KVM: Set the ET flag in CR0 after initializing FX
[linux-2.6/linux-2.6-openrd.git] / drivers / kvm / kvm_main.c
blobd3e534dcf5857c049cc2f076974c1282f8f09ace
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
18 #include "kvm.h"
19 #include "x86_emulate.h"
20 #include "segment_descriptor.h"
21 #include "irq.h"
23 #include <linux/kvm.h>
24 #include <linux/module.h>
25 #include <linux/errno.h>
26 #include <linux/percpu.h>
27 #include <linux/gfp.h>
28 #include <linux/mm.h>
29 #include <linux/miscdevice.h>
30 #include <linux/vmalloc.h>
31 #include <linux/reboot.h>
32 #include <linux/debugfs.h>
33 #include <linux/highmem.h>
34 #include <linux/file.h>
35 #include <linux/sysdev.h>
36 #include <linux/cpu.h>
37 #include <linux/sched.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
42 #include <asm/processor.h>
43 #include <asm/msr.h>
44 #include <asm/io.h>
45 #include <asm/uaccess.h>
46 #include <asm/desc.h>
48 MODULE_AUTHOR("Qumranet");
49 MODULE_LICENSE("GPL");
51 static DEFINE_SPINLOCK(kvm_lock);
52 static LIST_HEAD(vm_list);
54 static cpumask_t cpus_hardware_enabled;
56 struct kvm_arch_ops *kvm_arch_ops;
57 struct kmem_cache *kvm_vcpu_cache;
58 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
60 static __read_mostly struct preempt_ops kvm_preempt_ops;
62 #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
64 static struct kvm_stats_debugfs_item {
65 const char *name;
66 int offset;
67 struct dentry *dentry;
68 } debugfs_entries[] = {
69 { "pf_fixed", STAT_OFFSET(pf_fixed) },
70 { "pf_guest", STAT_OFFSET(pf_guest) },
71 { "tlb_flush", STAT_OFFSET(tlb_flush) },
72 { "invlpg", STAT_OFFSET(invlpg) },
73 { "exits", STAT_OFFSET(exits) },
74 { "io_exits", STAT_OFFSET(io_exits) },
75 { "mmio_exits", STAT_OFFSET(mmio_exits) },
76 { "signal_exits", STAT_OFFSET(signal_exits) },
77 { "irq_window", STAT_OFFSET(irq_window_exits) },
78 { "halt_exits", STAT_OFFSET(halt_exits) },
79 { "halt_wakeup", STAT_OFFSET(halt_wakeup) },
80 { "request_irq", STAT_OFFSET(request_irq_exits) },
81 { "irq_exits", STAT_OFFSET(irq_exits) },
82 { "light_exits", STAT_OFFSET(light_exits) },
83 { "efer_reload", STAT_OFFSET(efer_reload) },
84 { NULL }
87 static struct dentry *debugfs_dir;
89 #define MAX_IO_MSRS 256
91 #define CR0_RESERVED_BITS \
92 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
93 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
94 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
95 #define CR4_RESERVED_BITS \
96 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
97 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
98 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
99 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
101 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
102 #define EFER_RESERVED_BITS 0xfffffffffffff2fe
104 #ifdef CONFIG_X86_64
105 // LDT or TSS descriptor in the GDT. 16 bytes.
106 struct segment_descriptor_64 {
107 struct segment_descriptor s;
108 u32 base_higher;
109 u32 pad_zero;
112 #endif
114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
115 unsigned long arg);
117 unsigned long segment_base(u16 selector)
119 struct descriptor_table gdt;
120 struct segment_descriptor *d;
121 unsigned long table_base;
122 typedef unsigned long ul;
123 unsigned long v;
125 if (selector == 0)
126 return 0;
128 asm ("sgdt %0" : "=m"(gdt));
129 table_base = gdt.base;
131 if (selector & 4) { /* from ldt */
132 u16 ldt_selector;
134 asm ("sldt %0" : "=g"(ldt_selector));
135 table_base = segment_base(ldt_selector);
137 d = (struct segment_descriptor *)(table_base + (selector & ~7));
138 v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
139 #ifdef CONFIG_X86_64
140 if (d->system == 0
141 && (d->type == 2 || d->type == 9 || d->type == 11))
142 v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
143 #endif
144 return v;
146 EXPORT_SYMBOL_GPL(segment_base);
148 static inline int valid_vcpu(int n)
150 return likely(n >= 0 && n < KVM_MAX_VCPUS);
153 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
155 if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
156 return;
158 vcpu->guest_fpu_loaded = 1;
159 fx_save(&vcpu->host_fx_image);
160 fx_restore(&vcpu->guest_fx_image);
162 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
164 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
166 if (!vcpu->guest_fpu_loaded)
167 return;
169 vcpu->guest_fpu_loaded = 0;
170 fx_save(&vcpu->guest_fx_image);
171 fx_restore(&vcpu->host_fx_image);
173 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
176 * Switches to specified vcpu, until a matching vcpu_put()
178 static void vcpu_load(struct kvm_vcpu *vcpu)
180 int cpu;
182 mutex_lock(&vcpu->mutex);
183 cpu = get_cpu();
184 preempt_notifier_register(&vcpu->preempt_notifier);
185 kvm_arch_ops->vcpu_load(vcpu, cpu);
186 put_cpu();
189 static void vcpu_put(struct kvm_vcpu *vcpu)
191 preempt_disable();
192 kvm_arch_ops->vcpu_put(vcpu);
193 preempt_notifier_unregister(&vcpu->preempt_notifier);
194 preempt_enable();
195 mutex_unlock(&vcpu->mutex);
198 static void ack_flush(void *_completed)
200 atomic_t *completed = _completed;
202 atomic_inc(completed);
205 void kvm_flush_remote_tlbs(struct kvm *kvm)
207 int i, cpu, needed;
208 cpumask_t cpus;
209 struct kvm_vcpu *vcpu;
210 atomic_t completed;
212 atomic_set(&completed, 0);
213 cpus_clear(cpus);
214 needed = 0;
215 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
216 vcpu = kvm->vcpus[i];
217 if (!vcpu)
218 continue;
219 if (test_and_set_bit(KVM_TLB_FLUSH, &vcpu->requests))
220 continue;
221 cpu = vcpu->cpu;
222 if (cpu != -1 && cpu != raw_smp_processor_id())
223 if (!cpu_isset(cpu, cpus)) {
224 cpu_set(cpu, cpus);
225 ++needed;
230 * We really want smp_call_function_mask() here. But that's not
231 * available, so ipi all cpus in parallel and wait for them
232 * to complete.
234 for (cpu = first_cpu(cpus); cpu != NR_CPUS; cpu = next_cpu(cpu, cpus))
235 smp_call_function_single(cpu, ack_flush, &completed, 1, 0);
236 while (atomic_read(&completed) != needed) {
237 cpu_relax();
238 barrier();
242 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
244 struct page *page;
245 int r;
247 mutex_init(&vcpu->mutex);
248 vcpu->cpu = -1;
249 vcpu->mmu.root_hpa = INVALID_PAGE;
250 vcpu->kvm = kvm;
251 vcpu->vcpu_id = id;
252 if (!irqchip_in_kernel(kvm) || id == 0)
253 vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
254 else
255 vcpu->mp_state = VCPU_MP_STATE_UNINITIALIZED;
256 init_waitqueue_head(&vcpu->wq);
258 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
259 if (!page) {
260 r = -ENOMEM;
261 goto fail;
263 vcpu->run = page_address(page);
265 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
266 if (!page) {
267 r = -ENOMEM;
268 goto fail_free_run;
270 vcpu->pio_data = page_address(page);
272 r = kvm_mmu_create(vcpu);
273 if (r < 0)
274 goto fail_free_pio_data;
276 return 0;
278 fail_free_pio_data:
279 free_page((unsigned long)vcpu->pio_data);
280 fail_free_run:
281 free_page((unsigned long)vcpu->run);
282 fail:
283 return -ENOMEM;
285 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
287 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
289 kvm_mmu_destroy(vcpu);
290 if (vcpu->apic)
291 hrtimer_cancel(&vcpu->apic->timer.dev);
292 kvm_free_apic(vcpu->apic);
293 free_page((unsigned long)vcpu->pio_data);
294 free_page((unsigned long)vcpu->run);
296 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
298 static struct kvm *kvm_create_vm(void)
300 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
302 if (!kvm)
303 return ERR_PTR(-ENOMEM);
305 kvm_io_bus_init(&kvm->pio_bus);
306 mutex_init(&kvm->lock);
307 INIT_LIST_HEAD(&kvm->active_mmu_pages);
308 kvm_io_bus_init(&kvm->mmio_bus);
309 spin_lock(&kvm_lock);
310 list_add(&kvm->vm_list, &vm_list);
311 spin_unlock(&kvm_lock);
312 return kvm;
316 * Free any memory in @free but not in @dont.
318 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
319 struct kvm_memory_slot *dont)
321 int i;
323 if (!dont || free->phys_mem != dont->phys_mem)
324 if (free->phys_mem) {
325 for (i = 0; i < free->npages; ++i)
326 if (free->phys_mem[i])
327 __free_page(free->phys_mem[i]);
328 vfree(free->phys_mem);
331 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
332 vfree(free->dirty_bitmap);
334 free->phys_mem = NULL;
335 free->npages = 0;
336 free->dirty_bitmap = NULL;
339 static void kvm_free_physmem(struct kvm *kvm)
341 int i;
343 for (i = 0; i < kvm->nmemslots; ++i)
344 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
347 static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
349 int i;
351 for (i = 0; i < ARRAY_SIZE(vcpu->pio.guest_pages); ++i)
352 if (vcpu->pio.guest_pages[i]) {
353 __free_page(vcpu->pio.guest_pages[i]);
354 vcpu->pio.guest_pages[i] = NULL;
358 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
360 vcpu_load(vcpu);
361 kvm_mmu_unload(vcpu);
362 vcpu_put(vcpu);
365 static void kvm_free_vcpus(struct kvm *kvm)
367 unsigned int i;
370 * Unpin any mmu pages first.
372 for (i = 0; i < KVM_MAX_VCPUS; ++i)
373 if (kvm->vcpus[i])
374 kvm_unload_vcpu_mmu(kvm->vcpus[i]);
375 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
376 if (kvm->vcpus[i]) {
377 kvm_arch_ops->vcpu_free(kvm->vcpus[i]);
378 kvm->vcpus[i] = NULL;
384 static void kvm_destroy_vm(struct kvm *kvm)
386 spin_lock(&kvm_lock);
387 list_del(&kvm->vm_list);
388 spin_unlock(&kvm_lock);
389 kvm_io_bus_destroy(&kvm->pio_bus);
390 kvm_io_bus_destroy(&kvm->mmio_bus);
391 kfree(kvm->vpic);
392 kfree(kvm->vioapic);
393 kvm_free_vcpus(kvm);
394 kvm_free_physmem(kvm);
395 kfree(kvm);
398 static int kvm_vm_release(struct inode *inode, struct file *filp)
400 struct kvm *kvm = filp->private_data;
402 kvm_destroy_vm(kvm);
403 return 0;
406 static void inject_gp(struct kvm_vcpu *vcpu)
408 kvm_arch_ops->inject_gp(vcpu, 0);
412 * Load the pae pdptrs. Return true is they are all valid.
