2 * Dynamic DMA mapping support.
4 * This implementation is a fallback for platforms that do not support
5 * I/O TLBs (aka DMA address translation hardware).
6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
9 * David Mosberger-Tang <davidm@hpl.hp.com>
11 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
12 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
13 * unnecessary i-cache flushing.
14 * 04/07/.. ak Better overflow handling. Assorted fixes.
15 * 05/09/10 linville Add support for syncing ranges, support syncing for
16 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
19 #include <linux/cache.h>
20 #include <linux/dma-mapping.h>
22 #include <linux/module.h>
23 #include <linux/spinlock.h>
24 #include <linux/string.h>
25 #include <linux/types.h>
26 #include <linux/ctype.h>
30 #include <asm/scatterlist.h>
32 #include <linux/init.h>
33 #include <linux/bootmem.h>
34 #include <linux/iommu-helper.h>
36 #define OFFSET(val,align) ((unsigned long) \
37 ( (val) & ( (align) - 1)))
39 #define SG_ENT_VIRT_ADDRESS(sg) (sg_virt((sg)))
40 #define SG_ENT_PHYS_ADDRESS(sg) virt_to_bus(SG_ENT_VIRT_ADDRESS(sg))
43 * Maximum allowable number of contiguous slabs to map,
44 * must be a power of 2. What is the appropriate value ?
45 * The complexity of {map,unmap}_single is linearly dependent on this value.
47 #define IO_TLB_SEGSIZE 128
50 * log of the size of each IO TLB slab. The number of slabs is command line
53 #define IO_TLB_SHIFT 11
55 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
58 * Minimum IO TLB size to bother booting with. Systems with mainly
59 * 64bit capable cards will only lightly use the swiotlb. If we can't
60 * allocate a contiguous 1MB, we're probably in trouble anyway.
62 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
65 * Enumeration for sync targets
67 enum dma_sync_target
{
75 * Used to do a quick range check in swiotlb_unmap_single and
76 * swiotlb_sync_single_*, to see if the memory was in fact allocated by this
79 static char *io_tlb_start
, *io_tlb_end
;
82 * The number of IO TLB blocks (in groups of 64) betweeen io_tlb_start and
83 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
85 static unsigned long io_tlb_nslabs
;
88 * When the IOMMU overflows we return a fallback buffer. This sets the size.
90 static unsigned long io_tlb_overflow
= 32*1024;
92 void *io_tlb_overflow_buffer
;
95 * This is a free list describing the number of free entries available from
98 static unsigned int *io_tlb_list
;
99 static unsigned int io_tlb_index
;
102 * We need to save away the original address corresponding to a mapped entry
103 * for the sync operations.
105 static unsigned char **io_tlb_orig_addr
;
108 * Protect the above data structures in the map and unmap calls
110 static DEFINE_SPINLOCK(io_tlb_lock
);
113 setup_io_tlb_npages(char *str
)
116 io_tlb_nslabs
= simple_strtoul(str
, &str
, 0);
117 /* avoid tail segment of size < IO_TLB_SEGSIZE */
118 io_tlb_nslabs
= ALIGN(io_tlb_nslabs
, IO_TLB_SEGSIZE
);
122 if (!strcmp(str
, "force"))
126 __setup("swiotlb=", setup_io_tlb_npages
);
127 /* make io_tlb_overflow tunable too? */
130 * Statically reserve bounce buffer space and initialize bounce buffer data
131 * structures for the software IO TLB used to implement the DMA API.
134 swiotlb_init_with_default_size(size_t default_size
)
136 unsigned long i
, bytes
;
138 if (!io_tlb_nslabs
) {
139 io_tlb_nslabs
= (default_size
>> IO_TLB_SHIFT
);
140 io_tlb_nslabs
= ALIGN(io_tlb_nslabs
, IO_TLB_SEGSIZE
);
143 bytes
= io_tlb_nslabs
<< IO_TLB_SHIFT
;
146 * Get IO TLB memory from the low pages
148 io_tlb_start
= alloc_bootmem_low_pages(bytes
);
150 panic("Cannot allocate SWIOTLB buffer");
151 io_tlb_end
= io_tlb_start
+ bytes
;
154 * Allocate and initialize the free list array. This array is used
155 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
156 * between io_tlb_start and io_tlb_end.
