4 * Copyright (C) 1991, 1992 Linus Torvalds
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/iocontext.h>
17 #include <linux/key.h>
18 #include <linux/security.h>
19 #include <linux/cpu.h>
20 #include <linux/acct.h>
21 #include <linux/tsacct_kern.h>
22 #include <linux/file.h>
23 #include <linux/fdtable.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/freezer.h>
36 #include <linux/cgroup.h>
37 #include <linux/syscalls.h>
38 #include <linux/signal.h>
39 #include <linux/posix-timers.h>
40 #include <linux/cn_proc.h>
41 #include <linux/mutex.h>
42 #include <linux/futex.h>
43 #include <linux/pipe_fs_i.h>
44 #include <linux/audit.h> /* for audit_free() */
45 #include <linux/resource.h>
46 #include <linux/blkdev.h>
47 #include <linux/task_io_accounting_ops.h>
48 #include <linux/tracehook.h>
49 #include <linux/fs_struct.h>
50 #include <linux/init_task.h>
51 #include <trace/sched.h>
53 #include <asm/uaccess.h>
54 #include <asm/unistd.h>
55 #include <asm/pgtable.h>
56 #include <asm/mmu_context.h>
57 #include "cred-internals.h"
59 DEFINE_TRACE(sched_process_free
);
60 DEFINE_TRACE(sched_process_exit
);
61 DEFINE_TRACE(sched_process_wait
);
63 static void exit_mm(struct task_struct
* tsk
);
65 static void __unhash_process(struct task_struct
*p
)
68 detach_pid(p
, PIDTYPE_PID
);
69 if (thread_group_leader(p
)) {
70 detach_pid(p
, PIDTYPE_PGID
);
71 detach_pid(p
, PIDTYPE_SID
);
73 list_del_rcu(&p
->tasks
);
74 __get_cpu_var(process_counts
)--;
76 list_del_rcu(&p
->thread_group
);
77 list_del_init(&p
->sibling
);
81 * This function expects the tasklist_lock write-locked.
83 static void __exit_signal(struct task_struct
*tsk
)
85 struct signal_struct
*sig
= tsk
->signal
;
86 struct sighand_struct
*sighand
;
89 BUG_ON(!atomic_read(&sig
->count
));
91 sighand
= rcu_dereference(tsk
->sighand
);
92 spin_lock(&sighand
->siglock
);
94 posix_cpu_timers_exit(tsk
);
95 if (atomic_dec_and_test(&sig
->count
))
96 posix_cpu_timers_exit_group(tsk
);
99 * If there is any task waiting for the group exit
102 if (sig
->group_exit_task
&& atomic_read(&sig
->count
) == sig
->notify_count
)
103 wake_up_process(sig
->group_exit_task
);
105 if (tsk
== sig
->curr_target
)
106 sig
->curr_target
= next_thread(tsk
);
108 * Accumulate here the counters for all threads but the
109 * group leader as they die, so they can be added into
110 * the process-wide totals when those are taken.
111 * The group leader stays around as a zombie as long
112 * as there are other threads. When it gets reaped,
113 * the exit.c code will add its counts into these totals.
114 * We won't ever get here for the group leader, since it
115 * will have been the last reference on the signal_struct.
117 sig
->utime
= cputime_add(sig
->utime
, task_utime(tsk
));
118 sig
->stime
= cputime_add(sig
->stime
, task_stime(tsk
));
119 sig
->gtime
= cputime_add(sig
->gtime
, task_gtime(tsk
));
120 sig
->min_flt
+= tsk
->min_flt
;
121 sig
->maj_flt
+= tsk
->maj_flt
;
122 sig
->nvcsw
+= tsk
->nvcsw
;
123 sig
->nivcsw
+= tsk
->nivcsw
;
124 sig
->inblock
+= task_io_get_inblock(tsk
);
125 sig
->oublock
+= task_io_get_oublock(tsk
);
126 task_io_accounting_add(&sig
->ioac
, &tsk
->ioac
);
127 sig
->sum_sched_runtime
+= tsk
->se
.sum_exec_runtime
;
128 sig
= NULL
; /* Marker for below. */
131 __unhash_process(tsk
);
134 * Do this under ->siglock, we can race with another thread
135 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
137 flush_sigqueue(&tsk
->pending
);
141 spin_unlock(&sighand
->siglock
);
143 __cleanup_sighand(sighand
);
144 clear_tsk_thread_flag(tsk
,TIF_SIGPENDING
);
146 flush_sigqueue(&sig
->shared_pending
);
147 taskstats_tgid_free(sig
);
149 * Make sure ->signal can't go away under rq->lock,
150 * see account_group_exec_runtime().
152 task_rq_unlock_wait(tsk
);
153 __cleanup_signal(sig
);
157 static void delayed_put_task_struct(struct rcu_head
*rhp
)
159 struct task_struct
*tsk
= container_of(rhp
, struct task_struct
, rcu
);
161 trace_sched_process_free(tsk
);
162 put_task_struct(tsk
);
166 void release_task(struct task_struct
* p
)
168 struct task_struct
*leader
;
171 tracehook_prepare_release_task(p
);
172 /* don't need to get the RCU readlock here - the process is dead and
173 * can't be modifying its own credentials */
174 atomic_dec(&__task_cred(p
)->user
->processes
);
177 write_lock_irq(&tasklist_lock
);
178 tracehook_finish_release_task(p
);
182 * If we are the last non-leader member of the thread
183 * group, and the leader is zombie, then notify the
184 * group leader's parent process. (if it wants notification.)
187 leader
= p
->group_leader
;
188 if (leader
!= p
&& thread_group_empty(leader
) && leader
->exit_state
== EXIT_ZOMBIE
) {
189 BUG_ON(task_detached(leader
));
190 do_notify_parent(leader
, leader
->exit_signal
);
192 * If we were the last child thread and the leader has
193 * exited already, and the leader's parent ignores SIGCHLD,
194 * then we are the one who should release the leader.
196 * do_notify_parent() will have marked it self-reaping in
199 zap_leader
= task_detached(leader
);
202 * This maintains the invariant that release_task()
203 * only runs on a task in EXIT_DEAD, just for sanity.
