[PATCH] Corgi: Add MMC/SD write protection switch handling
[linux-2.6/linux-2.6-openrd.git] / drivers / scsi / cpqfcTSinit.c
blobd72be0ce89c84534911026dce7879659045bd619
1 /* Copyright(c) 2000, Compaq Computer Corporation
2 * Fibre Channel Host Bus Adapter
3 * 64-bit, 66MHz PCI
4 * Originally developed and tested on:
5 * (front): [chip] Tachyon TS HPFC-5166A/1.2 L2C1090 ...
6 * SP# P225CXCBFIEL6T, Rev XC
7 * SP# 161290-001, Rev XD
8 * (back): Board No. 010008-001 A/W Rev X5, FAB REV X5
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2, or (at your option) any
13 * later version.
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 * Written by Don Zimmerman
20 * IOCTL and procfs added by Jouke Numan
21 * SMP testing by Chel Van Gennip
23 * portions copied from:
24 * QLogic CPQFCTS SCSI-FCP
25 * Written by Erik H. Moe, ehm@cris.com
26 * Copyright 1995, Erik H. Moe
27 * Renamed and updated to 1.3.x by Michael Griffith <grif@cs.ucr.edu>
28 * Chris Loveland <cwl@iol.unh.edu> to support the isp2100 and isp2200
32 #define LinuxVersionCode(v, p, s) (((v)<<16)+((p)<<8)+(s))
34 #include <linux/config.h>
35 #include <linux/interrupt.h>
36 #include <linux/module.h>
37 #include <linux/version.h>
38 #include <linux/blkdev.h>
39 #include <linux/kernel.h>
40 #include <linux/string.h>
41 #include <linux/types.h>
42 #include <linux/pci.h>
43 #include <linux/delay.h>
44 #include <linux/timer.h>
45 #include <linux/init.h>
46 #include <linux/ioport.h> // request_region() prototype
47 #include <linux/completion.h>
49 #include <asm/io.h>
50 #include <asm/uaccess.h> // ioctl related
51 #include <asm/irq.h>
52 #include <linux/spinlock.h>
53 #include "scsi.h"
54 #include <scsi/scsi_host.h>
55 #include <scsi/scsi_ioctl.h>
56 #include "cpqfcTSchip.h"
57 #include "cpqfcTSstructs.h"
58 #include "cpqfcTStrigger.h"
60 #include "cpqfcTS.h"
62 /* Embedded module documentation macros - see module.h */
63 MODULE_AUTHOR("Compaq Computer Corporation");
64 MODULE_DESCRIPTION("Driver for Compaq 64-bit/66Mhz PCI Fibre Channel HBA v. 2.5.4");
65 MODULE_LICENSE("GPL");
67 int cpqfcTS_TargetDeviceReset( Scsi_Device *ScsiDev, unsigned int reset_flags);
69 // This struct was originally defined in
70 // /usr/src/linux/include/linux/proc_fs.h
71 // since it's only partially implemented, we only use first
72 // few fields...
73 // NOTE: proc_fs changes in 2.4 kernel
75 #if LINUX_VERSION_CODE < LinuxVersionCode(2,3,27)
76 static struct proc_dir_entry proc_scsi_cpqfcTS =
78 PROC_SCSI_CPQFCTS, // ushort low_ino (enumerated list)
79 7, // ushort namelen
80 DEV_NAME, // const char* name
81 S_IFDIR | S_IRUGO | S_IXUGO, // mode_t mode
82 2 // nlink_t nlink
83 // etc. ...
87 #endif
89 #if LINUX_VERSION_CODE >= LinuxVersionCode(2,4,7)
90 # define CPQFC_DECLARE_COMPLETION(x) DECLARE_COMPLETION(x)
91 # define CPQFC_WAITING waiting
92 # define CPQFC_COMPLETE(x) complete(x)
93 # define CPQFC_WAIT_FOR_COMPLETION(x) wait_for_completion(x);
94 #else
95 # define CPQFC_DECLARE_COMPLETION(x) DECLARE_MUTEX_LOCKED(x)
96 # define CPQFC_WAITING sem
97 # define CPQFC_COMPLETE(x) up(x)
98 # define CPQFC_WAIT_FOR_COMPLETION(x) down(x)
99 #endif
101 static int cpqfc_alloc_private_data_pool(CPQFCHBA *hba);
103 /* local function to load our per-HBA (local) data for chip
104 registers, FC link state, all FC exchanges, etc.
106 We allocate space and compute address offsets for the
107 most frequently accessed addresses; others (like World Wide
108 Name) are not necessary.
110 static void Cpqfc_initHBAdata(CPQFCHBA *cpqfcHBAdata, struct pci_dev *PciDev )
113 cpqfcHBAdata->PciDev = PciDev; // copy PCI info ptr
115 // since x86 port space is 64k, we only need the lower 16 bits
116 cpqfcHBAdata->fcChip.Registers.IOBaseL =
117 PciDev->resource[1].start & PCI_BASE_ADDRESS_IO_MASK;
119 cpqfcHBAdata->fcChip.Registers.IOBaseU =
120 PciDev->resource[2].start & PCI_BASE_ADDRESS_IO_MASK;
122 // 32-bit memory addresses
123 cpqfcHBAdata->fcChip.Registers.MemBase =
124 PciDev->resource[3].start & PCI_BASE_ADDRESS_MEM_MASK;
126 cpqfcHBAdata->fcChip.Registers.ReMapMemBase =
127 ioremap( PciDev->resource[3].start & PCI_BASE_ADDRESS_MEM_MASK,
128 0x200);
130 cpqfcHBAdata->fcChip.Registers.RAMBase =
131 PciDev->resource[4].start;
133 cpqfcHBAdata->fcChip.Registers.SROMBase = // NULL for HP TS adapter
134 PciDev->resource[5].start;
136 // now the Tachlite chip registers
137 // the REGISTER struct holds both the physical address & last
138 // written value (some TL registers are WRITE ONLY)
140 cpqfcHBAdata->fcChip.Registers.SFQconsumerIndex.address =
141 cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_SFQ_CONSUMER_INDEX;
143 cpqfcHBAdata->fcChip.Registers.ERQproducerIndex.address =
144 cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_ERQ_PRODUCER_INDEX;
146 // TL Frame Manager
147 cpqfcHBAdata->fcChip.Registers.FMconfig.address =
148 cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_FM_CONFIG;
149 cpqfcHBAdata->fcChip.Registers.FMcontrol.address =
150 cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_FM_CONTROL;
151 cpqfcHBAdata->fcChip.Registers.FMstatus.address =
152 cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_FM_STATUS;
153 cpqfcHBAdata->fcChip.Registers.FMLinkStatus1.address =
154 cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_FM_LINK_STAT1;
155 cpqfcHBAdata->fcChip.Registers.FMLinkStatus2.address =
156 cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_FM_LINK_STAT2;
157 cpqfcHBAdata->fcChip.Registers.FMBB_CreditZero.address =
158 cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_FM_BB_CREDIT0;
160 // TL Control Regs
161 cpqfcHBAdata->fcChip.Registers.TYconfig.address =
162 cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_TACH_CONFIG;
163 cpqfcHBAdata->fcChip.Registers.TYcontrol.address =
164 cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_TACH_CONTROL;
165 cpqfcHBAdata->fcChip.Registers.TYstatus.address =
166 cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_TACH_STATUS;
167 cpqfcHBAdata->fcChip.Registers.rcv_al_pa.address =
168 cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_FM_RCV_AL_PA;
169 cpqfcHBAdata->fcChip.Registers.ed_tov.address =
170 cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_FM_ED_TOV;
173 cpqfcHBAdata->fcChip.Registers.INTEN.address =
174 cpqfcHBAdata->fcChip.Registers.ReMapMemBase + IINTEN;
175 cpqfcHBAdata->fcChip.Registers.INTPEND.address =
176 cpqfcHBAdata->fcChip.Registers.ReMapMemBase + IINTPEND;
177 cpqfcHBAdata->fcChip.Registers.INTSTAT.address =
178 cpqfcHBAdata->fcChip.Registers.ReMapMemBase + IINTSTAT;
180 DEBUG_PCI(printk(" cpqfcHBAdata->fcChip.Registers. :\n"));
181 DEBUG_PCI(printk(" IOBaseL = %x\n",
182 cpqfcHBAdata->fcChip.Registers.IOBaseL));
183 DEBUG_PCI(printk(" IOBaseU = %x\n",
184 cpqfcHBAdata->fcChip.Registers.IOBaseU));
186 /* printk(" ioremap'd Membase: %p\n", cpqfcHBAdata->fcChip.Registers.ReMapMemBase); */
188 DEBUG_PCI(printk(" SFQconsumerIndex.address = %p\n",
189 cpqfcHBAdata->fcChip.Registers.SFQconsumerIndex.address));
190 DEBUG_PCI(printk(" ERQproducerIndex.address = %p\n",
191 cpqfcHBAdata->fcChip.Registers.ERQproducerIndex.address));
192 DEBUG_PCI(printk(" TYconfig.address = %p\n",
193 cpqfcHBAdata->fcChip.Registers.TYconfig.address));
194 DEBUG_PCI(printk(" FMconfig.address = %p\n",
195 cpqfcHBAdata->fcChip.Registers.FMconfig.address));
196 DEBUG_PCI(printk(" FMcontrol.address = %p\n",
197 cpqfcHBAdata->fcChip.Registers.FMcontrol.address));
199 // set default options for FC controller (chip)
200 cpqfcHBAdata->fcChip.Options.initiator = 1; // default: SCSI initiator
201 cpqfcHBAdata->fcChip.Options.target = 0; // default: SCSI target
202 cpqfcHBAdata->fcChip.Options.extLoopback = 0;// default: no loopback @GBIC
203 cpqfcHBAdata->fcChip.Options.intLoopback = 0;// default: no loopback inside chip
205 // set highest and lowest FC-PH version the adapter/driver supports
206 // (NOT strict compliance)
207 cpqfcHBAdata->fcChip.highest_FCPH_ver = FC_PH3;
208 cpqfcHBAdata->fcChip.lowest_FCPH_ver = FC_PH43;
210 // set function points for this controller / adapter
211 cpqfcHBAdata->fcChip.ResetTachyon = CpqTsResetTachLite;
212 cpqfcHBAdata->fcChip.FreezeTachyon = CpqTsFreezeTachlite;
213 cpqfcHBAdata->fcChip.UnFreezeTachyon = CpqTsUnFreezeTachlite;
214 cpqfcHBAdata->fcChip.CreateTachyonQues = CpqTsCreateTachLiteQues;
215 cpqfcHBAdata->fcChip.DestroyTachyonQues = CpqTsDestroyTachLiteQues;
216 cpqfcHBAdata->fcChip.InitializeTachyon = CpqTsInitializeTachLite;
217 cpqfcHBAdata->fcChip.LaserControl = CpqTsLaserControl;
218 cpqfcHBAdata->fcChip.ProcessIMQEntry = CpqTsProcessIMQEntry;
219 cpqfcHBAdata->fcChip.InitializeFrameManager = CpqTsInitializeFrameManager;
220 cpqfcHBAdata->fcChip.ReadWriteWWN = CpqTsReadWriteWWN;
221 cpqfcHBAdata->fcChip.ReadWriteNVRAM = CpqTsReadWriteNVRAM;
223 if (cpqfc_alloc_private_data_pool(cpqfcHBAdata) != 0) {
224 printk(KERN_WARNING
225 "cpqfc: unable to allocate pool for passthru ioctls. "
226 "Passthru ioctls disabled.\n");
231 /* (borrowed from linux/drivers/scsi/hosts.c) */
232 static void launch_FCworker_thread(struct Scsi_Host *HostAdapter)
234 DECLARE_MUTEX_LOCKED(sem);
236 CPQFCHBA *cpqfcHBAdata = (CPQFCHBA *)HostAdapter->hostdata;
238 ENTER("launch_FC_worker_thread");
240 cpqfcHBAdata->notify_wt = &sem;
242 /* must unlock before kernel_thread(), for it may cause a reschedule. */
243 spin_unlock_irq(HostAdapter->host_lock);
244 kernel_thread((int (*)(void *))cpqfcTSWorkerThread,
245 (void *) HostAdapter, 0);
247 * Now wait for the kernel error thread to initialize itself
250 down (&sem);
251 spin_lock_irq(HostAdapter->host_lock);
252 cpqfcHBAdata->notify_wt = NULL;
254 LEAVE("launch_FC_worker_thread");
259 /* "Entry" point to discover if any supported PCI
260 bus adapter can be found
262 /* We're supporting:
263 * Compaq 64-bit, 66MHz HBA with Tachyon TS
264 * Agilent XL2
265 * HP Tachyon
267 #define HBA_TYPES 3
269 #ifndef PCI_DEVICE_ID_COMPAQ_
270 #define PCI_DEVICE_ID_COMPAQ_TACHYON 0xa0fc
271 #endif
273 static struct SupportedPCIcards cpqfc_boards[] __initdata = {
274 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_TACHYON},
275 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_TACHLITE},
276 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_TACHYON},
280 int cpqfcTS_detect(Scsi_Host_Template *ScsiHostTemplate)
282 int NumberOfAdapters=0; // how many of our PCI adapters are found?