158 io_tlb_list
= alloc_bootmem(io_tlb_nslabs
* sizeof(int));
159 for (i
= 0; i
< io_tlb_nslabs
; i
++)
160 io_tlb_list
[i
] = IO_TLB_SEGSIZE
- OFFSET(i
, IO_TLB_SEGSIZE
);
162 io_tlb_orig_addr
= alloc_bootmem(io_tlb_nslabs
* sizeof(char *));
165 * Get the overflow emergency buffer
167 io_tlb_overflow_buffer
= alloc_bootmem_low(io_tlb_overflow
);
168 if (!io_tlb_overflow_buffer
)
169 panic("Cannot allocate SWIOTLB overflow buffer!\n");
171 printk(KERN_INFO
"Placing software IO TLB between 0x%lx - 0x%lx\n",
172 virt_to_bus(io_tlb_start
), virt_to_bus(io_tlb_end
));
178 swiotlb_init_with_default_size(64 * (1<<20)); /* default to 64MB */
182 * Systems with larger DMA zones (those that don't support ISA) can
183 * initialize the swiotlb later using the slab allocator if needed.
184 * This should be just like above, but with some error catching.
187 swiotlb_late_init_with_default_size(size_t default_size
)
189 unsigned long i
, bytes
, req_nslabs
= io_tlb_nslabs
;
192 if (!io_tlb_nslabs
) {
193 io_tlb_nslabs
= (default_size
>> IO_TLB_SHIFT
);
194 io_tlb_nslabs
= ALIGN(io_tlb_nslabs
, IO_TLB_SEGSIZE
);
198 * Get IO TLB memory from the low pages
200 order
= get_order(io_tlb_nslabs
<< IO_TLB_SHIFT
);
201 io_tlb_nslabs
= SLABS_PER_PAGE
<< order
;
202 bytes
= io_tlb_nslabs
<< IO_TLB_SHIFT
;
204 while ((SLABS_PER_PAGE
<< order
) > IO_TLB_MIN_SLABS
) {
205 io_tlb_start
= (char *)__get_free_pages(GFP_DMA
| __GFP_NOWARN
,
215 if (order
!= get_order(bytes
)) {
216 printk(KERN_WARNING
"Warning: only able to allocate %ld MB "
217 "for software IO TLB\n", (PAGE_SIZE
<< order
) >> 20);
218 io_tlb_nslabs
= SLABS_PER_PAGE
<< order
;
219 bytes
= io_tlb_nslabs
<< IO_TLB_SHIFT
;
221 io_tlb_end
= io_tlb_start
+ bytes
;
222 memset(io_tlb_start
, 0, bytes
);
225 * Allocate and initialize the free list array. This array is used
226 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
227 * between io_tlb_start and io_tlb_end.
229 io_tlb_list
= (unsigned int *)__get_free_pages(GFP_KERNEL
,
230 get_order(io_tlb_nslabs
* sizeof(int)));
234 for (i
= 0; i
< io_tlb_nslabs
; i
++)
235 io_tlb_list
[i
] = IO_TLB_SEGSIZE
- OFFSET(i
, IO_TLB_SEGSIZE
);
238 io_tlb_orig_addr
= (unsigned char **)__get_free_pages(GFP_KERNEL
,
239 get_order(io_tlb_nslabs
* sizeof(char *)));
240 if (!io_tlb_orig_addr
)
243 memset(io_tlb_orig_addr
, 0, io_tlb_nslabs
* sizeof(char *));
246 * Get the overflow emergency buffer
248 io_tlb_overflow_buffer
= (void *)__get_free_pages(GFP_DMA
,
249 get_order(io_tlb_overflow
));
250 if (!io_tlb_overflow_buffer
)
253 printk(KERN_INFO
"Placing %luMB software IO TLB between 0x%lx - "
254 "0x%lx\n", bytes
>> 20,
255 virt_to_bus(io_tlb_start
), virt_to_bus(io_tlb_end
));
260 free_pages((unsigned long)io_tlb_orig_addr
, get_order(io_tlb_nslabs
*
262 io_tlb_orig_addr
= NULL
;
264 free_pages((unsigned long)io_tlb_list
, get_order(io_tlb_nslabs
*
269 free_pages((unsigned long)io_tlb_start
, order
);
272 io_tlb_nslabs
= req_nslabs
;
277 address_needs_mapping(struct device
*hwdev
, dma_addr_t addr
)
279 dma_addr_t mask
= 0xffffffff;
280 /* If the device has a mask, use it, otherwise default to 32 bits */
281 if (hwdev
&& hwdev
->dma_mask
)
282 mask
= *hwdev
->dma_mask
;
283 return (addr
& ~mask
) != 0;
287 * Allocates bounce buffer and returns its kernel virtual address.
