[MIPS] RTLX: Delete multiple definition of ret shaddowing each other.
[linux-2.6/linux-2.6-openrd.git] / lib / swiotlb.c
blob623a68af8b18dec5a6346046503ac7dbd05c4096
1 /*
2 * Dynamic DMA mapping support.
4 * This implementation is a fallback for platforms that do not support
5 * I/O TLBs (aka DMA address translation hardware).
6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
9 * David Mosberger-Tang <davidm@hpl.hp.com>
11 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
12 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
13 * unnecessary i-cache flushing.
14 * 04/07/.. ak Better overflow handling. Assorted fixes.
15 * 05/09/10 linville Add support for syncing ranges, support syncing for
16 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
19 #include <linux/cache.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/spinlock.h>
24 #include <linux/string.h>
25 #include <linux/types.h>
26 #include <linux/ctype.h>
28 #include <asm/io.h>
29 #include <asm/dma.h>
30 #include <asm/scatterlist.h>
31 #include <asm/swiotlb.h>
33 #include <linux/init.h>
34 #include <linux/bootmem.h>
36 #define OFFSET(val,align) ((unsigned long) \
37 ( (val) & ( (align) - 1)))
39 #ifndef SG_ENT_VIRT_ADDRESS
40 #define SG_ENT_VIRT_ADDRESS(sg) (page_address((sg)->page) + (sg)->offset)
41 #define SG_ENT_PHYS_ADDRESS(sg) virt_to_bus(SG_ENT_VIRT_ADDRESS(sg))
42 #endif
45 * Maximum allowable number of contiguous slabs to map,
46 * must be a power of 2. What is the appropriate value ?
47 * The complexity of {map,unmap}_single is linearly dependent on this value.
49 #define IO_TLB_SEGSIZE 128
52 * log of the size of each IO TLB slab. The number of slabs is command line
53 * controllable.
55 #define IO_TLB_SHIFT 11
57 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
60 * Minimum IO TLB size to bother booting with. Systems with mainly
61 * 64bit capable cards will only lightly use the swiotlb. If we can't
62 * allocate a contiguous 1MB, we're probably in trouble anyway.
64 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
67 * Enumeration for sync targets
69 enum dma_sync_target {
70 SYNC_FOR_CPU = 0,
71 SYNC_FOR_DEVICE = 1,
74 int swiotlb_force;
77 * Used to do a quick range check in swiotlb_unmap_single and
78 * swiotlb_sync_single_*, to see if the memory was in fact allocated by this
79 * API.
81 static char *io_tlb_start, *io_tlb_end;
84 * The number of IO TLB blocks (in groups of 64) betweeen io_tlb_start and
85 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
87 static unsigned long io_tlb_nslabs;
90 * When the IOMMU overflows we return a fallback buffer. This sets the size.
92 static unsigned long io_tlb_overflow = 32*1024;
94 void *io_tlb_overflow_buffer;
97 * This is a free list describing the number of free entries available from
98 * each index
100 static unsigned int *io_tlb_list;
101 static unsigned int io_tlb_index;
104 * We need to save away the original address corresponding to a mapped entry
105 * for the sync operations.