283 struct pci_dev *PciDev = NULL;
284 struct Scsi_Host *HostAdapter = NULL;
285 CPQFCHBA *cpqfcHBAdata = NULL;
286 struct timer_list *cpqfcTStimer = NULL;
287 int i;
289 ENTER("cpqfcTS_detect");
291 #if LINUX_VERSION_CODE < LinuxVersionCode(2,3,27)
292 ScsiHostTemplate->proc_dir = &proc_scsi_cpqfcTS;
293 #else
294 ScsiHostTemplate->proc_name = "cpqfcTS";
295 #endif
297 for( i=0; i < HBA_TYPES; i++)
299 // look for all HBAs of each type
301 while((PciDev = pci_find_device(cpqfc_boards[i].vendor_id,
302 cpqfc_boards[i].device_id, PciDev)))
305 if (pci_enable_device(PciDev)) {
306 printk(KERN_ERR
307 "cpqfc: can't enable PCI device at %s\n", pci_name(PciDev));
308 goto err_continue;
311 if (pci_set_dma_mask(PciDev, CPQFCTS_DMA_MASK) != 0) {
312 printk(KERN_WARNING
313 "cpqfc: HBA cannot support required DMA mask, skipping.\n");
314 goto err_disable_dev;
317 // NOTE: (kernel 2.2.12-32) limits allocation to 128k bytes...
318 /* printk(" scsi_register allocating %d bytes for FC HBA\n",
319 (ULONG)sizeof(CPQFCHBA)); */
321 HostAdapter = scsi_register( ScsiHostTemplate, sizeof( CPQFCHBA ) );
323 if(HostAdapter == NULL) {
324 printk(KERN_WARNING
325 "cpqfc: can't register SCSI HBA, skipping.\n");
326 goto err_disable_dev;
328 DEBUG_PCI( printk(" HBA found!\n"));
329 DEBUG_PCI( printk(" HostAdapter->PciDev->irq = %u\n", PciDev->irq) );
330 DEBUG_PCI(printk(" PciDev->baseaddress[0]= %lx\n",
331 PciDev->resource[0].start));
332 DEBUG_PCI(printk(" PciDev->baseaddress[1]= %lx\n",
333 PciDev->resource[1].start));
334 DEBUG_PCI(printk(" PciDev->baseaddress[2]= %lx\n",
335 PciDev->resource[2].start));
336 DEBUG_PCI(printk(" PciDev->baseaddress[3]= %lx\n",
337 PciDev->resource[3].start));
339 HostAdapter->irq = PciDev->irq; // copy for Scsi layers
341 // HP Tachlite uses two (255-byte) ranges of Port I/O (lower & upper),
342 // for a total I/O port address space of 512 bytes.
343 // mask out the I/O port address (lower) & record
344 HostAdapter->io_port = (unsigned int)
345 PciDev->resource[1].start & PCI_BASE_ADDRESS_IO_MASK;
346 HostAdapter->n_io_port = 0xff;
348 // i.e., expect 128 targets (arbitrary number), while the
349 // RA-4000 supports 32 LUNs
350 HostAdapter->max_id = 0; // incremented as devices log in
351 HostAdapter->max_lun = CPQFCTS_MAX_LUN; // LUNs per FC device
352 HostAdapter->max_channel = CPQFCTS_MAX_CHANNEL; // multiple busses?
354 // get the pointer to our HBA specific data... (one for
355 // each HBA on the PCI bus(ses)).
356 cpqfcHBAdata = (CPQFCHBA *)HostAdapter->hostdata;
358 // make certain our data struct is clear
359 memset( cpqfcHBAdata, 0, sizeof( CPQFCHBA ) );
362 // initialize our HBA info
363 cpqfcHBAdata->HBAnum = NumberOfAdapters;
365 cpqfcHBAdata->HostAdapter = HostAdapter; // back ptr
366 Cpqfc_initHBAdata( cpqfcHBAdata, PciDev ); // fill MOST fields
368 cpqfcHBAdata->HBAnum = NumberOfAdapters;
369 spin_lock_init(&cpqfcHBAdata->hba_spinlock);
371 // request necessary resources and check for conflicts
372 if( request_irq( HostAdapter->irq,
373 cpqfcTS_intr_handler,
374 SA_INTERRUPT | SA_SHIRQ,
375 DEV_NAME,
376 HostAdapter) )
378 printk(KERN_WARNING "cpqfc: IRQ %u already used\n", HostAdapter->irq);
379 goto err_unregister;
382 // Since we have two 256-byte I/O port ranges (upper
383 // and lower), check them both
384 if( !request_region( cpqfcHBAdata->fcChip.Registers.IOBaseU,
385 0xff, DEV_NAME ) )
387 printk(KERN_WARNING "cpqfc: address in use: %x\n",
388 cpqfcHBAdata->fcChip.Registers.IOBaseU);
389 goto err_free_irq;
392 if( !request_region( cpqfcHBAdata->fcChip.Registers.IOBaseL,
393 0xff, DEV_NAME ) )
395 printk(KERN_WARNING "cpqfc: address in use: %x\n",
396 cpqfcHBAdata->fcChip.Registers.IOBaseL);
397 goto err_release_region_U;
400 // OK, we have grabbed everything we need now.
401 DEBUG_PCI(printk(" Reserved 255 I/O addresses @ %x\n",
402 cpqfcHBAdata->fcChip.Registers.IOBaseL ));
403 DEBUG_PCI(printk(" Reserved 255 I/O addresses @ %x\n",
404 cpqfcHBAdata->fcChip.Registers.IOBaseU ));
408 // start our kernel worker thread
410 spin_lock_irq(HostAdapter->host_lock);
411 launch_FCworker_thread(HostAdapter);
414 // start our TimerTask...
416 cpqfcTStimer = &cpqfcHBAdata->cpqfcTStimer;
418 init_timer( cpqfcTStimer); // Linux clears next/prev values
419 cpqfcTStimer->expires = jiffies + HZ; // one second
420 cpqfcTStimer->data = (unsigned long)cpqfcHBAdata; // this adapter
421 cpqfcTStimer->function = cpqfcTSheartbeat; // handles timeouts, housekeeping
423 add_timer( cpqfcTStimer); // give it to Linux
426 // now initialize our hardware...
427 if (cpqfcHBAdata->fcChip.InitializeTachyon( cpqfcHBAdata, 1,1)) {
428 printk(KERN_WARNING "cpqfc: initialization of HBA hardware failed.\n");
429 goto err_release_region_L;
432 cpqfcHBAdata->fcStatsTime = jiffies; // (for FC Statistics delta)
434 // give our HBA time to initialize and login current devices...