290 map_single(struct device
*hwdev
, char *buffer
, size_t size
, int dir
)
294 unsigned int nslots
, stride
, index
, wrap
;
296 unsigned long start_dma_addr
;
298 unsigned long offset_slots
;
299 unsigned long max_slots
;
301 mask
= dma_get_seg_boundary(hwdev
);
302 start_dma_addr
= virt_to_bus(io_tlb_start
) & mask
;
304 offset_slots
= ALIGN(start_dma_addr
, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
;
306 ? ALIGN(mask
+ 1, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
307 : 1UL << (BITS_PER_LONG
- IO_TLB_SHIFT
);
310 * For mappings greater than a page, we limit the stride (and
311 * hence alignment) to a page size.
313 nslots
= ALIGN(size
, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
;
314 if (size
> PAGE_SIZE
)
315 stride
= (1 << (PAGE_SHIFT
- IO_TLB_SHIFT
));
322 * Find suitable number of IO TLB entries size that will fit this
323 * request and allocate a buffer from that IO TLB pool.
325 spin_lock_irqsave(&io_tlb_lock
, flags
);
326 index
= ALIGN(io_tlb_index
, stride
);
327 if (index
>= io_tlb_nslabs
)
332 while (iommu_is_span_boundary(index
, nslots
, offset_slots
,
335 if (index
>= io_tlb_nslabs
)
342 * If we find a slot that indicates we have 'nslots' number of
343 * contiguous buffers, we allocate the buffers from that slot
344 * and mark the entries as '0' indicating unavailable.
346 if (io_tlb_list
[index
] >= nslots
) {
349 for (i
= index
; i
< (int) (index
+ nslots
); i
++)
351 for (i
= index
- 1; (OFFSET(i
, IO_TLB_SEGSIZE
) != IO_TLB_SEGSIZE
- 1) && io_tlb_list
[i
]; i
--)
352 io_tlb_list
[i
] = ++count
;
353 dma_addr
= io_tlb_start
+ (index
<< IO_TLB_SHIFT
);
356 * Update the indices to avoid searching in the next
359 io_tlb_index
= ((index
+ nslots
) < io_tlb_nslabs
360 ? (index
+ nslots
) : 0);
365 if (index
>= io_tlb_nslabs
)
367 } while (index
!= wrap
);
370 spin_unlock_irqrestore(&io_tlb_lock
, flags
);
373 spin_unlock_irqrestore(&io_tlb_lock
, flags
);
376 * Save away the mapping from the original address to the DMA address.
377 * This is needed when we sync the memory. Then we sync the buffer if
380 for (i
= 0; i
< nslots
; i
++)
381 io_tlb_orig_addr
[index
+i
] = buffer
+ (i
<< IO_TLB_SHIFT
);
382 if (dir
== DMA_TO_DEVICE
|| dir
== DMA_BIDIRECTIONAL
)
383 memcpy(dma_addr
, buffer
, size
);
389 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
392 unmap_single(struct device
*hwdev
, char *dma_addr
, size_t size
, int dir
)
395 int i
, count
, nslots
= ALIGN(size
, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
;
396 int index
= (dma_addr
- io_tlb_start
) >> IO_TLB_SHIFT
;
397 char *buffer
= io_tlb_orig_addr
[index
];
400 * First, sync the memory before unmapping the entry
402 if (buffer
&& ((dir
== DMA_FROM_DEVICE
) || (dir
== DMA_BIDIRECTIONAL
)))
404 * bounce... copy the data back into the original buffer * and
405 * delete the bounce buffer.