107 #ifndef SWIOTLB_ARCH_HAS_IO_TLB_ADDR_T
108 typedef char *io_tlb_addr_t;
109 #define swiotlb_orig_addr_null(buffer) (!(buffer))
110 #define ptr_to_io_tlb_addr(ptr) (ptr)
111 #define page_to_io_tlb_addr(pg, off) (page_address(pg) + (off))
112 #define sg_to_io_tlb_addr(sg) SG_ENT_VIRT_ADDRESS(sg)
113 #endif
114 static io_tlb_addr_t *io_tlb_orig_addr;
117 * Protect the above data structures in the map and unmap calls
119 static DEFINE_SPINLOCK(io_tlb_lock);
121 #ifdef SWIOTLB_EXTRA_VARIABLES
122 SWIOTLB_EXTRA_VARIABLES;
123 #endif
125 #ifndef SWIOTLB_ARCH_HAS_SETUP_IO_TLB_NPAGES
126 static int __init
127 setup_io_tlb_npages(char *str)
129 if (isdigit(*str)) {
130 io_tlb_nslabs = simple_strtoul(str, &str, 0);
131 /* avoid tail segment of size < IO_TLB_SEGSIZE */
132 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
134 if (*str == ',')
135 ++str;
136 if (!strcmp(str, "force"))
137 swiotlb_force = 1;
138 return 1;
140 #endif
141 __setup("swiotlb=", setup_io_tlb_npages);
142 /* make io_tlb_overflow tunable too? */
144 #ifndef swiotlb_adjust_size
145 #define swiotlb_adjust_size(size) ((void)0)
146 #endif
148 #ifndef swiotlb_adjust_seg
149 #define swiotlb_adjust_seg(start, size) ((void)0)
150 #endif
152 #ifndef swiotlb_print_info
153 #define swiotlb_print_info(bytes) \
154 printk(KERN_INFO "Placing %luMB software IO TLB between 0x%lx - " \
155 "0x%lx\n", bytes >> 20, \
156 virt_to_bus(io_tlb_start), virt_to_bus(io_tlb_end))
157 #endif
160 * Statically reserve bounce buffer space and initialize bounce buffer data
161 * structures for the software IO TLB used to implement the DMA API.
163 void __init
164 swiotlb_init_with_default_size(size_t default_size)
166 unsigned long i, bytes;
168 if (!io_tlb_nslabs) {
169 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
170 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
172 swiotlb_adjust_size(io_tlb_nslabs);
173 swiotlb_adjust_size(io_tlb_overflow);
175 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
178 * Get IO TLB memory from the low pages
180 io_tlb_start = alloc_bootmem_low_pages(bytes);
181 if (!io_tlb_start)
182 panic("Cannot allocate SWIOTLB buffer");
183 io_tlb_end = io_tlb_start + bytes;
186 * Allocate and initialize the free list array. This array is used
187 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
188 * between io_tlb_start and io_tlb_end.
190 io_tlb_list = alloc_bootmem(io_tlb_nslabs * sizeof(int));
191 for (i = 0; i < io_tlb_nslabs; i++) {
192 if ( !(i % IO_TLB_SEGSIZE) )
193 swiotlb_adjust_seg(io_tlb_start + (i << IO_TLB_SHIFT),
194 IO_TLB_SEGSIZE << IO_TLB_SHIFT);
195 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
197 io_tlb_index = 0;
198 io_tlb_orig_addr = alloc_bootmem(io_tlb_nslabs * sizeof(io_tlb_addr_t));
201 * Get the overflow emergency buffer
203 io_tlb_overflow_buffer = alloc_bootmem_low(io_tlb_overflow);
204 if (!io_tlb_overflow_buffer)
205 panic("Cannot allocate SWIOTLB overflow buffer!\n");
206 swiotlb_adjust_seg(io_tlb_overflow_buffer, io_tlb_overflow);
208 swiotlb_print_info(bytes);
210 #ifndef __swiotlb_init_with_default_size
211 #define __swiotlb_init_with_default_size swiotlb_init_with_default_size
212 #endif
214 void __init
215 swiotlb_init(void)
217 __swiotlb_init_with_default_size(64 * (1<<20)); /* default to 64MB */
220 #ifdef SWIOTLB_ARCH_NEED_LATE_INIT
222 * Systems with larger DMA zones (those that don't support ISA) can
223 * initialize the swiotlb later using the slab allocator if needed.
224 * This should be just like above, but with some error catching.
227 swiotlb_late_init_with_default_size(size_t default_size)
229 unsigned long i, bytes, req_nslabs = io_tlb_nslabs;
230 unsigned int order;
232 if (!io_tlb_nslabs) {
233 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
234 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
238 * Get IO TLB memory from the low pages
240 order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
241 io_tlb_nslabs = SLABS_PER_PAGE << order;
242 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
244 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
245 io_tlb_start = (char *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
246 order);
247 if (io_tlb_start)
248 break;
249 order--;
252 if (!io_tlb_start)
253 goto cleanup1;
255 if (order != get_order(bytes)) {
256 printk(KERN_WARNING "Warning: only able to allocate %ld MB "
257 "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
258 io_tlb_nslabs = SLABS_PER_PAGE << order;
259 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
261 io_tlb_end = io_tlb_start + bytes;
262 memset(io_tlb_start, 0, bytes);
265 * Allocate and initialize the free list array. This array is used
266 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
267 * between io_tlb_start and io_tlb_end.
