V4L/DVB (8487): videodev: replace videodev.h includes by videodev2.h where possible
[linux-2.6/linux-2.6-openrd.git] / mm / slab.c
blob052e7d64537eb61e71c780ff4a6ca653dff0750e
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
30 * kmem_cache_free.
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/slab.h>
90 #include <linux/mm.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/seq_file.h>
99 #include <linux/notifier.h>
100 #include <linux/kallsyms.h>
101 #include <linux/cpu.h>
102 #include <linux/sysctl.h>
103 #include <linux/module.h>
104 #include <linux/rcupdate.h>
105 #include <linux/string.h>
106 #include <linux/uaccess.h>
107 #include <linux/nodemask.h>
108 #include <linux/mempolicy.h>
109 #include <linux/mutex.h>
110 #include <linux/fault-inject.h>
111 #include <linux/rtmutex.h>
112 #include <linux/reciprocal_div.h>
113 #include <linux/debugobjects.h>
115 #include <asm/cacheflush.h>
116 #include <asm/tlbflush.h>
117 #include <asm/page.h>
120 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
121 * 0 for faster, smaller code (especially in the critical paths).
123 * STATS - 1 to collect stats for /proc/slabinfo.
124 * 0 for faster, smaller code (especially in the critical paths).
126 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
129 #ifdef CONFIG_DEBUG_SLAB
130 #define DEBUG 1
131 #define STATS 1
132 #define FORCED_DEBUG 1
133 #else
134 #define DEBUG 0
135 #define STATS 0
136 #define FORCED_DEBUG 0
137 #endif
139 /* Shouldn't this be in a header file somewhere? */
140 #define BYTES_PER_WORD sizeof(void *)
141 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
143 #ifndef ARCH_KMALLOC_MINALIGN
145 * Enforce a minimum alignment for the kmalloc caches.
146 * Usually, the kmalloc caches are cache_line_size() aligned, except when
147 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
148 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
149 * alignment larger than the alignment of a 64-bit integer.
150 * ARCH_KMALLOC_MINALIGN allows that.
151 * Note that increasing this value may disable some debug features.
153 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
154 #endif
156 #ifndef ARCH_SLAB_MINALIGN
158 * Enforce a minimum alignment for all caches.
159 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
160 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
161 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
162 * some debug features.
164 #define ARCH_SLAB_MINALIGN 0
165 #endif
167 #ifndef ARCH_KMALLOC_FLAGS
168 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
169 #endif
171 /* Legal flag mask for kmem_cache_create(). */
172 #if DEBUG
173 # define CREATE_MASK (SLAB_RED_ZONE | \
174 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
175 SLAB_CACHE_DMA | \
176 SLAB_STORE_USER | \
177 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
178 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
179 SLAB_DEBUG_OBJECTS)
180 #else
181 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
182 SLAB_CACHE_DMA | \
183 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
184 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
185 SLAB_DEBUG_OBJECTS)
186 #endif
189 * kmem_bufctl_t:
191 * Bufctl's are used for linking objs within a slab
192 * linked offsets.
194 * This implementation relies on "struct page" for locating the cache &
195 * slab an object belongs to.
196 * This allows the bufctl structure to be small (one int), but limits
197 * the number of objects a slab (not a cache) can contain when off-slab
198 * bufctls are used. The limit is the size of the largest general cache
199 * that does not use off-slab slabs.
200 * For 32bit archs with 4 kB pages, is this 56.
201 * This is not serious, as it is only for large objects, when it is unwise
202 * to have too many per slab.
203 * Note: This limit can be raised by introducing a general cache whose size
204 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
207 typedef unsigned int kmem_bufctl_t;
208 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
209 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
210 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
211 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
214 * struct slab
216 * Manages the objs in a slab. Placed either at the beginning of mem allocated
217 * for a slab, or allocated from an general cache.
218 * Slabs are chained into three list: fully used, partial, fully free slabs.
220 struct slab {
221 struct list_head list;
222 unsigned long colouroff;
223 void *s_mem; /* including colour offset */
224 unsigned int inuse; /* num of objs active in slab */
225 kmem_bufctl_t free;
226 unsigned short nodeid;
230 * struct slab_rcu
232 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
233 * arrange for kmem_freepages to be called via RCU. This is useful if
234 * we need to approach a kernel structure obliquely, from its address
235 * obtained without the usual locking. We can lock the structure to
236 * stabilize it and check it's still at the given address, only if we
237 * can be sure that the memory has not been meanwhile reused for some
238 * other kind of object (which our subsystem's lock might corrupt).
240 * rcu_read_lock before reading the address, then rcu_read_unlock after
241 * taking the spinlock within the structure expected at that address.
243 * We assume struct slab_rcu can overlay struct slab when destroying.
245 struct slab_rcu {
246 struct rcu_head head;
247 struct kmem_cache *cachep;
248 void *addr;
252 * struct array_cache
254 * Purpose:
255 * - LIFO ordering, to hand out cache-warm objects from _alloc
256 * - reduce the number of linked list operations
257 * - reduce spinlock operations
259 * The limit is stored in the per-cpu structure to reduce the data cache
260 * footprint.
263 struct array_cache {
264 unsigned int avail;
265 unsigned int limit;
266 unsigned int batchcount;
267 unsigned int touched;
268 spinlock_t lock;
269 void *entry[]; /*
270 * Must have this definition in here for the proper
271 * alignment of array_cache. Also simplifies accessing
272 * the entries.
277 * bootstrap: The caches do not work without cpuarrays anymore, but the
278 * cpuarrays are allocated from the generic caches...
280 #define BOOT_CPUCACHE_ENTRIES 1
281 struct arraycache_init {
282 struct array_cache cache;
283 void *entries[BOOT_CPUCACHE_ENTRIES];
287 * The slab lists for all objects.
289 struct kmem_list3 {
290 struct list_head slabs_partial; /* partial list first, better asm code */
291 struct list_head slabs_full;
292 struct list_head slabs_free;
293 unsigned long free_objects;
294 unsigned int free_limit;
295 unsigned int colour_next; /* Per-node cache coloring */
296 spinlock_t list_lock;
297 struct array_cache *shared; /* shared per node */
298 struct array_cache **alien; /* on other nodes */
299 unsigned long next_reap; /* updated without locking */
300 int free_touched; /* updated without locking */
304 * Need this for bootstrapping a per node allocator.
306 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
307 struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
308 #define CACHE_CACHE 0
309 #define SIZE_AC MAX_NUMNODES
310 #define SIZE_L3 (2 * MAX_NUMNODES)
312 static int drain_freelist(struct kmem_cache *cache,
313 struct kmem_list3 *l3, int tofree);
314 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
315 int node);
316 static int enable_cpucache(struct kmem_cache *cachep);
317 static void cache_reap(struct work_struct *unused);
320 * This function must be completely optimized away if a constant is passed to
321 * it. Mostly the same as what is in linux/slab.h except it returns an index.
323 static __always_inline int index_of(const size_t size)
325 extern void __bad_size(void);
327 if (__builtin_constant_p(size)) {
328 int i = 0;
330 #define CACHE(x) \
331 if (size <=x) \
332 return i; \
333 else \
334 i++;
335 #include <linux/kmalloc_sizes.h>
336 #undef CACHE
337 __bad_size();
338 } else
339 __bad_size();
340 return 0;
343 static int slab_early_init = 1;
345 #define INDEX_AC index_of(sizeof(struct arraycache_init))
346 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
348 static void kmem_list3_init(struct kmem_list3 *parent)
350 INIT_LIST_HEAD(&parent->slabs_full);
351 INIT_LIST_HEAD(&parent->slabs_partial);
352 INIT_LIST_HEAD(&parent->slabs_free);
353 parent->shared = NULL;
354 parent->alien = NULL;
355 parent->colour_next = 0;
356 spin_lock_init(&parent->list_lock);
357 parent->free_objects = 0;
358 parent->free_touched = 0;
361 #define MAKE_LIST(cachep, listp, slab, nodeid) \
362 do { \
363 INIT_LIST_HEAD(listp); \
364 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
365 } while (0)
367 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
368 do { \
369 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
370 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
371 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
372 } while (0)
375 * struct kmem_cache
377 * manages a cache.
380 struct kmem_cache {
381 /* 1) per-cpu data, touched during every alloc/free */
382 struct array_cache *array[NR_CPUS];
383 /* 2) Cache tunables. Protected by cache_chain_mutex */
384 unsigned int batchcount;
385 unsigned int limit;
386 unsigned int shared;
388 unsigned int buffer_size;
389 u32 reciprocal_buffer_size;
390 /* 3) touched by every alloc & free from the backend */
392 unsigned int flags; /* constant flags */
393 unsigned int num; /* # of objs per slab */
395 /* 4) cache_grow/shrink */
396 /* order of pgs per slab (2^n) */
397 unsigned int gfporder;
399 /* force GFP flags, e.g. GFP_DMA */
400 gfp_t gfpflags;
402 size_t colour; /* cache colouring range */
403 unsigned int colour_off; /* colour offset */
404 struct kmem_cache *slabp_cache;
405 unsigned int slab_size;
406 unsigned int dflags; /* dynamic flags */
408 /* constructor func */
409 void (*ctor)(struct kmem_cache *, void *);
411 /* 5) cache creation/removal */
412 const char *name;
413 struct list_head next;
415 /* 6) statistics */
416 #if STATS
417 unsigned long num_active;
418 unsigned long num_allocations;
419 unsigned long high_mark;
420 unsigned long grown;
421 unsigned long reaped;
422 unsigned long errors;
423 unsigned long max_freeable;
424 unsigned long node_allocs;
425 unsigned long node_frees;
426 unsigned long node_overflow;
427 atomic_t allochit;
428 atomic_t allocmiss;
429 atomic_t freehit;
430 atomic_t freemiss;
431 #endif
432 #if DEBUG
434 * If debugging is enabled, then the allocator can add additional
435 * fields and/or padding to every object. buffer_size contains the total
436 * object size including these internal fields, the following two
437 * variables contain the offset to the user object and its size.
439 int obj_offset;
440 int obj_size;
441 #endif
443 * We put nodelists[] at the end of kmem_cache, because we want to size
444 * this array to nr_node_ids slots instead of MAX_NUMNODES
445 * (see kmem_cache_init())
446 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
447 * is statically defined, so we reserve the max number of nodes.
449 struct kmem_list3 *nodelists[MAX_NUMNODES];
451 * Do not add fields after nodelists[]
455 #define CFLGS_OFF_SLAB (0x80000000UL)
456 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
458 #define BATCHREFILL_LIMIT 16
460 * Optimization question: fewer reaps means less probability for unnessary
461 * cpucache drain/refill cycles.
463 * OTOH the cpuarrays can contain lots of objects,
464 * which could lock up otherwise freeable slabs.
466 #define REAPTIMEOUT_CPUC (2*HZ)
467 #define REAPTIMEOUT_LIST3 (4*HZ)
469 #if STATS
470 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
471 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
472 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
473 #define STATS_INC_GROWN(x) ((x)->grown++)
474 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
475 #define STATS_SET_HIGH(x) \
476 do { \
477 if ((x)->num_active > (x)->high_mark) \
478 (x)->high_mark = (x)->num_active; \
479 } while (0)
480 #define STATS_INC_ERR(x) ((x)->errors++)
481 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
482 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
483 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
484 #define STATS_SET_FREEABLE(x, i) \
485 do { \
486 if ((x)->max_freeable < i) \
487 (x)->max_freeable = i; \
488 } while (0)
489 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
490 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
491 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
492 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
493 #else
494 #define STATS_INC_ACTIVE(x) do { } while (0)
495 #define STATS_DEC_ACTIVE(x) do { } while (0)
496 #define STATS_INC_ALLOCED(x) do { } while (0)
497 #define STATS_INC_GROWN(x) do { } while (0)
498 #define STATS_ADD_REAPED(x,y) do { } while (0)
499 #define STATS_SET_HIGH(x) do { } while (0)
500 #define STATS_INC_ERR(x) do { } while (0)
501 #define STATS_INC_NODEALLOCS(x) do { } while (0)
502 #define STATS_INC_NODEFREES(x) do { } while (0)
503 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
504 #define STATS_SET_FREEABLE(x, i) do { } while (0)
505 #define STATS_INC_ALLOCHIT(x) do { } while (0)
506 #define STATS_INC_ALLOCMISS(x) do { } while (0)
507 #define STATS_INC_FREEHIT(x) do { } while (0)
508 #define STATS_INC_FREEMISS(x) do { } while (0)
509 #endif
511 #if DEBUG
514 * memory layout of objects:
515 * 0 : objp
516 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
517 * the end of an object is aligned with the end of the real
518 * allocation. Catches writes behind the end of the allocation.
519 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
520 * redzone word.
521 * cachep->obj_offset: The real object.
522 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
523 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
524 * [BYTES_PER_WORD long]
526 static int obj_offset(struct kmem_cache *cachep)
528 return cachep->obj_offset;
531 static int obj_size(struct kmem_cache *cachep)
533 return cachep->obj_size;
536 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
538 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
539 return (unsigned long long*) (objp + obj_offset(cachep) -
540 sizeof(unsigned long long));
543 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
545 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
546 if (cachep->flags & SLAB_STORE_USER)
547 return (unsigned long long *)(objp + cachep->buffer_size -
548 sizeof(unsigned long long) -
549 REDZONE_ALIGN);
550 return (unsigned long long *) (objp + cachep->buffer_size -
551 sizeof(unsigned long long));
554 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
556 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
557 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
560 #else
562 #define obj_offset(x) 0
563 #define obj_size(cachep) (cachep->buffer_size)
564 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
565 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
566 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
568 #endif
571 * Do not go above this order unless 0 objects fit into the slab.