407 memcpy(buffer
, dma_addr
, size
);
410 * Return the buffer to the free list by setting the corresponding
411 * entries to indicate the number of contigous entries available.
412 * While returning the entries to the free list, we merge the entries
413 * with slots below and above the pool being returned.
415 spin_lock_irqsave(&io_tlb_lock
, flags
);
417 count
= ((index
+ nslots
) < ALIGN(index
+ 1, IO_TLB_SEGSIZE
) ?
418 io_tlb_list
[index
+ nslots
] : 0);
420 * Step 1: return the slots to the free list, merging the
421 * slots with superceeding slots
423 for (i
= index
+ nslots
- 1; i
>= index
; i
--)
424 io_tlb_list
[i
] = ++count
;
426 * Step 2: merge the returned slots with the preceding slots,
427 * if available (non zero)
429 for (i
= index
- 1; (OFFSET(i
, IO_TLB_SEGSIZE
) != IO_TLB_SEGSIZE
-1) && io_tlb_list
[i
]; i
--)
430 io_tlb_list
[i
] = ++count
;
432 spin_unlock_irqrestore(&io_tlb_lock
, flags
);
436 sync_single(struct device
*hwdev
, char *dma_addr
, size_t size
,
439 int index
= (dma_addr
- io_tlb_start
) >> IO_TLB_SHIFT
;
440 char *buffer
= io_tlb_orig_addr
[index
];
442 buffer
+= ((unsigned long)dma_addr
& ((1 << IO_TLB_SHIFT
) - 1));
446 if (likely(dir
== DMA_FROM_DEVICE
|| dir
== DMA_BIDIRECTIONAL
))
447 memcpy(buffer
, dma_addr
, size
);
449 BUG_ON(dir
!= DMA_TO_DEVICE
);
451 case SYNC_FOR_DEVICE
:
452 if (likely(dir
== DMA_TO_DEVICE
|| dir
== DMA_BIDIRECTIONAL
))
453 memcpy(dma_addr
, buffer
, size
);
455 BUG_ON(dir
!= DMA_FROM_DEVICE
);
463 swiotlb_alloc_coherent(struct device
*hwdev
, size_t size
,
464 dma_addr_t
*dma_handle
, gfp_t flags
)
468 int order
= get_order(size
);
471 * XXX fix me: the DMA API should pass us an explicit DMA mask
472 * instead, or use ZONE_DMA32 (ia64 overloads ZONE_DMA to be a ~32
473 * bit range instead of a 16MB one).
477 ret
= (void *)__get_free_pages(flags
, order
);
478 if (ret
&& address_needs_mapping(hwdev
, virt_to_bus(ret
))) {
480 * The allocated memory isn't reachable by the device.
481 * Fall back on swiotlb_map_single().
483 free_pages((unsigned long) ret
, order
);
488 * We are either out of memory or the device can't DMA
489 * to GFP_DMA memory; fall back on
490 * swiotlb_map_single(), which will grab memory from
491 * the lowest available address range.
494 handle
= swiotlb_map_single(NULL
, NULL
, size
, DMA_FROM_DEVICE
);
495 if (swiotlb_dma_mapping_error(handle
))
498 ret
= bus_to_virt(handle
);
501 memset(ret
, 0, size
);
502 dev_addr
= virt_to_bus(ret
);
504 /* Confirm address can be DMA'd by device */
505 if (address_needs_mapping(hwdev
, dev_addr
)) {
506 printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
507 (unsigned long long)*hwdev
->dma_mask
,
508 (unsigned long long)dev_addr
);
509 panic("swiotlb_alloc_coherent: allocated memory is out of "
512 *dma_handle
= dev_addr
;
517 swiotlb_free_coherent(struct device
*hwdev
, size_t size
, void *vaddr
,
518 dma_addr_t dma_handle
)
520 WARN_ON(irqs_disabled());
521 if (!(vaddr
>= (void *)io_tlb_start
522 && vaddr
< (void *)io_tlb_end
))
523 free_pages((unsigned long) vaddr
, get_order(size
));
525 /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
526 swiotlb_unmap_single (hwdev
, dma_handle
, size
, DMA_TO_DEVICE
);
530 swiotlb_full(struct device
*dev
, size_t size
, int dir
, int do_panic
)
533 * Ran out of IOMMU space for this operation. This is very bad.