269 io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
270 get_order(io_tlb_nslabs * sizeof(int)));
271 if (!io_tlb_list)
272 goto cleanup2;
274 for (i = 0; i < io_tlb_nslabs; i++)
275 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
276 io_tlb_index = 0;
278 io_tlb_orig_addr = (io_tlb_addr_t *)__get_free_pages(GFP_KERNEL,
279 get_order(io_tlb_nslabs * sizeof(io_tlb_addr_t)));
280 if (!io_tlb_orig_addr)
281 goto cleanup3;
283 memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(io_tlb_addr_t));
286 * Get the overflow emergency buffer
288 io_tlb_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
289 get_order(io_tlb_overflow));
290 if (!io_tlb_overflow_buffer)
291 goto cleanup4;
293 swiotlb_print_info(bytes);
295 return 0;
297 cleanup4:
298 free_pages((unsigned long)io_tlb_orig_addr,
299 get_order(io_tlb_nslabs * sizeof(io_tlb_addr_t)));
300 io_tlb_orig_addr = NULL;
301 cleanup3:
302 free_pages((unsigned long)io_tlb_list,
303 get_order(io_tlb_nslabs * sizeof(int)));
304 io_tlb_list = NULL;
305 cleanup2:
306 io_tlb_end = NULL;
307 free_pages((unsigned long)io_tlb_start, order);
308 io_tlb_start = NULL;
309 cleanup1:
310 io_tlb_nslabs = req_nslabs;
311 return -ENOMEM;
313 #endif
315 #ifndef SWIOTLB_ARCH_HAS_NEEDS_MAPPING
316 static int
317 address_needs_mapping(struct device *hwdev, dma_addr_t addr)
319 dma_addr_t mask = 0xffffffff;
320 /* If the device has a mask, use it, otherwise default to 32 bits */
321 if (hwdev && hwdev->dma_mask)
322 mask = *hwdev->dma_mask;
323 return (addr & ~mask) != 0;
326 static inline int range_needs_mapping(const void *ptr, size_t size)
328 return swiotlb_force;
331 static inline int order_needs_mapping(unsigned int order)
333 return 0;
335 #endif
337 static void
338 __sync_single(io_tlb_addr_t buffer, char *dma_addr, size_t size, int dir)
340 #ifndef SWIOTLB_ARCH_HAS_SYNC_SINGLE
341 if (dir == DMA_TO_DEVICE)
342 memcpy(dma_addr, buffer, size);
343 else
344 memcpy(buffer, dma_addr, size);
345 #else
346 __swiotlb_arch_sync_single(buffer, dma_addr, size, dir);
347 #endif
351 * Allocates bounce buffer and returns its kernel virtual address.
353 static void *
354 map_single(struct device *hwdev, io_tlb_addr_t buffer, size_t size, int dir)
356 unsigned long flags;
357 char *dma_addr;
358 unsigned int nslots, stride, index, wrap;
359 int i;
362 * For mappings greater than a page, we limit the stride (and
363 * hence alignment) to a page size.
365 nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
366 if (size > PAGE_SIZE)
367 stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
368 else
369 stride = 1;
371 BUG_ON(!nslots);
374 * Find suitable number of IO TLB entries size that will fit this
375 * request and allocate a buffer from that IO TLB pool.
377 spin_lock_irqsave(&io_tlb_lock, flags);
379 wrap = index = ALIGN(io_tlb_index, stride);
381 if (index >= io_tlb_nslabs)
382 wrap = index = 0;
384 do {
386 * If we find a slot that indicates we have 'nslots'
387 * number of contiguous buffers, we allocate the
388 * buffers from that slot and mark the entries as '0'
389 * indicating unavailable.