573 #define BREAK_GFP_ORDER_HI 1
574 #define BREAK_GFP_ORDER_LO 0
575 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
578 * Functions for storing/retrieving the cachep and or slab from the page
579 * allocator. These are used to find the slab an obj belongs to. With kfree(),
580 * these are used to find the cache which an obj belongs to.
582 static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
584 page->lru.next = (struct list_head *)cache;
587 static inline struct kmem_cache *page_get_cache(struct page *page)
589 page = compound_head(page);
590 BUG_ON(!PageSlab(page));
591 return (struct kmem_cache *)page->lru.next;
594 static inline void page_set_slab(struct page *page, struct slab *slab)
596 page->lru.prev = (struct list_head *)slab;
599 static inline struct slab *page_get_slab(struct page *page)
601 BUG_ON(!PageSlab(page));
602 return (struct slab *)page->lru.prev;
605 static inline struct kmem_cache *virt_to_cache(const void *obj)
607 struct page *page = virt_to_head_page(obj);
608 return page_get_cache(page);
611 static inline struct slab *virt_to_slab(const void *obj)
613 struct page *page = virt_to_head_page(obj);
614 return page_get_slab(page);
617 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
618 unsigned int idx)
620 return slab->s_mem + cache->buffer_size * idx;
624 * We want to avoid an expensive divide : (offset / cache->buffer_size)
625 * Using the fact that buffer_size is a constant for a particular cache,
626 * we can replace (offset / cache->buffer_size) by
627 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
629 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
630 const struct slab *slab, void *obj)
632 u32 offset = (obj - slab->s_mem);
633 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
637 * These are the default caches for kmalloc. Custom caches can have other sizes.
639 struct cache_sizes malloc_sizes[] = {
640 #define CACHE(x) { .cs_size = (x) },
641 #include <linux/kmalloc_sizes.h>
642 CACHE(ULONG_MAX)
643 #undef CACHE
645 EXPORT_SYMBOL(malloc_sizes);
647 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
648 struct cache_names {
649 char *name;
650 char *name_dma;
653 static struct cache_names __initdata cache_names[] = {
654 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
655 #include <linux/kmalloc_sizes.h>
656 {NULL,}
657 #undef CACHE
660 static struct arraycache_init initarray_cache __initdata =
661 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
662 static struct arraycache_init initarray_generic =
663 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
665 /* internal cache of cache description objs */
666 static struct kmem_cache cache_cache = {
667 .batchcount = 1,
668 .limit = BOOT_CPUCACHE_ENTRIES,
669 .shared = 1,
670 .buffer_size = sizeof(struct kmem_cache),
671 .name = "kmem_cache",
674 #define BAD_ALIEN_MAGIC 0x01020304ul
676 #ifdef CONFIG_LOCKDEP
679 * Slab sometimes uses the kmalloc slabs to store the slab headers
680 * for other slabs "off slab".
681 * The locking for this is tricky in that it nests within the locks
682 * of all other slabs in a few places; to deal with this special
683 * locking we put on-slab caches into a separate lock-class.
685 * We set lock class for alien array caches which are up during init.
686 * The lock annotation will be lost if all cpus of a node goes down and
687 * then comes back up during hotplug
689 static struct lock_class_key on_slab_l3_key;
690 static struct lock_class_key on_slab_alc_key;
692 static inline void init_lock_keys(void)
695 int q;
696 struct cache_sizes *s = malloc_sizes;
698 while (s->cs_size != ULONG_MAX) {
699 for_each_node(q) {
700 struct array_cache **alc;
701 int r;
702 struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
703 if (!l3 || OFF_SLAB(s->cs_cachep))
704 continue;
705 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
706 alc = l3->alien;
708 * FIXME: This check for BAD_ALIEN_MAGIC
709 * should go away when common slab code is taught to
710 * work even without alien caches.
711 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
712 * for alloc_alien_cache,
714 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
715 continue;
716 for_each_node(r) {
717 if (alc[r])
718 lockdep_set_class(&alc[r]->lock,
719 &on_slab_alc_key);
722 s++;
725 #else
726 static inline void init_lock_keys(void)
729 #endif
732 * Guard access to the cache-chain.
734 static DEFINE_MUTEX(cache_chain_mutex);
735 static struct list_head cache_chain;
738 * chicken and egg problem: delay the per-cpu array allocation
739 * until the general caches are up.
741 static enum {
742 NONE,
743 PARTIAL_AC,
744 PARTIAL_L3,
745 FULL
746 } g_cpucache_up;
749 * used by boot code to determine if it can use slab based allocator
751 int slab_is_available(void)
753 return g_cpucache_up == FULL;
756 static DEFINE_PER_CPU(struct delayed_work, reap_work);
758 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
760 return cachep->array[smp_processor_id()];
763 static inline struct kmem_cache *__find_general_cachep(size_t size,
764 gfp_t gfpflags)
766 struct cache_sizes *csizep = malloc_sizes;
768 #if DEBUG
769 /* This happens if someone tries to call
770 * kmem_cache_create(), or __kmalloc(), before
771 * the generic caches are initialized.
773 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
774 #endif
775 if (!size)
776 return ZERO_SIZE_PTR;
778 while (size > csizep->cs_size)
779 csizep++;
782 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
783 * has cs_{dma,}cachep==NULL. Thus no special case
784 * for large kmalloc calls required.
786 #ifdef CONFIG_ZONE_DMA
787 if (unlikely(gfpflags & GFP_DMA))
788 return csizep->cs_dmacachep;
789 #endif
790 return csizep->cs_cachep;
793 static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
795 return __find_general_cachep(size, gfpflags);
798 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
800 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
804 * Calculate the number of objects and left-over bytes for a given buffer size.
806 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
807 size_t align, int flags, size_t *left_over,
808 unsigned int *num)
810 int nr_objs;
811 size_t mgmt_size;
812 size_t slab_size = PAGE_SIZE << gfporder;
815 * The slab management structure can be either off the slab or
816 * on it. For the latter case, the memory allocated for a
817 * slab is used for:
819 * - The struct slab
820 * - One kmem_bufctl_t for each object
821 * - Padding to respect alignment of @align
822 * - @buffer_size bytes for each object
824 * If the slab management structure is off the slab, then the
825 * alignment will already be calculated into the size. Because
826 * the slabs are all pages aligned, the objects will be at the
827 * correct alignment when allocated.
829 if (flags & CFLGS_OFF_SLAB) {
830 mgmt_size = 0;
831 nr_objs = slab_size / buffer_size;
833 if (nr_objs > SLAB_LIMIT)
834 nr_objs = SLAB_LIMIT;
835 } else {
837 * Ignore padding for the initial guess. The padding
838 * is at most @align-1 bytes, and @buffer_size is at
839 * least @align. In the worst case, this result will
840 * be one greater than the number of objects that fit
841 * into the memory allocation when taking the padding
842 * into account.
844 nr_objs = (slab_size - sizeof(struct slab)) /
845 (buffer_size + sizeof(kmem_bufctl_t));
848 * This calculated number will be either the right
849 * amount, or one greater than what we want.
851 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
852 > slab_size)
853 nr_objs--;
855 if (nr_objs > SLAB_LIMIT)
856 nr_objs = SLAB_LIMIT;
858 mgmt_size = slab_mgmt_size(nr_objs, align);
860 *num = nr_objs;
861 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
864 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
866 static void __slab_error(const char *function, struct kmem_cache *cachep,
867 char *msg)
869 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
870 function, cachep->name, msg);
871 dump_stack();
875 * By default on NUMA we use alien caches to stage the freeing of
876 * objects allocated from other nodes. This causes massive memory
877 * inefficiencies when using fake NUMA setup to split memory into a
878 * large number of small nodes, so it can be disabled on the command
879 * line
882 static int use_alien_caches __read_mostly = 1;
883 static int numa_platform __read_mostly = 1;
884 static int __init noaliencache_setup(char *s)
886 use_alien_caches = 0;
887 return 1;
889 __setup("noaliencache", noaliencache_setup);
891 #ifdef CONFIG_NUMA
893 * Special reaping functions for NUMA systems called from cache_reap().
894 * These take care of doing round robin flushing of alien caches (containing
895 * objects freed on different nodes from which they were allocated) and the
896 * flushing of remote pcps by calling drain_node_pages.
898 static DEFINE_PER_CPU(unsigned long, reap_node);
900 static void init_reap_node(int cpu)
902 int node;
904 node = next_node(cpu_to_node(cpu), node_online_map);
905 if (node == MAX_NUMNODES)
906 node = first_node(node_online_map);
908 per_cpu(reap_node, cpu) = node;
911 static void next_reap_node(void)
913 int node = __get_cpu_var(reap_node);
915 node = next_node(node, node_online_map);
916 if (unlikely(node >= MAX_NUMNODES))
917 node = first_node(node_online_map);
918 __get_cpu_var(reap_node) = node;
921 #else
922 #define init_reap_node(cpu) do { } while (0)
923 #define next_reap_node(void) do { } while (0)
924 #endif
927 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
928 * via the workqueue/eventd.
929 * Add the CPU number into the expiration time to minimize the possibility of
930 * the CPUs getting into lockstep and contending for the global cache chain
931 * lock.
933 static void __cpuinit start_cpu_timer(int cpu)
935 struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
938 * When this gets called from do_initcalls via cpucache_init(),
939 * init_workqueues() has already run, so keventd will be setup
940 * at that time.
942 if (keventd_up() && reap_work->work.func == NULL) {
943 init_reap_node(cpu);
944 INIT_DELAYED_WORK(reap_work, cache_reap);
945 schedule_delayed_work_on(cpu, reap_work,
946 __round_jiffies_relative(HZ, cpu));
950 static struct array_cache *alloc_arraycache(int node, int entries,
951 int batchcount)
953 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
954 struct array_cache *nc = NULL;
956 nc = kmalloc_node(memsize, GFP_KERNEL, node);
957 if (nc) {
958 nc->avail = 0;
959 nc->limit = entries;
960 nc->batchcount = batchcount;
961 nc->touched = 0;
962 spin_lock_init(&nc->lock);
964 return nc;
968 * Transfer objects in one arraycache to another.
969 * Locking must be handled by the caller.
971 * Return the number of entries transferred.
973 static int transfer_objects(struct array_cache *to,
974 struct array_cache *from, unsigned int max)
976 /* Figure out how many entries to transfer */
977 int nr = min(min(from->avail, max), to->limit - to->avail);
979 if (!nr)
980 return 0;
982 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
983 sizeof(void *) *nr);
985 from->avail -= nr;
986 to->avail += nr;
987 to->touched = 1;
988 return nr;
991 #ifndef CONFIG_NUMA
993 #define drain_alien_cache(cachep, alien) do { } while (0)
994 #define reap_alien(cachep, l3) do { } while (0)
996 static inline struct array_cache **alloc_alien_cache(int node, int limit)
998 return (struct array_cache **)BAD_ALIEN_MAGIC;
1001 static inline void free_alien_cache(struct array_cache **ac_ptr)
1005 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1007 return 0;
1010 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1011 gfp_t flags)
1013 return NULL;
1016 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1017 gfp_t flags, int nodeid)
1019 return NULL;
1022 #else /* CONFIG_NUMA */
1024 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1025 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1027 static struct array_cache **alloc_alien_cache(int node, int limit)
1029 struct array_cache **ac_ptr;
1030 int memsize = sizeof(void *) * nr_node_ids;
1031 int i;
1033 if (limit > 1)
1034 limit = 12;
1035 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
1036 if (ac_ptr) {
1037 for_each_node(i) {
1038 if (i == node || !node_online(i)) {
1039 ac_ptr[i] = NULL;
1040 continue;
1042 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
1043 if (!ac_ptr[i]) {
1044 for (i--; i >= 0; i--)
1045 kfree(ac_ptr[i]);
1046 kfree(ac_ptr);
1047 return NULL;
1051 return ac_ptr;
1054 static void free_alien_cache(struct array_cache **ac_ptr)
1056 int i;
1058 if (!ac_ptr)
1059 return;
1060 for_each_node(i)
1061 kfree(ac_ptr[i]);
1062 kfree(ac_ptr);
1065 static void __drain_alien_cache(struct kmem_cache *cachep,
1066 struct array_cache *ac, int node)
1068 struct kmem_list3 *rl3 = cachep->nodelists[node];
1070 if (ac->avail) {
1071 spin_lock(&rl3->list_lock);
1073 * Stuff objects into the remote nodes shared array first.
1074 * That way we could avoid the overhead of putting the objects
1075 * into the free lists and getting them back later.
1077 if (rl3->shared)
1078 transfer_objects(rl3->shared, ac, ac->limit);
1080 free_block(cachep, ac->entry, ac->avail, node);
1081 ac->avail = 0;
1082 spin_unlock(&rl3->list_lock);
1087 * Called from cache_reap() to regularly drain alien caches round robin.
1089 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1091 int node = __get_cpu_var(reap_node);
1093 if (l3->alien) {
1094 struct array_cache *ac = l3->alien[node];
1096 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1097 __drain_alien_cache(cachep, ac, node);
1098 spin_unlock_irq(&ac->lock);
1103 static void drain_alien_cache(struct kmem_cache *cachep,
1104 struct array_cache **alien)
1106 int i = 0;
1107 struct array_cache *ac;
1108 unsigned long flags;
1110 for_each_online_node(i) {
1111 ac = alien[i];
1112 if (ac) {
1113 spin_lock_irqsave(&ac->lock, flags);
1114 __drain_alien_cache(cachep, ac, i);
1115 spin_unlock_irqrestore(&ac->lock, flags);
1120 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1122 struct slab *slabp = virt_to_slab(objp);
1123 int nodeid = slabp->nodeid;
1124 struct kmem_list3 *l3;
1125 struct array_cache *alien = NULL;
1126 int node;
1128 node = numa_node_id();
1131 * Make sure we are not freeing a object from another node to the array
1132 * cache on this cpu.