414 static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
416 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
417 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
418 int i;
419 u64 *pdpt;
420 int ret;
421 struct page *page;
422 u64 pdpte[ARRAY_SIZE(vcpu->pdptrs)];
424 mutex_lock(&vcpu->kvm->lock);
425 page = gfn_to_page(vcpu->kvm, pdpt_gfn);
426 if (!page) {
427 ret = 0;
428 goto out;
431 pdpt = kmap_atomic(page, KM_USER0);
432 memcpy(pdpte, pdpt+offset, sizeof(pdpte));
433 kunmap_atomic(pdpt, KM_USER0);
435 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
436 if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
437 ret = 0;
438 goto out;
441 ret = 1;
443 memcpy(vcpu->pdptrs, pdpte, sizeof(vcpu->pdptrs));
444 out:
445 mutex_unlock(&vcpu->kvm->lock);
447 return ret;
450 void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
452 if (cr0 & CR0_RESERVED_BITS) {
453 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
454 cr0, vcpu->cr0);
455 inject_gp(vcpu);
456 return;
459 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
460 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
461 inject_gp(vcpu);
462 return;
465 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
466 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
467 "and a clear PE flag\n");
468 inject_gp(vcpu);
469 return;
472 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
473 #ifdef CONFIG_X86_64
474 if ((vcpu->shadow_efer & EFER_LME)) {
475 int cs_db, cs_l;
477 if (!is_pae(vcpu)) {
478 printk(KERN_DEBUG "set_cr0: #GP, start paging "
479 "in long mode while PAE is disabled\n");
480 inject_gp(vcpu);
481 return;
483 kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
484 if (cs_l) {
485 printk(KERN_DEBUG "set_cr0: #GP, start paging "
486 "in long mode while CS.L == 1\n");
487 inject_gp(vcpu);
488 return;
491 } else
492 #endif
493 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
494 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
495 "reserved bits\n");
496 inject_gp(vcpu);
497 return;
502 kvm_arch_ops->set_cr0(vcpu, cr0);
503 vcpu->cr0 = cr0;
505 mutex_lock(&vcpu->kvm->lock);
506 kvm_mmu_reset_context(vcpu);
507 mutex_unlock(&vcpu->kvm->lock);
508 return;
510 EXPORT_SYMBOL_GPL(set_cr0);
512 void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
514 set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
516 EXPORT_SYMBOL_GPL(lmsw);
518 void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
520 if (cr4 & CR4_RESERVED_BITS) {
521 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
522 inject_gp(vcpu);
523 return;
526 if (is_long_mode(vcpu)) {
527 if (!(cr4 & X86_CR4_PAE)) {
528 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
529 "in long mode\n");
530 inject_gp(vcpu);
531 return;
533 } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
534 && !load_pdptrs(vcpu, vcpu->cr3)) {
535 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
536 inject_gp(vcpu);
537 return;
540 if (cr4 & X86_CR4_VMXE) {
541 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
542 inject_gp(vcpu);
543 return;
545 kvm_arch_ops->set_cr4(vcpu, cr4);
546 mutex_lock(&vcpu->kvm->lock);
547 kvm_mmu_reset_context(vcpu);
548 mutex_unlock(&vcpu->kvm->lock);
550 EXPORT_SYMBOL_GPL(set_cr4);
552 void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
554 if (is_long_mode(vcpu)) {
555 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
556 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
557 inject_gp(vcpu);
558 return;
560 } else {
561 if (is_pae(vcpu)) {
562 if (cr3 & CR3_PAE_RESERVED_BITS) {
563 printk(KERN_DEBUG
564 "set_cr3: #GP, reserved bits\n");
565 inject_gp(vcpu);
566 return;
568 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
569 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
570 "reserved bits\n");
571 inject_gp(vcpu);
572 return;
574 } else {
575 if (cr3 & CR3_NONPAE_RESERVED_BITS) {
576 printk(KERN_DEBUG
577 "set_cr3: #GP, reserved bits\n");
578 inject_gp(vcpu);
579 return;
584 mutex_lock(&vcpu->kvm->lock);
586 * Does the new cr3 value map to physical memory? (Note, we
587 * catch an invalid cr3 even in real-mode, because it would
588 * cause trouble later on when we turn on paging anyway.)
590 * A real CPU would silently accept an invalid cr3 and would
591 * attempt to use it - with largely undefined (and often hard
592 * to debug) behavior on the guest side.
594 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
595 inject_gp(vcpu);
596 else {
597 vcpu->cr3 = cr3;
598 vcpu->mmu.new_cr3(vcpu);
600 mutex_unlock(&vcpu->kvm->lock);
602 EXPORT_SYMBOL_GPL(set_cr3);
604 void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
606 if (cr8 & CR8_RESERVED_BITS) {
607 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
608 inject_gp(vcpu);
609 return;
611 if (irqchip_in_kernel(vcpu->kvm))
612 kvm_lapic_set_tpr(vcpu, cr8);
613 else
614 vcpu->cr8 = cr8;
616 EXPORT_SYMBOL_GPL(set_cr8);
618 unsigned long get_cr8(struct kvm_vcpu *vcpu)
620 if (irqchip_in_kernel(vcpu->kvm))
621 return kvm_lapic_get_cr8(vcpu);
622 else
623 return vcpu->cr8;
625 EXPORT_SYMBOL_GPL(get_cr8);
627 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
629 if (irqchip_in_kernel(vcpu->kvm))
630 return vcpu->apic_base;
631 else
632 return vcpu->apic_base;
634 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
636 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
638 /* TODO: reserve bits check */
639 if (irqchip_in_kernel(vcpu->kvm))
640 kvm_lapic_set_base(vcpu, data);
641 else
642 vcpu->apic_base = data;
644 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
646 void fx_init(struct kvm_vcpu *vcpu)
648 unsigned after_mxcsr_mask;
650 /* Initialize guest FPU by resetting ours and saving into guest's */
651 preempt_disable();
652 fx_save(&vcpu->host_fx_image);
653 fpu_init();
654 fx_save(&vcpu->guest_fx_image);
655 fx_restore(&vcpu->host_fx_image);
656 preempt_enable();
658 vcpu->cr0 |= X86_CR0_ET;
659 after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
660 vcpu->guest_fx_image.mxcsr = 0x1f80;
661 memset((void *)&vcpu->guest_fx_image + after_mxcsr_mask,
662 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
664 EXPORT_SYMBOL_GPL(fx_init);
667 * Allocate some memory and give it an address in the guest physical address
668 * space.
670 * Discontiguous memory is allowed, mostly for framebuffers.
672 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
673 struct kvm_memory_region *mem)
675 int r;
676 gfn_t base_gfn;
677 unsigned long npages;
678 unsigned long i;
679 struct kvm_memory_slot *memslot;
680 struct kvm_memory_slot old, new;
681 int memory_config_version;
683 r = -EINVAL;
684 /* General sanity checks */
685 if (mem->memory_size & (PAGE_SIZE - 1))
686 goto out;
687 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
688 goto out;
689 if (mem->slot >= KVM_MEMORY_SLOTS)
690 goto out;
691 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
692 goto out;
694 memslot = &kvm->memslots[mem->slot];
695 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
696 npages = mem->memory_size >> PAGE_SHIFT;
698 if (!npages)
699 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
701 raced:
702 mutex_lock(&kvm->lock);
704 memory_config_version = kvm->memory_config_version;
705 new = old = *memslot;
707 new.base_gfn = base_gfn;
708 new.npages = npages;
709 new.flags = mem->flags;
711 /* Disallow changing a memory slot's size. */
712 r = -EINVAL;
713 if (npages && old.npages && npages != old.npages)
714 goto out_unlock;
716 /* Check for overlaps */
717 r = -EEXIST;
718 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
719 struct kvm_memory_slot *s = &kvm->memslots[i];
721 if (s == memslot)
722 continue;
723 if (!((base_gfn + npages <= s->base_gfn) ||
724 (base_gfn >= s->base_gfn + s->npages)))
725 goto out_unlock;
728 * Do memory allocations outside lock. memory_config_version will
729 * detect any races.
731 mutex_unlock(&kvm->lock);
733 /* Deallocate if slot is being removed */
734 if (!npages)
735 new.phys_mem = NULL;
737 /* Free page dirty bitmap if unneeded */
738 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
739 new.dirty_bitmap = NULL;
741 r = -ENOMEM;
743 /* Allocate if a slot is being created */
744 if (npages && !new.phys_mem) {
745 new.phys_mem = vmalloc(npages * sizeof(struct page *));
747 if (!new.phys_mem)
748 goto out_free;
750 memset(new.phys_mem, 0, npages * sizeof(struct page *));
751 for (i = 0; i < npages; ++i) {
752 new.phys_mem[i] = alloc_page(GFP_HIGHUSER
753 | __GFP_ZERO);
754 if (!new.phys_mem[i])
755 goto out_free;
756 set_page_private(new.phys_mem[i],0);
760 /* Allocate page dirty bitmap if needed */
761 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
762 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
764 new.dirty_bitmap = vmalloc(dirty_bytes);
765 if (!new.dirty_bitmap)
766 goto out_free;
767 memset(new.dirty_bitmap, 0, dirty_bytes);
770 mutex_lock(&kvm->lock);
772 if (memory_config_version != kvm->memory_config_version) {
773 mutex_unlock(&kvm->lock);
774 kvm_free_physmem_slot(&new, &old);
775 goto raced;
778 r = -EAGAIN;
779 if (kvm->busy)
780 goto out_unlock;
782 if (mem->slot >= kvm->nmemslots)
783 kvm->nmemslots = mem->slot + 1;
785 *memslot = new;
786 ++kvm->memory_config_version;
788 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
789 kvm_flush_remote_tlbs(kvm);
791 mutex_unlock(&kvm->lock);
793 kvm_free_physmem_slot(&old, &new);
794 return 0;
796 out_unlock:
797 mutex_unlock(&kvm->lock);
798 out_free:
799 kvm_free_physmem_slot(&new, &old);
800 out:
801 return r;
805 * Get (and clear) the dirty memory log for a memory slot.
807 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
808 struct kvm_dirty_log *log)
810 struct kvm_memory_slot *memslot;
811 int r, i;
812 int n;
813 unsigned long any = 0;
815 mutex_lock(&kvm->lock);
818 * Prevent changes to guest memory configuration even while the lock
819 * is not taken.
821 ++kvm->busy;
822 mutex_unlock(&kvm->lock);
823 r = -EINVAL;
824 if (log->slot >= KVM_MEMORY_SLOTS)
825 goto out;
827 memslot = &kvm->memslots[log->slot];
828 r = -ENOENT;
829 if (!memslot->dirty_bitmap)
830 goto out;
832 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
834 for (i = 0; !any && i < n/sizeof(long); ++i)
835 any = memslot->dirty_bitmap[i];
837 r = -EFAULT;
838 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
839 goto out;
841 /* If nothing is dirty, don't bother messing with page tables. */
842 if (any) {
843 mutex_lock(&kvm->lock);
844 kvm_mmu_slot_remove_write_access(kvm, log->slot);
845 kvm_flush_remote_tlbs(kvm);
846 memset(memslot->dirty_bitmap, 0, n);
847 mutex_unlock(&kvm->lock);
850 r = 0;
852 out:
853 mutex_lock(&kvm->lock);
854 --kvm->busy;
855 mutex_unlock(&kvm->lock);
856 return r;
860 * Set a new alias region. Aliases map a portion of physical memory into
861 * another portion. This is useful for memory windows, for example the PC
862 * VGA region.