391 if (io_tlb_list[index] >= nslots) {
392 int count = 0;
394 for (i = index; i < (int) (index + nslots); i++)
395 io_tlb_list[i] = 0;
396 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
397 io_tlb_list[i] = ++count;
398 dma_addr = io_tlb_start + (index << IO_TLB_SHIFT);
401 * Update the indices to avoid searching in
402 * the next round.
404 io_tlb_index = ((index + nslots) < io_tlb_nslabs
405 ? (index + nslots) : 0);
407 goto found;
409 index += stride;
410 if (index >= io_tlb_nslabs)
411 index = 0;
412 } while (index != wrap);
414 spin_unlock_irqrestore(&io_tlb_lock, flags);
415 return NULL;
417 found:
418 spin_unlock_irqrestore(&io_tlb_lock, flags);
421 * Save away the mapping from the original address to the DMA address.
422 * This is needed when we sync the memory. Then we sync the buffer if
423 * needed.
425 io_tlb_orig_addr[index] = buffer;
426 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
427 __sync_single(buffer, dma_addr, size, DMA_TO_DEVICE);
429 return dma_addr;
433 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
435 static void
436 unmap_single(struct device *hwdev, char *dma_addr, size_t size, int dir)
438 unsigned long flags;
439 int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
440 int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
441 io_tlb_addr_t buffer = io_tlb_orig_addr[index];
444 * First, sync the memory before unmapping the entry
446 if (!swiotlb_orig_addr_null(buffer)
447 && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
449 * bounce... copy the data back into the original buffer * and
450 * delete the bounce buffer.
452 __sync_single(buffer, dma_addr, size, DMA_FROM_DEVICE);
455 * Return the buffer to the free list by setting the corresponding
456 * entries to indicate the number of contigous entries available.
457 * While returning the entries to the free list, we merge the entries
458 * with slots below and above the pool being returned.
460 spin_lock_irqsave(&io_tlb_lock, flags);
462 count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
463 io_tlb_list[index + nslots] : 0);
465 * Step 1: return the slots to the free list, merging the
466 * slots with superceeding slots
468 for (i = index + nslots - 1; i >= index; i--)
469 io_tlb_list[i] = ++count;
471 * Step 2: merge the returned slots with the preceding slots,
472 * if available (non zero)
474 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
475 io_tlb_list[i] = ++count;
477 spin_unlock_irqrestore(&io_tlb_lock, flags);
480 static void
481 sync_single(struct device *hwdev, char *dma_addr, size_t size,
482 int dir, int target)
484 int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
485 io_tlb_addr_t buffer = io_tlb_orig_addr[index];
487 switch (target) {
488 case SYNC_FOR_CPU:
489 if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
490 __sync_single(buffer, dma_addr, size, DMA_FROM_DEVICE);
491 else
492 BUG_ON(dir != DMA_TO_DEVICE);
493 break;
494 case SYNC_FOR_DEVICE:
495 if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
496 __sync_single(buffer, dma_addr, size, DMA_TO_DEVICE);
497 else
498 BUG_ON(dir != DMA_FROM_DEVICE);
499 break;
500 default:
501 BUG();
505 #ifdef SWIOTLB_ARCH_NEED_ALLOC
507 void *
508 swiotlb_alloc_coherent(struct device *hwdev, size_t size,
509 dma_addr_t *dma_handle, gfp_t flags)
511 dma_addr_t dev_addr;
512 void *ret;
513 int order = get_order(size);
516 * XXX fix me: the DMA API should pass us an explicit DMA mask
517 * instead, or use ZONE_DMA32 (ia64 overloads ZONE_DMA to be a ~32
518 * bit range instead of a 16MB one).
520 flags |= GFP_DMA;
522 if (!order_needs_mapping(order))
523 ret = (void *)__get_free_pages(flags, order);
524 else
525 ret = NULL;
526 if (ret && address_needs_mapping(hwdev, virt_to_bus(ret))) {
528 * The allocated memory isn't reachable by the device.