534 * Unfortunately the drivers cannot handle this operation properly.
535 * unless they check for dma_mapping_error (most don't)
536 * When the mapping is small enough return a static buffer to limit
537 * the damage, or panic when the transfer is too big.
539 printk(KERN_ERR
"DMA: Out of SW-IOMMU space for %zu bytes at "
540 "device %s\n", size
, dev
? dev
->bus_id
: "?");
542 if (size
> io_tlb_overflow
&& do_panic
) {
543 if (dir
== DMA_FROM_DEVICE
|| dir
== DMA_BIDIRECTIONAL
)
544 panic("DMA: Memory would be corrupted\n");
545 if (dir
== DMA_TO_DEVICE
|| dir
== DMA_BIDIRECTIONAL
)
546 panic("DMA: Random memory would be DMAed\n");
551 * Map a single buffer of the indicated size for DMA in streaming mode. The
552 * physical address to use is returned.
554 * Once the device is given the dma address, the device owns this memory until
555 * either swiotlb_unmap_single or swiotlb_dma_sync_single is performed.
558 swiotlb_map_single_attrs(struct device
*hwdev
, void *ptr
, size_t size
,
559 int dir
, struct dma_attrs
*attrs
)
561 dma_addr_t dev_addr
= virt_to_bus(ptr
);
564 BUG_ON(dir
== DMA_NONE
);
566 * If the pointer passed in happens to be in the device's DMA window,
567 * we can safely return the device addr and not worry about bounce
570 if (!address_needs_mapping(hwdev
, dev_addr
) && !swiotlb_force
)
574 * Oh well, have to allocate and map a bounce buffer.
576 map
= map_single(hwdev
, ptr
, size
, dir
);
578 swiotlb_full(hwdev
, size
, dir
, 1);
579 map
= io_tlb_overflow_buffer
;
582 dev_addr
= virt_to_bus(map
);
585 * Ensure that the address returned is DMA'ble
587 if (address_needs_mapping(hwdev
, dev_addr
))
588 panic("map_single: bounce buffer is not DMA'ble");
592 EXPORT_SYMBOL(swiotlb_map_single_attrs
);
595 swiotlb_map_single(struct device
*hwdev
, void *ptr
, size_t size
, int dir
)
597 return swiotlb_map_single_attrs(hwdev
, ptr
, size
, dir
, NULL
);
601 * Unmap a single streaming mode DMA translation. The dma_addr and size must
602 * match what was provided for in a previous swiotlb_map_single call. All
603 * other usages are undefined.
605 * After this call, reads by the cpu to the buffer are guaranteed to see
606 * whatever the device wrote there.
609 swiotlb_unmap_single_attrs(struct device
*hwdev
, dma_addr_t dev_addr
,
610 size_t size
, int dir
, struct dma_attrs
*attrs
)
612 char *dma_addr
= bus_to_virt(dev_addr
);
614 BUG_ON(dir
== DMA_NONE
);
615 if (dma_addr
>= io_tlb_start
&& dma_addr
< io_tlb_end
)
616 unmap_single(hwdev
, dma_addr
, size
, dir
);
617 else if (dir
== DMA_FROM_DEVICE
)
618 dma_mark_clean(dma_addr
, size
);
620 EXPORT_SYMBOL(swiotlb_unmap_single_attrs
);
623 swiotlb_unmap_single(struct device
*hwdev
, dma_addr_t dev_addr
, size_t size
,
626 return swiotlb_unmap_single_attrs(hwdev
, dev_addr
, size
, dir
, NULL
);
629 * Make physical memory consistent for a single streaming mode DMA translation
632 * If you perform a swiotlb_map_single() but wish to interrogate the buffer
633 * using the cpu, yet do not wish to teardown the dma mapping, you must
634 * call this function before doing so. At the next point you give the dma
635 * address back to the card, you must first perform a
636 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
639 swiotlb_sync_single(struct device
*hwdev
, dma_addr_t dev_addr
,
640 size_t size
, int dir
, int target
)
642 char *dma_addr
= bus_to_virt(dev_addr
);
644 BUG_ON(dir
== DMA_NONE
);
645 if (dma_addr
>= io_tlb_start
&& dma_addr
< io_tlb_end
)
646 sync_single(hwdev
, dma_addr
, size
, dir
, target
);
647 else if (dir
== DMA_FROM_DEVICE
)
648 dma_mark_clean(dma_addr
, size
);
652 swiotlb_sync_single_for_cpu(struct device
*hwdev
, dma_addr_t dev_addr
,
653 size_t size
, int dir
)
655 swiotlb_sync_single(hwdev
, dev_addr
, size
, dir
, SYNC_FOR_CPU
);
659 swiotlb_sync_single_for_device(struct device
*hwdev
, dma_addr_t dev_addr
,
660 size_t size
, int dir
)
662 swiotlb_sync_single(hwdev
, dev_addr
, size
, dir
, SYNC_FOR_DEVICE
);
666 * Same as above, but for a sub-range of the mapping.