864 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
865 struct kvm_memory_alias *alias)
867 int r, n;
868 struct kvm_mem_alias *p;
870 r = -EINVAL;
871 /* General sanity checks */
872 if (alias->memory_size & (PAGE_SIZE - 1))
873 goto out;
874 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
875 goto out;
876 if (alias->slot >= KVM_ALIAS_SLOTS)
877 goto out;
878 if (alias->guest_phys_addr + alias->memory_size
879 < alias->guest_phys_addr)
880 goto out;
881 if (alias->target_phys_addr + alias->memory_size
882 < alias->target_phys_addr)
883 goto out;
885 mutex_lock(&kvm->lock);
887 p = &kvm->aliases[alias->slot];
888 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
889 p->npages = alias->memory_size >> PAGE_SHIFT;
890 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
892 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
893 if (kvm->aliases[n - 1].npages)
894 break;
895 kvm->naliases = n;
897 kvm_mmu_zap_all(kvm);
899 mutex_unlock(&kvm->lock);
901 return 0;
903 out:
904 return r;
907 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
909 int r;
911 r = 0;
912 switch (chip->chip_id) {
913 case KVM_IRQCHIP_PIC_MASTER:
914 memcpy (&chip->chip.pic,
915 &pic_irqchip(kvm)->pics[0],
916 sizeof(struct kvm_pic_state));
917 break;
918 case KVM_IRQCHIP_PIC_SLAVE:
919 memcpy (&chip->chip.pic,
920 &pic_irqchip(kvm)->pics[1],
921 sizeof(struct kvm_pic_state));
922 break;
923 case KVM_IRQCHIP_IOAPIC:
924 memcpy (&chip->chip.ioapic,
925 ioapic_irqchip(kvm),
926 sizeof(struct kvm_ioapic_state));
927 break;
928 default:
929 r = -EINVAL;
930 break;
932 return r;
935 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
937 int r;
939 r = 0;
940 switch (chip->chip_id) {
941 case KVM_IRQCHIP_PIC_MASTER:
942 memcpy (&pic_irqchip(kvm)->pics[0],
943 &chip->chip.pic,
944 sizeof(struct kvm_pic_state));
945 break;
946 case KVM_IRQCHIP_PIC_SLAVE:
947 memcpy (&pic_irqchip(kvm)->pics[1],
948 &chip->chip.pic,
949 sizeof(struct kvm_pic_state));
950 break;
951 case KVM_IRQCHIP_IOAPIC:
952 memcpy (ioapic_irqchip(kvm),
953 &chip->chip.ioapic,
954 sizeof(struct kvm_ioapic_state));
955 break;
956 default:
957 r = -EINVAL;
958 break;
960 kvm_pic_update_irq(pic_irqchip(kvm));
961 return r;
964 static gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
966 int i;
967 struct kvm_mem_alias *alias;
969 for (i = 0; i < kvm->naliases; ++i) {
970 alias = &kvm->aliases[i];
971 if (gfn >= alias->base_gfn
972 && gfn < alias->base_gfn + alias->npages)
973 return alias->target_gfn + gfn - alias->base_gfn;
975 return gfn;
978 static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
980 int i;
982 for (i = 0; i < kvm->nmemslots; ++i) {
983 struct kvm_memory_slot *memslot = &kvm->memslots[i];
985 if (gfn >= memslot->base_gfn
986 && gfn < memslot->base_gfn + memslot->npages)
987 return memslot;
989 return NULL;
992 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
994 gfn = unalias_gfn(kvm, gfn);
995 return __gfn_to_memslot(kvm, gfn);
998 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1000 struct kvm_memory_slot *slot;
1002 gfn = unalias_gfn(kvm, gfn);
1003 slot = __gfn_to_memslot(kvm, gfn);
1004 if (!slot)
1005 return NULL;
1006 return slot->phys_mem[gfn - slot->base_gfn];
1008 EXPORT_SYMBOL_GPL(gfn_to_page);
1010 /* WARNING: Does not work on aliased pages. */
1011 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1013 struct kvm_memory_slot *memslot;
1015 memslot = __gfn_to_memslot(kvm, gfn);
1016 if (memslot && memslot->dirty_bitmap) {
1017 unsigned long rel_gfn = gfn - memslot->base_gfn;
1019 /* avoid RMW */
1020 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
1021 set_bit(rel_gfn, memslot->dirty_bitmap);
1025 int emulator_read_std(unsigned long addr,
1026 void *val,
1027 unsigned int bytes,
1028 struct kvm_vcpu *vcpu)
1030 void *data = val;
1032 while (bytes) {
1033 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1034 unsigned offset = addr & (PAGE_SIZE-1);
1035 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
1036 unsigned long pfn;
1037 struct page *page;
1038 void *page_virt;
1040 if (gpa == UNMAPPED_GVA)
1041 return X86EMUL_PROPAGATE_FAULT;
1042 pfn = gpa >> PAGE_SHIFT;
1043 page = gfn_to_page(vcpu->kvm, pfn);
1044 if (!page)
1045 return X86EMUL_UNHANDLEABLE;
1046 page_virt = kmap_atomic(page, KM_USER0);
1048 memcpy(data, page_virt + offset, tocopy);
1050 kunmap_atomic(page_virt, KM_USER0);
1052 bytes -= tocopy;
1053 data += tocopy;
1054 addr += tocopy;
1057 return X86EMUL_CONTINUE;
1059 EXPORT_SYMBOL_GPL(emulator_read_std);
1061 static int emulator_write_std(unsigned long addr,
1062 const void *val,
1063 unsigned int bytes,
1064 struct kvm_vcpu *vcpu)
1066 pr_unimpl(vcpu, "emulator_write_std: addr %lx n %d\n", addr, bytes);
1067 return X86EMUL_UNHANDLEABLE;
1071 * Only apic need an MMIO device hook, so shortcut now..
1073 static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
1074 gpa_t addr)
1076 struct kvm_io_device *dev;
1078 if (vcpu->apic) {
1079 dev = &vcpu->apic->dev;
1080 if (dev->in_range(dev, addr))
1081 return dev;
1083 return NULL;
1086 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
1087 gpa_t addr)
1089 struct kvm_io_device *dev;
1091 dev = vcpu_find_pervcpu_dev(vcpu, addr);
1092 if (dev == NULL)
1093 dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
1094 return dev;
1097 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
1098 gpa_t addr)
1100 return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
1103 static int emulator_read_emulated(unsigned long addr,
1104 void *val,
1105 unsigned int bytes,
1106 struct kvm_vcpu *vcpu)
1108 struct kvm_io_device *mmio_dev;
1109 gpa_t gpa;
1111 if (vcpu->mmio_read_completed) {
1112 memcpy(val, vcpu->mmio_data, bytes);
1113 vcpu->mmio_read_completed = 0;
1114 return X86EMUL_CONTINUE;
1115 } else if (emulator_read_std(addr, val, bytes, vcpu)
1116 == X86EMUL_CONTINUE)
1117 return X86EMUL_CONTINUE;
1119 gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1120 if (gpa == UNMAPPED_GVA)
1121 return X86EMUL_PROPAGATE_FAULT;
1124 * Is this MMIO handled locally?
1126 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1127 if (mmio_dev) {
1128 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
1129 return X86EMUL_CONTINUE;
1132 vcpu->mmio_needed = 1;
1133 vcpu->mmio_phys_addr = gpa;
1134 vcpu->mmio_size = bytes;
1135 vcpu->mmio_is_write = 0;
1137 return X86EMUL_UNHANDLEABLE;
1140 static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1141 const void *val, int bytes)
1143 struct page *page;
1144 void *virt;
1146 if (((gpa + bytes - 1) >> PAGE_SHIFT) != (gpa >> PAGE_SHIFT))
1147 return 0;
1148 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1149 if (!page)
1150 return 0;
1151 mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
1152 virt = kmap_atomic(page, KM_USER0);
1153 kvm_mmu_pte_write(vcpu, gpa, val, bytes);
1154 memcpy(virt + offset_in_page(gpa), val, bytes);
1155 kunmap_atomic(virt, KM_USER0);
1156 return 1;
1159 static int emulator_write_emulated_onepage(unsigned long addr,
1160 const void *val,
1161 unsigned int bytes,
1162 struct kvm_vcpu *vcpu)
1164 struct kvm_io_device *mmio_dev;
1165 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1167 if (gpa == UNMAPPED_GVA) {
1168 kvm_arch_ops->inject_page_fault(vcpu, addr, 2);
1169 return X86EMUL_PROPAGATE_FAULT;
1172 if (emulator_write_phys(vcpu, gpa, val, bytes))
1173 return X86EMUL_CONTINUE;
1176 * Is this MMIO handled locally?
1178 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1179 if (mmio_dev) {
1180 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
1181 return X86EMUL_CONTINUE;
1184 vcpu->mmio_needed = 1;
1185 vcpu->mmio_phys_addr = gpa;
1186 vcpu->mmio_size = bytes;
1187 vcpu->mmio_is_write = 1;
1188 memcpy(vcpu->mmio_data, val, bytes);
1190 return X86EMUL_CONTINUE;
1193 int emulator_write_emulated(unsigned long addr,
1194 const void *val,
1195 unsigned int bytes,
1196 struct kvm_vcpu *vcpu)
1198 /* Crossing a page boundary? */
1199 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
1200 int rc, now;
1202 now = -addr & ~PAGE_MASK;
1203 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
1204 if (rc != X86EMUL_CONTINUE)
1205 return rc;
1206 addr += now;
1207 val += now;
1208 bytes -= now;
1210 return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
1212 EXPORT_SYMBOL_GPL(emulator_write_emulated);
1214 static int emulator_cmpxchg_emulated(unsigned long addr,
1215 const void *old,
1216 const void *new,
1217 unsigned int bytes,
1218 struct kvm_vcpu *vcpu)
1220 static int reported;
1222 if (!reported) {
1223 reported = 1;
1224 printk(KERN_WARNING "kvm: emulating exchange as write\n");
1226 return emulator_write_emulated(addr, new, bytes, vcpu);
1229 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
1231 return kvm_arch_ops->get_segment_base(vcpu, seg);
1234 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
1236 return X86EMUL_CONTINUE;
1239 int emulate_clts(struct kvm_vcpu *vcpu)
1241 unsigned long cr0;
1243 cr0 = vcpu->cr0 & ~X86_CR0_TS;
1244 kvm_arch_ops->set_cr0(vcpu, cr0);
1245 return X86EMUL_CONTINUE;
1248 int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
1250 struct kvm_vcpu *vcpu = ctxt->vcpu;
1252 switch (dr) {
1253 case 0 ... 3:
1254 *dest = kvm_arch_ops->get_dr(vcpu, dr);
1255 return X86EMUL_CONTINUE;
1256 default:
1257 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __FUNCTION__, dr);
1258 return X86EMUL_UNHANDLEABLE;
1262 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
1264 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
1265 int exception;
1267 kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
1268 if (exception) {
1269 /* FIXME: better handling */
1270 return X86EMUL_UNHANDLEABLE;
1272 return X86EMUL_CONTINUE;
1275 static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
1277 static int reported;
1278 u8 opcodes[4];
1279 unsigned long rip = ctxt->vcpu->rip;
1280 unsigned long rip_linear;
1282 rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
1284 if (reported)
1285 return;
1287 emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt->vcpu);
1289 printk(KERN_ERR "emulation failed but !mmio_needed?"