206 leader
->exit_state
= EXIT_DEAD
;
209 write_unlock_irq(&tasklist_lock
);
211 call_rcu(&p
->rcu
, delayed_put_task_struct
);
214 if (unlikely(zap_leader
))
219 * This checks not only the pgrp, but falls back on the pid if no
220 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
223 * The caller must hold rcu lock or the tasklist lock.
225 struct pid
*session_of_pgrp(struct pid
*pgrp
)
227 struct task_struct
*p
;
228 struct pid
*sid
= NULL
;
230 p
= pid_task(pgrp
, PIDTYPE_PGID
);
232 p
= pid_task(pgrp
, PIDTYPE_PID
);
234 sid
= task_session(p
);
240 * Determine if a process group is "orphaned", according to the POSIX
241 * definition in 2.2.2.52. Orphaned process groups are not to be affected
242 * by terminal-generated stop signals. Newly orphaned process groups are
243 * to receive a SIGHUP and a SIGCONT.
245 * "I ask you, have you ever known what it is to be an orphan?"
247 static int will_become_orphaned_pgrp(struct pid
*pgrp
, struct task_struct
*ignored_task
)
249 struct task_struct
*p
;
251 do_each_pid_task(pgrp
, PIDTYPE_PGID
, p
) {
252 if ((p
== ignored_task
) ||
253 (p
->exit_state
&& thread_group_empty(p
)) ||
254 is_global_init(p
->real_parent
))
257 if (task_pgrp(p
->real_parent
) != pgrp
&&
258 task_session(p
->real_parent
) == task_session(p
))
260 } while_each_pid_task(pgrp
, PIDTYPE_PGID
, p
);
265 int is_current_pgrp_orphaned(void)
269 read_lock(&tasklist_lock
);
270 retval
= will_become_orphaned_pgrp(task_pgrp(current
), NULL
);
271 read_unlock(&tasklist_lock
);
276 static int has_stopped_jobs(struct pid
*pgrp
)
279 struct task_struct
*p
;
281 do_each_pid_task(pgrp
, PIDTYPE_PGID
, p
) {
282 if (!task_is_stopped(p
))
286 } while_each_pid_task(pgrp
, PIDTYPE_PGID
, p
);
291 * Check to see if any process groups have become orphaned as
292 * a result of our exiting, and if they have any stopped jobs,
293 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
296 kill_orphaned_pgrp(struct task_struct
*tsk
, struct task_struct
*parent
)
298 struct pid
*pgrp
= task_pgrp(tsk
);
299 struct task_struct
*ignored_task
= tsk
;
302 /* exit: our father is in a different pgrp than
303 * we are and we were the only connection outside.
305 parent
= tsk
->real_parent
;
307 /* reparent: our child is in a different pgrp than
308 * we are, and it was the only connection outside.
312 if (task_pgrp(parent
) != pgrp
&&
313 task_session(parent
) == task_session(tsk
) &&
314 will_become_orphaned_pgrp(pgrp
, ignored_task
) &&
315 has_stopped_jobs(pgrp
)) {
316 __kill_pgrp_info(SIGHUP
, SEND_SIG_PRIV
, pgrp
);
317 __kill_pgrp_info(SIGCONT
, SEND_SIG_PRIV
, pgrp
);
322 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
324 * If a kernel thread is launched as a result of a system call, or if
325 * it ever exits, it should generally reparent itself to kthreadd so it
326 * isn't in the way of other processes and is correctly cleaned up on exit.
328 * The various task state such as scheduling policy and priority may have
329 * been inherited from a user process, so we reset them to sane values here.
331 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
333 static void reparent_to_kthreadd(void)
335 write_lock_irq(&tasklist_lock
);
337 ptrace_unlink(current
);
338 /* Reparent to init */
339 current
->real_parent
= current
->parent
= kthreadd_task
;
340 list_move_tail(¤t
->sibling
, ¤t
->real_parent
->children
);
342 /* Set the exit signal to SIGCHLD so we signal init on exit */
343 current
->exit_signal
= SIGCHLD
;
345 if (task_nice(current
) < 0)
346 set_user_nice(current
, 0);
350 memcpy(current
->signal
->rlim
, init_task
.signal
->rlim
,
351 sizeof(current
->signal
->rlim
));
353 atomic_inc(&init_cred
.usage
);
354 commit_creds(&init_cred
);
355 write_unlock_irq(&tasklist_lock
);
358 void __set_special_pids(struct pid
*pid
)
360 struct task_struct
*curr
= current
->group_leader
;
362 if (task_session(curr
) != pid
)
363 change_pid(curr
, PIDTYPE_SID
, pid
);
365 if (task_pgrp(curr
) != pid
)
366 change_pid(curr
, PIDTYPE_PGID
, pid
);
369 static void set_special_pids(struct pid
*pid
)
371 write_lock_irq(&tasklist_lock
);
372 __set_special_pids(pid
);
373 write_unlock_irq(&tasklist_lock
);
377 * Let kernel threads use this to say that they
378 * allow a certain signal (since daemonize() will
379 * have disabled all of them by default).
381 int allow_signal(int sig
)
383 if (!valid_signal(sig
) || sig
< 1)
386 spin_lock_irq(¤t
->sighand
->siglock
);
387 sigdelset(¤t
->blocked
, sig
);
389 /* Kernel threads handle their own signals.
390 Let the signal code know it'll be handled, so
391 that they don't get converted to SIGKILL or
392 just silently dropped */
393 current
->sighand
->action
[(sig
)-1].sa
.sa_handler
= (void __user
*)2;
396 spin_unlock_irq(¤t
->sighand
->siglock
);
400 EXPORT_SYMBOL(allow_signal
);
402 int disallow_signal(int sig
)
404 if (!valid_signal(sig
) || sig
< 1)
407 spin_lock_irq(¤t
->sighand
->siglock
);
408 current
->sighand
->action
[(sig
)-1].sa
.sa_handler
= SIG_IGN
;
410 spin_unlock_irq(¤t
->sighand
->siglock
);
414 EXPORT_SYMBOL(disallow_signal
);
417 * Put all the gunge required to become a kernel thread without
418 * attached user resources in one place where it belongs.