436 // The Brocade switch (e.g. 2400, 2010, etc.) as of March 2000,
437 // has the following algorithm for FL_Port startup:
438 // Time(sec) Action
439 // 0: Device Plugin and LIP(F7,F7) transmission
440 // 1.0 LIP incoming
441 // 1.027 LISA incoming, no CLS! (link not up)
442 // 1.028 NOS incoming (switch test for N_Port)
443 // 1.577 ED_TOV expired, transmit LIPs again
444 // 3.0 LIP(F8,F7) incoming (switch passes Tach Prim.Sig)
445 // 3.028 LILP received, link up, FLOGI starts
446 // slowest(worst) case, measured on 1Gb Finisar GT analyzer
448 unsigned long stop_time;
450 spin_unlock_irq(HostAdapter->host_lock);
451 stop_time = jiffies + 4*HZ;
452 while ( time_before(jiffies, stop_time) )
453 schedule(); // (our worker task needs to run)
457 spin_lock_irq(HostAdapter->host_lock);
458 NumberOfAdapters++;
459 spin_unlock_irq(HostAdapter->host_lock);
461 continue;
463 err_release_region_L:
464 release_region( cpqfcHBAdata->fcChip.Registers.IOBaseL, 0xff );
465 err_release_region_U:
466 release_region( cpqfcHBAdata->fcChip.Registers.IOBaseU, 0xff );
467 err_free_irq:
468 free_irq( HostAdapter->irq, HostAdapter);
469 err_unregister:
470 scsi_unregister( HostAdapter);
471 err_disable_dev:
472 pci_disable_device( PciDev );
473 err_continue:
474 continue;
475 } // end of while()
478 LEAVE("cpqfcTS_detect");
480 return NumberOfAdapters;
483 #ifdef SUPPORT_RESET
484 static void my_ioctl_done (Scsi_Cmnd * SCpnt)
486 struct request * req;
488 req = SCpnt->request;
489 req->rq_status = RQ_SCSI_DONE; /* Busy, but indicate request done */
491 if (req->CPQFC_WAITING != NULL)
492 CPQFC_COMPLETE(req->CPQFC_WAITING);
494 #endif
496 static int cpqfc_alloc_private_data_pool(CPQFCHBA *hba)
498 hba->private_data_bits = NULL;
499 hba->private_data_pool = NULL;
500 hba->private_data_bits =
501 kmalloc(((CPQFC_MAX_PASSTHRU_CMDS+BITS_PER_LONG-1) /
502 BITS_PER_LONG)*sizeof(unsigned long),
503 GFP_KERNEL);
504 if (hba->private_data_bits == NULL)
505 return -1;
506 memset(hba->private_data_bits, 0,
507 ((CPQFC_MAX_PASSTHRU_CMDS+BITS_PER_LONG-1) /
508 BITS_PER_LONG)*sizeof(unsigned long));
509 hba->private_data_pool = kmalloc(sizeof(cpqfc_passthru_private_t) *
510 CPQFC_MAX_PASSTHRU_CMDS, GFP_KERNEL);
511 if (hba->private_data_pool == NULL) {
512 kfree(hba->private_data_bits);
513 hba->private_data_bits = NULL;
514 return -1;
516 return 0;
519 static void cpqfc_free_private_data_pool(CPQFCHBA *hba)
521 kfree(hba->private_data_bits);
522 kfree(hba->private_data_pool);
525 int is_private_data_of_cpqfc(CPQFCHBA *hba, void *pointer)
527 /* Is pointer within our private data pool?
528 We use Scsi_Request->upper_private_data (normally
529 reserved for upper layer drivers, e.g. the sg driver)
530 We check to see if the pointer is ours by looking at
531 its address. Is this ok? Hmm, it occurs to me that
532 a user app might do something bad by using sg to send
533 a cpqfc passthrough ioctl with upper_data_private
534 forged to be somewhere in our pool..., though they'd
535 normally have to be root already to do this. */
537 return (pointer != NULL &&
538 pointer >= (void *) hba->private_data_pool &&
539 pointer < (void *) hba->private_data_pool +
540 sizeof(*hba->private_data_pool) *
541 CPQFC_MAX_PASSTHRU_CMDS);
544 cpqfc_passthru_private_t *cpqfc_alloc_private_data(CPQFCHBA *hba)
546 int i;
548 do {
549 i = find_first_zero_bit(hba->private_data_bits,
550 CPQFC_MAX_PASSTHRU_CMDS);
551 if (i == CPQFC_MAX_PASSTHRU_CMDS)
552 return NULL;
553 } while ( test_and_set_bit(i & (BITS_PER_LONG - 1),
554 hba->private_data_bits+(i/BITS_PER_LONG)) != 0);
555 return &hba->private_data_pool[i];
558 void cpqfc_free_private_data(CPQFCHBA *hba, cpqfc_passthru_private_t *data)
560 int i;
561 i = data - hba->private_data_pool;
562 clear_bit(i&(BITS_PER_LONG-1),
563 hba->private_data_bits+(i/BITS_PER_LONG));
566 int cpqfcTS_ioctl( struct scsi_device *ScsiDev, int Cmnd, void *arg)
568 int result = 0;
569 struct Scsi_Host *HostAdapter = ScsiDev->host;
570 CPQFCHBA *cpqfcHBAdata = (CPQFCHBA *)HostAdapter->hostdata;
571 PTACHYON fcChip = &cpqfcHBAdata->fcChip;
572 PFC_LOGGEDIN_PORT pLoggedInPort = NULL;
573 struct scsi_cmnd *DumCmnd;
574 int i, j;
575 VENDOR_IOCTL_REQ ioc;
576 cpqfc_passthru_t *vendor_cmd;
577 Scsi_Device *SDpnt;
578 Scsi_Request *ScsiPassThruReq;
579 cpqfc_passthru_private_t *privatedata;
581 ENTER("cpqfcTS_ioctl ");
583 // printk("ioctl CMND %d", Cmnd);
584 switch (Cmnd) {
585 // Passthrough provides a mechanism to bypass the RAID
586 // or other controller and talk directly to the devices
587 // (e.g. physical disk drive)
588 // Passthrough commands, unfortunately, tend to be vendor
589 // specific; this is tailored to COMPAQ's RAID (RA4x00)
590 case CPQFCTS_SCSI_PASSTHRU:
592 void *buf = NULL; // for kernel space buffer for user data
594 /* Check that our pool got allocated ok. */
595 if (cpqfcHBAdata->private_data_pool == NULL)
596 return -ENOMEM;
598 if( !arg)
599 return -EINVAL;
601 // must be super user to send stuff directly to the
602 // controller and/or physical drives...
603 if( !capable(CAP_SYS_RAWIO) )
604 return -EPERM;
606 // copy the caller's struct to our space.
607 if( copy_from_user( &ioc, arg, sizeof( VENDOR_IOCTL_REQ)))
608 return( -EFAULT);
610 vendor_cmd = ioc.argp; // i.e., CPQ specific command struct
612 // If necessary, grab a kernel/DMA buffer
613 if( vendor_cmd->len)
615 buf = kmalloc( vendor_cmd->len, GFP_KERNEL);
616 if( !buf)
617 return -ENOMEM;
619 // Now build a Scsi_Request to pass down...
620 ScsiPassThruReq = scsi_allocate_request(ScsiDev, GFP_KERNEL);
621 if (ScsiPassThruReq == NULL) {
622 kfree(buf);
623 return -ENOMEM;
625 ScsiPassThruReq->upper_private_data =
626 cpqfc_alloc_private_data(cpqfcHBAdata);
627 if (ScsiPassThruReq->upper_private_data == NULL) {
628 kfree(buf);
629 scsi_release_request(ScsiPassThruReq); // "de-allocate"
630 return -ENOMEM;
633 if (vendor_cmd->rw_flag == VENDOR_WRITE_OPCODE) {
634 if (vendor_cmd->len) { // Need data from user?
635 if (copy_from_user(buf, vendor_cmd->bufp,
636 vendor_cmd->len)) {
637 kfree(buf);
638 cpqfc_free_private_data(cpqfcHBAdata,
639 ScsiPassThruReq->upper_private_data);
640 scsi_release_request(ScsiPassThruReq);
641 return( -EFAULT);
644 ScsiPassThruReq->sr_data_direction = DMA_TO_DEVICE;
645 } else if (vendor_cmd->rw_flag == VENDOR_READ_OPCODE) {
646 ScsiPassThruReq->sr_data_direction = DMA_FROM_DEVICE;
647 } else
648 // maybe this means a bug in the user app
649 ScsiPassThruReq->sr_data_direction = DMA_BIDIRECTIONAL;
651 ScsiPassThruReq->sr_cmd_len = 0; // set correctly by scsi_do_req()
652 ScsiPassThruReq->sr_sense_buffer[0] = 0;
653 ScsiPassThruReq->sr_sense_buffer[2] = 0;
655 // We copy the scheme used by sd.c:spinup_disk() to submit commands
656 // to our own HBA. We do this in order to stall the
657 // thread calling the IOCTL until it completes, and use
658 // the same "_quecommand" function for synchronizing
659 // FC Link events with our "worker thread".
661 privatedata = ScsiPassThruReq->upper_private_data;
662 privatedata->bus = vendor_cmd->bus;
663 privatedata->pdrive = vendor_cmd->pdrive;
665 // eventually gets us to our own _quecommand routine
666 scsi_wait_req(ScsiPassThruReq,
667 &vendor_cmd->cdb[0], buf, vendor_cmd->len,
668 10*HZ, // timeout
669 1); // retries
670 result = ScsiPassThruReq->sr_result;
672 // copy any sense data back to caller
673 if( result != 0 )
675 memcpy( vendor_cmd->sense_data, // see struct def - size=40
676 ScsiPassThruReq->sr_sense_buffer,
677 sizeof(ScsiPassThruReq->sr_sense_buffer) <
678 sizeof(vendor_cmd->sense_data) ?
679 sizeof(ScsiPassThruReq->sr_sense_buffer) :
680 sizeof(vendor_cmd->sense_data)
683 SDpnt = ScsiPassThruReq->sr_device;
684 /* upper_private_data is already freed in call_scsi_done() */
685 scsi_release_request(ScsiPassThruReq); // "de-allocate"
686 ScsiPassThruReq = NULL;
688 // need to pass data back to user (space)?
689 if( (vendor_cmd->rw_flag == VENDOR_READ_OPCODE) &&
690 vendor_cmd->len )
691 if( copy_to_user( vendor_cmd->bufp, buf, vendor_cmd->len))
692 result = -EFAULT;
694 if( buf)
695 kfree( buf);
697 return result;
700 case CPQFCTS_GETPCIINFO:
702 cpqfc_pci_info_struct pciinfo;
704 if( !arg)
705 return -EINVAL;
709 pciinfo.bus = cpqfcHBAdata->PciDev->bus->number;
710 pciinfo.dev_fn = cpqfcHBAdata->PciDev->devfn;
711 pciinfo.board_id = cpqfcHBAdata->PciDev->device |
712 (cpqfcHBAdata->PciDev->vendor <<16);
714 if(copy_to_user( arg, &pciinfo, sizeof(cpqfc_pci_info_struct)))
715 return( -EFAULT);
716 return 0;
719 case CPQFCTS_GETDRIVVER:
721 DriverVer_type DriverVer =
722 CPQFCTS_DRIVER_VER( VER_MAJOR,VER_MINOR,VER_SUBMINOR);
724 if( !arg)
725 return -EINVAL;
727 if(copy_to_user( arg, &DriverVer, sizeof(DriverVer)))
728 return( -EFAULT);
729 return 0;
734 case CPQFC_IOCTL_FC_TARGET_ADDRESS:
735 // can we find an FC device mapping to this SCSI target?