1134 if (likely(slabp->nodeid == node))
1135 return 0;
1137 l3 = cachep->nodelists[node];
1138 STATS_INC_NODEFREES(cachep);
1139 if (l3->alien && l3->alien[nodeid]) {
1140 alien = l3->alien[nodeid];
1141 spin_lock(&alien->lock);
1142 if (unlikely(alien->avail == alien->limit)) {
1143 STATS_INC_ACOVERFLOW(cachep);
1144 __drain_alien_cache(cachep, alien, nodeid);
1146 alien->entry[alien->avail++] = objp;
1147 spin_unlock(&alien->lock);
1148 } else {
1149 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1150 free_block(cachep, &objp, 1, nodeid);
1151 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1153 return 1;
1155 #endif
1157 static void __cpuinit cpuup_canceled(long cpu)
1159 struct kmem_cache *cachep;
1160 struct kmem_list3 *l3 = NULL;
1161 int node = cpu_to_node(cpu);
1162 node_to_cpumask_ptr(mask, node);
1164 list_for_each_entry(cachep, &cache_chain, next) {
1165 struct array_cache *nc;
1166 struct array_cache *shared;
1167 struct array_cache **alien;
1169 /* cpu is dead; no one can alloc from it. */
1170 nc = cachep->array[cpu];
1171 cachep->array[cpu] = NULL;
1172 l3 = cachep->nodelists[node];
1174 if (!l3)
1175 goto free_array_cache;
1177 spin_lock_irq(&l3->list_lock);
1179 /* Free limit for this kmem_list3 */
1180 l3->free_limit -= cachep->batchcount;
1181 if (nc)
1182 free_block(cachep, nc->entry, nc->avail, node);
1184 if (!cpus_empty(*mask)) {
1185 spin_unlock_irq(&l3->list_lock);
1186 goto free_array_cache;
1189 shared = l3->shared;
1190 if (shared) {
1191 free_block(cachep, shared->entry,
1192 shared->avail, node);
1193 l3->shared = NULL;
1196 alien = l3->alien;
1197 l3->alien = NULL;
1199 spin_unlock_irq(&l3->list_lock);
1201 kfree(shared);
1202 if (alien) {
1203 drain_alien_cache(cachep, alien);
1204 free_alien_cache(alien);
1206 free_array_cache:
1207 kfree(nc);
1210 * In the previous loop, all the objects were freed to
1211 * the respective cache's slabs, now we can go ahead and
1212 * shrink each nodelist to its limit.
1214 list_for_each_entry(cachep, &cache_chain, next) {
1215 l3 = cachep->nodelists[node];
1216 if (!l3)
1217 continue;
1218 drain_freelist(cachep, l3, l3->free_objects);
1222 static int __cpuinit cpuup_prepare(long cpu)
1224 struct kmem_cache *cachep;
1225 struct kmem_list3 *l3 = NULL;
1226 int node = cpu_to_node(cpu);
1227 const int memsize = sizeof(struct kmem_list3);
1230 * We need to do this right in the beginning since
1231 * alloc_arraycache's are going to use this list.
1232 * kmalloc_node allows us to add the slab to the right
1233 * kmem_list3 and not this cpu's kmem_list3
1236 list_for_each_entry(cachep, &cache_chain, next) {
1238 * Set up the size64 kmemlist for cpu before we can
1239 * begin anything. Make sure some other cpu on this
1240 * node has not already allocated this
1242 if (!cachep->nodelists[node]) {
1243 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1244 if (!l3)
1245 goto bad;
1246 kmem_list3_init(l3);
1247 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1248 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1251 * The l3s don't come and go as CPUs come and
1252 * go. cache_chain_mutex is sufficient
1253 * protection here.
1255 cachep->nodelists[node] = l3;
1258 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1259 cachep->nodelists[node]->free_limit =
1260 (1 + nr_cpus_node(node)) *
1261 cachep->batchcount + cachep->num;
1262 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1266 * Now we can go ahead with allocating the shared arrays and
1267 * array caches
1269 list_for_each_entry(cachep, &cache_chain, next) {
1270 struct array_cache *nc;
1271 struct array_cache *shared = NULL;
1272 struct array_cache **alien = NULL;
1274 nc = alloc_arraycache(node, cachep->limit,
1275 cachep->batchcount);
1276 if (!nc)
1277 goto bad;
1278 if (cachep->shared) {
1279 shared = alloc_arraycache(node,
1280 cachep->shared * cachep->batchcount,
1281 0xbaadf00d);
1282 if (!shared) {
1283 kfree(nc);
1284 goto bad;
1287 if (use_alien_caches) {
1288 alien = alloc_alien_cache(node, cachep->limit);
1289 if (!alien) {
1290 kfree(shared);
1291 kfree(nc);
1292 goto bad;
1295 cachep->array[cpu] = nc;
1296 l3 = cachep->nodelists[node];
1297 BUG_ON(!l3);
1299 spin_lock_irq(&l3->list_lock);
1300 if (!l3->shared) {
1302 * We are serialised from CPU_DEAD or
1303 * CPU_UP_CANCELLED by the cpucontrol lock
1305 l3->shared = shared;
1306 shared = NULL;
1308 #ifdef CONFIG_NUMA
1309 if (!l3->alien) {
1310 l3->alien = alien;
1311 alien = NULL;
1313 #endif
1314 spin_unlock_irq(&l3->list_lock);
1315 kfree(shared);
1316 free_alien_cache(alien);
1318 return 0;
1319 bad:
1320 cpuup_canceled(cpu);
1321 return -ENOMEM;
1324 static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1325 unsigned long action, void *hcpu)
1327 long cpu = (long)hcpu;
1328 int err = 0;
1330 switch (action) {
1331 case CPU_UP_PREPARE:
1332 case CPU_UP_PREPARE_FROZEN:
1333 mutex_lock(&cache_chain_mutex);
1334 err = cpuup_prepare(cpu);
1335 mutex_unlock(&cache_chain_mutex);
1336 break;
1337 case CPU_ONLINE:
1338 case CPU_ONLINE_FROZEN:
1339 start_cpu_timer(cpu);
1340 break;
1341 #ifdef CONFIG_HOTPLUG_CPU
1342 case CPU_DOWN_PREPARE:
1343 case CPU_DOWN_PREPARE_FROZEN:
1345 * Shutdown cache reaper. Note that the cache_chain_mutex is
1346 * held so that if cache_reap() is invoked it cannot do
1347 * anything expensive but will only modify reap_work
1348 * and reschedule the timer.
1350 cancel_rearming_delayed_work(&per_cpu(reap_work, cpu));
1351 /* Now the cache_reaper is guaranteed to be not running. */
1352 per_cpu(reap_work, cpu).work.func = NULL;
1353 break;
1354 case CPU_DOWN_FAILED:
1355 case CPU_DOWN_FAILED_FROZEN:
1356 start_cpu_timer(cpu);
1357 break;
1358 case CPU_DEAD:
1359 case CPU_DEAD_FROZEN:
1361 * Even if all the cpus of a node are down, we don't free the
1362 * kmem_list3 of any cache. This to avoid a race between
1363 * cpu_down, and a kmalloc allocation from another cpu for
1364 * memory from the node of the cpu going down. The list3
1365 * structure is usually allocated from kmem_cache_create() and
1366 * gets destroyed at kmem_cache_destroy().
1368 /* fall through */
1369 #endif
1370 case CPU_UP_CANCELED:
1371 case CPU_UP_CANCELED_FROZEN:
1372 mutex_lock(&cache_chain_mutex);
1373 cpuup_canceled(cpu);
1374 mutex_unlock(&cache_chain_mutex);
1375 break;
1377 return err ? NOTIFY_BAD : NOTIFY_OK;
1380 static struct notifier_block __cpuinitdata cpucache_notifier = {
1381 &cpuup_callback, NULL, 0
1385 * swap the static kmem_list3 with kmalloced memory
1387 static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1388 int nodeid)
1390 struct kmem_list3 *ptr;
1392 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1393 BUG_ON(!ptr);
1395 local_irq_disable();
1396 memcpy(ptr, list, sizeof(struct kmem_list3));
1398 * Do not assume that spinlocks can be initialized via memcpy:
1400 spin_lock_init(&ptr->list_lock);
1402 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1403 cachep->nodelists[nodeid] = ptr;
1404 local_irq_enable();
1408 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1409 * size of kmem_list3.
1411 static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1413 int node;
1415 for_each_online_node(node) {
1416 cachep->nodelists[node] = &initkmem_list3[index + node];
1417 cachep->nodelists[node]->next_reap = jiffies +
1418 REAPTIMEOUT_LIST3 +
1419 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1424 * Initialisation. Called after the page allocator have been initialised and
1425 * before smp_init().
1427 void __init kmem_cache_init(void)
1429 size_t left_over;
1430 struct cache_sizes *sizes;
1431 struct cache_names *names;
1432 int i;
1433 int order;
1434 int node;
1436 if (num_possible_nodes() == 1) {
1437 use_alien_caches = 0;
1438 numa_platform = 0;
1441 for (i = 0; i < NUM_INIT_LISTS; i++) {
1442 kmem_list3_init(&initkmem_list3[i]);
1443 if (i < MAX_NUMNODES)
1444 cache_cache.nodelists[i] = NULL;
1446 set_up_list3s(&cache_cache, CACHE_CACHE);
1449 * Fragmentation resistance on low memory - only use bigger
1450 * page orders on machines with more than 32MB of memory.
1452 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1453 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1455 /* Bootstrap is tricky, because several objects are allocated
1456 * from caches that do not exist yet:
1457 * 1) initialize the cache_cache cache: it contains the struct
1458 * kmem_cache structures of all caches, except cache_cache itself:
1459 * cache_cache is statically allocated.
1460 * Initially an __init data area is used for the head array and the
1461 * kmem_list3 structures, it's replaced with a kmalloc allocated
1462 * array at the end of the bootstrap.
1463 * 2) Create the first kmalloc cache.
1464 * The struct kmem_cache for the new cache is allocated normally.
1465 * An __init data area is used for the head array.
1466 * 3) Create the remaining kmalloc caches, with minimally sized
1467 * head arrays.
1468 * 4) Replace the __init data head arrays for cache_cache and the first
1469 * kmalloc cache with kmalloc allocated arrays.
1470 * 5) Replace the __init data for kmem_list3 for cache_cache and
1471 * the other cache's with kmalloc allocated memory.
1472 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1475 node = numa_node_id();
1477 /* 1) create the cache_cache */
1478 INIT_LIST_HEAD(&cache_chain);
1479 list_add(&cache_cache.next, &cache_chain);
1480 cache_cache.colour_off = cache_line_size();
1481 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1482 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
1485 * struct kmem_cache size depends on nr_node_ids, which
1486 * can be less than MAX_NUMNODES.
1488 cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
1489 nr_node_ids * sizeof(struct kmem_list3 *);
1490 #if DEBUG
1491 cache_cache.obj_size = cache_cache.buffer_size;
1492 #endif
1493 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1494 cache_line_size());
1495 cache_cache.reciprocal_buffer_size =
1496 reciprocal_value(cache_cache.buffer_size);
1498 for (order = 0; order < MAX_ORDER; order++) {
1499 cache_estimate(order, cache_cache.buffer_size,
1500 cache_line_size(), 0, &left_over, &cache_cache.num);
1501 if (cache_cache.num)
1502 break;
1504 BUG_ON(!cache_cache.num);
1505 cache_cache.gfporder = order;
1506 cache_cache.colour = left_over / cache_cache.colour_off;
1507 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1508 sizeof(struct slab), cache_line_size());
1510 /* 2+3) create the kmalloc caches */
1511 sizes = malloc_sizes;
1512 names = cache_names;
1515 * Initialize the caches that provide memory for the array cache and the
1516 * kmem_list3 structures first. Without this, further allocations will
1517 * bug.
1520 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1521 sizes[INDEX_AC].cs_size,
1522 ARCH_KMALLOC_MINALIGN,
1523 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1524 NULL);
1526 if (INDEX_AC != INDEX_L3) {
1527 sizes[INDEX_L3].cs_cachep =
1528 kmem_cache_create(names[INDEX_L3].name,
1529 sizes[INDEX_L3].cs_size,
1530 ARCH_KMALLOC_MINALIGN,
1531 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1532 NULL);
1535 slab_early_init = 0;
1537 while (sizes->cs_size != ULONG_MAX) {
1539 * For performance, all the general caches are L1 aligned.
1540 * This should be particularly beneficial on SMP boxes, as it
1541 * eliminates "false sharing".
1542 * Note for systems short on memory removing the alignment will
1543 * allow tighter packing of the smaller caches.