1290 " rip %lx %02x %02x %02x %02x\n",
1291 rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
1292 reported = 1;
1295 struct x86_emulate_ops emulate_ops = {
1296 .read_std = emulator_read_std,
1297 .write_std = emulator_write_std,
1298 .read_emulated = emulator_read_emulated,
1299 .write_emulated = emulator_write_emulated,
1300 .cmpxchg_emulated = emulator_cmpxchg_emulated,
1303 int emulate_instruction(struct kvm_vcpu *vcpu,
1304 struct kvm_run *run,
1305 unsigned long cr2,
1306 u16 error_code)
1308 struct x86_emulate_ctxt emulate_ctxt;
1309 int r;
1310 int cs_db, cs_l;
1312 vcpu->mmio_fault_cr2 = cr2;
1313 kvm_arch_ops->cache_regs(vcpu);
1315 kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
1317 emulate_ctxt.vcpu = vcpu;
1318 emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
1319 emulate_ctxt.cr2 = cr2;
1320 emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
1321 ? X86EMUL_MODE_REAL : cs_l
1322 ? X86EMUL_MODE_PROT64 : cs_db
1323 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
1325 if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
1326 emulate_ctxt.cs_base = 0;
1327 emulate_ctxt.ds_base = 0;
1328 emulate_ctxt.es_base = 0;
1329 emulate_ctxt.ss_base = 0;
1330 } else {
1331 emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
1332 emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
1333 emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
1334 emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
1337 emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
1338 emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
1340 vcpu->mmio_is_write = 0;
1341 vcpu->pio.string = 0;
1342 r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
1343 if (vcpu->pio.string)
1344 return EMULATE_DO_MMIO;
1346 if ((r || vcpu->mmio_is_write) && run) {
1347 run->exit_reason = KVM_EXIT_MMIO;
1348 run->mmio.phys_addr = vcpu->mmio_phys_addr;
1349 memcpy(run->mmio.data, vcpu->mmio_data, 8);
1350 run->mmio.len = vcpu->mmio_size;
1351 run->mmio.is_write = vcpu->mmio_is_write;
1354 if (r) {
1355 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
1356 return EMULATE_DONE;
1357 if (!vcpu->mmio_needed) {
1358 report_emulation_failure(&emulate_ctxt);
1359 return EMULATE_FAIL;
1361 return EMULATE_DO_MMIO;
1364 kvm_arch_ops->decache_regs(vcpu);
1365 kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
1367 if (vcpu->mmio_is_write) {
1368 vcpu->mmio_needed = 0;
1369 return EMULATE_DO_MMIO;
1372 return EMULATE_DONE;
1374 EXPORT_SYMBOL_GPL(emulate_instruction);
1377 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1379 static void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1381 DECLARE_WAITQUEUE(wait, current);
1383 add_wait_queue(&vcpu->wq, &wait);
1386 * We will block until either an interrupt or a signal wakes us up
1388 while (!kvm_cpu_has_interrupt(vcpu)
1389 && !signal_pending(current)
1390 && vcpu->mp_state != VCPU_MP_STATE_RUNNABLE
1391 && vcpu->mp_state != VCPU_MP_STATE_SIPI_RECEIVED) {
1392 set_current_state(TASK_INTERRUPTIBLE);
1393 vcpu_put(vcpu);
1394 schedule();
1395 vcpu_load(vcpu);
1398 __set_current_state(TASK_RUNNING);
1399 remove_wait_queue(&vcpu->wq, &wait);
1402 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
1404 ++vcpu->stat.halt_exits;
1405 if (irqchip_in_kernel(vcpu->kvm)) {
1406 vcpu->mp_state = VCPU_MP_STATE_HALTED;
1407 kvm_vcpu_block(vcpu);
1408 if (vcpu->mp_state != VCPU_MP_STATE_RUNNABLE)
1409 return -EINTR;
1410 return 1;
1411 } else {
1412 vcpu->run->exit_reason = KVM_EXIT_HLT;
1413 return 0;
1416 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
1418 int kvm_hypercall(struct kvm_vcpu *vcpu, struct kvm_run *run)
1420 unsigned long nr, a0, a1, a2, a3, a4, a5, ret;
1422 kvm_arch_ops->cache_regs(vcpu);
1423 ret = -KVM_EINVAL;
1424 #ifdef CONFIG_X86_64
1425 if (is_long_mode(vcpu)) {
1426 nr = vcpu->regs[VCPU_REGS_RAX];
1427 a0 = vcpu->regs[VCPU_REGS_RDI];
1428 a1 = vcpu->regs[VCPU_REGS_RSI];
1429 a2 = vcpu->regs[VCPU_REGS_RDX];
1430 a3 = vcpu->regs[VCPU_REGS_RCX];
1431 a4 = vcpu->regs[VCPU_REGS_R8];
1432 a5 = vcpu->regs[VCPU_REGS_R9];
1433 } else
1434 #endif
1436 nr = vcpu->regs[VCPU_REGS_RBX] & -1u;
1437 a0 = vcpu->regs[VCPU_REGS_RAX] & -1u;
1438 a1 = vcpu->regs[VCPU_REGS_RCX] & -1u;
1439 a2 = vcpu->regs[VCPU_REGS_RDX] & -1u;
1440 a3 = vcpu->regs[VCPU_REGS_RSI] & -1u;
1441 a4 = vcpu->regs[VCPU_REGS_RDI] & -1u;
1442 a5 = vcpu->regs[VCPU_REGS_RBP] & -1u;
1444 switch (nr) {
1445 default:
1446 run->hypercall.nr = nr;
1447 run->hypercall.args[0] = a0;
1448 run->hypercall.args[1] = a1;
1449 run->hypercall.args[2] = a2;
1450 run->hypercall.args[3] = a3;
1451 run->hypercall.args[4] = a4;
1452 run->hypercall.args[5] = a5;
1453 run->hypercall.ret = ret;
1454 run->hypercall.longmode = is_long_mode(vcpu);
1455 kvm_arch_ops->decache_regs(vcpu);
1456 return 0;
1458 vcpu->regs[VCPU_REGS_RAX] = ret;
1459 kvm_arch_ops->decache_regs(vcpu);
1460 return 1;
1462 EXPORT_SYMBOL_GPL(kvm_hypercall);
1464 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
1466 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
1469 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1471 struct descriptor_table dt = { limit, base };
1473 kvm_arch_ops->set_gdt(vcpu, &dt);
1476 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1478 struct descriptor_table dt = { limit, base };
1480 kvm_arch_ops->set_idt(vcpu, &dt);
1483 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
1484 unsigned long *rflags)
1486 lmsw(vcpu, msw);
1487 *rflags = kvm_arch_ops->get_rflags(vcpu);
1490 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
1492 kvm_arch_ops->decache_cr4_guest_bits(vcpu);
1493 switch (cr) {
1494 case 0:
1495 return vcpu->cr0;
1496 case 2:
1497 return vcpu->cr2;
1498 case 3:
1499 return vcpu->cr3;
1500 case 4:
1501 return vcpu->cr4;
1502 default:
1503 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1504 return 0;
1508 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
1509 unsigned long *rflags)
1511 switch (cr) {
1512 case 0:
1513 set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
1514 *rflags = kvm_arch_ops->get_rflags(vcpu);
1515 break;
1516 case 2:
1517 vcpu->cr2 = val;
1518 break;
1519 case 3:
1520 set_cr3(vcpu, val);
1521 break;
1522 case 4:
1523 set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
1524 break;
1525 default:
1526 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1531 * Register the para guest with the host:
1533 static int vcpu_register_para(struct kvm_vcpu *vcpu, gpa_t para_state_gpa)
1535 struct kvm_vcpu_para_state *para_state;
1536 hpa_t para_state_hpa, hypercall_hpa;
1537 struct page *para_state_page;
1538 unsigned char *hypercall;
1539 gpa_t hypercall_gpa;
1541 printk(KERN_DEBUG "kvm: guest trying to enter paravirtual mode\n");
1542 printk(KERN_DEBUG ".... para_state_gpa: %08Lx\n", para_state_gpa);
1545 * Needs to be page aligned:
1547 if (para_state_gpa != PAGE_ALIGN(para_state_gpa))
1548 goto err_gp;
1550 para_state_hpa = gpa_to_hpa(vcpu, para_state_gpa);
1551 printk(KERN_DEBUG ".... para_state_hpa: %08Lx\n", para_state_hpa);
1552 if (is_error_hpa(para_state_hpa))
1553 goto err_gp;
1555 mark_page_dirty(vcpu->kvm, para_state_gpa >> PAGE_SHIFT);
1556 para_state_page = pfn_to_page(para_state_hpa >> PAGE_SHIFT);
1557 para_state = kmap(para_state_page);
1559 printk(KERN_DEBUG ".... guest version: %d\n", para_state->guest_version);
1560 printk(KERN_DEBUG ".... size: %d\n", para_state->size);
1562 para_state->host_version = KVM_PARA_API_VERSION;
1564 * We cannot support guests that try to register themselves
1565 * with a newer API version than the host supports:
1567 if (para_state->guest_version > KVM_PARA_API_VERSION) {
1568 para_state->ret = -KVM_EINVAL;
1569 goto err_kunmap_skip;
1572 hypercall_gpa = para_state->hypercall_gpa;
1573 hypercall_hpa = gpa_to_hpa(vcpu, hypercall_gpa);
1574 printk(KERN_DEBUG ".... hypercall_hpa: %08Lx\n", hypercall_hpa);
1575 if (is_error_hpa(hypercall_hpa)) {
1576 para_state->ret = -KVM_EINVAL;
1577 goto err_kunmap_skip;
1580 printk(KERN_DEBUG "kvm: para guest successfully registered.\n");
1581 vcpu->para_state_page = para_state_page;
1582 vcpu->para_state_gpa = para_state_gpa;
1583 vcpu->hypercall_gpa = hypercall_gpa;
1585 mark_page_dirty(vcpu->kvm, hypercall_gpa >> PAGE_SHIFT);
1586 hypercall = kmap_atomic(pfn_to_page(hypercall_hpa >> PAGE_SHIFT),
1587 KM_USER1) + (hypercall_hpa & ~PAGE_MASK);
1588 kvm_arch_ops->patch_hypercall(vcpu, hypercall);
1589 kunmap_atomic(hypercall, KM_USER1);
1591 para_state->ret = 0;
1592 err_kunmap_skip:
1593 kunmap(para_state_page);
1594 return 0;
1595 err_gp:
1596 return 1;
1599 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1601 u64 data;
1603 switch (msr) {
1604 case 0xc0010010: /* SYSCFG */
1605 case 0xc0010015: /* HWCR */
1606 case MSR_IA32_PLATFORM_ID:
1607 case MSR_IA32_P5_MC_ADDR:
1608 case MSR_IA32_P5_MC_TYPE:
1609 case MSR_IA32_MC0_CTL:
1610 case MSR_IA32_MCG_STATUS:
1611 case MSR_IA32_MCG_CAP:
1612 case MSR_IA32_MC0_MISC:
1613 case MSR_IA32_MC0_MISC+4:
1614 case MSR_IA32_MC0_MISC+8:
1615 case MSR_IA32_MC0_MISC+12:
1616 case MSR_IA32_MC0_MISC+16:
1617 case MSR_IA32_UCODE_REV:
1618 case MSR_IA32_PERF_STATUS:
1619 case MSR_IA32_EBL_CR_POWERON:
1620 /* MTRR registers */
1621 case 0xfe:
1622 case 0x200 ... 0x2ff:
1623 data = 0;
1624 break;
1625 case 0xcd: /* fsb frequency */
1626 data = 3;
1627 break;
1628 case MSR_IA32_APICBASE:
1629 data = kvm_get_apic_base(vcpu);
1630 break;
1631 case MSR_IA32_MISC_ENABLE:
1632 data = vcpu->ia32_misc_enable_msr;
1633 break;
1634 #ifdef CONFIG_X86_64
1635 case MSR_EFER:
1636 data = vcpu->shadow_efer;
1637 break;
1638 #endif
1639 default:
1640 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1641 return 1;
1643 *pdata = data;
1644 return 0;
1646 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1649 * Reads an msr value (of 'msr_index') into 'pdata'.
1650 * Returns 0 on success, non-0 otherwise.
1651 * Assumes vcpu_load() was already called.
1653 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1655 return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
1658 #ifdef CONFIG_X86_64
1660 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
1662 if (efer & EFER_RESERVED_BITS) {
1663 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
1664 efer);
1665 inject_gp(vcpu);
1666 return;
1669 if (is_paging(vcpu)
1670 && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
1671 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
1672 inject_gp(vcpu);
1673 return;
1676 kvm_arch_ops->set_efer(vcpu, efer);
1678 efer &= ~EFER_LMA;
1679 efer |= vcpu->shadow_efer & EFER_LMA;
1681 vcpu->shadow_efer = efer;
1684 #endif
1686 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1688 switch (msr) {
1689 #ifdef CONFIG_X86_64
1690 case MSR_EFER:
1691 set_efer(vcpu, data);
1692 break;
1693 #endif
1694 case MSR_IA32_MC0_STATUS:
1695 pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
1696 __FUNCTION__, data);
1697 break;
1698 case MSR_IA32_MCG_STATUS:
1699 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
1700 __FUNCTION__, data);
1701 break;
1702 case MSR_IA32_UCODE_REV:
1703 case MSR_IA32_UCODE_WRITE:
1704 case 0x200 ... 0x2ff: /* MTRRs */
1705 break;
1706 case MSR_IA32_APICBASE:
1707 kvm_set_apic_base(vcpu, data);
1708 break;
1709 case MSR_IA32_MISC_ENABLE:
1710 vcpu->ia32_misc_enable_msr = data;
1711 break;
1713 * This is the 'probe whether the host is KVM' logic:
1715 case MSR_KVM_API_MAGIC:
1716 return vcpu_register_para(vcpu, data);
1718 default:
1719 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x\n", msr);
1720 return 1;
1722 return 0;
1724 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1727 * Writes msr value into into the appropriate "register".
1728 * Returns 0 on success, non-0 otherwise.
1729 * Assumes vcpu_load() was already called.
1731 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1733 return kvm_arch_ops->set_msr(vcpu, msr_index, data);
1736 void kvm_resched(struct kvm_vcpu *vcpu)
1738 if (!need_resched())
1739 return;
1740 cond_resched();
1742 EXPORT_SYMBOL_GPL(kvm_resched);
1744 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1746 int i;
1747 u32 function;
1748 struct kvm_cpuid_entry *e, *best;
1750 kvm_arch_ops->cache_regs(vcpu);
1751 function = vcpu->regs[VCPU_REGS_RAX];
1752 vcpu->regs[VCPU_REGS_RAX] = 0;
1753 vcpu->regs[VCPU_REGS_RBX] = 0;
1754 vcpu->regs[VCPU_REGS_RCX] = 0;
1755 vcpu->regs[VCPU_REGS_RDX] = 0;
1756 best = NULL;
1757 for (i = 0; i < vcpu->cpuid_nent; ++i) {
1758 e = &vcpu->cpuid_entries[i];
1759 if (e->function == function) {
1760 best = e;
1761 break;
1764 * Both basic or both extended?