736 /* DumCmnd.channel = ScsiDev->channel; */ // For searching
737 /* DumCmnd.target = ScsiDev->id; */
738 /* DumCmnd.lun = ScsiDev->lun; */
740 DumCmnd = scsi_get_command (ScsiDev, GFP_KERNEL);
741 if (!DumCmnd)
742 return -ENOMEM;
744 pLoggedInPort = fcFindLoggedInPort( fcChip,
745 DumCmnd, // search Scsi Nexus
746 0, // DON'T search linked list for FC port id
747 NULL, // DON'T search linked list for FC WWN
748 NULL); // DON'T care about end of list
749 scsi_put_command (DumCmnd);
750 if (pLoggedInPort == NULL) {
751 result = -ENXIO;
752 break;
754 result = access_ok(VERIFY_WRITE, arg, sizeof(Scsi_FCTargAddress)) ? 0 : -EFAULT;
755 if (result) break;
757 put_user(pLoggedInPort->port_id,
758 &((Scsi_FCTargAddress *) arg)->host_port_id);
760 for( i=3,j=0; i>=0; i--) // copy the LOGIN port's WWN
761 put_user(pLoggedInPort->u.ucWWN[i],
762 &((Scsi_FCTargAddress *) arg)->host_wwn[j++]);
763 for( i=7; i>3; i--) // copy the LOGIN port's WWN
764 put_user(pLoggedInPort->u.ucWWN[i],
765 &((Scsi_FCTargAddress *) arg)->host_wwn[j++]);
766 break;
769 case CPQFC_IOCTL_FC_TDR:
771 result = cpqfcTS_TargetDeviceReset( ScsiDev, 0);
773 break;
778 default:
779 result = -EINVAL;
780 break;
783 LEAVE("cpqfcTS_ioctl");
784 return result;
788 /* "Release" the Host Bus Adapter...
789 disable interrupts, stop the HBA, release the interrupt,
790 and free all resources */
792 int cpqfcTS_release(struct Scsi_Host *HostAdapter)
794 CPQFCHBA *cpqfcHBAdata = (CPQFCHBA *)HostAdapter->hostdata;
797 ENTER("cpqfcTS_release");
799 DEBUG_PCI( printk(" cpqfcTS: delete timer...\n"));
800 del_timer( &cpqfcHBAdata->cpqfcTStimer);
802 // disable the hardware...
803 DEBUG_PCI( printk(" disable hardware, destroy queues, free mem\n"));
804 cpqfcHBAdata->fcChip.ResetTachyon( cpqfcHBAdata, CLEAR_FCPORTS);
806 // kill kernel thread
807 if( cpqfcHBAdata->worker_thread ) // (only if exists)
809 DECLARE_MUTEX_LOCKED(sem); // synchronize thread kill
811 cpqfcHBAdata->notify_wt = &sem;
812 DEBUG_PCI( printk(" killing kernel thread\n"));
813 send_sig( SIGKILL, cpqfcHBAdata->worker_thread, 1);
814 down( &sem);
815 cpqfcHBAdata->notify_wt = NULL;
819 cpqfc_free_private_data_pool(cpqfcHBAdata);
820 // free Linux resources
821 DEBUG_PCI( printk(" cpqfcTS: freeing resources...\n"));
822 free_irq( HostAdapter->irq, HostAdapter);
823 scsi_unregister( HostAdapter);
824 release_region( cpqfcHBAdata->fcChip.Registers.IOBaseL, 0xff);
825 release_region( cpqfcHBAdata->fcChip.Registers.IOBaseU, 0xff);
826 /* we get "vfree: bad address" executing this - need to investigate...
827 if( (void*)((unsigned long)cpqfcHBAdata->fcChip.Registers.MemBase) !=
828 cpqfcHBAdata->fcChip.Registers.ReMapMemBase)
829 vfree( cpqfcHBAdata->fcChip.Registers.ReMapMemBase);
831 pci_disable_device( cpqfcHBAdata->PciDev);
833 LEAVE("cpqfcTS_release");
834 return 0;
838 const char * cpqfcTS_info(struct Scsi_Host *HostAdapter)
840 static char buf[300];
841 CPQFCHBA *cpqfcHBA;
842 int BusSpeed, BusWidth;
844 // get the pointer to our Scsi layer HBA buffer
845 cpqfcHBA = (CPQFCHBA *)HostAdapter->hostdata;
847 BusWidth = (cpqfcHBA->fcChip.Registers.PCIMCTR &0x4) > 0 ?
848 64 : 32;
850 if( cpqfcHBA->fcChip.Registers.TYconfig.value & 0x80000000)
851 BusSpeed = 66;
852 else
853 BusSpeed = 33;
855 sprintf(buf,
856 "%s: WWN %08X%08X\n on PCI bus %d device 0x%02x irq %d IObaseL 0x%x, MEMBASE 0x%x\nPCI bus width %d bits, bus speed %d MHz\nFCP-SCSI Driver v%d.%d.%d",
857 cpqfcHBA->fcChip.Name,
858 cpqfcHBA->fcChip.Registers.wwn_hi,
859 cpqfcHBA->fcChip.Registers.wwn_lo,
860 cpqfcHBA->PciDev->bus->number,
861 cpqfcHBA->PciDev->device,
862 HostAdapter->irq,
863 cpqfcHBA->fcChip.Registers.IOBaseL,
864 cpqfcHBA->fcChip.Registers.MemBase,
865 BusWidth,
866 BusSpeed,
867 VER_MAJOR, VER_MINOR, VER_SUBMINOR
871 cpqfcTSDecodeGBICtype( &cpqfcHBA->fcChip, &buf[ strlen(buf)]);
872 cpqfcTSGetLPSM( &cpqfcHBA->fcChip, &buf[ strlen(buf)]);
873 return buf;
877 // /proc/scsi support. The following routines allow us to do 'normal'
878 // sprintf like calls to return the currently requested piece (buflenght
879 // chars, starting at bufoffset) of the file. Although procfs allows for
880 // a 1 Kb bytes overflow after te supplied buffer, I consider it bad
881 // programming to use it to make programming a little simpler. This piece
882 // of coding is borrowed from ncr53c8xx.c with some modifications
884 struct info_str
886 char *buffer; // Pointer to output buffer
887 int buflength; // It's length
888 int bufoffset; // File offset corresponding with buf[0]
889 int buffillen; // Current filled length
890 int filpos; // Current file offset
893 static void copy_mem_info(struct info_str *info, char *data, int datalen)
896 if (info->filpos < info->bufoffset) { // Current offset before buffer offset
897 if (info->filpos + datalen <= info->bufoffset) {
898 info->filpos += datalen; // Discard if completely before buffer
899 return;
900 } else { // Partial copy, set to begin
901 data += (info->bufoffset - info->filpos);
902 datalen -= (info->bufoffset - info->filpos);
903 info->filpos = info->bufoffset;
907 info->filpos += datalen; // Update current offset
909 if (info->buffillen == info->buflength) // Buffer full, discard
910 return;
912 if (info->buflength - info->buffillen < datalen) // Overflows buffer ?
913 datalen = info->buflength - info->buffillen;
915 memcpy(info->buffer + info->buffillen, data, datalen);
916 info->buffillen += datalen;
919 static int copy_info(struct info_str *info, char *fmt, ...)
921 va_list args;
922 char buf[400];
923 int len;
925 va_start(args, fmt);
926 len = vsprintf(buf, fmt, args);
927 va_end(args);
929 copy_mem_info(info, buf, len);
930 return len;
934 // Routine to get data for /proc RAM filesystem
936 int cpqfcTS_proc_info (struct Scsi_Host *host, char *buffer, char **start, off_t offset, int length,
937 int inout)
939 struct scsi_cmnd *DumCmnd;
940 struct scsi_device *ScsiDev;
941 int Chan, Targ, i;
942 struct info_str info;
943 CPQFCHBA *cpqfcHBA;
944 PTACHYON fcChip;
945 PFC_LOGGEDIN_PORT pLoggedInPort;
946 char buf[81];
948 if (inout) return -EINVAL;
950 // get the pointer to our Scsi layer HBA buffer
951 cpqfcHBA = (CPQFCHBA *)host->hostdata;
952 fcChip = &cpqfcHBA->fcChip;
954 *start = buffer;
956 info.buffer = buffer;
957 info.buflength = length;
958 info.bufoffset = offset;
959 info.filpos = 0;
960 info.buffillen = 0;
961 copy_info(&info, "Driver version = %d.%d.%d", VER_MAJOR, VER_MINOR, VER_SUBMINOR);
962 cpqfcTSDecodeGBICtype( &cpqfcHBA->fcChip, &buf[0]);
963 cpqfcTSGetLPSM( &cpqfcHBA->fcChip, &buf[ strlen(buf)]);
964 copy_info(&info, "%s\n", buf);
966 #define DISPLAY_WWN_INFO
967 #ifdef DISPLAY_WWN_INFO
968 ScsiDev = scsi_get_host_dev (host);
969 if (!ScsiDev)
970 return -ENOMEM;
971 DumCmnd = scsi_get_command (ScsiDev, GFP_KERNEL);
972 if (!DumCmnd) {
973 scsi_free_host_dev (ScsiDev);
974 return -ENOMEM;
976 copy_info(&info, "WWN database: (\"port_id: 000000\" means disconnected)\n");
977 for ( Chan=0; Chan <= host->max_channel; Chan++) {
978 DumCmnd->device->channel = Chan;
979 for (Targ=0; Targ <= host->max_id; Targ++) {
980 DumCmnd->device->id = Targ;
981 if ((pLoggedInPort = fcFindLoggedInPort( fcChip,
982 DumCmnd, // search Scsi Nexus
983 0, // DON'T search list for FC port id
984 NULL, // DON'T search list for FC WWN
985 NULL))){ // DON'T care about end of list
986 copy_info(&info, "Host: scsi%d Channel: %02d TargetId: %02d -> WWN: ",
987 host->host_no, Chan, Targ);
988 for( i=3; i>=0; i--) // copy the LOGIN port's WWN
989 copy_info(&info, "%02X", pLoggedInPort->u.ucWWN[i]);
990 for( i=7; i>3; i--) // copy the LOGIN port's WWN
991 copy_info(&info, "%02X", pLoggedInPort->u.ucWWN[i]);
992 copy_info(&info, " port_id: %06X\n", pLoggedInPort->port_id);
997 scsi_put_command (DumCmnd);
998 scsi_free_host_dev (ScsiDev);
999 #endif
1005 // Unfortunately, the proc_info buffer isn't big enough
1006 // for everything we would like...