1545 if (!sizes->cs_cachep) {
1546 sizes->cs_cachep = kmem_cache_create(names->name,
1547 sizes->cs_size,
1548 ARCH_KMALLOC_MINALIGN,
1549 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1550 NULL);
1552 #ifdef CONFIG_ZONE_DMA
1553 sizes->cs_dmacachep = kmem_cache_create(
1554 names->name_dma,
1555 sizes->cs_size,
1556 ARCH_KMALLOC_MINALIGN,
1557 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1558 SLAB_PANIC,
1559 NULL);
1560 #endif
1561 sizes++;
1562 names++;
1564 /* 4) Replace the bootstrap head arrays */
1566 struct array_cache *ptr;
1568 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1570 local_irq_disable();
1571 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1572 memcpy(ptr, cpu_cache_get(&cache_cache),
1573 sizeof(struct arraycache_init));
1575 * Do not assume that spinlocks can be initialized via memcpy:
1577 spin_lock_init(&ptr->lock);
1579 cache_cache.array[smp_processor_id()] = ptr;
1580 local_irq_enable();
1582 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1584 local_irq_disable();
1585 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1586 != &initarray_generic.cache);
1587 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1588 sizeof(struct arraycache_init));
1590 * Do not assume that spinlocks can be initialized via memcpy:
1592 spin_lock_init(&ptr->lock);
1594 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1595 ptr;
1596 local_irq_enable();
1598 /* 5) Replace the bootstrap kmem_list3's */
1600 int nid;
1602 for_each_online_node(nid) {
1603 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1605 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1606 &initkmem_list3[SIZE_AC + nid], nid);
1608 if (INDEX_AC != INDEX_L3) {
1609 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1610 &initkmem_list3[SIZE_L3 + nid], nid);
1615 /* 6) resize the head arrays to their final sizes */
1617 struct kmem_cache *cachep;
1618 mutex_lock(&cache_chain_mutex);
1619 list_for_each_entry(cachep, &cache_chain, next)
1620 if (enable_cpucache(cachep))
1621 BUG();
1622 mutex_unlock(&cache_chain_mutex);
1625 /* Annotate slab for lockdep -- annotate the malloc caches */
1626 init_lock_keys();
1629 /* Done! */
1630 g_cpucache_up = FULL;
1633 * Register a cpu startup notifier callback that initializes
1634 * cpu_cache_get for all new cpus
1636 register_cpu_notifier(&cpucache_notifier);
1639 * The reap timers are started later, with a module init call: That part
1640 * of the kernel is not yet operational.
1644 static int __init cpucache_init(void)
1646 int cpu;
1649 * Register the timers that return unneeded pages to the page allocator
1651 for_each_online_cpu(cpu)
1652 start_cpu_timer(cpu);
1653 return 0;
1655 __initcall(cpucache_init);
1658 * Interface to system's page allocator. No need to hold the cache-lock.
1660 * If we requested dmaable memory, we will get it. Even if we
1661 * did not request dmaable memory, we might get it, but that
1662 * would be relatively rare and ignorable.
1664 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1666 struct page *page;
1667 int nr_pages;
1668 int i;
1670 #ifndef CONFIG_MMU
1672 * Nommu uses slab's for process anonymous memory allocations, and thus
1673 * requires __GFP_COMP to properly refcount higher order allocations
1675 flags |= __GFP_COMP;
1676 #endif
1678 flags |= cachep->gfpflags;
1679 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1680 flags |= __GFP_RECLAIMABLE;
1682 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1683 if (!page)
1684 return NULL;
1686 nr_pages = (1 << cachep->gfporder);
1687 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1688 add_zone_page_state(page_zone(page),
1689 NR_SLAB_RECLAIMABLE, nr_pages);
1690 else
1691 add_zone_page_state(page_zone(page),
1692 NR_SLAB_UNRECLAIMABLE, nr_pages);
1693 for (i = 0; i < nr_pages; i++)
1694 __SetPageSlab(page + i);
1695 return page_address(page);
1699 * Interface to system's page release.
1701 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1703 unsigned long i = (1 << cachep->gfporder);
1704 struct page *page = virt_to_page(addr);
1705 const unsigned long nr_freed = i;
1707 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1708 sub_zone_page_state(page_zone(page),
1709 NR_SLAB_RECLAIMABLE, nr_freed);
1710 else
1711 sub_zone_page_state(page_zone(page),
1712 NR_SLAB_UNRECLAIMABLE, nr_freed);
1713 while (i--) {
1714 BUG_ON(!PageSlab(page));
1715 __ClearPageSlab(page);
1716 page++;
1718 if (current->reclaim_state)
1719 current->reclaim_state->reclaimed_slab += nr_freed;
1720 free_pages((unsigned long)addr, cachep->gfporder);
1723 static void kmem_rcu_free(struct rcu_head *head)
1725 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1726 struct kmem_cache *cachep = slab_rcu->cachep;
1728 kmem_freepages(cachep, slab_rcu->addr);
1729 if (OFF_SLAB(cachep))
1730 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1733 #if DEBUG
1735 #ifdef CONFIG_DEBUG_PAGEALLOC
1736 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1737 unsigned long caller)
1739 int size = obj_size(cachep);
1741 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1743 if (size < 5 * sizeof(unsigned long))
1744 return;
1746 *addr++ = 0x12345678;
1747 *addr++ = caller;
1748 *addr++ = smp_processor_id();
1749 size -= 3 * sizeof(unsigned long);
1751 unsigned long *sptr = &caller;
1752 unsigned long svalue;
1754 while (!kstack_end(sptr)) {
1755 svalue = *sptr++;
1756 if (kernel_text_address(svalue)) {
1757 *addr++ = svalue;
1758 size -= sizeof(unsigned long);
1759 if (size <= sizeof(unsigned long))
1760 break;
1765 *addr++ = 0x87654321;
1767 #endif
1769 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1771 int size = obj_size(cachep);
1772 addr = &((char *)addr)[obj_offset(cachep)];
1774 memset(addr, val, size);
1775 *(unsigned char *)(addr + size - 1) = POISON_END;
1778 static void dump_line(char *data, int offset, int limit)
1780 int i;
1781 unsigned char error = 0;
1782 int bad_count = 0;
1784 printk(KERN_ERR "%03x:", offset);
1785 for (i = 0; i < limit; i++) {
1786 if (data[offset + i] != POISON_FREE) {
1787 error = data[offset + i];
1788 bad_count++;
1790 printk(" %02x", (unsigned char)data[offset + i]);
1792 printk("\n");
1794 if (bad_count == 1) {
1795 error ^= POISON_FREE;
1796 if (!(error & (error - 1))) {
1797 printk(KERN_ERR "Single bit error detected. Probably "
1798 "bad RAM.\n");
1799 #ifdef CONFIG_X86
1800 printk(KERN_ERR "Run memtest86+ or a similar memory "
1801 "test tool.\n");
1802 #else
1803 printk(KERN_ERR "Run a memory test tool.\n");
1804 #endif
1808 #endif
1810 #if DEBUG
1812 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1814 int i, size;
1815 char *realobj;
1817 if (cachep->flags & SLAB_RED_ZONE) {
1818 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1819 *dbg_redzone1(cachep, objp),
1820 *dbg_redzone2(cachep, objp));
1823 if (cachep->flags & SLAB_STORE_USER) {
1824 printk(KERN_ERR "Last user: [<%p>]",
1825 *dbg_userword(cachep, objp));
1826 print_symbol("(%s)",
1827 (unsigned long)*dbg_userword(cachep, objp));
1828 printk("\n");
1830 realobj = (char *)objp + obj_offset(cachep);
1831 size = obj_size(cachep);
1832 for (i = 0; i < size && lines; i += 16, lines--) {
1833 int limit;
1834 limit = 16;
1835 if (i + limit > size)
1836 limit = size - i;
1837 dump_line(realobj, i, limit);
1841 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1843 char *realobj;
1844 int size, i;
1845 int lines = 0;
1847 realobj = (char *)objp + obj_offset(cachep);
1848 size = obj_size(cachep);
1850 for (i = 0; i < size; i++) {
1851 char exp = POISON_FREE;
1852 if (i == size - 1)
1853 exp = POISON_END;
1854 if (realobj[i] != exp) {
1855 int limit;
1856 /* Mismatch ! */
1857 /* Print header */
1858 if (lines == 0) {
1859 printk(KERN_ERR
1860 "Slab corruption: %s start=%p, len=%d\n",
1861 cachep->name, realobj, size);
1862 print_objinfo(cachep, objp, 0);
1864 /* Hexdump the affected line */
1865 i = (i / 16) * 16;
1866 limit = 16;
1867 if (i + limit > size)
1868 limit = size - i;
1869 dump_line(realobj, i, limit);
1870 i += 16;
1871 lines++;
1872 /* Limit to 5 lines */
1873 if (lines > 5)
1874 break;
1877 if (lines != 0) {
1878 /* Print some data about the neighboring objects, if they
1879 * exist:
1881 struct slab *slabp = virt_to_slab(objp);
1882 unsigned int objnr;
1884 objnr = obj_to_index(cachep, slabp, objp);
1885 if (objnr) {
1886 objp = index_to_obj(cachep, slabp, objnr - 1);
1887 realobj = (char *)objp + obj_offset(cachep);
1888 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1889 realobj, size);
1890 print_objinfo(cachep, objp, 2);
1892 if (objnr + 1 < cachep->num) {
1893 objp = index_to_obj(cachep, slabp, objnr + 1);
1894 realobj = (char *)objp + obj_offset(cachep);
1895 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1896 realobj, size);
1897 print_objinfo(cachep, objp, 2);
1901 #endif
1903 #if DEBUG
1904 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1906 int i;
1907 for (i = 0; i < cachep->num; i++) {
1908 void *objp = index_to_obj(cachep, slabp, i);
1910 if (cachep->flags & SLAB_POISON) {
1911 #ifdef CONFIG_DEBUG_PAGEALLOC
1912 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1913 OFF_SLAB(cachep))
1914 kernel_map_pages(virt_to_page(objp),
1915 cachep->buffer_size / PAGE_SIZE, 1);
1916 else
1917 check_poison_obj(cachep, objp);
1918 #else
1919 check_poison_obj(cachep, objp);
1920 #endif
1922 if (cachep->flags & SLAB_RED_ZONE) {
1923 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1924 slab_error(cachep, "start of a freed object "
1925 "was overwritten");
1926 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1927 slab_error(cachep, "end of a freed object "
1928 "was overwritten");
1932 #else
1933 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1936 #endif
1939 * slab_destroy - destroy and release all objects in a slab
1940 * @cachep: cache pointer being destroyed
1941 * @slabp: slab pointer being destroyed
1943 * Destroy all the objs in a slab, and release the mem back to the system.
1944 * Before calling the slab must have been unlinked from the cache. The
1945 * cache-lock is not held/needed.
1947 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1949 void *addr = slabp->s_mem - slabp->colouroff;
1951 slab_destroy_debugcheck(cachep, slabp);
1952 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1953 struct slab_rcu *slab_rcu;
1955 slab_rcu = (struct slab_rcu *)slabp;
1956 slab_rcu->cachep = cachep;
1957 slab_rcu->addr = addr;
1958 call_rcu(&slab_rcu->head, kmem_rcu_free);
1959 } else {
1960 kmem_freepages(cachep, addr);
1961 if (OFF_SLAB(cachep))
1962 kmem_cache_free(cachep->slabp_cache, slabp);
1966 static void __kmem_cache_destroy(struct kmem_cache *cachep)
1968 int i;
1969 struct kmem_list3 *l3;
1971 for_each_online_cpu(i)
1972 kfree(cachep->array[i]);
1974 /* NUMA: free the list3 structures */
1975 for_each_online_node(i) {
1976 l3 = cachep->nodelists[i];
1977 if (l3) {
1978 kfree(l3->shared);
1979 free_alien_cache(l3->alien);
1980 kfree(l3);
1983 kmem_cache_free(&cache_cache, cachep);
1988 * calculate_slab_order - calculate size (page order) of slabs
1989 * @cachep: pointer to the cache that is being created
1990 * @size: size of objects to be created in this cache.
1991 * @align: required alignment for the objects.
1992 * @flags: slab allocation flags
1994 * Also calculates the number of objects per slab.
1996 * This could be made much more intelligent. For now, try to avoid using
1997 * high order pages for slabs. When the gfp() functions are more friendly
1998 * towards high-order requests, this should be changed.
2000 static size_t calculate_slab_order(struct kmem_cache *cachep,
2001 size_t size, size_t align, unsigned long flags)
2003 unsigned long offslab_limit;
2004 size_t left_over = 0;
2005 int gfporder;
2007 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2008 unsigned int num;
2009 size_t remainder;
2011 cache_estimate(gfporder, size, align, flags, &remainder, &num);
2012 if (!num)
2013 continue;
2015 if (flags & CFLGS_OFF_SLAB) {
2017 * Max number of objs-per-slab for caches which
2018 * use off-slab slabs. Needed to avoid a possible
2019 * looping condition in cache_grow().
2021 offslab_limit = size - sizeof(struct slab);
2022 offslab_limit /= sizeof(kmem_bufctl_t);
2024 if (num > offslab_limit)
2025 break;
2028 /* Found something acceptable - save it away */
2029 cachep->num = num;
2030 cachep->gfporder = gfporder;
2031 left_over = remainder;
2034 * A VFS-reclaimable slab tends to have most allocations
2035 * as GFP_NOFS and we really don't want to have to be allocating
2036 * higher-order pages when we are unable to shrink dcache.
2038 if (flags & SLAB_RECLAIM_ACCOUNT)
2039 break;
2042 * Large number of objects is good, but very large slabs are
2043 * currently bad for the gfp()s.
2045 if (gfporder >= slab_break_gfp_order)
2046 break;
2049 * Acceptable internal fragmentation?
2051 if (left_over * 8 <= (PAGE_SIZE << gfporder))
2052 break;
2054 return left_over;
2057 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep)
2059 if (g_cpucache_up == FULL)
2060 return enable_cpucache(cachep);
2062 if (g_cpucache_up == NONE) {
2064 * Note: the first kmem_cache_create must create the cache
2065 * that's used by kmalloc(24), otherwise the creation of
2066 * further caches will BUG().
2068 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2071 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2072 * the first cache, then we need to set up all its list3s,
2073 * otherwise the creation of further caches will BUG().