529 * Fall back on swiotlb_map_single().
531 free_pages((unsigned long) ret, order);
532 ret = NULL;
534 if (!ret) {
536 * We are either out of memory or the device can't DMA
537 * to GFP_DMA memory; fall back on
538 * swiotlb_map_single(), which will grab memory from
539 * the lowest available address range.
541 dma_addr_t handle;
542 handle = swiotlb_map_single(NULL, NULL, size, DMA_FROM_DEVICE);
543 if (swiotlb_dma_mapping_error(handle))
544 return NULL;
546 ret = bus_to_virt(handle);
549 memset(ret, 0, size);
550 dev_addr = virt_to_bus(ret);
552 /* Confirm address can be DMA'd by device */
553 if (address_needs_mapping(hwdev, dev_addr)) {
554 printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
555 (unsigned long long)*hwdev->dma_mask,
556 (unsigned long long)dev_addr);
557 panic("swiotlb_alloc_coherent: allocated memory is out of "
558 "range for device");
560 *dma_handle = dev_addr;
561 return ret;
563 EXPORT_SYMBOL(swiotlb_alloc_coherent);
565 void
566 swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
567 dma_addr_t dma_handle)
569 if (!(vaddr >= (void *)io_tlb_start
570 && vaddr < (void *)io_tlb_end))
571 free_pages((unsigned long) vaddr, get_order(size));
572 else
573 /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
574 swiotlb_unmap_single (hwdev, dma_handle, size, DMA_TO_DEVICE);
576 EXPORT_SYMBOL(swiotlb_free_coherent);
578 #endif
580 static void
581 swiotlb_full(struct device *dev, size_t size, int dir, int do_panic)
584 * Ran out of IOMMU space for this operation. This is very bad.
585 * Unfortunately the drivers cannot handle this operation properly.
586 * unless they check for dma_mapping_error (most don't)
587 * When the mapping is small enough return a static buffer to limit
588 * the damage, or panic when the transfer is too big.
590 printk(KERN_ERR "DMA: Out of SW-IOMMU space for %zu bytes at "
591 "device %s\n", size, dev ? dev->bus_id : "?");
593 if (size > io_tlb_overflow && do_panic) {
594 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
595 panic("DMA: Memory would be corrupted\n");
596 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
597 panic("DMA: Random memory would be DMAed\n");
602 * Map a single buffer of the indicated size for DMA in streaming mode. The
603 * physical address to use is returned.
605 * Once the device is given the dma address, the device owns this memory until
606 * either swiotlb_unmap_single or swiotlb_dma_sync_single is performed.
608 dma_addr_t
609 swiotlb_map_single(struct device *hwdev, void *ptr, size_t size, int dir)
611 dma_addr_t dev_addr = virt_to_bus(ptr);
612 void *map;
614 BUG_ON(dir == DMA_NONE);
616 * If the pointer passed in happens to be in the device's DMA window,
617 * we can safely return the device addr and not worry about bounce
618 * buffering it.
620 if (!range_needs_mapping(ptr, size)
621 && !address_needs_mapping(hwdev, dev_addr))
622 return dev_addr;
625 * Oh well, have to allocate and map a bounce buffer.
627 map = map_single(hwdev, ptr_to_io_tlb_addr(ptr), size, dir);
628 if (!map) {
629 swiotlb_full(hwdev, size, dir, 1);
630 map = io_tlb_overflow_buffer;
633 dev_addr = virt_to_bus(map);
636 * Ensure that the address returned is DMA'ble
638 if (address_needs_mapping(hwdev, dev_addr))
639 panic("map_single: bounce buffer is not DMA'ble");
641 return dev_addr;
645 * Unmap a single streaming mode DMA translation. The dma_addr and size must
646 * match what was provided for in a previous swiotlb_map_single call. All
647 * other usages are undefined.
649 * After this call, reads by the cpu to the buffer are guaranteed to see
650 * whatever the device wrote there.