421 void daemonize(const char *name
, ...)
426 va_start(args
, name
);
427 vsnprintf(current
->comm
, sizeof(current
->comm
), name
, args
);
431 * If we were started as result of loading a module, close all of the
432 * user space pages. We don't need them, and if we didn't close them
433 * they would be locked into memory.
437 * We don't want to have TIF_FREEZE set if the system-wide hibernation
438 * or suspend transition begins right now.
440 current
->flags
|= (PF_NOFREEZE
| PF_KTHREAD
);
442 if (current
->nsproxy
!= &init_nsproxy
) {
443 get_nsproxy(&init_nsproxy
);
444 switch_task_namespaces(current
, &init_nsproxy
);
446 set_special_pids(&init_struct_pid
);
447 proc_clear_tty(current
);
449 /* Block and flush all signals */
450 sigfillset(&blocked
);
451 sigprocmask(SIG_BLOCK
, &blocked
, NULL
);
452 flush_signals(current
);
454 /* Become as one with the init task */
456 daemonize_fs_struct();
458 current
->files
= init_task
.files
;
459 atomic_inc(¤t
->files
->count
);
461 reparent_to_kthreadd();
464 EXPORT_SYMBOL(daemonize
);
466 static void close_files(struct files_struct
* files
)
474 * It is safe to dereference the fd table without RCU or
475 * ->file_lock because this is the last reference to the
478 fdt
= files_fdtable(files
);
482 if (i
>= fdt
->max_fds
)
484 set
= fdt
->open_fds
->fds_bits
[j
++];
487 struct file
* file
= xchg(&fdt
->fd
[i
], NULL
);
489 filp_close(file
, files
);
499 struct files_struct
*get_files_struct(struct task_struct
*task
)
501 struct files_struct
*files
;
506 atomic_inc(&files
->count
);
512 void put_files_struct(struct files_struct
*files
)
516 if (atomic_dec_and_test(&files
->count
)) {
519 * Free the fd and fdset arrays if we expanded them.
520 * If the fdtable was embedded, pass files for freeing
521 * at the end of the RCU grace period. Otherwise,
522 * you can free files immediately.
524 fdt
= files_fdtable(files
);
525 if (fdt
!= &files
->fdtab
)
526 kmem_cache_free(files_cachep
, files
);
531 void reset_files_struct(struct files_struct
*files
)
533 struct task_struct
*tsk
= current
;
534 struct files_struct
*old
;
540 put_files_struct(old
);
543 void exit_files(struct task_struct
*tsk
)
545 struct files_struct
* files
= tsk
->files
;
551 put_files_struct(files
);
555 #ifdef CONFIG_MM_OWNER
557 * Task p is exiting and it owned mm, lets find a new owner for it
560 mm_need_new_owner(struct mm_struct
*mm
, struct task_struct
*p
)
563 * If there are other users of the mm and the owner (us) is exiting
564 * we need to find a new owner to take on the responsibility.
566 if (atomic_read(&mm
->mm_users
) <= 1)
573 void mm_update_next_owner(struct mm_struct
*mm
)
575 struct task_struct
*c
, *g
, *p
= current
;
578 if (!mm_need_new_owner(mm
, p
))
581 read_lock(&tasklist_lock
);
583 * Search in the children
585 list_for_each_entry(c
, &p
->children
, sibling
) {
587 goto assign_new_owner
;
591 * Search in the siblings
593 list_for_each_entry(c
, &p
->parent
->children
, sibling
) {
595 goto assign_new_owner
;
599 * Search through everything else. We should not get
602 do_each_thread(g
, c
) {
604 goto assign_new_owner
;
605 } while_each_thread(g
, c
);
607 read_unlock(&tasklist_lock
);
609 * We found no owner yet mm_users > 1: this implies that we are
610 * most likely racing with swapoff (try_to_unuse()) or /proc or
611 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
620 * The task_lock protects c->mm from changing.
621 * We always want mm->owner->mm == mm
625 * Delay read_unlock() till we have the task_lock()
626 * to ensure that c does not slip away underneath us
628 read_unlock(&tasklist_lock
);
638 #endif /* CONFIG_MM_OWNER */
641 * Turn us into a lazy TLB process if we
644 static void exit_mm(struct task_struct
* tsk
)
646 struct mm_struct
*mm
= tsk
->mm
;
647 struct core_state
*core_state
;
653 * Serialize with any possible pending coredump.
654 * We must hold mmap_sem around checking core_state
655 * and clearing tsk->mm. The core-inducing thread
656 * will increment ->nr_threads for each thread in the
657 * group with ->mm != NULL.
659 down_read(&mm
->mmap_sem
);
660 core_state
= mm
->core_state
;
662 struct core_thread self
;
663 up_read(&mm
->mmap_sem
);
666 self
.next
= xchg(&core_state
->dumper
.next
, &self
);
668 * Implies mb(), the result of xchg() must be visible
669 * to core_state->dumper.
671 if (atomic_dec_and_test(&core_state
->nr_threads
))
672 complete(&core_state
->startup
);
675 set_task_state(tsk
, TASK_UNINTERRUPTIBLE
);
676 if (!self
.task
) /* see coredump_finish() */
680 __set_task_state(tsk
, TASK_RUNNING
);
681 down_read(&mm
->mmap_sem
);
683 atomic_inc(&mm
->mm_count
);
684 BUG_ON(mm
!= tsk
->active_mm
);
685 /* more a memory barrier than a real lock */
688 up_read(&mm
->mmap_sem
);
689 enter_lazy_tlb(mm
, current
);
690 /* We don't want this task to be frozen prematurely */
691 clear_freeze_flag(tsk
);
693 mm_update_next_owner(mm
);
698 * When we die, we re-parent all our children.