1766 if (((e->function ^ function) & 0x80000000) == 0)
1767 if (!best || e->function > best->function)
1768 best = e;
1770 if (best) {
1771 vcpu->regs[VCPU_REGS_RAX] = best->eax;
1772 vcpu->regs[VCPU_REGS_RBX] = best->ebx;
1773 vcpu->regs[VCPU_REGS_RCX] = best->ecx;
1774 vcpu->regs[VCPU_REGS_RDX] = best->edx;
1776 kvm_arch_ops->decache_regs(vcpu);
1777 kvm_arch_ops->skip_emulated_instruction(vcpu);
1779 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
1781 static int pio_copy_data(struct kvm_vcpu *vcpu)
1783 void *p = vcpu->pio_data;
1784 void *q;
1785 unsigned bytes;
1786 int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
1788 q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
1789 PAGE_KERNEL);
1790 if (!q) {
1791 free_pio_guest_pages(vcpu);
1792 return -ENOMEM;
1794 q += vcpu->pio.guest_page_offset;
1795 bytes = vcpu->pio.size * vcpu->pio.cur_count;
1796 if (vcpu->pio.in)
1797 memcpy(q, p, bytes);
1798 else
1799 memcpy(p, q, bytes);
1800 q -= vcpu->pio.guest_page_offset;
1801 vunmap(q);
1802 free_pio_guest_pages(vcpu);
1803 return 0;
1806 static int complete_pio(struct kvm_vcpu *vcpu)
1808 struct kvm_pio_request *io = &vcpu->pio;
1809 long delta;
1810 int r;
1812 kvm_arch_ops->cache_regs(vcpu);
1814 if (!io->string) {
1815 if (io->in)
1816 memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
1817 io->size);
1818 } else {
1819 if (io->in) {
1820 r = pio_copy_data(vcpu);
1821 if (r) {
1822 kvm_arch_ops->cache_regs(vcpu);
1823 return r;
1827 delta = 1;
1828 if (io->rep) {
1829 delta *= io->cur_count;
1831 * The size of the register should really depend on
1832 * current address size.
1834 vcpu->regs[VCPU_REGS_RCX] -= delta;
1836 if (io->down)
1837 delta = -delta;
1838 delta *= io->size;
1839 if (io->in)
1840 vcpu->regs[VCPU_REGS_RDI] += delta;
1841 else
1842 vcpu->regs[VCPU_REGS_RSI] += delta;
1845 kvm_arch_ops->decache_regs(vcpu);
1847 io->count -= io->cur_count;
1848 io->cur_count = 0;
1850 if (!io->count)
1851 kvm_arch_ops->skip_emulated_instruction(vcpu);
1852 return 0;
1855 static void kernel_pio(struct kvm_io_device *pio_dev,
1856 struct kvm_vcpu *vcpu,
1857 void *pd)
1859 /* TODO: String I/O for in kernel device */
1861 mutex_lock(&vcpu->kvm->lock);
1862 if (vcpu->pio.in)
1863 kvm_iodevice_read(pio_dev, vcpu->pio.port,
1864 vcpu->pio.size,
1865 pd);
1866 else
1867 kvm_iodevice_write(pio_dev, vcpu->pio.port,
1868 vcpu->pio.size,
1869 pd);
1870 mutex_unlock(&vcpu->kvm->lock);
1873 static void pio_string_write(struct kvm_io_device *pio_dev,
1874 struct kvm_vcpu *vcpu)
1876 struct kvm_pio_request *io = &vcpu->pio;
1877 void *pd = vcpu->pio_data;
1878 int i;
1880 mutex_lock(&vcpu->kvm->lock);
1881 for (i = 0; i < io->cur_count; i++) {
1882 kvm_iodevice_write(pio_dev, io->port,
1883 io->size,
1884 pd);
1885 pd += io->size;
1887 mutex_unlock(&vcpu->kvm->lock);
1890 int kvm_emulate_pio (struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
1891 int size, unsigned port)
1893 struct kvm_io_device *pio_dev;
1895 vcpu->run->exit_reason = KVM_EXIT_IO;
1896 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
1897 vcpu->run->io.size = vcpu->pio.size = size;
1898 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
1899 vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = 1;
1900 vcpu->run->io.port = vcpu->pio.port = port;
1901 vcpu->pio.in = in;
1902 vcpu->pio.string = 0;
1903 vcpu->pio.down = 0;
1904 vcpu->pio.guest_page_offset = 0;
1905 vcpu->pio.rep = 0;
1907 kvm_arch_ops->cache_regs(vcpu);
1908 memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
1909 kvm_arch_ops->decache_regs(vcpu);
1911 pio_dev = vcpu_find_pio_dev(vcpu, port);
1912 if (pio_dev) {
1913 kernel_pio(pio_dev, vcpu, vcpu->pio_data);
1914 complete_pio(vcpu);
1915 return 1;
1917 return 0;
1919 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
1921 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
1922 int size, unsigned long count, int down,
1923 gva_t address, int rep, unsigned port)
1925 unsigned now, in_page;
1926 int i, ret = 0;
1927 int nr_pages = 1;
1928 struct page *page;
1929 struct kvm_io_device *pio_dev;
1931 vcpu->run->exit_reason = KVM_EXIT_IO;
1932 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
1933 vcpu->run->io.size = vcpu->pio.size = size;
1934 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
1935 vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = count;
1936 vcpu->run->io.port = vcpu->pio.port = port;
1937 vcpu->pio.in = in;
1938 vcpu->pio.string = 1;
1939 vcpu->pio.down = down;
1940 vcpu->pio.guest_page_offset = offset_in_page(address);
1941 vcpu->pio.rep = rep;
1943 if (!count) {
1944 kvm_arch_ops->skip_emulated_instruction(vcpu);
1945 return 1;
1948 if (!down)
1949 in_page = PAGE_SIZE - offset_in_page(address);
1950 else
1951 in_page = offset_in_page(address) + size;
1952 now = min(count, (unsigned long)in_page / size);
1953 if (!now) {
1955 * String I/O straddles page boundary. Pin two guest pages
1956 * so that we satisfy atomicity constraints. Do just one
1957 * transaction to avoid complexity.
1959 nr_pages = 2;
1960 now = 1;
1962 if (down) {
1964 * String I/O in reverse. Yuck. Kill the guest, fix later.
1966 pr_unimpl(vcpu, "guest string pio down\n");
1967 inject_gp(vcpu);
1968 return 1;
1970 vcpu->run->io.count = now;
1971 vcpu->pio.cur_count = now;
1973 for (i = 0; i < nr_pages; ++i) {
1974 mutex_lock(&vcpu->kvm->lock);
1975 page = gva_to_page(vcpu, address + i * PAGE_SIZE);
1976 if (page)
1977 get_page(page);
1978 vcpu->pio.guest_pages[i] = page;
1979 mutex_unlock(&vcpu->kvm->lock);
1980 if (!page) {
1981 inject_gp(vcpu);
1982 free_pio_guest_pages(vcpu);
1983 return 1;
1987 pio_dev = vcpu_find_pio_dev(vcpu, port);
1988 if (!vcpu->pio.in) {
1989 /* string PIO write */
1990 ret = pio_copy_data(vcpu);
1991 if (ret >= 0 && pio_dev) {
1992 pio_string_write(pio_dev, vcpu);
1993 complete_pio(vcpu);
1994 if (vcpu->pio.count == 0)
1995 ret = 1;
1997 } else if (pio_dev)
1998 pr_unimpl(vcpu, "no string pio read support yet, "
1999 "port %x size %d count %ld\n",
2000 port, size, count);
2002 return ret;
2004 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
2006 static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2008 int r;
2009 sigset_t sigsaved;
2011 vcpu_load(vcpu);
2013 if (unlikely(vcpu->mp_state == VCPU_MP_STATE_UNINITIALIZED)) {
2014 kvm_vcpu_block(vcpu);
2015 vcpu_put(vcpu);
2016 return -EAGAIN;
2019 if (vcpu->sigset_active)
2020 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
2022 /* re-sync apic's tpr */
2023 if (!irqchip_in_kernel(vcpu->kvm))
2024 set_cr8(vcpu, kvm_run->cr8);
2026 if (vcpu->pio.cur_count) {
2027 r = complete_pio(vcpu);
2028 if (r)
2029 goto out;
2032 if (vcpu->mmio_needed) {
2033 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
2034 vcpu->mmio_read_completed = 1;
2035 vcpu->mmio_needed = 0;
2036 r = emulate_instruction(vcpu, kvm_run,
2037 vcpu->mmio_fault_cr2, 0);
2038 if (r == EMULATE_DO_MMIO) {
2040 * Read-modify-write. Back to userspace.