1007 // For FC stats, compile this and turn off WWN stuff above
1008 //#define DISPLAY_FC_STATS
1009 #ifdef DISPLAY_FC_STATS
1010 // get the Fibre Channel statistics
1012 int DeltaSecs = (jiffies - cpqfcHBA->fcStatsTime) / HZ;
1013 int days,hours,minutes,secs;
1015 days = DeltaSecs / (3600*24); // days
1016 hours = (DeltaSecs% (3600*24)) / 3600; // hours
1017 minutes = (DeltaSecs%3600 /60); // minutes
1018 secs = DeltaSecs%60; // secs
1019 copy_info( &info, "Fibre Channel Stats (time dd:hh:mm:ss %02u:%02u:%02u:%02u\n",
1020 days, hours, minutes, secs);
1023 cpqfcHBA->fcStatsTime = jiffies; // (for next delta)
1025 copy_info( &info, " LinkUp %9u LinkDown %u\n",
1026 fcChip->fcStats.linkUp, fcChip->fcStats.linkDown);
1028 copy_info( &info, " Loss of Signal %9u Loss of Sync %u\n",
1029 fcChip->fcStats.LossofSignal, fcChip->fcStats.LossofSync);
1031 copy_info( &info, " Discarded Frames %9u Bad CRC Frame %u\n",
1032 fcChip->fcStats.Dis_Frm, fcChip->fcStats.Bad_CRC);
1034 copy_info( &info, " TACH LinkFailTX %9u TACH LinkFailRX %u\n",
1035 fcChip->fcStats.linkFailTX, fcChip->fcStats.linkFailRX);
1037 copy_info( &info, " TACH RxEOFa %9u TACH Elastic Store %u\n",
1038 fcChip->fcStats.Rx_EOFa, fcChip->fcStats.e_stores);
1040 copy_info( &info, " BufferCreditWait %9uus TACH FM Inits %u\n",
1041 fcChip->fcStats.BB0_Timer*10, fcChip->fcStats.FMinits );
1043 copy_info( &info, " FC-2 Timeouts %9u FC-2 Logouts %u\n",
1044 fcChip->fcStats.timeouts, fcChip->fcStats.logouts);
1046 copy_info( &info, " FC-2 Aborts %9u FC-4 Aborts %u\n",
1047 fcChip->fcStats.FC2aborted, fcChip->fcStats.FC4aborted);
1049 // clear the counters
1050 cpqfcTSClearLinkStatusCounters( fcChip);
1051 #endif
1053 return info.buffillen;
1057 #if DEBUG_CMND
1059 UCHAR *ScsiToAscii( UCHAR ScsiCommand)
1062 /*++
1064 Routine Description:
1066 Converts a SCSI command to a text string for debugging purposes.
1069 Arguments:
1071 ScsiCommand -- hex value SCSI Command
1074 Return Value:
1076 An ASCII, null-terminated string if found, else returns NULL.
1078 Original code from M. McGowen, Compaq
1079 --*/
1082 switch (ScsiCommand)
1084 case 0x00:
1085 return( "Test Unit Ready" );
1087 case 0x01:
1088 return( "Rezero Unit or Rewind" );
1090 case 0x02:
1091 return( "Request Block Address" );
1093 case 0x03:
1094 return( "Requese Sense" );
1096 case 0x04:
1097 return( "Format Unit" );
1099 case 0x05:
1100 return( "Read Block Limits" );
1102 case 0x07:
1103 return( "Reassign Blocks" );
1105 case 0x08:
1106 return( "Read (6)" );
1108 case 0x0a:
1109 return( "Write (6)" );
1111 case 0x0b:
1112 return( "Seek (6)" );
1114 case 0x12:
1115 return( "Inquiry" );
1117 case 0x15:
1118 return( "Mode Select (6)" );
1120 case 0x16:
1121 return( "Reserve" );
1123 case 0x17:
1124 return( "Release" );
1126 case 0x1a:
1127 return( "ModeSen(6)" );
1129 case 0x1b:
1130 return( "Start/Stop Unit" );
1132 case 0x1c:
1133 return( "Receive Diagnostic Results" );
1135 case 0x1d:
1136 return( "Send Diagnostic" );
1138 case 0x25:
1139 return( "Read Capacity" );
1141 case 0x28:
1142 return( "Read (10)" );
1144 case 0x2a:
1145 return( "Write (10)" );
1147 case 0x2b:
1148 return( "Seek (10)" );
1150 case 0x2e:
1151 return( "Write and Verify" );
1153 case 0x2f:
1154 return( "Verify" );
1156 case 0x34:
1157 return( "Pre-Fetch" );
1159 case 0x35:
1160 return( "Synchronize Cache" );
1162 case 0x37:
1163 return( "Read Defect Data (10)" );
1165 case 0x3b:
1166 return( "Write Buffer" );
1168 case 0x3c:
1169 return( "Read Buffer" );
1171 case 0x3e:
1172 return( "Read Long" );
1174 case 0x3f:
1175 return( "Write Long" );
1177 case 0x41:
1178 return( "Write Same" );
1180 case 0x4c:
1181 return( "Log Select" );
1183 case 0x4d:
1184 return( "Log Sense" );
1186 case 0x56:
1187 return( "Reserve (10)" );
1189 case 0x57:
1190 return( "Release (10)" );
1192 case 0xa0:
1193 return( "ReportLuns" );
1195 case 0xb7:
1196 return( "Read Defect Data (12)" );
1198 case 0xca:
1199 return( "Peripheral Device Addressing SCSI Passthrough" );
1201 case 0xcb:
1202 return( "Compaq Array Firmware Passthrough" );
1204 default:
1205 return( NULL );
1208 } // end ScsiToAscii()
1210 void cpqfcTS_print_scsi_cmd(Scsi_Cmnd * cmd)
1213 printk("cpqfcTS: (%s) chnl 0x%02x, trgt = 0x%02x, lun = 0x%02x, cmd_len = 0x%02x\n",
1214 ScsiToAscii( cmd->cmnd[0]), cmd->channel, cmd->target, cmd->lun, cmd->cmd_len);
1216 if( cmd->cmnd[0] == 0) // Test Unit Ready?
1218 int i;
1220 printk("Cmnd->request_bufflen = 0x%X, ->use_sg = %d, ->bufflen = %d\n",
1221 cmd->request_bufflen, cmd->use_sg, cmd->bufflen);
1222 printk("Cmnd->request_buffer = %p, ->sglist_len = %d, ->buffer = %p\n",
1223 cmd->request_buffer, cmd->sglist_len, cmd->buffer);
1224 for (i = 0; i < cmd->cmd_len; i++)
1225 printk("0x%02x ", cmd->cmnd[i]);
1226 printk("\n");
1231 #endif /* DEBUG_CMND */
1236 static void QueCmndOnBoardLock( CPQFCHBA *cpqfcHBAdata, Scsi_Cmnd *Cmnd)
1238 int i;
1240 for( i=0; i< CPQFCTS_REQ_QUEUE_LEN; i++)
1241 { // find spare slot
1242 if( cpqfcHBAdata->BoardLockCmnd[i] == NULL )
1244 cpqfcHBAdata->BoardLockCmnd[i] = Cmnd;
1245 // printk(" BoardLockCmnd[%d] %p Queued, chnl/target/lun %d/%d/%d\n",
1246 // i,Cmnd, Cmnd->channel, Cmnd->target, Cmnd->lun);
1247 break;
1250 if( i >= CPQFCTS_REQ_QUEUE_LEN)
1252 printk(" cpqfcTS WARNING: Lost Cmnd %p on BoardLock Q full!", Cmnd);
1258 static void QueLinkDownCmnd( CPQFCHBA *cpqfcHBAdata, Scsi_Cmnd *Cmnd)
1260 int indx;
1262 // Remember the command ptr so we can return; we'll complete when
1263 // the device comes back, causing immediate retry
1264 for( indx=0; indx < CPQFCTS_REQ_QUEUE_LEN; indx++)//, SCptr++)
1266 if( cpqfcHBAdata->LinkDnCmnd[indx] == NULL ) // available?
1268 #ifdef DUMMYCMND_DBG
1269 printk(" @add Cmnd %p to LnkDnCmnd[%d]@ ", Cmnd,indx);
1270 #endif
1271 cpqfcHBAdata->LinkDnCmnd[indx] = Cmnd;
1272 break;
1276 if( indx >= CPQFCTS_REQ_QUEUE_LEN ) // no space for Cmnd??
1278 // this will result in an _abort call later (with possible trouble)
1279 printk("no buffer for LinkDnCmnd!! %p\n", Cmnd);
1287 // The file <scsi/scsi_host.h> says not to call scsi_done from
1288 // inside _queuecommand, so we'll do it from the heartbeat timer
1289 // (clarification: Turns out it's ok to call scsi_done from queuecommand
1290 // for cases that don't go to the hardware like scsi cmds destined
1291 // for LUNs we know don't exist, so this code might be simplified...)
1293 static void QueBadTargetCmnd( CPQFCHBA *cpqfcHBAdata, Scsi_Cmnd *Cmnd)
1295 int i;
1296 // printk(" can't find target %d\n", Cmnd->target);
1298 for( i=0; i< CPQFCTS_MAX_TARGET_ID; i++)
1299 { // find spare slot
1300 if( cpqfcHBAdata->BadTargetCmnd[i] == NULL )
1302 cpqfcHBAdata->BadTargetCmnd[i] = Cmnd;
1303 // printk(" BadTargetCmnd[%d] %p Queued, chnl/target/lun %d/%d/%d\n",
1304 // i,Cmnd, Cmnd->channel, Cmnd->target, Cmnd->lun);
1305 break;
1311 // This is the "main" entry point for Linux Scsi commands --
1312 // it all starts here.
