoid--) {
1084 put_task_struct(next_task);
1085 next_task = task;
1086 goto retry;
1088 goto out;
1091 deactivate_task(rq, next_task, 0);
1092 set_task_cpu(next_task, lowest_rq->cpu);
1093 activate_task(lowest_rq, next_task, 0);
1095 resched_task(lowest_rq->curr);
1097 double_unlock_balance(rq, lowest_rq);
1099 ret = 1;
1100 out:
1101 put_task_struct(next_task);
1103 return ret;
1107 * TODO: Currently we just use the second highest prio task on
1108 * the queue, and stop when it can't migrate (or there's
1109 * no more RT tasks). There may be a case where a lower
1110 * priority RT task has a different affinity than the
1111 * higher RT task. In this case the lower RT task could
1112 * possibly be able to migrate where as the higher priority
1113 * RT task could not. We currently ignore this issue.
1114 * Enhancements are welcome!
1116 static void push_rt_tasks(struct rq *rq)
1118 /* push_rt_task will return true if it moved an RT */
1119 while (push_rt_task(rq))
1123 static int pull_rt_task(struct rq *this_rq)
1125 int this_cpu = this_rq->cpu, ret = 0, cpu;
1126 struct task_struct *p, *next;
1127 struct rq *src_rq;
1129 if (likely(!rt_overloaded(this_rq)))
1130 return 0;
1132 next = pick_next_task_rt(this_rq);
1134 for_each_cpu_mask_nr(cpu, this_rq->rd->rto_mask) {
1135 if (this_cpu == cpu)
1136 continue;
1138 src_rq = cpu_rq(cpu);
1140 * We can potentially drop this_rq's lock in
1141 * double_lock_balance, and another CPU could
1142 * steal our next task - hence we must cause
1143 * the caller to recalculate the next task
1144 * in that case:
1146 if (double_lock_balance(this_rq, src_rq)) {
1147 struct task_struct *old_next = next;
1149 next = pick_next_task_rt(this_rq);
1150 if (next != old_next)
1151 ret = 1;
1155 * Are there still pullable RT tasks?
1157 if (src_rq->rt.rt_nr_running <= 1)
1158 goto skip;
1160 p = pick_next_highest_task_rt(src_rq, this_cpu);
1163 * Do we have an RT task that preempts
1164 * the to-be-scheduled task?
1166 if (p && (!next || (p->prio < next->prio))) {
1167 WARN_ON(p == src_rq->curr);
1168 WARN_ON(!p->se.on_rq);
1171 * There's a chance that p is higher in priority
1172 * than what's currently running on its cpu.
1173 * This is just that p is wakeing up and hasn't
1174 * had a chance to schedule. We only pull
1175 * p if it is lower in priority than the
1176 * current task on the run queue or
1177 * this_rq next task is lower in prio than
1178 * the current task on that rq.
1180 if (p->prio < src_rq->curr->prio ||
1181 (next && next->prio < src_rq->curr->prio))
1182 goto skip;
1184 ret = 1;
1186 deactivate_task(src_rq, p, 0);
1187 set_task_cpu(p, this_cpu);
1188 activate_task(this_rq, p, 0);
1190 * We continue with the search, just in
1191 * case there's an even higher prio task
1192 * in another runqueue. (low likelyhood
1193 * but possible)
1195 * Update next so that we won't pick a task
1196 * on another cpu with a priority lower (or equal)
1197 * than the one we just picked.
1199 next = p;
1202 skip:
1203 double_unlock_balance(this_rq, src_rq);
1206 return ret;
1209 static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1211 /* Try to pull RT tasks here if we lower this rq's prio */
1212 if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
1213 pull_rt_task(rq);
1216 static void post_schedule_rt(struct rq *rq)
1219 * If we have more than one rt_task queued, then
1220 * see if we can push the other rt_tasks off to other CPUS.