2042 r = 0;
2043 goto out;
2047 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
2048 kvm_arch_ops->cache_regs(vcpu);
2049 vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
2050 kvm_arch_ops->decache_regs(vcpu);
2053 r = kvm_arch_ops->run(vcpu, kvm_run);
2055 out:
2056 if (vcpu->sigset_active)
2057 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
2059 vcpu_put(vcpu);
2060 return r;
2063 static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
2064 struct kvm_regs *regs)
2066 vcpu_load(vcpu);
2068 kvm_arch_ops->cache_regs(vcpu);
2070 regs->rax = vcpu->regs[VCPU_REGS_RAX];
2071 regs->rbx = vcpu->regs[VCPU_REGS_RBX];
2072 regs->rcx = vcpu->regs[VCPU_REGS_RCX];
2073 regs->rdx = vcpu->regs[VCPU_REGS_RDX];
2074 regs->rsi = vcpu->regs[VCPU_REGS_RSI];
2075 regs->rdi = vcpu->regs[VCPU_REGS_RDI];
2076 regs->rsp = vcpu->regs[VCPU_REGS_RSP];
2077 regs->rbp = vcpu->regs[VCPU_REGS_RBP];
2078 #ifdef CONFIG_X86_64
2079 regs->r8 = vcpu->regs[VCPU_REGS_R8];
2080 regs->r9 = vcpu->regs[VCPU_REGS_R9];
2081 regs->r10 = vcpu->regs[VCPU_REGS_R10];
2082 regs->r11 = vcpu->regs[VCPU_REGS_R11];
2083 regs->r12 = vcpu->regs[VCPU_REGS_R12];
2084 regs->r13 = vcpu->regs[VCPU_REGS_R13];
2085 regs->r14 = vcpu->regs[VCPU_REGS_R14];
2086 regs->r15 = vcpu->regs[VCPU_REGS_R15];
2087 #endif
2089 regs->rip = vcpu->rip;
2090 regs->rflags = kvm_arch_ops->get_rflags(vcpu);
2093 * Don't leak debug flags in case they were set for guest debugging
2095 if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
2096 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
2098 vcpu_put(vcpu);
2100 return 0;
2103 static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
2104 struct kvm_regs *regs)
2106 vcpu_load(vcpu);
2108 vcpu->regs[VCPU_REGS_RAX] = regs->rax;
2109 vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
2110 vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
2111 vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
2112 vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
2113 vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
2114 vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
2115 vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
2116 #ifdef CONFIG_X86_64
2117 vcpu->regs[VCPU_REGS_R8] = regs->r8;
2118 vcpu->regs[VCPU_REGS_R9] = regs->r9;
2119 vcpu->regs[VCPU_REGS_R10] = regs->r10;
2120 vcpu->regs[VCPU_REGS_R11] = regs->r11;
2121 vcpu->regs[VCPU_REGS_R12] = regs->r12;
2122 vcpu->regs[VCPU_REGS_R13] = regs->r13;
2123 vcpu->regs[VCPU_REGS_R14] = regs->r14;
2124 vcpu->regs[VCPU_REGS_R15] = regs->r15;
2125 #endif
2127 vcpu->rip = regs->rip;
2128 kvm_arch_ops->set_rflags(vcpu, regs->rflags);
2130 kvm_arch_ops->decache_regs(vcpu);
2132 vcpu_put(vcpu);
2134 return 0;
2137 static void get_segment(struct kvm_vcpu *vcpu,
2138 struct kvm_segment *var, int seg)
2140 return kvm_arch_ops->get_segment(vcpu, var, seg);
2143 static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
2144 struct kvm_sregs *sregs)
2146 struct descriptor_table dt;
2147 int pending_vec;
2149 vcpu_load(vcpu);
2151 get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
2152 get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
2153 get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
2154 get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
2155 get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
2156 get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
2158 get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
2159 get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
2161 kvm_arch_ops->get_idt(vcpu, &dt);
2162 sregs->idt.limit = dt.limit;
2163 sregs->idt.base = dt.base;
2164 kvm_arch_ops->get_gdt(vcpu, &dt);
2165 sregs->gdt.limit = dt.limit;
2166 sregs->gdt.base = dt.base;
2168 kvm_arch_ops->decache_cr4_guest_bits(vcpu);
2169 sregs->cr0 = vcpu->cr0;
2170 sregs->cr2 = vcpu->cr2;
2171 sregs->cr3 = vcpu->cr3;
2172 sregs->cr4 = vcpu->cr4;
2173 sregs->cr8 = get_cr8(vcpu);
2174 sregs->efer = vcpu->shadow_efer;
2175 sregs->apic_base = kvm_get_apic_base(vcpu);
2177 if (irqchip_in_kernel(vcpu->kvm)) {
2178 memset(sregs->interrupt_bitmap, 0,
2179 sizeof sregs->interrupt_bitmap);
2180 pending_vec = kvm_arch_ops->get_irq(vcpu);
2181 if (pending_vec >= 0)
2182 set_bit(pending_vec, (unsigned long *)sregs->interrupt_bitmap);
2183 } else
2184 memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
2185 sizeof sregs->interrupt_bitmap);
2187 vcpu_put(vcpu);
2189 return 0;
2192 static void set_segment(struct kvm_vcpu *vcpu,
2193 struct kvm_segment *var, int seg)
2195 return kvm_arch_ops->set_segment(vcpu, var, seg);
2198 static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
2199 struct kvm_sregs *sregs)
2201 int mmu_reset_needed = 0;
2202 int i, pending_vec, max_bits;
2203 struct descriptor_table dt;
2205 vcpu_load(vcpu);
2207 dt.limit = sregs->idt.limit;
2208 dt.base = sregs->idt.base;
2209 kvm_arch_ops->set_idt(vcpu, &dt);
2210 dt.limit = sregs->gdt.limit;
2211 dt.base = sregs->gdt.base;
2212 kvm_arch_ops->set_gdt(vcpu, &dt);
2214 vcpu->cr2 = sregs->cr2;
2215 mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
2216 vcpu->cr3 = sregs->cr3;
2218 set_cr8(vcpu, sregs->cr8);
2220 mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
2221 #ifdef CONFIG_X86_64
2222 kvm_arch_ops->set_efer(vcpu, sregs->efer);
2223 #endif
2224 kvm_set_apic_base(vcpu, sregs->apic_base);
2226 kvm_arch_ops->decache_cr4_guest_bits(vcpu);
2228 mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
2229 kvm_arch_ops->set_cr0(vcpu, sregs->cr0);
2231 mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
2232 kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
2233 if (!is_long_mode(vcpu) && is_pae(vcpu))
2234 load_pdptrs(vcpu, vcpu->cr3);
2236 if (mmu_reset_needed)
2237 kvm_mmu_reset_context(vcpu);
2239 if (!irqchip_in_kernel(vcpu->kvm)) {
2240 memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
2241 sizeof vcpu->irq_pending);
2242 vcpu->irq_summary = 0;
2243 for (i = 0; i < ARRAY_SIZE(vcpu->irq_pending); ++i)
2244 if (vcpu->irq_pending[i])
2245 __set_bit(i, &vcpu->irq_summary);
2246 } else {
2247 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
2248 pending_vec = find_first_bit(
2249 (const unsigned long *)sregs->interrupt_bitmap,
2250 max_bits);
2251 /* Only pending external irq is handled here */
2252 if (pending_vec < max_bits) {
2253 kvm_arch_ops->set_irq(vcpu, pending_vec);
2254 printk("Set back pending irq %d\n", pending_vec);
2258 set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
2259 set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
2260 set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
2261 set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
2262 set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
2263 set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
2265 set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
2266 set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
2268 vcpu_put(vcpu);
2270 return 0;
2274 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
2275 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
2277 * This list is modified at module load time to reflect the
2278 * capabilities of the host cpu.
2280 static u32 msrs_to_save[] = {
2281 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
2282 MSR_K6_STAR,
2283 #ifdef CONFIG_X86_64
2284 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
2285 #endif
2286 MSR_IA32_TIME_STAMP_COUNTER,
2289 static unsigned num_msrs_to_save;
2291 static u32 emulated_msrs[] = {
2292 MSR_IA32_MISC_ENABLE,
2295 static __init void kvm_init_msr_list(void)
2297 u32 dummy[2];
2298 unsigned i, j;
2300 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
2301 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
2302 continue;
2303 if (j < i)
2304 msrs_to_save[j] = msrs_to_save[i];
2305 j++;
2307 num_msrs_to_save = j;
2311 * Adapt set_msr() to msr_io()'s calling convention
2313 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2315 return kvm_set_msr(vcpu, index, *data);
2319 * Read or write a bunch of msrs. All parameters are kernel addresses.
2321 * @return number of msrs set successfully.
2323 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2324 struct kvm_msr_entry *entries,
2325 int (*do_msr)(struct kvm_vcpu *vcpu,
2326 unsigned index, u64 *data))
2328 int i;
2330 vcpu_load(vcpu);
2332 for (i = 0; i < msrs->nmsrs; ++i)
2333 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2334 break;
2336 vcpu_put(vcpu);
2338 return i;
2342 * Read or write a bunch of msrs. Parameters are user addresses.
2344 * @return number of msrs set successfully.
2346 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2347 int (*do_msr)(struct kvm_vcpu *vcpu,
2348 unsigned index, u64 *data),
2349 int writeback)
2351 struct kvm_msrs msrs;
2352 struct kvm_msr_entry *entries;
2353 int r, n;
2354 unsigned size;
2356 r = -EFAULT;
2357 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2358 goto out;
2360 r = -E2BIG;
2361 if (msrs.nmsrs >= MAX_IO_MSRS)
2362 goto out;
2364 r = -ENOMEM;
2365 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2366 entries = vmalloc(size);
2367 if (!entries)
2368 goto out;
2370 r = -EFAULT;
2371 if (copy_from_user(entries, user_msrs->entries, size))
2372 goto out_free;
2374 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2375 if (r < 0)
2376 goto out_free;
2378 r = -EFAULT;
2379 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2380 goto out_free;
2382 r = n;
2384 out_free:
2385 vfree(entries);
2386 out:
2387 return r;
2391 * Translate a guest virtual address to a guest physical address.
2393 static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
2394 struct kvm_translation *tr)
2396 unsigned long vaddr = tr->linear_address;
2397 gpa_t gpa;
2399 vcpu_load(vcpu);
2400 mutex_lock(&vcpu->kvm->lock);
2401 gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
2402 tr->physical_address = gpa;
2403 tr->valid = gpa != UNMAPPED_GVA;
2404 tr->writeable = 1;
2405 tr->usermode = 0;
2406 mutex_unlock(&vcpu->kvm->lock);
2407 vcpu_put(vcpu);
2409 return 0;
2412 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2413 struct kvm_interrupt *irq)
2415 if (irq->irq < 0 || irq->irq >= 256)
2416 return -EINVAL;
2417 if (irqchip_in_kernel(vcpu->kvm))
2418 return -ENXIO;
2419 vcpu_load(vcpu);
2421 set_bit(irq->irq, vcpu->irq_pending);
2422 set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
2424 vcpu_put(vcpu);
2426 return 0;
2429 static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
2430 struct kvm_debug_guest *dbg)
2432 int r;
2434 vcpu_load(vcpu);
2436 r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
2438 vcpu_put(vcpu);
2440 return r;
2443 static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
2444 unsigned long address,
2445 int *type)
2447 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2448 unsigned long pgoff;
2449 struct page *page;
2451 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2452 if (pgoff == 0)
2453 page = virt_to_page(vcpu->run);
2454 else if (pgoff == KVM_PIO_PAGE_OFFSET)
2455 page = virt_to_page(vcpu->pio_data);
2456 else
2457 return NOPAGE_SIGBUS;
2458 get_page(page);
2459 if (type != NULL)
2460 *type = VM_FAULT_MINOR;
2462 return page;
2465 static struct vm_operations_struct kvm_vcpu_vm_ops = {
2466 .nopage = kvm_vcpu_nopage,
2469 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2471 vma->vm_ops = &kvm_vcpu_vm_ops;
2472 return 0;
2475 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2477 struct kvm_vcpu *vcpu = filp->private_data;
2479 fput(vcpu->kvm->filp);
2480 return 0;
2483 static struct file_operations kvm_vcpu_fops = {
2484 .release = kvm_vcpu_release,
2485 .unlocked_ioctl = kvm_vcpu_ioctl,
2486 .compat_ioctl = kvm_vcpu_ioctl,
2487 .mmap = kvm_vcpu_mmap,
2491 * Allocates an inode for the vcpu.
2493 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2495 int fd, r;
2496 struct inode *inode;
2497 struct file *file;
2499 r = anon_inode_getfd(&fd, &inode, &file,
2500 "kvm-vcpu", &kvm_vcpu_fops, vcpu);
2501 if (r)
2502 return r;
2503 atomic_inc(&vcpu->kvm->filp->f_count);
2504 return fd;
2508 * Creates some virtual cpus. Good luck creating more than one.