1314 int cpqfcTS_queuecommand(Scsi_Cmnd *Cmnd, void (* done)(Scsi_Cmnd *))
1316 struct Scsi_Host *HostAdapter = Cmnd->device->host;
1317 CPQFCHBA *cpqfcHBAdata = (CPQFCHBA *)HostAdapter->hostdata;
1318 PTACHYON fcChip = &cpqfcHBAdata->fcChip;
1319 TachFCHDR_GCMND fchs; // only use for FC destination id field
1320 PFC_LOGGEDIN_PORT pLoggedInPort;
1321 ULONG ulStatus, SESTtype;
1322 LONG ExchangeID;
1327 ENTER("cpqfcTS_queuecommand");
1329 PCI_TRACEO( (ULONG)Cmnd, 0x98)
1332 Cmnd->scsi_done = done;
1333 #ifdef DEBUG_CMND
1334 cpqfcTS_print_scsi_cmd( Cmnd);
1335 #endif
1337 // prevent board contention with kernel thread...
1339 if( cpqfcHBAdata->BoardLock )
1341 // printk(" @BrdLck Hld@ ");
1342 QueCmndOnBoardLock( cpqfcHBAdata, Cmnd);
1345 else
1348 // in the current system (2.2.12), this routine is called
1349 // after spin_lock_irqsave(), so INTs are disabled. However,
1350 // we might have something pending in the LinkQ, which
1351 // might cause the WorkerTask to run. In case that
1352 // happens, make sure we lock it out.
1356 PCI_TRACE( 0x98)
1357 CPQ_SPINLOCK_HBA( cpqfcHBAdata)
1358 PCI_TRACE( 0x98)
1360 // can we find an FC device mapping to this SCSI target?
1361 pLoggedInPort = fcFindLoggedInPort( fcChip,
1362 Cmnd, // search Scsi Nexus
1363 0, // DON'T search linked list for FC port id
1364 NULL, // DON'T search linked list for FC WWN
1365 NULL); // DON'T care about end of list
1367 if( pLoggedInPort == NULL ) // not found!
1369 // printk(" @Q bad targ cmnd %p@ ", Cmnd);
1370 QueBadTargetCmnd( cpqfcHBAdata, Cmnd);
1372 else if (Cmnd->device->lun >= CPQFCTS_MAX_LUN)
1374 printk(KERN_WARNING "cpqfc: Invalid LUN: %d\n", Cmnd->device->lun);
1375 QueBadTargetCmnd( cpqfcHBAdata, Cmnd);
1378 else // we know what FC device to send to...
1381 // does this device support FCP target functions?
1382 // (determined by PRLI field)
1384 if( !(pLoggedInPort->fcp_info & TARGET_FUNCTION) )
1386 printk(" Doesn't support TARGET functions port_id %Xh\n",
1387 pLoggedInPort->port_id );
1388 QueBadTargetCmnd( cpqfcHBAdata, Cmnd);
1391 // In this case (previous login OK), the device is temporarily
1392 // unavailable waiting for re-login, in which case we expect it
1393 // to be back in between 25 - 500ms.
1394 // If the FC port doesn't log back in within several seconds
1395 // (i.e. implicit "logout"), or we get an explicit logout,
1396 // we set "device_blocked" in Scsi_Device struct; in this
1397 // case 30 seconds will elapse before Linux/Scsi sends another
1398 // command to the device.
1399 else if( pLoggedInPort->prli != TRUE )
1401 // printk("Device (Chnl/Target %d/%d) invalid PRLI, port_id %06lXh\n",
1402 // Cmnd->channel, Cmnd->target, pLoggedInPort->port_id);
1403 QueLinkDownCmnd( cpqfcHBAdata, Cmnd);
1404 // Need to use "blocked" flag??
1405 // Cmnd->device->device_blocked = TRUE; // just let it timeout
1407 else // device supports TARGET functions, and is logged in...
1409 // (context of fchs is to "reply" to...)
1410 fchs.s_id = pLoggedInPort->port_id; // destination FC address
1412 // what is the data direction? For data TO the device,
1413 // we need IWE (Intiator Write Entry). Otherwise, IRE.
1415 if( Cmnd->cmnd[0] == WRITE_10 ||
1416 Cmnd->cmnd[0] == WRITE_6 ||
1417 Cmnd->cmnd[0] == WRITE_BUFFER ||
1418 Cmnd->cmnd[0] == VENDOR_WRITE_OPCODE || // CPQ specific
1419 Cmnd->cmnd[0] == MODE_SELECT )
1421 SESTtype = SCSI_IWE; // data from HBA to Device
1423 else
1424 SESTtype = SCSI_IRE; // data from Device to HBA
1426 ulStatus = cpqfcTSBuildExchange(
1427 cpqfcHBAdata,
1428 SESTtype, // e.g. Initiator Read Entry (IRE)
1429 &fchs, // we are originator; only use d_id
1430 Cmnd, // Linux SCSI command (with scatter/gather list)
1431 &ExchangeID );// fcController->fcExchanges index, -1 if failed
1433 if( !ulStatus ) // Exchange setup?
1436 if( cpqfcHBAdata->BoardLock )
1438 TriggerHBA( fcChip->Registers.ReMapMemBase, 0);
1439 printk(" @bl! %d, xID %Xh@ ", current->pid, ExchangeID);
1442 ulStatus = cpqfcTSStartExchange( cpqfcHBAdata, ExchangeID );
1443 if( !ulStatus )
1445 PCI_TRACEO( ExchangeID, 0xB8)
1446 // submitted to Tach's Outbound Que (ERQ PI incremented)
1447 // waited for completion for ELS type (Login frames issued
1448 // synchronously)
1450 else
1451 // check reason for Exchange not being started - we might
1452 // want to Queue and start later, or fail with error
1454 printk("quecommand: cpqfcTSStartExchange failed: %Xh\n", ulStatus );
1456 } // end good BuildExchange status
1458 else // SEST table probably full -- why? hardware hang?
1460 printk("quecommand: cpqfcTSBuildExchange faild: %Xh\n", ulStatus);
1462 } // end can't do FCP-SCSI target functions
1463 } // end can't find target (FC device)
1465 CPQ_SPINUNLOCK_HBA( cpqfcHBAdata)
1468 PCI_TRACEO( (ULONG)Cmnd, 0x9C)
1469 LEAVE("cpqfcTS_queuecommand");
1470 return 0;
1474 // Entry point for upper Scsi layer intiated abort. Typically
1475 // this is called if the command (for hard disk) fails to complete
1476 // in 30 seconds. This driver intends to complete all disk commands
1477 // within Exchange ".timeOut" seconds (now 7) with target status, or
1478 // in case of ".timeOut" expiration, a DID_SOFT_ERROR which causes
1479 // immediate retry.
1480 // If any disk commands get the _abort call, except for the case that
1481 // the physical device was removed or unavailable due to hardware
1482 // errors, it should be considered a driver error and reported to
1483 // the author.
1485 int cpqfcTS_abort(Scsi_Cmnd *Cmnd)
1487 // printk(" cpqfcTS_abort called?? \n");
1488 return 0;
1491 int cpqfcTS_eh_abort(Scsi_Cmnd *Cmnd)
1494 struct Scsi_Host *HostAdapter = Cmnd->device->host;
1495 // get the pointer to our Scsi layer HBA buffer
1496 CPQFCHBA *cpqfcHBAdata = (CPQFCHBA *)HostAdapter->hostdata;
1497 PTACHYON fcChip = &cpqfcHBAdata->fcChip;
1498 FC_EXCHANGES *Exchanges = fcChip->Exchanges;
1499 int i;
1500 ENTER("cpqfcTS_eh_abort");
1502 Cmnd->result = DID_ABORT <<16; // assume we'll find it
1504 printk(" @Linux _abort Scsi_Cmnd %p ", Cmnd);
1505 // See if we can find a Cmnd pointer that matches...
1506 // The most likely case is we accepted the command
1507 // from Linux Scsi (e.g. ceated a SEST entry) and it
1508 // got lost somehow. If we can't find any reference
1509 // to the passed pointer, we can only presume it
1510 // got completed as far as our driver is concerned.
1511 // If we found it, we will try to abort it through
1512 // common mechanism. If FC ABTS is successful (ACC)
1513 // or is rejected (RJT) by target, we will call
1514 // Scsi "done" quickly. Otherwise, the ABTS will timeout
1515 // and we'll call "done" later.
1517 // Search the SEST exchanges for a matching Cmnd ptr.
1518 for( i=0; i< TACH_SEST_LEN; i++)
1520 if( Exchanges->fcExchange[i].Cmnd == Cmnd )
1523 // found it!
1524 printk(" x_ID %Xh, type %Xh\n", i, Exchanges->fcExchange[i].type);
1526 Exchanges->fcExchange[i].status = INITIATOR_ABORT; // seconds default
1527 Exchanges->fcExchange[i].timeOut = 10; // seconds default (changed later)
1529 // Since we need to immediately return the aborted Cmnd to Scsi
1530 // upper layers, we can't make future reference to any of its
1531 // fields (e.g the Nexus).
1533 cpqfcTSPutLinkQue( cpqfcHBAdata, BLS_ABTS, &i);
1535 break;
1539 if( i >= TACH_SEST_LEN ) // didn't find Cmnd ptr in chip's SEST?
1541 // now search our non-SEST buffers (i.e. Cmnd waiting to
1542 // start on the HBA or waiting to complete with error for retry).
1544 // first check BadTargetCmnd
1545 for( i=0; i< CPQFCTS_MAX_TARGET_ID; i++)
1547 if( cpqfcHBAdata->BadTargetCmnd[i] == Cmnd )
1549 cpqfcHBAdata->BadTargetCmnd[i] = NULL;
1550 printk("in BadTargetCmnd Q\n");
1551 goto Done; // exit
1555 // if not found above...