1221 * Note we may release the rq lock, and since
1222 * the lock was owned by prev, we need to release it
1223 * first via finish_lock_switch and then reaquire it here.
1225 if (unlikely(rq->rt.overloaded)) {
1226 spin_lock_irq(&rq->lock);
1227 push_rt_tasks(rq);
1228 spin_unlock_irq(&rq->lock);
1233 * If we are not running and we are not going to reschedule soon, we should
1234 * try to push tasks away now
1236 static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
1238 if (!task_running(rq, p) &&
1239 !test_tsk_need_resched(rq->curr) &&
1240 rq->rt.overloaded)
1241 push_rt_tasks(rq);
1244 static unsigned long
1245 load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1246 unsigned long max_load_move,
1247 struct sched_domain *sd, enum cpu_idle_type idle,
1248 int *all_pinned, int *this_best_prio)
1250 /* don't touch RT tasks */
1251 return 0;
1254 static int
1255 move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1256 struct sched_domain *sd, enum cpu_idle_type idle)
1258 /* don't touch RT tasks */
1259 return 0;
1262 static void set_cpus_allowed_rt(struct task_struct *p,
1263 const cpumask_t *new_mask)
1265 int weight = cpus_weight(*new_mask);
1267 BUG_ON(!rt_task(p));
1270 * Update the migration status of the RQ if we have an RT task
1271 * which is running AND changing its weight value.
1273 if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
1274 struct rq *rq = task_rq(p);
1276 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1277 rq->rt.rt_nr_migratory++;
1278 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1279 BUG_ON(!rq->rt.rt_nr_migratory);
1280 rq->rt.rt_nr_migratory--;
1283 update_rt_migration(rq);
1286 p->cpus_allowed = *new_mask;
1287 p->rt.nr_cpus_allowed = weight;
1290 /* Assumes rq->lock is held */
1291 static void rq_online_rt(struct rq *rq)
1293 if (rq->rt.overloaded)
1294 rt_set_overload(rq);
1296 __enable_runtime(rq);
1298 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio);
1301 /* Assumes rq->lock is held */
1302 static void rq_offline_rt(struct rq *rq)
1304 if (rq->rt.overloaded)
1305 rt_clear_overload(rq);
1307 __disable_runtime(rq);
1309 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1313 * When switch from the rt queue, we bring ourselves to a position
1314 * that we might want to pull RT tasks from other runqueues.
1316 static void switched_from_rt(struct rq *rq, struct task_struct *p,
1317 int running)
1320 * If there are other RT tasks then we will reschedule
1321 * and the scheduling of the other RT tasks will handle
1322 * the balancing. But if we are the last RT task
1323 * we may need to handle the pulling of RT tasks
1324 * now.
1326 if (!rq->rt.rt_nr_running)
1327 pull_rt_task(rq);
1329 #endif /* CONFIG_SMP */
1332 * When switching a task to RT, we may overload the runqueue
1333 * with RT tasks. In this case we try to push them off to
1334 * other runqueues.
1336 static void switched_to_rt(struct rq *rq, struct task_struct *p,
1337 int running)
1339 int check_resched = 1;
1342 * If we are already running, then there's nothing
1343 * that needs to be done. But if we are not running
1344 * we may need to preempt the current running task.
1345 * If that current running task is also an RT task
1346 * then see if we can move to another run queue.
1348 if (!running) {
1349 #ifdef CONFIG_SMP
1350 if (rq->rt.overloaded && push_rt_task(rq) &&
1351 /* Don't resched if we changed runqueues */
1352 rq != task_rq(p))
1353 check_resched = 0;
1354 #endif /* CONFIG_SMP */
1355 if (check_resched && p->prio < rq->curr->prio)
1356 resched_task(rq->curr);
1361 * Priority of the task has changed. This may cause
1362 * us to initiate a push or pull.