699 * Try to give them to another thread in our thread
700 * group, and if no such member exists, give it to
701 * the child reaper process (ie "init") in our pid
704 static struct task_struct
*find_new_reaper(struct task_struct
*father
)
706 struct pid_namespace
*pid_ns
= task_active_pid_ns(father
);
707 struct task_struct
*thread
;
710 while_each_thread(father
, thread
) {
711 if (thread
->flags
& PF_EXITING
)
713 if (unlikely(pid_ns
->child_reaper
== father
))
714 pid_ns
->child_reaper
= thread
;
718 if (unlikely(pid_ns
->child_reaper
== father
)) {
719 write_unlock_irq(&tasklist_lock
);
720 if (unlikely(pid_ns
== &init_pid_ns
))
721 panic("Attempted to kill init!");
723 zap_pid_ns_processes(pid_ns
);
724 write_lock_irq(&tasklist_lock
);
726 * We can not clear ->child_reaper or leave it alone.
727 * There may by stealth EXIT_DEAD tasks on ->children,
728 * forget_original_parent() must move them somewhere.
730 pid_ns
->child_reaper
= init_pid_ns
.child_reaper
;
733 return pid_ns
->child_reaper
;
737 * Any that need to be release_task'd are put on the @dead list.
739 static void reparent_thread(struct task_struct
*father
, struct task_struct
*p
,
740 struct list_head
*dead
)
742 if (p
->pdeath_signal
)
743 group_send_sig_info(p
->pdeath_signal
, SEND_SIG_NOINFO
, p
);
745 list_move_tail(&p
->sibling
, &p
->real_parent
->children
);
747 if (task_detached(p
))
750 * If this is a threaded reparent there is no need to
751 * notify anyone anything has happened.
753 if (same_thread_group(p
->real_parent
, father
))
756 /* We don't want people slaying init. */
757 p
->exit_signal
= SIGCHLD
;
759 /* If it has exited notify the new parent about this child's death. */
761 p
->exit_state
== EXIT_ZOMBIE
&& thread_group_empty(p
)) {
762 do_notify_parent(p
, p
->exit_signal
);
763 if (task_detached(p
)) {
764 p
->exit_state
= EXIT_DEAD
;
765 list_move_tail(&p
->sibling
, dead
);
769 kill_orphaned_pgrp(p
, father
);
772 static void forget_original_parent(struct task_struct
*father
)
774 struct task_struct
*p
, *n
, *reaper
;
775 LIST_HEAD(dead_children
);
779 write_lock_irq(&tasklist_lock
);
780 reaper
= find_new_reaper(father
);
782 list_for_each_entry_safe(p
, n
, &father
->children
, sibling
) {
783 p
->real_parent
= reaper
;
784 if (p
->parent
== father
) {
786 p
->parent
= p
->real_parent
;
788 reparent_thread(father
, p
, &dead_children
);
790 write_unlock_irq(&tasklist_lock
);
792 BUG_ON(!list_empty(&father
->children
));
794 list_for_each_entry_safe(p
, n
, &dead_children
, sibling
) {
795 list_del_init(&p
->sibling
);
801 * Send signals to all our closest relatives so that they know
802 * to properly mourn us..
804 static void exit_notify(struct task_struct
*tsk
, int group_dead
)
810 * This does two things:
812 * A. Make init inherit all the child processes
813 * B. Check to see if any process groups have become orphaned
814 * as a result of our exiting, and if they have any stopped
815 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
817 forget_original_parent(tsk
);
818 exit_task_namespaces(tsk
);
820 write_lock_irq(&tasklist_lock
);
822 kill_orphaned_pgrp(tsk
->group_leader
, NULL
);
824 /* Let father know we died
826 * Thread signals are configurable, but you aren't going to use
827 * that to send signals to arbitary processes.
828 * That stops right now.
830 * If the parent exec id doesn't match the exec id we saved
831 * when we started then we know the parent has changed security
834 * If our self_exec id doesn't match our parent_exec_id then
835 * we have changed execution domain as these two values started
836 * the same after a fork.
838 if (tsk
->exit_signal
!= SIGCHLD
&& !task_detached(tsk
) &&
839 (tsk
->parent_exec_id
!= tsk
->real_parent
->self_exec_id
||
840 tsk
->self_exec_id
!= tsk
->parent_exec_id
) &&
842 tsk
->exit_signal
= SIGCHLD
;
844 signal
= tracehook_notify_death(tsk
, &cookie
, group_dead
);
846 signal
= do_notify_parent(tsk
, signal
);
848 tsk
->exit_state
= signal
== DEATH_REAP
? EXIT_DEAD
: EXIT_ZOMBIE
;
850 /* mt-exec, de_thread() is waiting for us */
851 if (thread_group_leader(tsk
) &&
852 tsk
->signal
->group_exit_task
&&
853 tsk
->signal
->notify_count
< 0)
854 wake_up_process(tsk
->signal
->group_exit_task
);
856 write_unlock_irq(&tasklist_lock
);
858 tracehook_report_death(tsk
, signal
, cookie
, group_dead
);
860 /* If the process is dead, release it - nobody will wait for it */
861 if (signal
== DEATH_REAP
)
865 #ifdef CONFIG_DEBUG_STACK_USAGE
866 static void check_stack_usage(void)
868 static DEFINE_SPINLOCK(low_water_lock
);
869 static int lowest_to_date
= THREAD_SIZE
;
872 free
= stack_not_used(current
);
874 if (free
>= lowest_to_date
)
877 spin_lock(&low_water_lock
);
878 if (free
< lowest_to_date
) {
879 printk(KERN_WARNING
"%s used greatest stack depth: %lu bytes "
881 current
->comm
, free
);
882 lowest_to_date
= free
;
884 spin_unlock(&low_water_lock
);
887 static inline void check_stack_usage(void) {}
890 NORET_TYPE
void do_exit(long code
)
892 struct task_struct
*tsk
= current
;
895 profile_task_exit(tsk
);
897 WARN_ON(atomic_read(&tsk
->fs_excl
));
899 if (unlikely(in_interrupt()))
900 panic("Aiee, killing interrupt handler!");
901 if (unlikely(!tsk
->pid
))
902 panic("Attempted to kill the idle task!");
904 tracehook_report_exit(&code
);
907 * We're taking recursive faults here in do_exit. Safest is to just
908 * leave this task alone and wait for reboot.