652 void
653 swiotlb_unmap_single(struct device *hwdev, dma_addr_t dev_addr, size_t size,
654 int dir)
656 char *dma_addr = bus_to_virt(dev_addr);
658 BUG_ON(dir == DMA_NONE);
659 if (dma_addr >= io_tlb_start && dma_addr < io_tlb_end)
660 unmap_single(hwdev, dma_addr, size, dir);
661 else if (dir == DMA_FROM_DEVICE)
662 dma_mark_clean(dma_addr, size);
666 * Make physical memory consistent for a single streaming mode DMA translation
667 * after a transfer.
669 * If you perform a swiotlb_map_single() but wish to interrogate the buffer
670 * using the cpu, yet do not wish to teardown the dma mapping, you must
671 * call this function before doing so. At the next point you give the dma
672 * address back to the card, you must first perform a
673 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
675 static void
676 swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
677 size_t size, int dir, int target)
679 char *dma_addr = bus_to_virt(dev_addr);
681 BUG_ON(dir == DMA_NONE);
682 if (dma_addr >= io_tlb_start && dma_addr < io_tlb_end)
683 sync_single(hwdev, dma_addr, size, dir, target);
684 else if (dir == DMA_FROM_DEVICE)
685 dma_mark_clean(dma_addr, size);
688 void
689 swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
690 size_t size, int dir)
692 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
695 void
696 swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
697 size_t size, int dir)
699 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
703 * Same as above, but for a sub-range of the mapping.
705 static void
706 swiotlb_sync_single_range(struct device *hwdev, dma_addr_t dev_addr,
707 unsigned long offset, size_t size,
708 int dir, int target)
710 char *dma_addr = bus_to_virt(dev_addr) + offset;
712 BUG_ON(dir == DMA_NONE);
713 if (dma_addr >= io_tlb_start && dma_addr < io_tlb_end)
714 sync_single(hwdev, dma_addr, size, dir, target);
715 else if (dir == DMA_FROM_DEVICE)
716 dma_mark_clean(dma_addr, size);
719 void
720 swiotlb_sync_single_range_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
721 unsigned long offset, size_t size, int dir)
723 swiotlb_sync_single_range(hwdev, dev_addr, offset, size, dir,
724 SYNC_FOR_CPU);
727 void
728 swiotlb_sync_single_range_for_device(struct device *hwdev, dma_addr_t dev_addr,
729 unsigned long offset, size_t size, int dir)
731 swiotlb_sync_single_range(hwdev, dev_addr, offset, size, dir,
732 SYNC_FOR_DEVICE);
736 * Map a set of buffers described by scatterlist in streaming mode for DMA.
737 * This is the scatter-gather version of the above swiotlb_map_single
738 * interface. Here the scatter gather list elements are each tagged with the
739 * appropriate dma address and length. They are obtained via
740 * sg_dma_{address,length}(SG).
742 * NOTE: An implementation may be able to use a smaller number of
743 * DMA address/length pairs than there are SG table elements.
744 * (for example via virtual mapping capabilities)
745 * The routine returns the number of addr/length pairs actually
746 * used, at most nents.
748 * Device ownership issues as mentioned above for swiotlb_map_single are the
749 * same here.
752 swiotlb_map_sg(struct device *hwdev, struct scatterlist *sg, int nelems,
753 int dir)
755 dma_addr_t dev_addr;
756 int i;
758 BUG_ON(dir == DMA_NONE);
760 for (i = 0; i < nelems; i++, sg++) {
761 dev_addr = SG_ENT_PHYS_ADDRESS(sg);
762 if (range_needs_mapping(SG_ENT_VIRT_ADDRESS(sg), sg->length)
763 || address_needs_mapping(hwdev, dev_addr)) {
764 void *map = map_single(hwdev, sg_to_io_tlb_addr(sg), sg->length, dir);
765 if (!map) {
766 /* Don't panic here, we expect map_sg users
767 to do proper error handling. */
768 swiotlb_full(hwdev, sg->length, dir, 0);
769 swiotlb_unmap_sg(hwdev, sg - i, i, dir);
770 sg[0].dma_length = 0;
771 return 0;
773 sg->dma_address = virt_to_bus(map);
774 } else
775 sg->dma_address = dev_addr;
776 sg->dma_length = sg->length;
778 return nelems;
782 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
783 * concerning calls here are the same as for swiotlb_unmap_single() above.