1557 for( i=0; i < CPQFCTS_REQ_QUEUE_LEN; i++)
1559 if( cpqfcHBAdata->LinkDnCmnd[i] == Cmnd )
1561 cpqfcHBAdata->LinkDnCmnd[i] = NULL;
1562 printk("in LinkDnCmnd Q\n");
1563 goto Done;
1568 for( i=0; i< CPQFCTS_REQ_QUEUE_LEN; i++)
1569 { // find spare slot
1570 if( cpqfcHBAdata->BoardLockCmnd[i] == Cmnd )
1572 cpqfcHBAdata->BoardLockCmnd[i] = NULL;
1573 printk("in BoardLockCmnd Q\n");
1574 goto Done;
1578 Cmnd->result = DID_ERROR <<16; // Hmmm...
1579 printk("Not found! ");
1580 // panic("_abort");
1583 Done:
1585 // panic("_abort");
1586 LEAVE("cpqfcTS_eh_abort");
1587 return 0; // (see scsi.h)
1591 // FCP-SCSI Target Device Reset
1592 // See dpANS Fibre Channel Protocol for SCSI
1593 // X3.269-199X revision 12, pg 25
1595 #ifdef SUPPORT_RESET
1597 int cpqfcTS_TargetDeviceReset( Scsi_Device *ScsiDev,
1598 unsigned int reset_flags)
1600 int timeout = 10*HZ;
1601 int retries = 1;
1602 char scsi_cdb[12];
1603 int result;
1604 Scsi_Cmnd * SCpnt;
1605 Scsi_Device * SDpnt;
1607 // FIXME, cpqfcTS_TargetDeviceReset needs to be fixed
1608 // similarly to how the passthrough ioctl was fixed
1609 // around the 2.5.30 kernel. Scsi_Cmnd replaced with
1610 // Scsi_Request, etc.
1611 // For now, so people don't fall into a hole...
1613 // printk(" ENTERING cpqfcTS_TargetDeviceReset() - flag=%d \n",reset_flags);
1615 if (ScsiDev->host->eh_active) return FAILED;
1617 memset( scsi_cdb, 0, sizeof( scsi_cdb));
1619 scsi_cdb[0] = RELEASE;
1621 SCpnt = scsi_get_command(ScsiDev, GFP_KERNEL);
1623 CPQFC_DECLARE_COMPLETION(wait);
1625 SCpnt->SCp.buffers_residual = FCP_TARGET_RESET;
1627 // FIXME: this would panic, SCpnt->request would be NULL.
1628 SCpnt->request->CPQFC_WAITING = &wait;
1629 scsi_do_cmd(SCpnt, scsi_cdb, NULL, 0, my_ioctl_done, timeout, retries);
1630 CPQFC_WAIT_FOR_COMPLETION(&wait);
1631 SCpnt->request->CPQFC_WAITING = NULL;
1635 if(driver_byte(SCpnt->result) != 0)
1636 switch(SCpnt->sense_buffer[2] & 0xf) {
1637 case ILLEGAL_REQUEST:
1638 if(cmd[0] == ALLOW_MEDIUM_REMOVAL) dev->lockable = 0;
1639 else printk("SCSI device (ioctl) reports ILLEGAL REQUEST.\n");
1640 break;
1641 case NOT_READY: // This happens if there is no disc in drive
1642 if(dev->removable && (cmd[0] != TEST_UNIT_READY)){
1643 printk(KERN_INFO "Device not ready. Make sure there is a disc in the drive.\n");
1644 break;
1646 case UNIT_ATTENTION:
1647 if (dev->removable){
1648 dev->changed = 1;
1649 SCpnt->result = 0; // This is no longer considered an error
1650 // gag this error, VFS will log it anyway /axboe
1651 // printk(KERN_INFO "Disc change detected.\n");
1652 break;
1654 default: // Fall through for non-removable media
1655 printk("SCSI error: host %d id %d lun %d return code = %x\n",
1656 dev->host->host_no,
1657 dev->id,
1658 dev->lun,
1659 SCpnt->result);
1660 printk("\tSense class %x, sense error %x, extended sense %x\n",
1661 sense_class(SCpnt->sense_buffer[0]),
1662 sense_error(SCpnt->sense_buffer[0]),
1663 SCpnt->sense_buffer[2] & 0xf);
1666 result = SCpnt->result;
1668 SDpnt = SCpnt->device;
1669 scsi_put_command(SCpnt);
1670 SCpnt = NULL;
1672 // printk(" LEAVING cpqfcTS_TargetDeviceReset() - return SUCCESS \n");
1673 return SUCCESS;
1676 #else
1677 int cpqfcTS_TargetDeviceReset( Scsi_Device *ScsiDev,
1678 unsigned int reset_flags)
1680 return -ENOTSUPP;
1683 #endif /* SUPPORT_RESET */
1685 int cpqfcTS_eh_device_reset(Scsi_Cmnd *Cmnd)
1687 int retval;
1688 Scsi_Device *SDpnt = Cmnd->device;
1689 // printk(" ENTERING cpqfcTS_eh_device_reset() \n");
1690 spin_unlock_irq(Cmnd->device->host->host_lock);
1691 retval = cpqfcTS_TargetDeviceReset( SDpnt, 0);
1692 spin_lock_irq(Cmnd->device->host->host_lock);
1693 return retval;
1697 int cpqfcTS_reset(Scsi_Cmnd *Cmnd, unsigned int reset_flags)
1700 ENTER("cpqfcTS_reset");
1702 LEAVE("cpqfcTS_reset");
1703 return SCSI_RESET_ERROR; /* Bus Reset Not supported */
1706 /* This function determines the bios parameters for a given
1707 harddisk. These tend to be numbers that are made up by the
1708 host adapter. Parameters:
1709 size, device number, list (heads, sectors,cylinders).
1710 (from hosts.h)
1713 int cpqfcTS_biosparam(struct scsi_device *sdev, struct block_device *n,
1714 sector_t capacity, int ip[])
1716 int size = capacity;
1718 ENTER("cpqfcTS_biosparam");
1719 ip[0] = 64;
1720 ip[1] = 32;
1721 ip[2] = size >> 11;
1723 if( ip[2] > 1024 )
1725 ip[0] = 255;
1726 ip[1] = 63;
1727 ip[2] = size / (ip[0] * ip[1]);
1730 LEAVE("cpqfcTS_biosparam");
1731 return 0;
1736 irqreturn_t cpqfcTS_intr_handler( int irq,
1737 void *dev_id,
1738 struct pt_regs *regs)
1741 unsigned long flags, InfLoopBrk=0;
1742 struct Scsi_Host *HostAdapter = dev_id;
1743 CPQFCHBA *cpqfcHBA = (CPQFCHBA *)HostAdapter->hostdata;
1744 int MoreMessages = 1; // assume we have something to do
1745 UCHAR IntPending;
1746 int handled = 0;
1748 ENTER("intr_handler");
1749 spin_lock_irqsave( HostAdapter->host_lock, flags);
1750 // is this our INT?
1751 IntPending = readb( cpqfcHBA->fcChip.Registers.INTPEND.address);
1753 // broken boards can generate messages forever, so
1754 // prevent the infinite loop
1755 #define INFINITE_IMQ_BREAK 10000
1756 if( IntPending )
1758 handled = 1;
1759 // mask our HBA interrupts until we handle it...
1760 writeb( 0, cpqfcHBA->fcChip.Registers.INTEN.address);
1762 if( IntPending & 0x4) // "INT" - Tach wrote to IMQ
1764 while( (++InfLoopBrk < INFINITE_IMQ_BREAK) && (MoreMessages ==1) )
1766 MoreMessages = CpqTsProcessIMQEntry( HostAdapter); // ret 0 when done
1768 if( InfLoopBrk >= INFINITE_IMQ_BREAK )
1770 printk("WARNING: Compaq FC adapter generating excessive INTs -REPLACE\n");
1771 printk("or investigate alternate causes (e.g. physical FC layer)\n");
1774 else // working normally - re-enable INTs and continue
1775 writeb( 0x1F, cpqfcHBA->fcChip.Registers.INTEN.address);
1777 } // (...ProcessIMQEntry() clears INT by writing IMQ consumer)
1778 else // indications of errors or problems...
1779 // these usually indicate critical system hardware problems.
1781 if( IntPending & 0x10 )
1782 printk(" cpqfcTS adapter external memory parity error detected\n");
1783 if( IntPending & 0x8 )
1784 printk(" cpqfcTS adapter PCI master address crossed 45-bit boundary\n");
1785 if( IntPending & 0x2 )
1786 printk(" cpqfcTS adapter DMA error detected\n");
1787 if( IntPending & 0x1 ) {
1788 UCHAR IntStat;
1789 printk(" cpqfcTS adapter PCI error detected\n");
1790 IntStat = readb( cpqfcHBA->fcChip.Registers.INTSTAT.address);
1791 printk("cpqfc: ISR = 0x%02x\n", IntStat);
1792 if (IntStat & 0x1) {
1793 __u16 pcistat;
1794 /* read the pci status register */
1795 pci_read_config_word(cpqfcHBA->PciDev, 0x06, &pcistat);
1796 printk("PCI status register is 0x%04x\n", pcistat);
1797 if (pcistat & 0x8000) printk("Parity Error Detected.\n");
1798 if (pcistat & 0x4000) printk("Signalled System Error\n");
1799 if (pcistat & 0x2000) printk("Received Master Abort\n");
1800 if (pcistat & 0x1000) printk("Received Target Abort\n");
1801 if (pcistat & 0x0800) printk("Signalled Target Abort\n");
1803 if (IntStat & 0x4) printk("(INT)\n");
1804 if (IntStat & 0x8)
1805 printk("CRS: PCI master address crossed 46 bit bouandary\n");
1806 if (IntStat & 0x10) printk("MRE: external memory parity error.\n");
1810 spin_unlock_irqrestore( HostAdapter->host_lock, flags);
1811 LEAVE("intr_handler");
1812 return IRQ_RETVAL(handled);
1818 int cpqfcTSDecodeGBICtype( PTACHYON fcChip, char cErrorString[])
1820 // Verify GBIC type (if any) and correct Tachyon Port State Machine
1821 // (GBIC) module definition is:
1822 // GPIO1, GPIO0, GPIO4 for MD2, MD1, MD0. The input states appear
1823 // to be inverted -- i.e., a setting of 111 is read when there is NO
1824 // GBIC present. The Module Def (MD) spec says 000 is "no GBIC"
1825 // Hard code the bit states to detect Copper,
1826 // Long wave (single mode), Short wave (multi-mode), and absent GBIC
1828 ULONG ulBuff;
1830 sprintf( cErrorString, "\nGBIC detected: ");
1832 ulBuff = fcChip->Registers.TYstatus.value & 0x13;
1833 switch( ulBuff )
1835 case 0x13: // GPIO4, GPIO1, GPIO0 = 111; no GBIC!