910 if (unlikely(tsk
->flags
& PF_EXITING
)) {
912 "Fixing recursive fault but reboot is needed!\n");
914 * We can do this unlocked here. The futex code uses
915 * this flag just to verify whether the pi state
916 * cleanup has been done or not. In the worst case it
917 * loops once more. We pretend that the cleanup was
918 * done as there is no way to return. Either the
919 * OWNER_DIED bit is set by now or we push the blocked
920 * task into the wait for ever nirwana as well.
922 tsk
->flags
|= PF_EXITPIDONE
;
923 set_current_state(TASK_UNINTERRUPTIBLE
);
927 exit_signals(tsk
); /* sets PF_EXITING */
929 * tsk->flags are checked in the futex code to protect against
930 * an exiting task cleaning up the robust pi futexes.
933 spin_unlock_wait(&tsk
->pi_lock
);
935 if (unlikely(in_atomic()))
936 printk(KERN_INFO
"note: %s[%d] exited with preempt_count %d\n",
937 current
->comm
, task_pid_nr(current
),
940 acct_update_integrals(tsk
);
942 group_dead
= atomic_dec_and_test(&tsk
->signal
->live
);
944 hrtimer_cancel(&tsk
->signal
->real_timer
);
945 exit_itimers(tsk
->signal
);
947 acct_collect(code
, group_dead
);
950 if (unlikely(tsk
->audit_context
))
953 tsk
->exit_code
= code
;
954 taskstats_exit(tsk
, group_dead
);
960 trace_sched_process_exit(tsk
);
969 if (group_dead
&& tsk
->signal
->leader
)
970 disassociate_ctty(1);
972 module_put(task_thread_info(tsk
)->exec_domain
->module
);
974 module_put(tsk
->binfmt
->module
);
976 proc_exit_connector(tsk
);
977 exit_notify(tsk
, group_dead
);
979 mpol_put(tsk
->mempolicy
);
980 tsk
->mempolicy
= NULL
;
984 * This must happen late, after the PID is not
987 if (unlikely(!list_empty(&tsk
->pi_state_list
)))
988 exit_pi_state_list(tsk
);
989 if (unlikely(current
->pi_state_cache
))
990 kfree(current
->pi_state_cache
);
993 * Make sure we are holding no locks:
995 debug_check_no_locks_held(tsk
);
997 * We can do this unlocked here. The futex code uses this flag
998 * just to verify whether the pi state cleanup has been done
999 * or not. In the worst case it loops once more.
1001 tsk
->flags
|= PF_EXITPIDONE
;
1003 if (tsk
->io_context
)
1006 if (tsk
->splice_pipe
)
1007 __free_pipe_info(tsk
->splice_pipe
);
1010 /* causes final put_task_struct in finish_task_switch(). */
1011 tsk
->state
= TASK_DEAD
;
1014 /* Avoid "noreturn function does return". */
1016 cpu_relax(); /* For when BUG is null */
1019 EXPORT_SYMBOL_GPL(do_exit
);
1021 NORET_TYPE
void complete_and_exit(struct completion
*comp
, long code
)
1029 EXPORT_SYMBOL(complete_and_exit
);
1031 SYSCALL_DEFINE1(exit
, int, error_code
)
1033 do_exit((error_code
&0xff)<<8);
1037 * Take down every thread in the group. This is called by fatal signals
1038 * as well as by sys_exit_group (below).
1041 do_group_exit(int exit_code
)
1043 struct signal_struct
*sig
= current
->signal
;
1045 BUG_ON(exit_code
& 0x80); /* core dumps don't get here */
1047 if (signal_group_exit(sig
))
1048 exit_code
= sig
->group_exit_code
;
1049 else if (!thread_group_empty(current
)) {
1050 struct sighand_struct
*const sighand
= current
->sighand
;
1051 spin_lock_irq(&sighand
->siglock
);
1052 if (signal_group_exit(sig
))
1053 /* Another thread got here before we took the lock. */
1054 exit_code
= sig
->group_exit_code
;
1056 sig
->group_exit_code
= exit_code
;
1057 sig
->flags
= SIGNAL_GROUP_EXIT
;
1058 zap_other_threads(current
);
1060 spin_unlock_irq(&sighand
->siglock
);
1068 * this kills every thread in the thread group. Note that any externally
1069 * wait4()-ing process will get the correct exit code - even if this
1070 * thread is not the thread group leader.
1072 SYSCALL_DEFINE1(exit_group
, int, error_code
)
1074 do_group_exit((error_code
& 0xff) << 8);
1079 static struct pid
*task_pid_type(struct task_struct
*task
, enum pid_type type
)
1081 struct pid
*pid
= NULL
;
1082 if (type
== PIDTYPE_PID
)
1083 pid
= task
->pids
[type
].pid
;
1084 else if (type
< PIDTYPE_MAX
)
1085 pid
= task
->group_leader
->pids
[type
].pid
;
1089 static int eligible_child(enum pid_type type
, struct pid
*pid
, int options
,
1090 struct task_struct
*p
)
1094 if (type
< PIDTYPE_MAX
) {
1095 if (task_pid_type(p
, type
) != pid
)
1099 /* Wait for all children (clone and not) if __WALL is set;
1100 * otherwise, wait for clone children *only* if __WCLONE is
1101 * set; otherwise, wait for non-clone children *only*. (Note:
1102 * A "clone" child here is one that reports to its parent
1103 * using a signal other than SIGCHLD.) */
1104 if (((p
->exit_signal
!= SIGCHLD
) ^ ((options
& __WCLONE
) != 0))
1105 && !(options
& __WALL
))
1108 err
= security_task_wait(p
);
1115 static int wait_noreap_copyout(struct task_struct
*p
, pid_t pid
, uid_t uid
,
1116 int why
, int status
,
1117 struct siginfo __user
*infop
,
1118 struct rusage __user
*rusagep
)
1120 int retval
= rusagep
? getrusage(p
, RUSAGE_BOTH
, rusagep
) : 0;
1124 retval
= put_user(SIGCHLD
, &infop
->si_signo
);
1126 retval
= put_user(0, &infop
->si_errno
);
1128 retval
= put_user((short)why
, &infop
->si_code
);
1130 retval
= put_user(pid
, &infop
->si_pid
);
1132 retval
= put_user(uid
, &infop
->si_uid
);
1134 retval
= put_user(status
, &infop
->si_status
);
1141 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1142 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1143 * the lock and this task is uninteresting. If we return nonzero, we have
1144 * released the lock and the system call should return.