785 void
786 swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sg, int nelems,
787 int dir)
789 int i;
791 BUG_ON(dir == DMA_NONE);
793 for (i = 0; i < nelems; i++, sg++)
794 if (sg->dma_address != SG_ENT_PHYS_ADDRESS(sg))
795 unmap_single(hwdev, bus_to_virt(sg->dma_address),
796 sg->dma_length, dir);
797 else if (dir == DMA_FROM_DEVICE)
798 dma_mark_clean(SG_ENT_VIRT_ADDRESS(sg), sg->dma_length);
802 * Make physical memory consistent for a set of streaming mode DMA translations
803 * after a transfer.
805 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
806 * and usage.
808 static void
809 swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sg,
810 int nelems, int dir, int target)
812 int i;
814 BUG_ON(dir == DMA_NONE);
816 for (i = 0; i < nelems; i++, sg++)
817 if (sg->dma_address != SG_ENT_PHYS_ADDRESS(sg))
818 sync_single(hwdev, bus_to_virt(sg->dma_address),
819 sg->dma_length, dir, target);
820 else if (dir == DMA_FROM_DEVICE)
821 dma_mark_clean(SG_ENT_VIRT_ADDRESS(sg), sg->dma_length);
824 void
825 swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
826 int nelems, int dir)
828 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
831 void
832 swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
833 int nelems, int dir)
835 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
838 #ifdef SWIOTLB_ARCH_NEED_MAP_PAGE
840 dma_addr_t
841 swiotlb_map_page(struct device *hwdev, struct page *page,
842 unsigned long offset, size_t size,
843 enum dma_data_direction direction)
845 dma_addr_t dev_addr;
846 char *map;
848 dev_addr = page_to_bus(page) + offset;
849 if (address_needs_mapping(hwdev, dev_addr)) {
850 map = map_single(hwdev, page_to_io_tlb_addr(page, offset), size, direction);
851 if (!map) {
852 swiotlb_full(hwdev, size, direction, 1);
853 map = io_tlb_overflow_buffer;
855 dev_addr = virt_to_bus(map);
858 return dev_addr;
861 void
862 swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
863 size_t size, enum dma_data_direction direction)
865 char *dma_addr = bus_to_virt(dev_addr);
867 BUG_ON(direction == DMA_NONE);
868 if (dma_addr >= io_tlb_start && dma_addr < io_tlb_end)
869 unmap_single(hwdev, dma_addr, size, direction);
870 else if (direction == DMA_FROM_DEVICE)
871 dma_mark_clean(dma_addr, size);
874 #endif
877 swiotlb_dma_mapping_error(dma_addr_t dma_addr)
879 return (dma_addr == virt_to_bus(io_tlb_overflow_buffer));
883 * Return whether the given device DMA address mask can be supported
884 * properly. For example, if your device can only drive the low 24-bits
885 * during bus mastering, then you would pass 0x00ffffff as the mask to
886 * this function.
888 #ifndef __swiotlb_dma_supported
889 #define __swiotlb_dma_supported(hwdev, mask) (virt_to_bus(io_tlb_end - 1) <= (mask))
890 #endif
892 swiotlb_dma_supported(struct device *hwdev, u64 mask)
894 return __swiotlb_dma_supported(hwdev, mask);
897 EXPORT_SYMBOL(swiotlb_init);
898 EXPORT_SYMBOL(swiotlb_map_single);
899 EXPORT_SYMBOL(swiotlb_unmap_single);
900 EXPORT_SYMBOL(swiotlb_map_sg);
901 EXPORT_SYMBOL(swiotlb_unmap_sg);
902 EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
903 EXPORT_SYMBOL(swiotlb_sync_single_for_device);
904 EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_cpu);
905 EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_device);
906 EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
907 EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
908 EXPORT_SYMBOL(swiotlb_dma_mapping_error);
909 EXPORT_SYMBOL(swiotlb_dma_supported);