1836 sprintf( &cErrorString[ strlen( cErrorString)],
1837 "NONE! ");
1838 return FALSE;
1841 case 0x11: // Copper GBIC detected
1842 sprintf( &cErrorString[ strlen( cErrorString)],
1843 "Copper. ");
1844 break;
1846 case 0x10: // Long-wave (single mode) GBIC detected
1847 sprintf( &cErrorString[ strlen( cErrorString)],
1848 "Long-wave. ");
1849 break;
1850 case 0x1: // Short-wave (multi mode) GBIC detected
1851 sprintf( &cErrorString[ strlen( cErrorString)],
1852 "Short-wave. ");
1853 break;
1854 default: // unknown GBIC - presumably it will work (?)
1855 sprintf( &cErrorString[ strlen( cErrorString)],
1856 "Unknown. ");
1858 break;
1859 } // end switch GBIC detection
1861 return TRUE;
1869 int cpqfcTSGetLPSM( PTACHYON fcChip, char cErrorString[])
1871 // Tachyon's Frame Manager LPSM in LinkDown state?
1872 // (For non-loop port, check PSM instead.)
1873 // return string with state and FALSE is Link Down
1875 int LinkUp;
1877 if( fcChip->Registers.FMstatus.value & 0x80 )
1878 LinkUp = FALSE;
1879 else
1880 LinkUp = TRUE;
1882 sprintf( &cErrorString[ strlen( cErrorString)],
1883 " LPSM %Xh ",
1884 (fcChip->Registers.FMstatus.value >>4) & 0xf );
1887 switch( fcChip->Registers.FMstatus.value & 0xF0)
1889 // bits set in LPSM
1890 case 0x10:
1891 sprintf( &cErrorString[ strlen( cErrorString)], "ARB");
1892 break;
1893 case 0x20:
1894 sprintf( &cErrorString[ strlen( cErrorString)], "ARBwon");
1895 break;
1896 case 0x30:
1897 sprintf( &cErrorString[ strlen( cErrorString)], "OPEN");
1898 break;
1899 case 0x40:
1900 sprintf( &cErrorString[ strlen( cErrorString)], "OPENed");
1901 break;
1902 case 0x50:
1903 sprintf( &cErrorString[ strlen( cErrorString)], "XmitCLS");
1904 break;
1905 case 0x60:
1906 sprintf( &cErrorString[ strlen( cErrorString)], "RxCLS");
1907 break;
1908 case 0x70:
1909 sprintf( &cErrorString[ strlen( cErrorString)], "Xfer");
1910 break;
1911 case 0x80:
1912 sprintf( &cErrorString[ strlen( cErrorString)], "Init");
1913 break;
1914 case 0x90:
1915 sprintf( &cErrorString[ strlen( cErrorString)], "O-IInitFin");
1916 break;
1917 case 0xa0:
1918 sprintf( &cErrorString[ strlen( cErrorString)], "O-IProtocol");
1919 break;
1920 case 0xb0:
1921 sprintf( &cErrorString[ strlen( cErrorString)], "O-ILipRcvd");
1922 break;
1923 case 0xc0:
1924 sprintf( &cErrorString[ strlen( cErrorString)], "HostControl");
1925 break;
1926 case 0xd0:
1927 sprintf( &cErrorString[ strlen( cErrorString)], "LoopFail");
1928 break;
1929 case 0xe0:
1930 sprintf( &cErrorString[ strlen( cErrorString)], "Offline");
1931 break;
1932 case 0xf0:
1933 sprintf( &cErrorString[ strlen( cErrorString)], "OldPort");
1934 break;
1935 case 0:
1936 default:
1937 sprintf( &cErrorString[ strlen( cErrorString)], "Monitor");
1938 break;
1942 return LinkUp;
1948 #include "linux/slab.h"
1950 // Dynamic memory allocation alignment routines
1951 // HP's Tachyon Fibre Channel Controller chips require
1952 // certain memory queues and register pointers to be aligned
1953 // on various boundaries, usually the size of the Queue in question.
1954 // Alignment might be on 2, 4, 8, ... or even 512 byte boundaries.
1955 // Since most O/Ss don't allow this (usually only Cache aligned -
1956 // 32-byte boundary), these routines provide generic alignment (after
1957 // O/S allocation) at any boundary, and store the original allocated
1958 // pointer for deletion (O/S free function). Typically, we expect
1959 // these functions to only be called at HBA initialization and
1960 // removal time (load and unload times)
1961 // ALGORITHM notes:
1962 // Memory allocation varies by compiler and platform. In the worst case,
1963 // we are only assured BYTE alignment, but in the best case, we can
1964 // request allocation on any desired boundary. Our strategy: pad the
1965 // allocation request size (i.e. waste memory) so that we are assured
1966 // of passing desired boundary near beginning of contiguous space, then
1967 // mask out lower address bits.
1968 // We define the following algorithm:
1969 // allocBoundary - compiler/platform specific address alignment
1970 // in number of bytes (default is single byte; i.e. 1)
1971 // n_alloc - number of bytes application wants @ aligned address
1972 // ab - alignment boundary, in bytes (e.g. 4, 32, ...)
1973 // t_alloc - total allocation needed to ensure desired boundary
1974 // mask - to clear least significant address bits for boundary
1975 // Compute:
1976 // t_alloc = n_alloc + (ab - allocBoundary)
1977 // allocate t_alloc bytes @ alloc_address
1978 // mask = NOT (ab - 1)
1979 // (e.g. if ab=32 _0001 1111 -> _1110 0000
1980 // aligned_address = alloc_address & mask
1981 // set n_alloc bytes to 0
1982 // return aligned_address (NULL if failed)
1984 // If u32_AlignedAddress is non-zero, then search for BaseAddress (stored
1985 // from previous allocation). If found, invoke call to FREE the memory.
1986 // Return NULL if BaseAddress not found
1988 // we need about 8 allocations per HBA. Figuring at most 10 HBAs per server
1989 // size the dynamic_mem array at 80.
1991 void* fcMemManager( struct pci_dev *pdev, ALIGNED_MEM *dynamic_mem,
1992 ULONG n_alloc, ULONG ab, ULONG u32_AlignedAddress,
1993 dma_addr_t *dma_handle)
1995 USHORT allocBoundary=1; // compiler specific - worst case 1
1996 // best case - replace malloc() call
1997 // with function that allocates exactly
1998 // at desired boundary
2000 unsigned long ulAddress;
2001 ULONG t_alloc, i;
2002 void *alloc_address = 0; // def. error code / address not found
2003 LONG mask; // must be 32-bits wide!
2005 ENTER("fcMemManager");
2006 if( u32_AlignedAddress ) // are we freeing existing memory?
2008 // printk(" freeing AlignedAddress %Xh\n", u32_AlignedAddress);
2009 for( i=0; i<DYNAMIC_ALLOCATIONS; i++) // look for the base address
2011 // printk("dynamic_mem[%u].AlignedAddress %lX\n", i, dynamic_mem[i].AlignedAddress);
2012 if( dynamic_mem[i].AlignedAddress == u32_AlignedAddress )
2014 alloc_address = dynamic_mem[i].BaseAllocated; // 'success' status
2015 pci_free_consistent(pdev,dynamic_mem[i].size,
2016 alloc_address,
2017 dynamic_mem[i].dma_handle);
2018 dynamic_mem[i].BaseAllocated = 0; // clear for next use
2019 dynamic_mem[i].AlignedAddress = 0;
2020 dynamic_mem[i].size = 0;
2021 break; // quit for loop; done
2025 else if( n_alloc ) // want new memory?
2027 dma_addr_t handle;
2028 t_alloc = n_alloc + (ab - allocBoundary); // pad bytes for alignment
2029 // printk("pci_alloc_consistent() for Tach alignment: %ld bytes\n", t_alloc);
2031 // (would like to) allow thread block to free pages
2032 alloc_address = // total bytes (NumberOfBytes)
2033 pci_alloc_consistent(pdev, t_alloc, &handle);
2035 // now mask off least sig. bits of address
2036 if( alloc_address ) // (only if non-NULL)
2038 // find place to store ptr, so we
2039 // can free it later...
2041 mask = (LONG)(ab - 1); // mask all low-order bits
2042 mask = ~mask; // invert bits
2043 for( i=0; i<DYNAMIC_ALLOCATIONS; i++) // look for free slot
2045 if( dynamic_mem[i].BaseAllocated == 0) // take 1st available
2047 dynamic_mem[i].BaseAllocated = alloc_address;// address from O/S
2048 dynamic_mem[i].dma_handle = handle;
2049 if (dma_handle != NULL)
2051 // printk("handle = %p, ab=%d, boundary = %d, mask=0x%08x\n",
2052 // handle, ab, allocBoundary, mask);
2053 *dma_handle = (dma_addr_t)
2054 ((((ULONG)handle) + (ab - allocBoundary)) & mask);
2056 dynamic_mem[i].size = t_alloc;
2057 break;
2060 ulAddress = (unsigned long)alloc_address;
2062 ulAddress += (ab - allocBoundary); // add the alignment bytes-
2063 // then truncate address...
2064 alloc_address = (void*)(ulAddress & mask);
2066 dynamic_mem[i].AlignedAddress =
2067 (ULONG)(ulAddress & mask); // 32bit Tach address
2068 memset( alloc_address, 0, n_alloc ); // clear new memory
2070 else // O/S dynamic mem alloc failed!
2071 alloc_address = 0; // (for debugging breakpt)
2075 LEAVE("fcMemManager");
2076 return alloc_address; // good (or NULL) address
2080 static Scsi_Host_Template driver_template = {
2081 .detect = cpqfcTS_detect,
2082 .release = cpqfcTS_release,
2083 .info = cpqfcTS_info,
2084 .proc_info = cpqfcTS_proc_info,
2085 .ioctl = cpqfcTS_ioctl,
2086 .queuecommand = cpqfcTS_queuecommand,
2087 .eh_device_reset_handler = cpqfcTS_eh_device_reset,
2088 .eh_abort_handler = cpqfcTS_eh_abort,
2089 .bios_param = cpqfcTS_biosparam,
2090 .can_queue = CPQFCTS_REQ_QUEUE_LEN,
2091 .this_id = -1,
2092 .sg_tablesize = SG_ALL,
2093 .cmd_per_lun = CPQFCTS_CMD_PER_LUN,
2094 .use_clustering = ENABLE_CLUSTERING,
2096 #include "scsi_module.c"