1146 static int wait_task_zombie(struct task_struct
*p
, int options
,
1147 struct siginfo __user
*infop
,
1148 int __user
*stat_addr
, struct rusage __user
*ru
)
1150 unsigned long state
;
1151 int retval
, status
, traced
;
1152 pid_t pid
= task_pid_vnr(p
);
1153 uid_t uid
= __task_cred(p
)->uid
;
1155 if (!likely(options
& WEXITED
))
1158 if (unlikely(options
& WNOWAIT
)) {
1159 int exit_code
= p
->exit_code
;
1163 read_unlock(&tasklist_lock
);
1164 if ((exit_code
& 0x7f) == 0) {
1166 status
= exit_code
>> 8;
1168 why
= (exit_code
& 0x80) ? CLD_DUMPED
: CLD_KILLED
;
1169 status
= exit_code
& 0x7f;
1171 return wait_noreap_copyout(p
, pid
, uid
, why
,
1176 * Try to move the task's state to DEAD
1177 * only one thread is allowed to do this:
1179 state
= xchg(&p
->exit_state
, EXIT_DEAD
);
1180 if (state
!= EXIT_ZOMBIE
) {
1181 BUG_ON(state
!= EXIT_DEAD
);
1185 traced
= ptrace_reparented(p
);
1187 if (likely(!traced
)) {
1188 struct signal_struct
*psig
;
1189 struct signal_struct
*sig
;
1190 struct task_cputime cputime
;
1193 * The resource counters for the group leader are in its
1194 * own task_struct. Those for dead threads in the group
1195 * are in its signal_struct, as are those for the child
1196 * processes it has previously reaped. All these
1197 * accumulate in the parent's signal_struct c* fields.
1199 * We don't bother to take a lock here to protect these
1200 * p->signal fields, because they are only touched by
1201 * __exit_signal, which runs with tasklist_lock
1202 * write-locked anyway, and so is excluded here. We do
1203 * need to protect the access to p->parent->signal fields,
1204 * as other threads in the parent group can be right
1205 * here reaping other children at the same time.
1207 * We use thread_group_cputime() to get times for the thread
1208 * group, which consolidates times for all threads in the
1209 * group including the group leader.
1211 thread_group_cputime(p
, &cputime
);
1212 spin_lock_irq(&p
->parent
->sighand
->siglock
);
1213 psig
= p
->parent
->signal
;
1216 cputime_add(psig
->cutime
,
1217 cputime_add(cputime
.utime
,
1220 cputime_add(psig
->cstime
,
1221 cputime_add(cputime
.stime
,
1224 cputime_add(psig
->cgtime
,
1225 cputime_add(p
->gtime
,
1226 cputime_add(sig
->gtime
,
1229 p
->min_flt
+ sig
->min_flt
+ sig
->cmin_flt
;
1231 p
->maj_flt
+ sig
->maj_flt
+ sig
->cmaj_flt
;
1233 p
->nvcsw
+ sig
->nvcsw
+ sig
->cnvcsw
;
1235 p
->nivcsw
+ sig
->nivcsw
+ sig
->cnivcsw
;
1237 task_io_get_inblock(p
) +
1238 sig
->inblock
+ sig
->cinblock
;
1240 task_io_get_oublock(p
) +
1241 sig
->oublock
+ sig
->coublock
;
1242 task_io_accounting_add(&psig
->ioac
, &p
->ioac
);
1243 task_io_accounting_add(&psig
->ioac
, &sig
->ioac
);
1244 spin_unlock_irq(&p
->parent
->sighand
->siglock
);
1248 * Now we are sure this task is interesting, and no other
1249 * thread can reap it because we set its state to EXIT_DEAD.
1251 read_unlock(&tasklist_lock
);
1253 retval
= ru
? getrusage(p
, RUSAGE_BOTH
, ru
) : 0;
1254 status
= (p
->signal
->flags
& SIGNAL_GROUP_EXIT
)
1255 ? p
->signal
->group_exit_code
: p
->exit_code
;
1256 if (!retval
&& stat_addr
)
1257 retval
= put_user(status
, stat_addr
);
1258 if (!retval
&& infop
)
1259 retval
= put_user(SIGCHLD
, &infop
->si_signo
);
1260 if (!retval
&& infop
)
1261 retval
= put_user(0, &infop
->si_errno
);
1262 if (!retval
&& infop
) {
1265 if ((status
& 0x7f) == 0) {
1269 why
= (status
& 0x80) ? CLD_DUMPED
: CLD_KILLED
;
1272 retval
= put_user((short)why
, &infop
->si_code
);
1274 retval
= put_user(status
, &infop
->si_status
);
1276 if (!retval
&& infop
)
1277 retval
= put_user(pid
, &infop
->si_pid
);
1278 if (!retval
&& infop
)
1279 retval
= put_user(uid
, &infop
->si_uid
);
1284 write_lock_irq(&tasklist_lock
);
1285 /* We dropped tasklist, ptracer could die and untrace */
1288 * If this is not a detached task, notify the parent.
1289 * If it's still not detached after that, don't release
1292 if (!task_detached(p
)) {
1293 do_notify_parent(p
, p
->exit_signal
);
1294 if (!task_detached(p
)) {
1295 p
->exit_state
= EXIT_ZOMBIE
;
1299 write_unlock_irq(&tasklist_lock
);
1307 static int *task_stopped_code(struct task_struct
*p
, bool ptrace
)
1310 if (task_is_stopped_or_traced(p
))
1311 return &p
->exit_code
;
1313 if (p
->signal
->flags
& SIGNAL_STOP_STOPPED
)
1314 return &p
->signal
->group_exit_code
;
1320 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1321 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1322 * the lock and this task is uninteresting. If we return nonzero, we have
1323 * released the lock and the system call should return.