2075 set_up_list3s(cachep, SIZE_AC);
2076 if (INDEX_AC == INDEX_L3)
2077 g_cpucache_up = PARTIAL_L3;
2078 else
2079 g_cpucache_up = PARTIAL_AC;
2080 } else {
2081 cachep->array[smp_processor_id()] =
2082 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
2084 if (g_cpucache_up == PARTIAL_AC) {
2085 set_up_list3s(cachep, SIZE_L3);
2086 g_cpucache_up = PARTIAL_L3;
2087 } else {
2088 int node;
2089 for_each_online_node(node) {
2090 cachep->nodelists[node] =
2091 kmalloc_node(sizeof(struct kmem_list3),
2092 GFP_KERNEL, node);
2093 BUG_ON(!cachep->nodelists[node]);
2094 kmem_list3_init(cachep->nodelists[node]);
2098 cachep->nodelists[numa_node_id()]->next_reap =
2099 jiffies + REAPTIMEOUT_LIST3 +
2100 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2102 cpu_cache_get(cachep)->avail = 0;
2103 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2104 cpu_cache_get(cachep)->batchcount = 1;
2105 cpu_cache_get(cachep)->touched = 0;
2106 cachep->batchcount = 1;
2107 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2108 return 0;
2112 * kmem_cache_create - Create a cache.
2113 * @name: A string which is used in /proc/slabinfo to identify this cache.
2114 * @size: The size of objects to be created in this cache.
2115 * @align: The required alignment for the objects.
2116 * @flags: SLAB flags
2117 * @ctor: A constructor for the objects.
2119 * Returns a ptr to the cache on success, NULL on failure.
2120 * Cannot be called within a int, but can be interrupted.
2121 * The @ctor is run when new pages are allocated by the cache.
2123 * @name must be valid until the cache is destroyed. This implies that
2124 * the module calling this has to destroy the cache before getting unloaded.
2126 * The flags are
2128 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2129 * to catch references to uninitialised memory.
2131 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2132 * for buffer overruns.
2134 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2135 * cacheline. This can be beneficial if you're counting cycles as closely
2136 * as davem.
2138 struct kmem_cache *
2139 kmem_cache_create (const char *name, size_t size, size_t align,
2140 unsigned long flags,
2141 void (*ctor)(struct kmem_cache *, void *))
2143 size_t left_over, slab_size, ralign;
2144 struct kmem_cache *cachep = NULL, *pc;
2147 * Sanity checks... these are all serious usage bugs.
2149 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2150 size > KMALLOC_MAX_SIZE) {
2151 printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
2152 name);
2153 BUG();
2157 * We use cache_chain_mutex to ensure a consistent view of
2158 * cpu_online_map as well. Please see cpuup_callback
2160 get_online_cpus();
2161 mutex_lock(&cache_chain_mutex);
2163 list_for_each_entry(pc, &cache_chain, next) {
2164 char tmp;
2165 int res;
2168 * This happens when the module gets unloaded and doesn't
2169 * destroy its slab cache and no-one else reuses the vmalloc
2170 * area of the module. Print a warning.
2172 res = probe_kernel_address(pc->name, tmp);
2173 if (res) {
2174 printk(KERN_ERR
2175 "SLAB: cache with size %d has lost its name\n",
2176 pc->buffer_size);
2177 continue;
2180 if (!strcmp(pc->name, name)) {
2181 printk(KERN_ERR
2182 "kmem_cache_create: duplicate cache %s\n", name);
2183 dump_stack();
2184 goto oops;
2188 #if DEBUG
2189 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
2190 #if FORCED_DEBUG
2192 * Enable redzoning and last user accounting, except for caches with
2193 * large objects, if the increased size would increase the object size
2194 * above the next power of two: caches with object sizes just above a
2195 * power of two have a significant amount of internal fragmentation.
2197 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2198 2 * sizeof(unsigned long long)))
2199 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2200 if (!(flags & SLAB_DESTROY_BY_RCU))
2201 flags |= SLAB_POISON;
2202 #endif
2203 if (flags & SLAB_DESTROY_BY_RCU)
2204 BUG_ON(flags & SLAB_POISON);
2205 #endif
2207 * Always checks flags, a caller might be expecting debug support which
2208 * isn't available.
2210 BUG_ON(flags & ~CREATE_MASK);
2213 * Check that size is in terms of words. This is needed to avoid
2214 * unaligned accesses for some archs when redzoning is used, and makes
2215 * sure any on-slab bufctl's are also correctly aligned.
2217 if (size & (BYTES_PER_WORD - 1)) {
2218 size += (BYTES_PER_WORD - 1);
2219 size &= ~(BYTES_PER_WORD - 1);
2222 /* calculate the final buffer alignment: */
2224 /* 1) arch recommendation: can be overridden for debug */
2225 if (flags & SLAB_HWCACHE_ALIGN) {
2227 * Default alignment: as specified by the arch code. Except if
2228 * an object is really small, then squeeze multiple objects into
2229 * one cacheline.
2231 ralign = cache_line_size();
2232 while (size <= ralign / 2)
2233 ralign /= 2;
2234 } else {
2235 ralign = BYTES_PER_WORD;
2239 * Redzoning and user store require word alignment or possibly larger.
2240 * Note this will be overridden by architecture or caller mandated
2241 * alignment if either is greater than BYTES_PER_WORD.
2243 if (flags & SLAB_STORE_USER)
2244 ralign = BYTES_PER_WORD;
2246 if (flags & SLAB_RED_ZONE) {
2247 ralign = REDZONE_ALIGN;
2248 /* If redzoning, ensure that the second redzone is suitably
2249 * aligned, by adjusting the object size accordingly. */
2250 size += REDZONE_ALIGN - 1;
2251 size &= ~(REDZONE_ALIGN - 1);
2254 /* 2) arch mandated alignment */
2255 if (ralign < ARCH_SLAB_MINALIGN) {
2256 ralign = ARCH_SLAB_MINALIGN;
2258 /* 3) caller mandated alignment */
2259 if (ralign < align) {
2260 ralign = align;
2262 /* disable debug if necessary */
2263 if (ralign > __alignof__(unsigned long long))
2264 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2266 * 4) Store it.
2268 align = ralign;
2270 /* Get cache's description obj. */
2271 cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
2272 if (!cachep)
2273 goto oops;
2275 #if DEBUG
2276 cachep->obj_size = size;
2279 * Both debugging options require word-alignment which is calculated
2280 * into align above.
2282 if (flags & SLAB_RED_ZONE) {
2283 /* add space for red zone words */
2284 cachep->obj_offset += sizeof(unsigned long long);
2285 size += 2 * sizeof(unsigned long long);
2287 if (flags & SLAB_STORE_USER) {
2288 /* user store requires one word storage behind the end of
2289 * the real object. But if the second red zone needs to be
2290 * aligned to 64 bits, we must allow that much space.
2292 if (flags & SLAB_RED_ZONE)
2293 size += REDZONE_ALIGN;
2294 else
2295 size += BYTES_PER_WORD;
2297 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2298 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2299 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2300 cachep->obj_offset += PAGE_SIZE - size;
2301 size = PAGE_SIZE;
2303 #endif
2304 #endif
2307 * Determine if the slab management is 'on' or 'off' slab.
2308 * (bootstrapping cannot cope with offslab caches so don't do
2309 * it too early on.)
2311 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
2313 * Size is large, assume best to place the slab management obj
2314 * off-slab (should allow better packing of objs).
2316 flags |= CFLGS_OFF_SLAB;
2318 size = ALIGN(size, align);
2320 left_over = calculate_slab_order(cachep, size, align, flags);
2322 if (!cachep->num) {
2323 printk(KERN_ERR
2324 "kmem_cache_create: couldn't create cache %s.\n", name);
2325 kmem_cache_free(&cache_cache, cachep);
2326 cachep = NULL;
2327 goto oops;
2329 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2330 + sizeof(struct slab), align);
2333 * If the slab has been placed off-slab, and we have enough space then
2334 * move it on-slab. This is at the expense of any extra colouring.
2336 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2337 flags &= ~CFLGS_OFF_SLAB;
2338 left_over -= slab_size;
2341 if (flags & CFLGS_OFF_SLAB) {
2342 /* really off slab. No need for manual alignment */
2343 slab_size =
2344 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2347 cachep->colour_off = cache_line_size();
2348 /* Offset must be a multiple of the alignment. */
2349 if (cachep->colour_off < align)
2350 cachep->colour_off = align;
2351 cachep->colour = left_over / cachep->colour_off;
2352 cachep->slab_size = slab_size;
2353 cachep->flags = flags;
2354 cachep->gfpflags = 0;
2355 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2356 cachep->gfpflags |= GFP_DMA;
2357 cachep->buffer_size = size;
2358 cachep->reciprocal_buffer_size = reciprocal_value(size);
2360 if (flags & CFLGS_OFF_SLAB) {
2361 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2363 * This is a possibility for one of the malloc_sizes caches.
2364 * But since we go off slab only for object size greater than
2365 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2366 * this should not happen at all.
2367 * But leave a BUG_ON for some lucky dude.
2369 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2371 cachep->ctor = ctor;
2372 cachep->name = name;
2374 if (setup_cpu_cache(cachep)) {
2375 __kmem_cache_destroy(cachep);
2376 cachep = NULL;
2377 goto oops;
2380 /* cache setup completed, link it into the list */
2381 list_add(&cachep->next, &cache_chain);
2382 oops:
2383 if (!cachep && (flags & SLAB_PANIC))
2384 panic("kmem_cache_create(): failed to create slab `%s'\n",
2385 name);
2386 mutex_unlock(&cache_chain_mutex);
2387 put_online_cpus();
2388 return cachep;
2390 EXPORT_SYMBOL(kmem_cache_create);
2392 #if DEBUG
2393 static void check_irq_off(void)
2395 BUG_ON(!irqs_disabled());
2398 static void check_irq_on(void)
2400 BUG_ON(irqs_disabled());
2403 static void check_spinlock_acquired(struct kmem_cache *cachep)
2405 #ifdef CONFIG_SMP
2406 check_irq_off();
2407 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
2408 #endif
2411 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2413 #ifdef CONFIG_SMP
2414 check_irq_off();
2415 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2416 #endif
2419 #else
2420 #define check_irq_off() do { } while(0)
2421 #define check_irq_on() do { } while(0)
2422 #define check_spinlock_acquired(x) do { } while(0)
2423 #define check_spinlock_acquired_node(x, y) do { } while(0)
2424 #endif
2426 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2427 struct array_cache *ac,
2428 int force, int node);
2430 static void do_drain(void *arg)
2432 struct kmem_cache *cachep = arg;
2433 struct array_cache *ac;
2434 int node = numa_node_id();
2436 check_irq_off();
2437 ac = cpu_cache_get(cachep);
2438 spin_lock(&cachep->nodelists[node]->list_lock);
2439 free_block(cachep, ac->entry, ac->avail, node);
2440 spin_unlock(&cachep->nodelists[node]->list_lock);
2441 ac->avail = 0;
2444 static void drain_cpu_caches(struct kmem_cache *cachep)
2446 struct kmem_list3 *l3;
2447 int node;
2449 on_each_cpu(do_drain, cachep, 1);
2450 check_irq_on();
2451 for_each_online_node(node) {
2452 l3 = cachep->nodelists[node];
2453 if (l3 && l3->alien)
2454 drain_alien_cache(cachep, l3->alien);
2457 for_each_online_node(node) {
2458 l3 = cachep->nodelists[node];
2459 if (l3)
2460 drain_array(cachep, l3, l3->shared, 1, node);
2465 * Remove slabs from the list of free slabs.
2466 * Specify the number of slabs to drain in tofree.
2468 * Returns the actual number of slabs released.
2470 static int drain_freelist(struct kmem_cache *cache,
2471 struct kmem_list3 *l3, int tofree)
2473 struct list_head *p;
2474 int nr_freed;
2475 struct slab *slabp;
2477 nr_freed = 0;
2478 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2480 spin_lock_irq(&l3->list_lock);
2481 p = l3->slabs_free.prev;
2482 if (p == &l3->slabs_free) {
2483 spin_unlock_irq(&l3->list_lock);
2484 goto out;
2487 slabp = list_entry(p, struct slab, list);
2488 #if DEBUG
2489 BUG_ON(slabp->inuse);
2490 #endif
2491 list_del(&slabp->list);
2493 * Safe to drop the lock. The slab is no longer linked
2494 * to the cache.
2496 l3->free_objects -= cache->num;
2497 spin_unlock_irq(&l3->list_lock);
2498 slab_destroy(cache, slabp);
2499 nr_freed++;
2501 out:
2502 return nr_freed;
2505 /* Called with cache_chain_mutex held to protect against cpu hotplug */
2506 static int __cache_shrink(struct kmem_cache *cachep)
2508 int ret = 0, i = 0;
2509 struct kmem_list3 *l3;
2511 drain_cpu_caches(cachep);
2513 check_irq_on();
2514 for_each_online_node(i) {
2515 l3 = cachep->nodelists[i];
2516 if (!l3)
2517 continue;
2519 drain_freelist(cachep, l3, l3->free_objects);
2521 ret += !list_empty(&l3->slabs_full) ||
2522 !list_empty(&l3->slabs_partial);
2524 return (ret ? 1 : 0);
2528 * kmem_cache_shrink - Shrink a cache.
2529 * @cachep: The cache to shrink.
2531 * Releases as many slabs as possible for a cache.
2532 * To help debugging, a zero exit status indicates all slabs were released.
2534 int kmem_cache_shrink(struct kmem_cache *cachep)
2536 int ret;
2537 BUG_ON(!cachep || in_interrupt());
2539 get_online_cpus();
2540 mutex_lock(&cache_chain_mutex);
2541 ret = __cache_shrink(cachep);
2542 mutex_unlock(&cache_chain_mutex);
2543 put_online_cpus();
2544 return ret;
2546 EXPORT_SYMBOL(kmem_cache_shrink);
2549 * kmem_cache_destroy - delete a cache
2550 * @cachep: the cache to destroy
2552 * Remove a &struct kmem_cache object from the slab cache.