669 swiotlb_sync_single_range(struct device
*hwdev
, dma_addr_t dev_addr
,
670 unsigned long offset
, size_t size
,
673 char *dma_addr
= bus_to_virt(dev_addr
) + offset
;
675 BUG_ON(dir
== DMA_NONE
);
676 if (dma_addr
>= io_tlb_start
&& dma_addr
< io_tlb_end
)
677 sync_single(hwdev
, dma_addr
, size
, dir
, target
);
678 else if (dir
== DMA_FROM_DEVICE
)
679 dma_mark_clean(dma_addr
, size
);
683 swiotlb_sync_single_range_for_cpu(struct device
*hwdev
, dma_addr_t dev_addr
,
684 unsigned long offset
, size_t size
, int dir
)
686 swiotlb_sync_single_range(hwdev
, dev_addr
, offset
, size
, dir
,
691 swiotlb_sync_single_range_for_device(struct device
*hwdev
, dma_addr_t dev_addr
,
692 unsigned long offset
, size_t size
, int dir
)
694 swiotlb_sync_single_range(hwdev
, dev_addr
, offset
, size
, dir
,
698 void swiotlb_unmap_sg_attrs(struct device
*, struct scatterlist
*, int, int,
701 * Map a set of buffers described by scatterlist in streaming mode for DMA.
702 * This is the scatter-gather version of the above swiotlb_map_single
703 * interface. Here the scatter gather list elements are each tagged with the
704 * appropriate dma address and length. They are obtained via
705 * sg_dma_{address,length}(SG).
707 * NOTE: An implementation may be able to use a smaller number of
708 * DMA address/length pairs than there are SG table elements.
709 * (for example via virtual mapping capabilities)
710 * The routine returns the number of addr/length pairs actually
711 * used, at most nents.
713 * Device ownership issues as mentioned above for swiotlb_map_single are the
717 swiotlb_map_sg_attrs(struct device
*hwdev
, struct scatterlist
*sgl
, int nelems
,
718 int dir
, struct dma_attrs
*attrs
)
720 struct scatterlist
*sg
;
725 BUG_ON(dir
== DMA_NONE
);
727 for_each_sg(sgl
, sg
, nelems
, i
) {
728 addr
= SG_ENT_VIRT_ADDRESS(sg
);
729 dev_addr
= virt_to_bus(addr
);
730 if (swiotlb_force
|| address_needs_mapping(hwdev
, dev_addr
)) {
731 void *map
= map_single(hwdev
, addr
, sg
->length
, dir
);
733 /* Don't panic here, we expect map_sg users
734 to do proper error handling. */
735 swiotlb_full(hwdev
, sg
->length
, dir
, 0);
736 swiotlb_unmap_sg_attrs(hwdev
, sgl
, i
, dir
,
738 sgl
[0].dma_length
= 0;
741 sg
->dma_address
= virt_to_bus(map
);
743 sg
->dma_address
= dev_addr
;
744 sg
->dma_length
= sg
->length
;
748 EXPORT_SYMBOL(swiotlb_map_sg_attrs
);
751 swiotlb_map_sg(struct device
*hwdev
, struct scatterlist
*sgl
, int nelems
,
754 return swiotlb_map_sg_attrs(hwdev
, sgl
, nelems
, dir
, NULL
);
758 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
759 * concerning calls here are the same as for swiotlb_unmap_single() above.