1325 static int wait_task_stopped(int ptrace
, struct task_struct
*p
,
1326 int options
, struct siginfo __user
*infop
,
1327 int __user
*stat_addr
, struct rusage __user
*ru
)
1329 int retval
, exit_code
, *p_code
, why
;
1330 uid_t uid
= 0; /* unneeded, required by compiler */
1333 if (!(options
& WUNTRACED
))
1337 spin_lock_irq(&p
->sighand
->siglock
);
1339 p_code
= task_stopped_code(p
, ptrace
);
1340 if (unlikely(!p_code
))
1343 exit_code
= *p_code
;
1347 if (!unlikely(options
& WNOWAIT
))
1350 /* don't need the RCU readlock here as we're holding a spinlock */
1351 uid
= __task_cred(p
)->uid
;
1353 spin_unlock_irq(&p
->sighand
->siglock
);
1358 * Now we are pretty sure this task is interesting.
1359 * Make sure it doesn't get reaped out from under us while we
1360 * give up the lock and then examine it below. We don't want to
1361 * keep holding onto the tasklist_lock while we call getrusage and
1362 * possibly take page faults for user memory.
1365 pid
= task_pid_vnr(p
);
1366 why
= ptrace
? CLD_TRAPPED
: CLD_STOPPED
;
1367 read_unlock(&tasklist_lock
);
1369 if (unlikely(options
& WNOWAIT
))
1370 return wait_noreap_copyout(p
, pid
, uid
,
1374 retval
= ru
? getrusage(p
, RUSAGE_BOTH
, ru
) : 0;
1375 if (!retval
&& stat_addr
)
1376 retval
= put_user((exit_code
<< 8) | 0x7f, stat_addr
);
1377 if (!retval
&& infop
)
1378 retval
= put_user(SIGCHLD
, &infop
->si_signo
);
1379 if (!retval
&& infop
)
1380 retval
= put_user(0, &infop
->si_errno
);
1381 if (!retval
&& infop
)
1382 retval
= put_user((short)why
, &infop
->si_code
);
1383 if (!retval
&& infop
)
1384 retval
= put_user(exit_code
, &infop
->si_status
);
1385 if (!retval
&& infop
)
1386 retval
= put_user(pid
, &infop
->si_pid
);
1387 if (!retval
&& infop
)
1388 retval
= put_user(uid
, &infop
->si_uid
);
1398 * Handle do_wait work for one task in a live, non-stopped state.
1399 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1400 * the lock and this task is uninteresting. If we return nonzero, we have
1401 * released the lock and the system call should return.
1403 static int wait_task_continued(struct task_struct
*p
, int options
,
1404 struct siginfo __user
*infop
,
1405 int __user
*stat_addr
, struct rusage __user
*ru
)
1411 if (!unlikely(options
& WCONTINUED
))
1414 if (!(p
->signal
->flags
& SIGNAL_STOP_CONTINUED
))
1417 spin_lock_irq(&p
->sighand
->siglock
);
1418 /* Re-check with the lock held. */
1419 if (!(p
->signal
->flags
& SIGNAL_STOP_CONTINUED
)) {
1420 spin_unlock_irq(&p
->sighand
->siglock
);
1423 if (!unlikely(options
& WNOWAIT
))
1424 p
->signal
->flags
&= ~SIGNAL_STOP_CONTINUED
;
1425 uid
= __task_cred(p
)->uid
;
1426 spin_unlock_irq(&p
->sighand
->siglock
);
1428 pid
= task_pid_vnr(p
);
1430 read_unlock(&tasklist_lock
);
1433 retval
= ru
? getrusage(p
, RUSAGE_BOTH
, ru
) : 0;
1435 if (!retval
&& stat_addr
)
1436 retval
= put_user(0xffff, stat_addr
);
1440 retval
= wait_noreap_copyout(p
, pid
, uid
,
1441 CLD_CONTINUED
, SIGCONT
,
1443 BUG_ON(retval
== 0);
1450 * Consider @p for a wait by @parent.
1452 * -ECHILD should be in *@notask_error before the first call.
1453 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1454 * Returns zero if the search for a child should continue;
1455 * then *@notask_error is 0 if @p is an eligible child,
1456 * or another error from security_task_wait(), or still -ECHILD.
1458 static int wait_consider_task(struct task_struct
*parent
, int ptrace
,
1459 struct task_struct
*p
, int *notask_error
,
1460 enum pid_type type
, struct pid
*pid
, int options
,
1461 struct siginfo __user
*infop
,
1462 int __user
*stat_addr
, struct rusage __user
*ru
)
1464 int ret
= eligible_child(type
, pid
, options
, p
);
1468 if (unlikely(ret
< 0)) {
1470 * If we have not yet seen any eligible child,
1471 * then let this error code replace -ECHILD.
1472 * A permission error will give the user a clue
1473 * to look for security policy problems, rather
1474 * than for mysterious wait bugs.
1477 *notask_error
= ret
;
1480 if (likely(!ptrace
) && unlikely(p
->ptrace
)) {
1482 * This child is hidden by ptrace.
1483 * We aren't allowed to see it now, but eventually we will.
1489 if (p
->exit_state
== EXIT_DEAD
)
1493 * We don't reap group leaders with subthreads.
1495 if (p
->exit_state
== EXIT_ZOMBIE
&& !delay_group_leader(p
))
1496 return wait_task_zombie(p
, options
, infop
, stat_addr
, ru
);
1499 * It's stopped or running now, so it might
1500 * later continue, exit, or stop again.
1504 if (task_stopped_code(p
, ptrace
))
1505 return wait_task_stopped(ptrace
, p
, options
,
1506 infop
, stat_addr
, ru
);
1508 return wait_task_continued(p
, options
, infop
, stat_addr
, ru
);
1512 * Do the work of do_wait() for one thread in the group, @tsk.