2554 * It is expected this function will be called by a module when it is
2555 * unloaded. This will remove the cache completely, and avoid a duplicate
2556 * cache being allocated each time a module is loaded and unloaded, if the
2557 * module doesn't have persistent in-kernel storage across loads and unloads.
2559 * The cache must be empty before calling this function.
2561 * The caller must guarantee that noone will allocate memory from the cache
2562 * during the kmem_cache_destroy().
2564 void kmem_cache_destroy(struct kmem_cache *cachep)
2566 BUG_ON(!cachep || in_interrupt());
2568 /* Find the cache in the chain of caches. */
2569 get_online_cpus();
2570 mutex_lock(&cache_chain_mutex);
2572 * the chain is never empty, cache_cache is never destroyed
2574 list_del(&cachep->next);
2575 if (__cache_shrink(cachep)) {
2576 slab_error(cachep, "Can't free all objects");
2577 list_add(&cachep->next, &cache_chain);
2578 mutex_unlock(&cache_chain_mutex);
2579 put_online_cpus();
2580 return;
2583 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2584 synchronize_rcu();
2586 __kmem_cache_destroy(cachep);
2587 mutex_unlock(&cache_chain_mutex);
2588 put_online_cpus();
2590 EXPORT_SYMBOL(kmem_cache_destroy);
2593 * Get the memory for a slab management obj.
2594 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2595 * always come from malloc_sizes caches. The slab descriptor cannot
2596 * come from the same cache which is getting created because,
2597 * when we are searching for an appropriate cache for these
2598 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2599 * If we are creating a malloc_sizes cache here it would not be visible to
2600 * kmem_find_general_cachep till the initialization is complete.
2601 * Hence we cannot have slabp_cache same as the original cache.
2603 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2604 int colour_off, gfp_t local_flags,
2605 int nodeid)
2607 struct slab *slabp;
2609 if (OFF_SLAB(cachep)) {
2610 /* Slab management obj is off-slab. */
2611 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2612 local_flags & ~GFP_THISNODE, nodeid);
2613 if (!slabp)
2614 return NULL;
2615 } else {
2616 slabp = objp + colour_off;
2617 colour_off += cachep->slab_size;
2619 slabp->inuse = 0;
2620 slabp->colouroff = colour_off;
2621 slabp->s_mem = objp + colour_off;
2622 slabp->nodeid = nodeid;
2623 slabp->free = 0;
2624 return slabp;
2627 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2629 return (kmem_bufctl_t *) (slabp + 1);
2632 static void cache_init_objs(struct kmem_cache *cachep,
2633 struct slab *slabp)
2635 int i;
2637 for (i = 0; i < cachep->num; i++) {
2638 void *objp = index_to_obj(cachep, slabp, i);
2639 #if DEBUG
2640 /* need to poison the objs? */
2641 if (cachep->flags & SLAB_POISON)
2642 poison_obj(cachep, objp, POISON_FREE);
2643 if (cachep->flags & SLAB_STORE_USER)
2644 *dbg_userword(cachep, objp) = NULL;
2646 if (cachep->flags & SLAB_RED_ZONE) {
2647 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2648 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2651 * Constructors are not allowed to allocate memory from the same
2652 * cache which they are a constructor for. Otherwise, deadlock.
2653 * They must also be threaded.
2655 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2656 cachep->ctor(cachep, objp + obj_offset(cachep));
2658 if (cachep->flags & SLAB_RED_ZONE) {
2659 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2660 slab_error(cachep, "constructor overwrote the"
2661 " end of an object");
2662 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2663 slab_error(cachep, "constructor overwrote the"
2664 " start of an object");
2666 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2667 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2668 kernel_map_pages(virt_to_page(objp),
2669 cachep->buffer_size / PAGE_SIZE, 0);
2670 #else
2671 if (cachep->ctor)
2672 cachep->ctor(cachep, objp);
2673 #endif
2674 slab_bufctl(slabp)[i] = i + 1;
2676 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2679 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2681 if (CONFIG_ZONE_DMA_FLAG) {
2682 if (flags & GFP_DMA)
2683 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2684 else
2685 BUG_ON(cachep->gfpflags & GFP_DMA);
2689 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2690 int nodeid)
2692 void *objp = index_to_obj(cachep, slabp, slabp->free);
2693 kmem_bufctl_t next;
2695 slabp->inuse++;
2696 next = slab_bufctl(slabp)[slabp->free];
2697 #if DEBUG
2698 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2699 WARN_ON(slabp->nodeid != nodeid);
2700 #endif
2701 slabp->free = next;
2703 return objp;
2706 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2707 void *objp, int nodeid)
2709 unsigned int objnr = obj_to_index(cachep, slabp, objp);
2711 #if DEBUG
2712 /* Verify that the slab belongs to the intended node */
2713 WARN_ON(slabp->nodeid != nodeid);
2715 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2716 printk(KERN_ERR "slab: double free detected in cache "
2717 "'%s', objp %p\n", cachep->name, objp);
2718 BUG();
2720 #endif
2721 slab_bufctl(slabp)[objnr] = slabp->free;
2722 slabp->free = objnr;
2723 slabp->inuse--;
2727 * Map pages beginning at addr to the given cache and slab. This is required
2728 * for the slab allocator to be able to lookup the cache and slab of a
2729 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2731 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2732 void *addr)
2734 int nr_pages;
2735 struct page *page;
2737 page = virt_to_page(addr);
2739 nr_pages = 1;
2740 if (likely(!PageCompound(page)))
2741 nr_pages <<= cache->gfporder;
2743 do {
2744 page_set_cache(page, cache);
2745 page_set_slab(page, slab);
2746 page++;
2747 } while (--nr_pages);
2751 * Grow (by 1) the number of slabs within a cache. This is called by
2752 * kmem_cache_alloc() when there are no active objs left in a cache.
2754 static int cache_grow(struct kmem_cache *cachep,
2755 gfp_t flags, int nodeid, void *objp)
2757 struct slab *slabp;
2758 size_t offset;
2759 gfp_t local_flags;
2760 struct kmem_list3 *l3;
2763 * Be lazy and only check for valid flags here, keeping it out of the
2764 * critical path in kmem_cache_alloc().
2766 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2767 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2769 /* Take the l3 list lock to change the colour_next on this node */
2770 check_irq_off();
2771 l3 = cachep->nodelists[nodeid];
2772 spin_lock(&l3->list_lock);
2774 /* Get colour for the slab, and cal the next value. */
2775 offset = l3->colour_next;
2776 l3->colour_next++;
2777 if (l3->colour_next >= cachep->colour)
2778 l3->colour_next = 0;
2779 spin_unlock(&l3->list_lock);
2781 offset *= cachep->colour_off;
2783 if (local_flags & __GFP_WAIT)
2784 local_irq_enable();
2787 * The test for missing atomic flag is performed here, rather than
2788 * the more obvious place, simply to reduce the critical path length
2789 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2790 * will eventually be caught here (where it matters).
2792 kmem_flagcheck(cachep, flags);
2795 * Get mem for the objs. Attempt to allocate a physical page from
2796 * 'nodeid'.
2798 if (!objp)
2799 objp = kmem_getpages(cachep, local_flags, nodeid);
2800 if (!objp)
2801 goto failed;
2803 /* Get slab management. */
2804 slabp = alloc_slabmgmt(cachep, objp, offset,
2805 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2806 if (!slabp)
2807 goto opps1;
2809 slab_map_pages(cachep, slabp, objp);
2811 cache_init_objs(cachep, slabp);
2813 if (local_flags & __GFP_WAIT)
2814 local_irq_disable();
2815 check_irq_off();
2816 spin_lock(&l3->list_lock);
2818 /* Make slab active. */
2819 list_add_tail(&slabp->list, &(l3->slabs_free));
2820 STATS_INC_GROWN(cachep);
2821 l3->free_objects += cachep->num;
2822 spin_unlock(&l3->list_lock);
2823 return 1;
2824 opps1:
2825 kmem_freepages(cachep, objp);
2826 failed:
2827 if (local_flags & __GFP_WAIT)
2828 local_irq_disable();
2829 return 0;
2832 #if DEBUG
2835 * Perform extra freeing checks:
2836 * - detect bad pointers.
2837 * - POISON/RED_ZONE checking
2839 static void kfree_debugcheck(const void *objp)
2841 if (!virt_addr_valid(objp)) {
2842 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2843 (unsigned long)objp);
2844 BUG();
2848 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2850 unsigned long long redzone1, redzone2;
2852 redzone1 = *dbg_redzone1(cache, obj);
2853 redzone2 = *dbg_redzone2(cache, obj);
2856 * Redzone is ok.
2858 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2859 return;
2861 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2862 slab_error(cache, "double free detected");
2863 else
2864 slab_error(cache, "memory outside object was overwritten");
2866 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2867 obj, redzone1, redzone2);
2870 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2871 void *caller)
2873 struct page *page;
2874 unsigned int objnr;
2875 struct slab *slabp;
2877 BUG_ON(virt_to_cache(objp) != cachep);
2879 objp -= obj_offset(cachep);
2880 kfree_debugcheck(objp);
2881 page = virt_to_head_page(objp);
2883 slabp = page_get_slab(page);
2885 if (cachep->flags & SLAB_RED_ZONE) {
2886 verify_redzone_free(cachep, objp);
2887 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2888 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2890 if (cachep->flags & SLAB_STORE_USER)
2891 *dbg_userword(cachep, objp) = caller;
2893 objnr = obj_to_index(cachep, slabp, objp);
2895 BUG_ON(objnr >= cachep->num);
2896 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2898 #ifdef CONFIG_DEBUG_SLAB_LEAK
2899 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2900 #endif
2901 if (cachep->flags & SLAB_POISON) {
2902 #ifdef CONFIG_DEBUG_PAGEALLOC
2903 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2904 store_stackinfo(cachep, objp, (unsigned long)caller);
2905 kernel_map_pages(virt_to_page(objp),
2906 cachep->buffer_size / PAGE_SIZE, 0);
2907 } else {
2908 poison_obj(cachep, objp, POISON_FREE);
2910 #else
2911 poison_obj(cachep, objp, POISON_FREE);
2912 #endif
2914 return objp;
2917 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2919 kmem_bufctl_t i;
2920 int entries = 0;
2922 /* Check slab's freelist to see if this obj is there. */
2923 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2924 entries++;
2925 if (entries > cachep->num || i >= cachep->num)
2926 goto bad;
2928 if (entries != cachep->num - slabp->inuse) {
2929 bad:
2930 printk(KERN_ERR "slab: Internal list corruption detected in "
2931 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2932 cachep->name, cachep->num, slabp, slabp->inuse);
2933 for (i = 0;
2934 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
2935 i++) {
2936 if (i % 16 == 0)
2937 printk("\n%03x:", i);
2938 printk(" %02x", ((unsigned char *)slabp)[i]);
2940 printk("\n");
2941 BUG();
2944 #else
2945 #define kfree_debugcheck(x) do { } while(0)
2946 #define cache_free_debugcheck(x,objp,z) (objp)
2947 #define check_slabp(x,y) do { } while(0)
2948 #endif
2950 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2952 int batchcount;
2953 struct kmem_list3 *l3;
2954 struct array_cache *ac;
2955 int node;
2957 retry:
2958 check_irq_off();
2959 node = numa_node_id();
2960 ac = cpu_cache_get(cachep);
2961 batchcount = ac->batchcount;
2962 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2964 * If there was little recent activity on this cache, then
2965 * perform only a partial refill. Otherwise we could generate
2966 * refill bouncing.
2968 batchcount = BATCHREFILL_LIMIT;
2970 l3 = cachep->nodelists[node];
2972 BUG_ON(ac->avail > 0 || !l3);
2973 spin_lock(&l3->list_lock);
2975 /* See if we can refill from the shared array */
2976 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2977 goto alloc_done;
2979 while (batchcount > 0) {
2980 struct list_head *entry;
2981 struct slab *slabp;
2982 /* Get slab alloc is to come from. */
2983 entry = l3->slabs_partial.next;
2984 if (entry == &l3->slabs_partial) {
2985 l3->free_touched = 1;
2986 entry = l3->slabs_free.next;
2987 if (entry == &l3->slabs_free)
2988 goto must_grow;
2991 slabp = list_entry(entry, struct slab, list);
2992 check_slabp(cachep, slabp);
2993 check_spinlock_acquired(cachep);
2996 * The slab was either on partial or free list so
2997 * there must be at least one object available for
2998 * allocation.