762 swiotlb_unmap_sg_attrs(struct device
*hwdev
, struct scatterlist
*sgl
,
763 int nelems
, int dir
, struct dma_attrs
*attrs
)
765 struct scatterlist
*sg
;
768 BUG_ON(dir
== DMA_NONE
);
770 for_each_sg(sgl
, sg
, nelems
, i
) {
771 if (sg
->dma_address
!= SG_ENT_PHYS_ADDRESS(sg
))
772 unmap_single(hwdev
, bus_to_virt(sg
->dma_address
),
773 sg
->dma_length
, dir
);
774 else if (dir
== DMA_FROM_DEVICE
)
775 dma_mark_clean(SG_ENT_VIRT_ADDRESS(sg
), sg
->dma_length
);
778 EXPORT_SYMBOL(swiotlb_unmap_sg_attrs
);
781 swiotlb_unmap_sg(struct device
*hwdev
, struct scatterlist
*sgl
, int nelems
,
784 return swiotlb_unmap_sg_attrs(hwdev
, sgl
, nelems
, dir
, NULL
);
788 * Make physical memory consistent for a set of streaming mode DMA translations
791 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
795 swiotlb_sync_sg(struct device
*hwdev
, struct scatterlist
*sgl
,
796 int nelems
, int dir
, int target
)
798 struct scatterlist
*sg
;
801 BUG_ON(dir
== DMA_NONE
);
803 for_each_sg(sgl
, sg
, nelems
, i
) {
804 if (sg
->dma_address
!= SG_ENT_PHYS_ADDRESS(sg
))
805 sync_single(hwdev
, bus_to_virt(sg
->dma_address
),
806 sg
->dma_length
, dir
, target
);
807 else if (dir
== DMA_FROM_DEVICE
)
808 dma_mark_clean(SG_ENT_VIRT_ADDRESS(sg
), sg
->dma_length
);
813 swiotlb_sync_sg_for_cpu(struct device
*hwdev
, struct scatterlist
*sg
,
816 swiotlb_sync_sg(hwdev
, sg
, nelems
, dir
, SYNC_FOR_CPU
);
820 swiotlb_sync_sg_for_device(struct device
*hwdev
, struct scatterlist
*sg
,
823 swiotlb_sync_sg(hwdev
, sg
, nelems
, dir
, SYNC_FOR_DEVICE
);
827 swiotlb_dma_mapping_error(dma_addr_t dma_addr
)
829 return (dma_addr
== virt_to_bus(io_tlb_overflow_buffer
));
833 * Return whether the given device DMA address mask can be supported
834 * properly. For example, if your device can only drive the low 24-bits
835 * during bus mastering, then you would pass 0x00ffffff as the mask to
839 swiotlb_dma_supported(struct device
*hwdev
, u64 mask
)
841 return virt_to_bus(io_tlb_end
- 1) <= mask
;
844 EXPORT_SYMBOL(swiotlb_map_single
);
845 EXPORT_SYMBOL(swiotlb_unmap_single
);
846 EXPORT_SYMBOL(swiotlb_map_sg
);
847 EXPORT_SYMBOL(swiotlb_unmap_sg
);
848 EXPORT_SYMBOL(swiotlb_sync_single_for_cpu
);
849 EXPORT_SYMBOL(swiotlb_sync_single_for_device
);
850 EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_cpu
);
851 EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_device
);
852 EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu
);
853 EXPORT_SYMBOL(swiotlb_sync_sg_for_device
);
854 EXPORT_SYMBOL(swiotlb_dma_mapping_error
);
855 EXPORT_SYMBOL(swiotlb_alloc_coherent
);
856 EXPORT_SYMBOL(swiotlb_free_coherent
);
857 EXPORT_SYMBOL(swiotlb_dma_supported
);