1364 static void prio_changed_rt(struct rq *rq, struct task_struct *p,
1365 int oldprio, int running)
1367 if (running) {
1368 #ifdef CONFIG_SMP
1370 * If our priority decreases while running, we
1371 * may need to pull tasks to this runqueue.
1373 if (oldprio < p->prio)
1374 pull_rt_task(rq);
1376 * If there's a higher priority task waiting to run
1377 * then reschedule. Note, the above pull_rt_task
1378 * can release the rq lock and p could migrate.
1379 * Only reschedule if p is still on the same runqueue.
1381 if (p->prio > rq->rt.highest_prio && rq->curr == p)
1382 resched_task(p);
1383 #else
1384 /* For UP simply resched on drop of prio */
1385 if (oldprio < p->prio)
1386 resched_task(p);
1387 #endif /* CONFIG_SMP */
1388 } else {
1390 * This task is not running, but if it is
1391 * greater than the current running task
1392 * then reschedule.
1394 if (p->prio < rq->curr->prio)
1395 resched_task(rq->curr);
1399 static void watchdog(struct rq *rq, struct task_struct *p)
1401 unsigned long soft, hard;
1403 if (!p->signal)
1404 return;
1406 soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
1407 hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;
1409 if (soft != RLIM_INFINITY) {
1410 unsigned long next;
1412 p->rt.timeout++;
1413 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1414 if (p->rt.timeout > next)
1415 p->it_sched_expires = p->se.sum_exec_runtime;
1419 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
1421 update_curr_rt(rq);
1423 watchdog(rq, p);
1426 * RR tasks need a special form of timeslice management.
1427 * FIFO tasks have no timeslices.
1429 if (p->policy != SCHED_RR)
1430 return;
1432 if (--p->rt.time_slice)
1433 return;
1435 p->rt.time_slice = DEF_TIMESLICE;
1438 * Requeue to the end of queue if we are not the only element
1439 * on the queue:
1441 if (p->rt.run_list.prev != p->rt.run_list.next) {
1442 requeue_task_rt(rq, p, 0);
1443 set_tsk_need_resched(p);
1447 static void set_curr_task_rt(struct rq *rq)
1449 struct task_struct *p = rq->curr;
1451 p->se.exec_start = rq->clock;
1454 static const struct sched_class rt_sched_class = {
1455 .next = &fair_sched_class,
1456 .enqueue_task = enqueue_task_rt,
1457 .dequeue_task = dequeue_task_rt,
1458 .yield_task = yield_task_rt,
1459 #ifdef CONFIG_SMP
1460 .select_task_rq = select_task_rq_rt,
1461 #endif /* CONFIG_SMP */
1463 .check_preempt_curr = check_preempt_curr_rt,
1465 .pick_next_task = pick_next_task_rt,
1466 .put_prev_task = put_prev_task_rt,
1468 #ifdef CONFIG_SMP
1469 .load_balance = load_balance_rt,
1470 .move_one_task = move_one_task_rt,
1471 .set_cpus_allowed = set_cpus_allowed_rt,
1472 .rq_online = rq_online_rt,
1473 .rq_offline = rq_offline_rt,
1474 .pre_schedule = pre_schedule_rt,
1475 .post_schedule = post_schedule_rt,
1476 .task_wake_up = task_wake_up_rt,
1477 .switched_from = switched_from_rt,
1478 #endif
1480 .set_curr_task = set_curr_task_rt,
1481 .task_tick = task_tick_rt,
1483 .prio_changed = prio_changed_rt,
1484 .switched_to = switched_to_rt,
1487 #ifdef CONFIG_SCHED_DEBUG
1488 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
1490 static void print_rt_stats(struct seq_file *m, int cpu)
1492 struct rt_rq *rt_rq;
1494 rcu_read_lock();
1495 for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu))
1496 print_rt_rq(m, cpu, rt_rq);
1497 rcu_read_unlock();
1499 #endif /* CONFIG_SCHED_DEBUG */