2510 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
2512 int r;
2513 struct kvm_vcpu *vcpu;
2515 if (!valid_vcpu(n))
2516 return -EINVAL;
2518 vcpu = kvm_arch_ops->vcpu_create(kvm, n);
2519 if (IS_ERR(vcpu))
2520 return PTR_ERR(vcpu);
2522 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2524 /* We do fxsave: this must be aligned. */
2525 BUG_ON((unsigned long)&vcpu->host_fx_image & 0xF);
2527 vcpu_load(vcpu);
2528 r = kvm_mmu_setup(vcpu);
2529 vcpu_put(vcpu);
2530 if (r < 0)
2531 goto free_vcpu;
2533 mutex_lock(&kvm->lock);
2534 if (kvm->vcpus[n]) {
2535 r = -EEXIST;
2536 mutex_unlock(&kvm->lock);
2537 goto mmu_unload;
2539 kvm->vcpus[n] = vcpu;
2540 mutex_unlock(&kvm->lock);
2542 /* Now it's all set up, let userspace reach it */
2543 r = create_vcpu_fd(vcpu);
2544 if (r < 0)
2545 goto unlink;
2546 return r;
2548 unlink:
2549 mutex_lock(&kvm->lock);
2550 kvm->vcpus[n] = NULL;
2551 mutex_unlock(&kvm->lock);
2553 mmu_unload:
2554 vcpu_load(vcpu);
2555 kvm_mmu_unload(vcpu);
2556 vcpu_put(vcpu);
2558 free_vcpu:
2559 kvm_arch_ops->vcpu_free(vcpu);
2560 return r;
2563 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
2565 u64 efer;
2566 int i;
2567 struct kvm_cpuid_entry *e, *entry;
2569 rdmsrl(MSR_EFER, efer);
2570 entry = NULL;
2571 for (i = 0; i < vcpu->cpuid_nent; ++i) {
2572 e = &vcpu->cpuid_entries[i];
2573 if (e->function == 0x80000001) {
2574 entry = e;
2575 break;
2578 if (entry && (entry->edx & (1 << 20)) && !(efer & EFER_NX)) {
2579 entry->edx &= ~(1 << 20);
2580 printk(KERN_INFO "kvm: guest NX capability removed\n");
2584 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
2585 struct kvm_cpuid *cpuid,
2586 struct kvm_cpuid_entry __user *entries)
2588 int r;
2590 r = -E2BIG;
2591 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2592 goto out;
2593 r = -EFAULT;
2594 if (copy_from_user(&vcpu->cpuid_entries, entries,
2595 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
2596 goto out;
2597 vcpu->cpuid_nent = cpuid->nent;
2598 cpuid_fix_nx_cap(vcpu);
2599 return 0;
2601 out:
2602 return r;
2605 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2607 if (sigset) {
2608 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2609 vcpu->sigset_active = 1;
2610 vcpu->sigset = *sigset;
2611 } else
2612 vcpu->sigset_active = 0;
2613 return 0;
2617 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
2618 * we have asm/x86/processor.h
2620 struct fxsave {
2621 u16 cwd;
2622 u16 swd;
2623 u16 twd;
2624 u16 fop;
2625 u64 rip;
2626 u64 rdp;
2627 u32 mxcsr;
2628 u32 mxcsr_mask;
2629 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
2630 #ifdef CONFIG_X86_64
2631 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
2632 #else
2633 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
2634 #endif
2637 static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2639 struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
2641 vcpu_load(vcpu);
2643 memcpy(fpu->fpr, fxsave->st_space, 128);
2644 fpu->fcw = fxsave->cwd;
2645 fpu->fsw = fxsave->swd;
2646 fpu->ftwx = fxsave->twd;
2647 fpu->last_opcode = fxsave->fop;
2648 fpu->last_ip = fxsave->rip;
2649 fpu->last_dp = fxsave->rdp;
2650 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
2652 vcpu_put(vcpu);
2654 return 0;
2657 static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2659 struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
2661 vcpu_load(vcpu);
2663 memcpy(fxsave->st_space, fpu->fpr, 128);
2664 fxsave->cwd = fpu->fcw;
2665 fxsave->swd = fpu->fsw;
2666 fxsave->twd = fpu->ftwx;
2667 fxsave->fop = fpu->last_opcode;
2668 fxsave->rip = fpu->last_ip;
2669 fxsave->rdp = fpu->last_dp;
2670 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
2672 vcpu_put(vcpu);
2674 return 0;
2677 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2678 struct kvm_lapic_state *s)
2680 vcpu_load(vcpu);
2681 memcpy(s->regs, vcpu->apic->regs, sizeof *s);
2682 vcpu_put(vcpu);
2684 return 0;
2687 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2688 struct kvm_lapic_state *s)
2690 vcpu_load(vcpu);
2691 memcpy(vcpu->apic->regs, s->regs, sizeof *s);
2692 kvm_apic_post_state_restore(vcpu);
2693 vcpu_put(vcpu);
2695 return 0;
2698 static long kvm_vcpu_ioctl(struct file *filp,
2699 unsigned int ioctl, unsigned long arg)
2701 struct kvm_vcpu *vcpu = filp->private_data;
2702 void __user *argp = (void __user *)arg;
2703 int r = -EINVAL;
2705 switch (ioctl) {
2706 case KVM_RUN:
2707 r = -EINVAL;
2708 if (arg)
2709 goto out;
2710 r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
2711 break;
2712 case KVM_GET_REGS: {
2713 struct kvm_regs kvm_regs;
2715 memset(&kvm_regs, 0, sizeof kvm_regs);
2716 r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
2717 if (r)
2718 goto out;
2719 r = -EFAULT;
2720 if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
2721 goto out;
2722 r = 0;
2723 break;
2725 case KVM_SET_REGS: {
2726 struct kvm_regs kvm_regs;
2728 r = -EFAULT;
2729 if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
2730 goto out;
2731 r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
2732 if (r)
2733 goto out;
2734 r = 0;
2735 break;
2737 case KVM_GET_SREGS: {
2738 struct kvm_sregs kvm_sregs;
2740 memset(&kvm_sregs, 0, sizeof kvm_sregs);
2741 r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
2742 if (r)
2743 goto out;
2744 r = -EFAULT;
2745 if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
2746 goto out;
2747 r = 0;
2748 break;
2750 case KVM_SET_SREGS: {
2751 struct kvm_sregs kvm_sregs;
2753 r = -EFAULT;
2754 if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
2755 goto out;
2756 r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
2757 if (r)
2758 goto out;
2759 r = 0;
2760 break;
2762 case KVM_TRANSLATE: {
2763 struct kvm_translation tr;
2765 r = -EFAULT;
2766 if (copy_from_user(&tr, argp, sizeof tr))
2767 goto out;
2768 r = kvm_vcpu_ioctl_translate(vcpu, &tr);
2769 if (r)
2770 goto out;
2771 r = -EFAULT;
2772 if (copy_to_user(argp, &tr, sizeof tr))
2773 goto out;
2774 r = 0;
2775 break;
2777 case KVM_INTERRUPT: {
2778 struct kvm_interrupt irq;
2780 r = -EFAULT;
2781 if (copy_from_user(&irq, argp, sizeof irq))
2782 goto out;
2783 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2784 if (r)
2785 goto out;
2786 r = 0;
2787 break;
2789 case KVM_DEBUG_GUEST: {
2790 struct kvm_debug_guest dbg;
2792 r = -EFAULT;
2793 if (copy_from_user(&dbg, argp, sizeof dbg))
2794 goto out;
2795 r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
2796 if (r)
2797 goto out;
2798 r = 0;
2799 break;
2801 case KVM_GET_MSRS:
2802 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2803 break;
2804 case KVM_SET_MSRS:
2805 r = msr_io(vcpu, argp, do_set_msr, 0);
2806 break;
2807 case KVM_SET_CPUID: {
2808 struct kvm_cpuid __user *cpuid_arg = argp;
2809 struct kvm_cpuid cpuid;
2811 r = -EFAULT;
2812 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2813 goto out;
2814 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2815 if (r)
2816 goto out;
2817 break;
2819 case KVM_SET_SIGNAL_MASK: {
2820 struct kvm_signal_mask __user *sigmask_arg = argp;
2821 struct kvm_signal_mask kvm_sigmask;
2822 sigset_t sigset, *p;
2824 p = NULL;
2825 if (argp) {
2826 r = -EFAULT;
2827 if (copy_from_user(&kvm_sigmask, argp,
2828 sizeof kvm_sigmask))
2829 goto out;
2830 r = -EINVAL;
2831 if (kvm_sigmask.len != sizeof sigset)
2832 goto out;
2833 r = -EFAULT;
2834 if (copy_from_user(&sigset, sigmask_arg->sigset,
2835 sizeof sigset))
2836 goto out;
2837 p = &sigset;
2839 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2840 break;
2842 case KVM_GET_FPU: {
2843 struct kvm_fpu fpu;
2845 memset(&fpu, 0, sizeof fpu);
2846 r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
2847 if (r)
2848 goto out;
2849 r = -EFAULT;
2850 if (copy_to_user(argp, &fpu, sizeof fpu))
2851 goto out;
2852 r = 0;
2853 break;
2855 case KVM_SET_FPU: {
2856 struct kvm_fpu fpu;
2858 r = -EFAULT;
2859 if (copy_from_user(&fpu, argp, sizeof fpu))
2860 goto out;
2861 r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
2862 if (r)
2863 goto out;
2864 r = 0;
2865 break;
2867 case KVM_GET_LAPIC: {
2868 struct kvm_lapic_state lapic;
2870 memset(&lapic, 0, sizeof lapic);
2871 r = kvm_vcpu_ioctl_get_lapic(vcpu, &lapic);
2872 if (r)
2873 goto out;
2874 r = -EFAULT;
2875 if (copy_to_user(argp, &lapic, sizeof lapic))
2876 goto out;
2877 r = 0;
2878 break;
2880 case KVM_SET_LAPIC: {
2881 struct kvm_lapic_state lapic;
2883 r = -EFAULT;
2884 if (copy_from_user(&lapic, argp, sizeof lapic))
2885 goto out;
2886 r = kvm_vcpu_ioctl_set_lapic(vcpu, &lapic);;
2887 if (r)
2888 goto out;
2889 r = 0;
2890 break;
2892 default:
2895 out:
2896 return r;
2899 static long kvm_vm_ioctl(struct file *filp,
2900 unsigned int ioctl, unsigned long arg)
2902 struct kvm *kvm = filp->private_data;
2903 void __user *argp = (void __user *)arg;
2904 int r = -EINVAL;
2906 switch (ioctl) {
2907 case KVM_CREATE_VCPU:
2908 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2909 if (r < 0)
2910 goto out;
2911 break;
2912 case KVM_SET_MEMORY_REGION: {
2913 struct kvm_memory_region kvm_mem;
2915 r = -EFAULT;
2916 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
2917 goto out;
2918 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_mem);
2919 if (r)
2920 goto out;
2921 break;
2923 case KVM_GET_DIRTY_LOG: {
2924 struct kvm_dirty_log log;
2926 r = -EFAULT;
2927 if (copy_from_user(&log, argp, sizeof log))
2928 goto out;
2929 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2930 if (r)
2931 goto out;
2932 break;
2934 case KVM_SET_MEMORY_ALIAS: {
2935 struct kvm_memory_alias alias;
2937 r = -EFAULT;
2938 if (copy_from_user(&alias, argp, sizeof alias))
2939 goto out;
2940 r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
2941 if (r)
2942 goto out;
2943 break;
2945 case KVM_CREATE_IRQCHIP:
2946 r = -ENOMEM;
2947 kvm->vpic = kvm_create_pic(kvm);
2948 if (kvm->vpic) {
2949 r = kvm_ioapic_init(kvm);
2950 if (r) {
2951 kfree(kvm->vpic);
2952 kvm->vpic = NULL;
2953 goto out;
2956 else
2957 goto out;
2958 break;
2959 case KVM_IRQ_LINE: {
2960 struct kvm_irq_level irq_event;
2962 r = -EFAULT;
2963 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2964 goto out;
2965 if (irqchip_in_kernel(kvm)) {
2966 mutex_lock(&kvm->lock);
2967 if (irq_event.irq < 16)
2968 kvm_pic_set_irq(pic_irqchip(kvm),
2969 irq_event.irq,
2970 irq_event.level);
2971 kvm_ioapic_set_irq(kvm->vioapic,
2972 irq_event.irq,
2973 irq_event.level);
2974 mutex_unlock(&kvm->lock);
2975 r = 0;
2977 break;
2979 case KVM_GET_IRQCHIP: {
2980 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2981 struct kvm_irqchip chip;
2983 r = -EFAULT;
2984 if (copy_from_user(&chip, argp, sizeof chip))
2985 goto out;
2986 r = -ENXIO;
2987 if (!irqchip_in_kernel(kvm))
2988 goto out;
2989 r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
2990 if (r)
2991 goto out;
2992 r = -EFAULT;
2993 if (copy_to_user(argp, &chip, sizeof chip))
2994 goto out;
2995 r = 0;
2996 break;
2998 case KVM_SET_IRQCHIP: {
2999 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3000 struct kvm_irqchip chip;
3002 r = -EFAULT;
3003 if (copy_from_user(&chip, argp, sizeof chip))
3004 goto out;
3005 r = -ENXIO;
3006 if (!irqchip_in_kernel(kvm))
3007 goto out;
3008 r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
3009 if (r)
3010 goto out;
3011 r = 0;
3012 break;
3014 default:
3017 out:
3018 return r;
3021 static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
3022 unsigned long address,
3023 int *type)
3025 struct kvm *kvm = vma->vm_file->private_data;
3026 unsigned long pgoff;
3027 struct page *page;
3029 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3030 page = gfn_to_page(kvm, pgoff);
3031 if (!page)
3032 return NOPAGE_SIGBUS;
3033 get_page(page);
3034 if (type != NULL)
3035 *type = VM_FAULT_MINOR;
3037 return page;
3040 static struct vm_operations_struct kvm_vm_vm_ops = {
3041 .nopage = kvm_vm_nopage,
3044 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
3046 vma->vm_ops = &kvm_vm_vm_ops;
3047 return 0;
3050 static struct file_operations kvm_vm_fops = {
3051 .release = kvm_vm_release,
3052 .unlocked_ioctl = kvm_vm_ioctl,
3053 .compat_ioctl = kvm_vm_ioctl,
3054 .mmap = kvm_vm_mmap,
3057 static int kvm_dev_ioctl_create_vm(void)
3059 int fd, r;
3060 struct inode *inode;
3061 struct file *file;
3062 struct kvm *kvm;
3064 kvm = kvm_create_vm();
3065 if (IS_ERR(kvm))
3066 return PTR_ERR(kvm);
3067 r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
3068 if (r) {
3069 kvm_destroy_vm(kvm);
3070 return r;
3073 kvm->filp = file;
3075 return fd;
3078 static long kvm_dev_ioctl(struct file *filp,
3079 unsigned int ioctl, unsigned long arg)
3081 void __user *argp = (void __user *)arg;
3082 long r = -EINVAL;
3084 switch (ioctl) {
3085 case KVM_GET_API_VERSION:
3086 r = -EINVAL;
3087 if (arg)
3088 goto out;
3089 r = KVM_API_VERSION;
3090 break;
3091 case KVM_CREATE_VM:
3092 r = -EINVAL;
3093 if (arg)
3094 goto out;
3095 r = kvm_dev_ioctl_create_vm();
3096 break;
3097 case KVM_GET_MSR_INDEX_LIST: {
3098 struct kvm_msr_list __user *user_msr_list = argp;
3099 struct kvm_msr_list msr_list;
3100 unsigned n;
3102 r = -EFAULT;
3103 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
3104 goto out;
3105 n = msr_list.nmsrs;
3106 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
3107 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
3108 goto out;
3109 r = -E2BIG;
3110 if (n < num_msrs_to_save)
3111 goto out;
3112 r = -EFAULT;
3113 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3114 num_msrs_to_save * sizeof(u32)))
3115 goto out;
3116 if (copy_to_user(user_msr_list->indices
3117 + num_msrs_to_save * sizeof(u32),
3118 &emulated_msrs,
3119 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
3120 goto out;
3121 r = 0;
3122 break;
3124 case KVM_CHECK_EXTENSION: {
3125 int ext = (long)argp;
3127 switch (ext) {
3128 case KVM_CAP_IRQCHIP:
3129 case KVM_CAP_HLT:
3130 r = 1;
3131 break;
3132 default:
3133 r = 0;
3134 break;
3136 break;
3138 case KVM_GET_VCPU_MMAP_SIZE:
3139 r = -EINVAL;
3140 if (arg)
3141 goto out;
3142 r = 2 * PAGE_SIZE;
3143 break;
3144 default:
3147 out:
3148 return r;
3151 static struct file_operations kvm_chardev_ops = {
3152 .unlocked_ioctl = kvm_dev_ioctl,
3153 .compat_ioctl = kvm_dev_ioctl,
3156 static struct miscdevice kvm_dev = {
3157 KVM_MINOR,
3158 "kvm",
3159 &kvm_chardev_ops,
3163 * Make sure that a cpu that is being hot-unplugged does not have any vcpus
3164 * cached on it.