3000 BUG_ON(slabp->inuse < 0 || slabp->inuse >= cachep->num);
3002 while (slabp->inuse < cachep->num && batchcount--) {
3003 STATS_INC_ALLOCED(cachep);
3004 STATS_INC_ACTIVE(cachep);
3005 STATS_SET_HIGH(cachep);
3007 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
3008 node);
3010 check_slabp(cachep, slabp);
3012 /* move slabp to correct slabp list: */
3013 list_del(&slabp->list);
3014 if (slabp->free == BUFCTL_END)
3015 list_add(&slabp->list, &l3->slabs_full);
3016 else
3017 list_add(&slabp->list, &l3->slabs_partial);
3020 must_grow:
3021 l3->free_objects -= ac->avail;
3022 alloc_done:
3023 spin_unlock(&l3->list_lock);
3025 if (unlikely(!ac->avail)) {
3026 int x;
3027 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3029 /* cache_grow can reenable interrupts, then ac could change. */
3030 ac = cpu_cache_get(cachep);
3031 if (!x && ac->avail == 0) /* no objects in sight? abort */
3032 return NULL;
3034 if (!ac->avail) /* objects refilled by interrupt? */
3035 goto retry;
3037 ac->touched = 1;
3038 return ac->entry[--ac->avail];
3041 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3042 gfp_t flags)
3044 might_sleep_if(flags & __GFP_WAIT);
3045 #if DEBUG
3046 kmem_flagcheck(cachep, flags);
3047 #endif
3050 #if DEBUG
3051 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3052 gfp_t flags, void *objp, void *caller)
3054 if (!objp)
3055 return objp;
3056 if (cachep->flags & SLAB_POISON) {
3057 #ifdef CONFIG_DEBUG_PAGEALLOC
3058 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3059 kernel_map_pages(virt_to_page(objp),
3060 cachep->buffer_size / PAGE_SIZE, 1);
3061 else
3062 check_poison_obj(cachep, objp);
3063 #else
3064 check_poison_obj(cachep, objp);
3065 #endif
3066 poison_obj(cachep, objp, POISON_INUSE);
3068 if (cachep->flags & SLAB_STORE_USER)
3069 *dbg_userword(cachep, objp) = caller;
3071 if (cachep->flags & SLAB_RED_ZONE) {
3072 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3073 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3074 slab_error(cachep, "double free, or memory outside"
3075 " object was overwritten");
3076 printk(KERN_ERR
3077 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3078 objp, *dbg_redzone1(cachep, objp),
3079 *dbg_redzone2(cachep, objp));
3081 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3082 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3084 #ifdef CONFIG_DEBUG_SLAB_LEAK
3086 struct slab *slabp;
3087 unsigned objnr;
3089 slabp = page_get_slab(virt_to_head_page(objp));
3090 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3091 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3093 #endif
3094 objp += obj_offset(cachep);
3095 if (cachep->ctor && cachep->flags & SLAB_POISON)
3096 cachep->ctor(cachep, objp);
3097 #if ARCH_SLAB_MINALIGN
3098 if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3099 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3100 objp, ARCH_SLAB_MINALIGN);
3102 #endif
3103 return objp;
3105 #else
3106 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3107 #endif
3109 #ifdef CONFIG_FAILSLAB
3111 static struct failslab_attr {
3113 struct fault_attr attr;
3115 u32 ignore_gfp_wait;
3116 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3117 struct dentry *ignore_gfp_wait_file;
3118 #endif
3120 } failslab = {
3121 .attr = FAULT_ATTR_INITIALIZER,
3122 .ignore_gfp_wait = 1,
3125 static int __init setup_failslab(char *str)
3127 return setup_fault_attr(&failslab.attr, str);
3129 __setup("failslab=", setup_failslab);
3131 static int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3133 if (cachep == &cache_cache)
3134 return 0;
3135 if (flags & __GFP_NOFAIL)
3136 return 0;
3137 if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT))
3138 return 0;
3140 return should_fail(&failslab.attr, obj_size(cachep));
3143 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3145 static int __init failslab_debugfs(void)
3147 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
3148 struct dentry *dir;
3149 int err;
3151 err = init_fault_attr_dentries(&failslab.attr, "failslab");
3152 if (err)
3153 return err;
3154 dir = failslab.attr.dentries.dir;
3156 failslab.ignore_gfp_wait_file =
3157 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3158 &failslab.ignore_gfp_wait);
3160 if (!failslab.ignore_gfp_wait_file) {
3161 err = -ENOMEM;
3162 debugfs_remove(failslab.ignore_gfp_wait_file);
3163 cleanup_fault_attr_dentries(&failslab.attr);
3166 return err;
3169 late_initcall(failslab_debugfs);
3171 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3173 #else /* CONFIG_FAILSLAB */
3175 static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3177 return 0;
3180 #endif /* CONFIG_FAILSLAB */
3182 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3184 void *objp;
3185 struct array_cache *ac;
3187 check_irq_off();
3189 ac = cpu_cache_get(cachep);
3190 if (likely(ac->avail)) {
3191 STATS_INC_ALLOCHIT(cachep);
3192 ac->touched = 1;
3193 objp = ac->entry[--ac->avail];
3194 } else {
3195 STATS_INC_ALLOCMISS(cachep);
3196 objp = cache_alloc_refill(cachep, flags);
3198 return objp;
3201 #ifdef CONFIG_NUMA
3203 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3205 * If we are in_interrupt, then process context, including cpusets and
3206 * mempolicy, may not apply and should not be used for allocation policy.
3208 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3210 int nid_alloc, nid_here;
3212 if (in_interrupt() || (flags & __GFP_THISNODE))
3213 return NULL;
3214 nid_alloc = nid_here = numa_node_id();
3215 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3216 nid_alloc = cpuset_mem_spread_node();
3217 else if (current->mempolicy)
3218 nid_alloc = slab_node(current->mempolicy);
3219 if (nid_alloc != nid_here)
3220 return ____cache_alloc_node(cachep, flags, nid_alloc);
3221 return NULL;
3225 * Fallback function if there was no memory available and no objects on a
3226 * certain node and fall back is permitted. First we scan all the
3227 * available nodelists for available objects. If that fails then we
3228 * perform an allocation without specifying a node. This allows the page
3229 * allocator to do its reclaim / fallback magic. We then insert the
3230 * slab into the proper nodelist and then allocate from it.
3232 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3234 struct zonelist *zonelist;
3235 gfp_t local_flags;
3236 struct zoneref *z;
3237 struct zone *zone;
3238 enum zone_type high_zoneidx = gfp_zone(flags);
3239 void *obj = NULL;
3240 int nid;
3242 if (flags & __GFP_THISNODE)
3243 return NULL;
3245 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
3246 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3248 retry:
3250 * Look through allowed nodes for objects available
3251 * from existing per node queues.
3253 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3254 nid = zone_to_nid(zone);
3256 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3257 cache->nodelists[nid] &&
3258 cache->nodelists[nid]->free_objects) {
3259 obj = ____cache_alloc_node(cache,
3260 flags | GFP_THISNODE, nid);
3261 if (obj)
3262 break;
3266 if (!obj) {
3268 * This allocation will be performed within the constraints
3269 * of the current cpuset / memory policy requirements.
3270 * We may trigger various forms of reclaim on the allowed
3271 * set and go into memory reserves if necessary.
3273 if (local_flags & __GFP_WAIT)
3274 local_irq_enable();
3275 kmem_flagcheck(cache, flags);
3276 obj = kmem_getpages(cache, local_flags, -1);
3277 if (local_flags & __GFP_WAIT)
3278 local_irq_disable();
3279 if (obj) {
3281 * Insert into the appropriate per node queues
3283 nid = page_to_nid(virt_to_page(obj));
3284 if (cache_grow(cache, flags, nid, obj)) {
3285 obj = ____cache_alloc_node(cache,
3286 flags | GFP_THISNODE, nid);
3287 if (!obj)
3289 * Another processor may allocate the
3290 * objects in the slab since we are
3291 * not holding any locks.
3293 goto retry;
3294 } else {
3295 /* cache_grow already freed obj */
3296 obj = NULL;
3300 return obj;
3304 * A interface to enable slab creation on nodeid
3306 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3307 int nodeid)
3309 struct list_head *entry;
3310 struct slab *slabp;
3311 struct kmem_list3 *l3;
3312 void *obj;
3313 int x;
3315 l3 = cachep->nodelists[nodeid];
3316 BUG_ON(!l3);
3318 retry:
3319 check_irq_off();
3320 spin_lock(&l3->list_lock);
3321 entry = l3->slabs_partial.next;
3322 if (entry == &l3->slabs_partial) {
3323 l3->free_touched = 1;
3324 entry = l3->slabs_free.next;
3325 if (entry == &l3->slabs_free)
3326 goto must_grow;
3329 slabp = list_entry(entry, struct slab, list);
3330 check_spinlock_acquired_node(cachep, nodeid);
3331 check_slabp(cachep, slabp);
3333 STATS_INC_NODEALLOCS(cachep);
3334 STATS_INC_ACTIVE(cachep);
3335 STATS_SET_HIGH(cachep);
3337 BUG_ON(slabp->inuse == cachep->num);
3339 obj = slab_get_obj(cachep, slabp, nodeid);
3340 check_slabp(cachep, slabp);
3341 l3->free_objects--;
3342 /* move slabp to correct slabp list: */
3343 list_del(&slabp->list);
3345 if (slabp->free == BUFCTL_END)
3346 list_add(&slabp->list, &l3->slabs_full);
3347 else
3348 list_add(&slabp->list, &l3->slabs_partial);
3350 spin_unlock(&l3->list_lock);
3351 goto done;
3353 must_grow:
3354 spin_unlock(&l3->list_lock);
3355 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3356 if (x)
3357 goto retry;
3359 return fallback_alloc(cachep, flags);
3361 done:
3362 return obj;
3366 * kmem_cache_alloc_node - Allocate an object on the specified node
3367 * @cachep: The cache to allocate from.
3368 * @flags: See kmalloc().
3369 * @nodeid: node number of the target node.
3370 * @caller: return address of caller, used for debug information
3372 * Identical to kmem_cache_alloc but it will allocate memory on the given
3373 * node, which can improve the performance for cpu bound structures.
3375 * Fallback to other node is possible if __GFP_THISNODE is not set.
3377 static __always_inline void *
3378 __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3379 void *caller)
3381 unsigned long save_flags;
3382 void *ptr;
3384 if (should_failslab(cachep, flags))
3385 return NULL;
3387 cache_alloc_debugcheck_before(cachep, flags);
3388 local_irq_save(save_flags);
3390 if (unlikely(nodeid == -1))
3391 nodeid = numa_node_id();
3393 if (unlikely(!cachep->nodelists[nodeid])) {
3394 /* Node not bootstrapped yet */
3395 ptr = fallback_alloc(cachep, flags);
3396 goto out;
3399 if (nodeid == numa_node_id()) {
3401 * Use the locally cached objects if possible.
3402 * However ____cache_alloc does not allow fallback
3403 * to other nodes. It may fail while we still have
3404 * objects on other nodes available.
3406 ptr = ____cache_alloc(cachep, flags);
3407 if (ptr)
3408 goto out;
3410 /* ___cache_alloc_node can fall back to other nodes */
3411 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3412 out:
3413 local_irq_restore(save_flags);
3414 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3416 if (unlikely((flags & __GFP_ZERO) && ptr))
3417 memset(ptr, 0, obj_size(cachep));
3419 return ptr;
3422 static __always_inline void *
3423 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3425 void *objp;
3427 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3428 objp = alternate_node_alloc(cache, flags);
3429 if (objp)
3430 goto out;
3432 objp = ____cache_alloc(cache, flags);
3435 * We may just have run out of memory on the local node.
3436 * ____cache_alloc_node() knows how to locate memory on other nodes
3438 if (!objp)
3439 objp = ____cache_alloc_node(cache, flags, numa_node_id());
3441 out:
3442 return objp;
3444 #else
3446 static __always_inline void *
3447 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3449 return ____cache_alloc(cachep, flags);
3452 #endif /* CONFIG_NUMA */
3454 static __always_inline void *
3455 __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3457 unsigned long save_flags;
3458 void *objp;
3460 if (should_failslab(cachep, flags))
3461 return NULL;
3463 cache_alloc_debugcheck_before(cachep, flags);
3464 local_irq_save(save_flags);
3465 objp = __do_cache_alloc(cachep, flags);
3466 local_irq_restore(save_flags);
3467 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3468 prefetchw(objp);
3470 if (unlikely((flags & __GFP_ZERO) && objp))
3471 memset(objp, 0, obj_size(cachep));
3473 return objp;
3477 * Caller needs to acquire correct kmem_list's list_lock
3479 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3480 int node)
3482 int i;
3483 struct kmem_list3 *l3;
3485 for (i = 0; i < nr_objects; i++) {
3486 void *objp = objpp[i];
3487 struct slab *slabp;
3489 slabp = virt_to_slab(objp);
3490 l3 = cachep->nodelists[node];
3491 list_del(&slabp->list);
3492 check_spinlock_acquired_node(cachep, node);
3493 check_slabp(cachep, slabp);
3494 slab_put_obj(cachep, slabp, objp, node);
3495 STATS_DEC_ACTIVE(cachep);
3496 l3->free_objects++;
3497 check_slabp(cachep, slabp);
3499 /* fixup slab chains */
3500 if (slabp->inuse == 0) {
3501 if (l3->free_objects > l3->free_limit) {
3502 l3->free_objects -= cachep->num;
3503 /* No need to drop any previously held
3504 * lock here, even if we have a off-slab slab
3505 * descriptor it is guaranteed to come from
3506 * a different cache, refer to comments before
3507 * alloc_slabmgmt.
3509 slab_destroy(cachep, slabp);
3510 } else {
3511 list_add(&slabp->list, &l3->slabs_free);
3513 } else {
3514 /* Unconditionally move a slab to the end of the
3515 * partial list on free - maximum time for the
3516 * other objects to be freed, too.