1514 * -ECHILD should be in *@notask_error before the first call.
1515 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1516 * Returns zero if the search for a child should continue; then
1517 * *@notask_error is 0 if there were any eligible children,
1518 * or another error from security_task_wait(), or still -ECHILD.
1520 static int do_wait_thread(struct task_struct
*tsk
, int *notask_error
,
1521 enum pid_type type
, struct pid
*pid
, int options
,
1522 struct siginfo __user
*infop
, int __user
*stat_addr
,
1523 struct rusage __user
*ru
)
1525 struct task_struct
*p
;
1527 list_for_each_entry(p
, &tsk
->children
, sibling
) {
1529 * Do not consider detached threads.
1531 if (!task_detached(p
)) {
1532 int ret
= wait_consider_task(tsk
, 0, p
, notask_error
,
1534 infop
, stat_addr
, ru
);
1543 static int ptrace_do_wait(struct task_struct
*tsk
, int *notask_error
,
1544 enum pid_type type
, struct pid
*pid
, int options
,
1545 struct siginfo __user
*infop
, int __user
*stat_addr
,
1546 struct rusage __user
*ru
)
1548 struct task_struct
*p
;
1551 * Traditionally we see ptrace'd stopped tasks regardless of options.
1553 options
|= WUNTRACED
;
1555 list_for_each_entry(p
, &tsk
->ptraced
, ptrace_entry
) {
1556 int ret
= wait_consider_task(tsk
, 1, p
, notask_error
,
1558 infop
, stat_addr
, ru
);
1566 static long do_wait(enum pid_type type
, struct pid
*pid
, int options
,
1567 struct siginfo __user
*infop
, int __user
*stat_addr
,
1568 struct rusage __user
*ru
)
1570 DECLARE_WAITQUEUE(wait
, current
);
1571 struct task_struct
*tsk
;
1574 trace_sched_process_wait(pid
);
1576 add_wait_queue(¤t
->signal
->wait_chldexit
,&wait
);
1579 * If there is nothing that can match our critiera just get out.
1580 * We will clear @retval to zero if we see any child that might later
1581 * match our criteria, even if we are not able to reap it yet.
1584 if ((type
< PIDTYPE_MAX
) && (!pid
|| hlist_empty(&pid
->tasks
[type
])))
1587 current
->state
= TASK_INTERRUPTIBLE
;
1588 read_lock(&tasklist_lock
);
1591 int tsk_result
= do_wait_thread(tsk
, &retval
,
1593 infop
, stat_addr
, ru
);
1595 tsk_result
= ptrace_do_wait(tsk
, &retval
,
1597 infop
, stat_addr
, ru
);
1600 * tasklist_lock is unlocked and we have a final result.
1602 retval
= tsk_result
;
1606 if (options
& __WNOTHREAD
)
1608 tsk
= next_thread(tsk
);
1609 BUG_ON(tsk
->signal
!= current
->signal
);
1610 } while (tsk
!= current
);
1611 read_unlock(&tasklist_lock
);
1613 if (!retval
&& !(options
& WNOHANG
)) {
1614 retval
= -ERESTARTSYS
;
1615 if (!signal_pending(current
)) {
1622 current
->state
= TASK_RUNNING
;
1623 remove_wait_queue(¤t
->signal
->wait_chldexit
,&wait
);
1629 * For a WNOHANG return, clear out all the fields
1630 * we would set so the user can easily tell the
1634 retval
= put_user(0, &infop
->si_signo
);
1636 retval
= put_user(0, &infop
->si_errno
);
1638 retval
= put_user(0, &infop
->si_code
);
1640 retval
= put_user(0, &infop
->si_pid
);
1642 retval
= put_user(0, &infop
->si_uid
);
1644 retval
= put_user(0, &infop
->si_status
);
1650 SYSCALL_DEFINE5(waitid
, int, which
, pid_t
, upid
, struct siginfo __user
*,
1651 infop
, int, options
, struct rusage __user
*, ru
)
1653 struct pid
*pid
= NULL
;
1657 if (options
& ~(WNOHANG
|WNOWAIT
|WEXITED
|WSTOPPED
|WCONTINUED
))
1659 if (!(options
& (WEXITED
|WSTOPPED
|WCONTINUED
)))
1672 type
= PIDTYPE_PGID
;
1680 if (type
< PIDTYPE_MAX
)
1681 pid
= find_get_pid(upid
);
1682 ret
= do_wait(type
, pid
, options
, infop
, NULL
, ru
);
1685 /* avoid REGPARM breakage on x86: */
1686 asmlinkage_protect(5, ret
, which
, upid
, infop
, options
, ru
);
1690 SYSCALL_DEFINE4(wait4
, pid_t
, upid
, int __user
*, stat_addr
,
1691 int, options
, struct rusage __user
*, ru
)
1693 struct pid
*pid
= NULL
;
1697 if (options
& ~(WNOHANG
|WUNTRACED
|WCONTINUED
|
1698 __WNOTHREAD
|__WCLONE
|__WALL
))
1703 else if (upid
< 0) {
1704 type
= PIDTYPE_PGID
;
1705 pid
= find_get_pid(-upid
);
1706 } else if (upid
== 0) {
1707 type
= PIDTYPE_PGID
;
1708 pid
= get_task_pid(current
, PIDTYPE_PGID
);
1709 } else /* upid > 0 */ {
1711 pid
= find_get_pid(upid
);
1714 ret
= do_wait(type
, pid
, options
| WEXITED
, NULL
, stat_addr
, ru
);
1717 /* avoid REGPARM breakage on x86: */
1718 asmlinkage_protect(4, ret
, upid
, stat_addr
, options
, ru
);
1722 #ifdef __ARCH_WANT_SYS_WAITPID
1725 * sys_waitpid() remains for compatibility. waitpid() should be
1726 * implemented by calling sys_wait4() from libc.a.
1728 SYSCALL_DEFINE3(waitpid
, pid_t
, pid
, int __user
*, stat_addr
, int, options
)
1730 return sys_wait4(pid
, stat_addr
, options
, NULL
);