3166 static void decache_vcpus_on_cpu(int cpu)
3168 struct kvm *vm;
3169 struct kvm_vcpu *vcpu;
3170 int i;
3172 spin_lock(&kvm_lock);
3173 list_for_each_entry(vm, &vm_list, vm_list)
3174 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
3175 vcpu = vm->vcpus[i];
3176 if (!vcpu)
3177 continue;
3179 * If the vcpu is locked, then it is running on some
3180 * other cpu and therefore it is not cached on the
3181 * cpu in question.
3183 * If it's not locked, check the last cpu it executed
3184 * on.
3186 if (mutex_trylock(&vcpu->mutex)) {
3187 if (vcpu->cpu == cpu) {
3188 kvm_arch_ops->vcpu_decache(vcpu);
3189 vcpu->cpu = -1;
3191 mutex_unlock(&vcpu->mutex);
3194 spin_unlock(&kvm_lock);
3197 static void hardware_enable(void *junk)
3199 int cpu = raw_smp_processor_id();
3201 if (cpu_isset(cpu, cpus_hardware_enabled))
3202 return;
3203 cpu_set(cpu, cpus_hardware_enabled);
3204 kvm_arch_ops->hardware_enable(NULL);
3207 static void hardware_disable(void *junk)
3209 int cpu = raw_smp_processor_id();
3211 if (!cpu_isset(cpu, cpus_hardware_enabled))
3212 return;
3213 cpu_clear(cpu, cpus_hardware_enabled);
3214 decache_vcpus_on_cpu(cpu);
3215 kvm_arch_ops->hardware_disable(NULL);
3218 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
3219 void *v)
3221 int cpu = (long)v;
3223 switch (val) {
3224 case CPU_DYING:
3225 case CPU_DYING_FROZEN:
3226 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
3227 cpu);
3228 hardware_disable(NULL);
3229 break;
3230 case CPU_UP_CANCELED:
3231 case CPU_UP_CANCELED_FROZEN:
3232 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
3233 cpu);
3234 smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
3235 break;
3236 case CPU_ONLINE:
3237 case CPU_ONLINE_FROZEN:
3238 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
3239 cpu);
3240 smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
3241 break;
3243 return NOTIFY_OK;
3246 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3247 void *v)
3249 if (val == SYS_RESTART) {
3251 * Some (well, at least mine) BIOSes hang on reboot if
3252 * in vmx root mode.
3254 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
3255 on_each_cpu(hardware_disable, NULL, 0, 1);
3257 return NOTIFY_OK;
3260 static struct notifier_block kvm_reboot_notifier = {
3261 .notifier_call = kvm_reboot,
3262 .priority = 0,
3265 void kvm_io_bus_init(struct kvm_io_bus *bus)
3267 memset(bus, 0, sizeof(*bus));
3270 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3272 int i;
3274 for (i = 0; i < bus->dev_count; i++) {
3275 struct kvm_io_device *pos = bus->devs[i];
3277 kvm_iodevice_destructor(pos);
3281 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
3283 int i;
3285 for (i = 0; i < bus->dev_count; i++) {
3286 struct kvm_io_device *pos = bus->devs[i];
3288 if (pos->in_range(pos, addr))
3289 return pos;
3292 return NULL;
3295 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
3297 BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
3299 bus->devs[bus->dev_count++] = dev;
3302 static struct notifier_block kvm_cpu_notifier = {
3303 .notifier_call = kvm_cpu_hotplug,
3304 .priority = 20, /* must be > scheduler priority */
3307 static u64 stat_get(void *_offset)
3309 unsigned offset = (long)_offset;
3310 u64 total = 0;
3311 struct kvm *kvm;
3312 struct kvm_vcpu *vcpu;
3313 int i;
3315 spin_lock(&kvm_lock);
3316 list_for_each_entry(kvm, &vm_list, vm_list)
3317 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
3318 vcpu = kvm->vcpus[i];
3319 if (vcpu)
3320 total += *(u32 *)((void *)vcpu + offset);
3322 spin_unlock(&kvm_lock);
3323 return total;
3326 DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, NULL, "%llu\n");
3328 static __init void kvm_init_debug(void)
3330 struct kvm_stats_debugfs_item *p;
3332 debugfs_dir = debugfs_create_dir("kvm", NULL);
3333 for (p = debugfs_entries; p->name; ++p)
3334 p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
3335 (void *)(long)p->offset,
3336 &stat_fops);
3339 static void kvm_exit_debug(void)
3341 struct kvm_stats_debugfs_item *p;
3343 for (p = debugfs_entries; p->name; ++p)
3344 debugfs_remove(p->dentry);
3345 debugfs_remove(debugfs_dir);
3348 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
3350 hardware_disable(NULL);
3351 return 0;
3354 static int kvm_resume(struct sys_device *dev)
3356 hardware_enable(NULL);
3357 return 0;
3360 static struct sysdev_class kvm_sysdev_class = {
3361 set_kset_name("kvm"),
3362 .suspend = kvm_suspend,
3363 .resume = kvm_resume,
3366 static struct sys_device kvm_sysdev = {
3367 .id = 0,
3368 .cls = &kvm_sysdev_class,
3371 hpa_t bad_page_address;
3373 static inline
3374 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3376 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3379 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3381 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3383 kvm_arch_ops->vcpu_load(vcpu, cpu);
3386 static void kvm_sched_out(struct preempt_notifier *pn,
3387 struct task_struct *next)
3389 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3391 kvm_arch_ops->vcpu_put(vcpu);
3394 int kvm_init_arch(struct kvm_arch_ops *ops, unsigned int vcpu_size,
3395 struct module *module)
3397 int r;
3398 int cpu;
3400 if (kvm_arch_ops) {
3401 printk(KERN_ERR "kvm: already loaded the other module\n");
3402 return -EEXIST;
3405 if (!ops->cpu_has_kvm_support()) {
3406 printk(KERN_ERR "kvm: no hardware support\n");
3407 return -EOPNOTSUPP;
3409 if (ops->disabled_by_bios()) {
3410 printk(KERN_ERR "kvm: disabled by bios\n");
3411 return -EOPNOTSUPP;
3414 kvm_arch_ops = ops;
3416 r = kvm_arch_ops->hardware_setup();
3417 if (r < 0)
3418 goto out;
3420 for_each_online_cpu(cpu) {
3421 smp_call_function_single(cpu,
3422 kvm_arch_ops->check_processor_compatibility,
3423 &r, 0, 1);
3424 if (r < 0)
3425 goto out_free_0;
3428 on_each_cpu(hardware_enable, NULL, 0, 1);
3429 r = register_cpu_notifier(&kvm_cpu_notifier);
3430 if (r)
3431 goto out_free_1;
3432 register_reboot_notifier(&kvm_reboot_notifier);
3434 r = sysdev_class_register(&kvm_sysdev_class);
3435 if (r)
3436 goto out_free_2;
3438 r = sysdev_register(&kvm_sysdev);
3439 if (r)
3440 goto out_free_3;
3442 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3443 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
3444 __alignof__(struct kvm_vcpu), 0, 0);
3445 if (!kvm_vcpu_cache) {
3446 r = -ENOMEM;
3447 goto out_free_4;
3450 kvm_chardev_ops.owner = module;
3452 r = misc_register(&kvm_dev);
3453 if (r) {
3454 printk (KERN_ERR "kvm: misc device register failed\n");
3455 goto out_free;
3458 kvm_preempt_ops.sched_in = kvm_sched_in;
3459 kvm_preempt_ops.sched_out = kvm_sched_out;
3461 return r;
3463 out_free:
3464 kmem_cache_destroy(kvm_vcpu_cache);
3465 out_free_4:
3466 sysdev_unregister(&kvm_sysdev);
3467 out_free_3:
3468 sysdev_class_unregister(&kvm_sysdev_class);
3469 out_free_2:
3470 unregister_reboot_notifier(&kvm_reboot_notifier);
3471 unregister_cpu_notifier(&kvm_cpu_notifier);
3472 out_free_1:
3473 on_each_cpu(hardware_disable, NULL, 0, 1);
3474 out_free_0:
3475 kvm_arch_ops->hardware_unsetup();
3476 out:
3477 kvm_arch_ops = NULL;
3478 return r;
3481 void kvm_exit_arch(void)
3483 misc_deregister(&kvm_dev);
3484 kmem_cache_destroy(kvm_vcpu_cache);
3485 sysdev_unregister(&kvm_sysdev);
3486 sysdev_class_unregister(&kvm_sysdev_class);
3487 unregister_reboot_notifier(&kvm_reboot_notifier);
3488 unregister_cpu_notifier(&kvm_cpu_notifier);
3489 on_each_cpu(hardware_disable, NULL, 0, 1);
3490 kvm_arch_ops->hardware_unsetup();
3491 kvm_arch_ops = NULL;
3494 static __init int kvm_init(void)
3496 static struct page *bad_page;
3497 int r;
3499 r = kvm_mmu_module_init();
3500 if (r)
3501 goto out4;
3503 kvm_init_debug();
3505 kvm_init_msr_list();
3507 if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
3508 r = -ENOMEM;
3509 goto out;
3512 bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
3513 memset(__va(bad_page_address), 0, PAGE_SIZE);
3515 return 0;
3517 out:
3518 kvm_exit_debug();
3519 kvm_mmu_module_exit();
3520 out4:
3521 return r;
3524 static __exit void kvm_exit(void)
3526 kvm_exit_debug();
3527 __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
3528 kvm_mmu_module_exit();
3531 module_init(kvm_init)
3532 module_exit(kvm_exit)
3534 EXPORT_SYMBOL_GPL(kvm_init_arch);
3535 EXPORT_SYMBOL_GPL(kvm_exit_arch);