3518 list_add_tail(&slabp->list, &l3->slabs_partial);
3523 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3525 int batchcount;
3526 struct kmem_list3 *l3;
3527 int node = numa_node_id();
3529 batchcount = ac->batchcount;
3530 #if DEBUG
3531 BUG_ON(!batchcount || batchcount > ac->avail);
3532 #endif
3533 check_irq_off();
3534 l3 = cachep->nodelists[node];
3535 spin_lock(&l3->list_lock);
3536 if (l3->shared) {
3537 struct array_cache *shared_array = l3->shared;
3538 int max = shared_array->limit - shared_array->avail;
3539 if (max) {
3540 if (batchcount > max)
3541 batchcount = max;
3542 memcpy(&(shared_array->entry[shared_array->avail]),
3543 ac->entry, sizeof(void *) * batchcount);
3544 shared_array->avail += batchcount;
3545 goto free_done;
3549 free_block(cachep, ac->entry, batchcount, node);
3550 free_done:
3551 #if STATS
3553 int i = 0;
3554 struct list_head *p;
3556 p = l3->slabs_free.next;
3557 while (p != &(l3->slabs_free)) {
3558 struct slab *slabp;
3560 slabp = list_entry(p, struct slab, list);
3561 BUG_ON(slabp->inuse);
3563 i++;
3564 p = p->next;
3566 STATS_SET_FREEABLE(cachep, i);
3568 #endif
3569 spin_unlock(&l3->list_lock);
3570 ac->avail -= batchcount;
3571 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3575 * Release an obj back to its cache. If the obj has a constructed state, it must
3576 * be in this state _before_ it is released. Called with disabled ints.
3578 static inline void __cache_free(struct kmem_cache *cachep, void *objp)
3580 struct array_cache *ac = cpu_cache_get(cachep);
3582 check_irq_off();
3583 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3586 * Skip calling cache_free_alien() when the platform is not numa.
3587 * This will avoid cache misses that happen while accessing slabp (which
3588 * is per page memory reference) to get nodeid. Instead use a global
3589 * variable to skip the call, which is mostly likely to be present in
3590 * the cache.
3592 if (numa_platform && cache_free_alien(cachep, objp))
3593 return;
3595 if (likely(ac->avail < ac->limit)) {
3596 STATS_INC_FREEHIT(cachep);
3597 ac->entry[ac->avail++] = objp;
3598 return;
3599 } else {
3600 STATS_INC_FREEMISS(cachep);
3601 cache_flusharray(cachep, ac);
3602 ac->entry[ac->avail++] = objp;
3607 * kmem_cache_alloc - Allocate an object
3608 * @cachep: The cache to allocate from.
3609 * @flags: See kmalloc().
3611 * Allocate an object from this cache. The flags are only relevant
3612 * if the cache has no available objects.
3614 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3616 return __cache_alloc(cachep, flags, __builtin_return_address(0));
3618 EXPORT_SYMBOL(kmem_cache_alloc);
3621 * kmem_ptr_validate - check if an untrusted pointer might be a slab entry.
3622 * @cachep: the cache we're checking against
3623 * @ptr: pointer to validate
3625 * This verifies that the untrusted pointer looks sane;
3626 * it is _not_ a guarantee that the pointer is actually
3627 * part of the slab cache in question, but it at least
3628 * validates that the pointer can be dereferenced and
3629 * looks half-way sane.
3631 * Currently only used for dentry validation.
3633 int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
3635 unsigned long addr = (unsigned long)ptr;
3636 unsigned long min_addr = PAGE_OFFSET;
3637 unsigned long align_mask = BYTES_PER_WORD - 1;
3638 unsigned long size = cachep->buffer_size;
3639 struct page *page;
3641 if (unlikely(addr < min_addr))
3642 goto out;
3643 if (unlikely(addr > (unsigned long)high_memory - size))
3644 goto out;
3645 if (unlikely(addr & align_mask))
3646 goto out;
3647 if (unlikely(!kern_addr_valid(addr)))
3648 goto out;
3649 if (unlikely(!kern_addr_valid(addr + size - 1)))
3650 goto out;
3651 page = virt_to_page(ptr);
3652 if (unlikely(!PageSlab(page)))
3653 goto out;
3654 if (unlikely(page_get_cache(page) != cachep))
3655 goto out;
3656 return 1;
3657 out:
3658 return 0;
3661 #ifdef CONFIG_NUMA
3662 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3664 return __cache_alloc_node(cachep, flags, nodeid,
3665 __builtin_return_address(0));
3667 EXPORT_SYMBOL(kmem_cache_alloc_node);
3669 static __always_inline void *
3670 __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3672 struct kmem_cache *cachep;
3674 cachep = kmem_find_general_cachep(size, flags);
3675 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3676 return cachep;
3677 return kmem_cache_alloc_node(cachep, flags, node);
3680 #ifdef CONFIG_DEBUG_SLAB
3681 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3683 return __do_kmalloc_node(size, flags, node,
3684 __builtin_return_address(0));
3686 EXPORT_SYMBOL(__kmalloc_node);
3688 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3689 int node, void *caller)
3691 return __do_kmalloc_node(size, flags, node, caller);
3693 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3694 #else
3695 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3697 return __do_kmalloc_node(size, flags, node, NULL);
3699 EXPORT_SYMBOL(__kmalloc_node);
3700 #endif /* CONFIG_DEBUG_SLAB */
3701 #endif /* CONFIG_NUMA */
3704 * __do_kmalloc - allocate memory
3705 * @size: how many bytes of memory are required.
3706 * @flags: the type of memory to allocate (see kmalloc).
3707 * @caller: function caller for debug tracking of the caller
3709 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3710 void *caller)
3712 struct kmem_cache *cachep;
3714 /* If you want to save a few bytes .text space: replace
3715 * __ with kmem_.
3716 * Then kmalloc uses the uninlined functions instead of the inline
3717 * functions.
3719 cachep = __find_general_cachep(size, flags);
3720 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3721 return cachep;
3722 return __cache_alloc(cachep, flags, caller);
3726 #ifdef CONFIG_DEBUG_SLAB
3727 void *__kmalloc(size_t size, gfp_t flags)
3729 return __do_kmalloc(size, flags, __builtin_return_address(0));
3731 EXPORT_SYMBOL(__kmalloc);
3733 void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3735 return __do_kmalloc(size, flags, caller);
3737 EXPORT_SYMBOL(__kmalloc_track_caller);
3739 #else
3740 void *__kmalloc(size_t size, gfp_t flags)
3742 return __do_kmalloc(size, flags, NULL);
3744 EXPORT_SYMBOL(__kmalloc);
3745 #endif
3748 * kmem_cache_free - Deallocate an object
3749 * @cachep: The cache the allocation was from.
3750 * @objp: The previously allocated object.
3752 * Free an object which was previously allocated from this
3753 * cache.
3755 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3757 unsigned long flags;
3759 local_irq_save(flags);
3760 debug_check_no_locks_freed(objp, obj_size(cachep));
3761 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3762 debug_check_no_obj_freed(objp, obj_size(cachep));
3763 __cache_free(cachep, objp);
3764 local_irq_restore(flags);
3766 EXPORT_SYMBOL(kmem_cache_free);
3769 * kfree - free previously allocated memory
3770 * @objp: pointer returned by kmalloc.
3772 * If @objp is NULL, no operation is performed.
3774 * Don't free memory not originally allocated by kmalloc()
3775 * or you will run into trouble.
3777 void kfree(const void *objp)
3779 struct kmem_cache *c;
3780 unsigned long flags;
3782 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3783 return;
3784 local_irq_save(flags);
3785 kfree_debugcheck(objp);
3786 c = virt_to_cache(objp);
3787 debug_check_no_locks_freed(objp, obj_size(c));
3788 debug_check_no_obj_freed(objp, obj_size(c));
3789 __cache_free(c, (void *)objp);
3790 local_irq_restore(flags);
3792 EXPORT_SYMBOL(kfree);
3794 unsigned int kmem_cache_size(struct kmem_cache *cachep)
3796 return obj_size(cachep);
3798 EXPORT_SYMBOL(kmem_cache_size);
3800 const char *kmem_cache_name(struct kmem_cache *cachep)
3802 return cachep->name;
3804 EXPORT_SYMBOL_GPL(kmem_cache_name);
3807 * This initializes kmem_list3 or resizes various caches for all nodes.
3809 static int alloc_kmemlist(struct kmem_cache *cachep)
3811 int node;
3812 struct kmem_list3 *l3;
3813 struct array_cache *new_shared;
3814 struct array_cache **new_alien = NULL;
3816 for_each_online_node(node) {
3818 if (use_alien_caches) {
3819 new_alien = alloc_alien_cache(node, cachep->limit);
3820 if (!new_alien)
3821 goto fail;
3824 new_shared = NULL;
3825 if (cachep->shared) {
3826 new_shared = alloc_arraycache(node,
3827 cachep->shared*cachep->batchcount,
3828 0xbaadf00d);
3829 if (!new_shared) {
3830 free_alien_cache(new_alien);
3831 goto fail;
3835 l3 = cachep->nodelists[node];
3836 if (l3) {
3837 struct array_cache *shared = l3->shared;
3839 spin_lock_irq(&l3->list_lock);
3841 if (shared)
3842 free_block(cachep, shared->entry,
3843 shared->avail, node);
3845 l3->shared = new_shared;
3846 if (!l3->alien) {
3847 l3->alien = new_alien;
3848 new_alien = NULL;
3850 l3->free_limit = (1 + nr_cpus_node(node)) *
3851 cachep->batchcount + cachep->num;
3852 spin_unlock_irq(&l3->list_lock);
3853 kfree(shared);
3854 free_alien_cache(new_alien);
3855 continue;
3857 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3858 if (!l3) {
3859 free_alien_cache(new_alien);
3860 kfree(new_shared);
3861 goto fail;
3864 kmem_list3_init(l3);
3865 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3866 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3867 l3->shared = new_shared;
3868 l3->alien = new_alien;
3869 l3->free_limit = (1 + nr_cpus_node(node)) *
3870 cachep->batchcount + cachep->num;
3871 cachep->nodelists[node] = l3;
3873 return 0;
3875 fail:
3876 if (!cachep->next.next) {
3877 /* Cache is not active yet. Roll back what we did */
3878 node--;
3879 while (node >= 0) {
3880 if (cachep->nodelists[node]) {
3881 l3 = cachep->nodelists[node];
3883 kfree(l3->shared);
3884 free_alien_cache(l3->alien);
3885 kfree(l3);
3886 cachep->nodelists[node] = NULL;
3888 node--;
3891 return -ENOMEM;
3894 struct ccupdate_struct {
3895 struct kmem_cache *cachep;
3896 struct array_cache *new[NR_CPUS];
3899 static void do_ccupdate_local(void *info)
3901 struct ccupdate_struct *new = info;
3902 struct array_cache *old;
3904 check_irq_off();
3905 old = cpu_cache_get(new->cachep);
3907 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3908 new->new[smp_processor_id()] = old;
3911 /* Always called with the cache_chain_mutex held */
3912 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3913 int batchcount, int shared)
3915 struct ccupdate_struct *new;
3916 int i;
3918 new = kzalloc(sizeof(*new), GFP_KERNEL);
3919 if (!new)
3920 return -ENOMEM;
3922 for_each_online_cpu(i) {
3923 new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
3924 batchcount);
3925 if (!new->new[i]) {
3926 for (i--; i >= 0; i--)
3927 kfree(new->new[i]);
3928 kfree(new);
3929 return -ENOMEM;
3932 new->cachep = cachep;
3934 on_each_cpu(do_ccupdate_local, (void *)new, 1);
3936 check_irq_on();
3937 cachep->batchcount = batchcount;
3938 cachep->limit = limit;
3939 cachep->shared = shared;
3941 for_each_online_cpu(i) {
3942 struct array_cache *ccold = new->new[i];
3943 if (!ccold)
3944 continue;
3945 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3946 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3947 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3948 kfree(ccold);
3950 kfree(new);
3951 return alloc_kmemlist(cachep);
3954 /* Called with cache_chain_mutex held always */
3955 static int enable_cpucache(struct kmem_cache *cachep)
3957 int err;
3958 int limit, shared;
3961 * The head array serves three purposes:
3962 * - create a LIFO ordering, i.e. return objects that are cache-warm
3963 * - reduce the number of spinlock operations.
3964 * - reduce the number of linked list operations on the slab and
3965 * bufctl chains: array operations are cheaper.
3966 * The numbers are guessed, we should auto-tune as described by
3967 * Bonwick.
3969 if (cachep->buffer_size > 131072)
3970 limit = 1;
3971 else if (cachep->buffer_size > PAGE_SIZE)
3972 limit = 8;
3973 else if (cachep->buffer_size > 1024)
3974 limit = 24;
3975 else if (cachep->buffer_size > 256)
3976 limit = 54;
3977 else
3978 limit = 120;
3981 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3982 * allocation behaviour: Most allocs on one cpu, most free operations
3983 * on another cpu. For these cases, an efficient object passing between
3984 * cpus is necessary. This is provided by a shared array. The array
3985 * replaces Bonwick's magazine layer.
3986 * On uniprocessor, it's functionally equivalent (but less efficient)
3987 * to a larger limit. Thus disabled by default.
3989 shared = 0;
3990 if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
3991 shared = 8;
3993 #if DEBUG
3995 * With debugging enabled, large batchcount lead to excessively long
3996 * periods with disabled local interrupts. Limit the batchcount
3998 if (limit > 32)
3999 limit = 32;
4000 #endif
4001 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
4002 if (err)
4003 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
4004 cachep->name, -err);
4005 return err;
4009 * Drain an array if it contains any elements taking the l3 lock only if
4010 * necessary. Note that the l3 listlock also protects the array_cache
4011 * if drain_array() is used on the shared array.
4013 void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4014 struct array_cache *ac, int force, int node)
4016 int tofree;
4018 if (!ac || !ac->avail)
4019 return;
4020 if (ac->touched && !force) {
4021 ac->touched = 0;
4022 } else {
4023 spin_lock_irq(&l3->list_lock);
4024 if (ac->avail) {
4025 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4026 if (tofree > ac->avail)
4027 tofree = (ac->avail + 1) / 2;
4028 free_block(cachep, ac->entry, tofree, node);
4029 ac->avail -= tofree;
4030 memmove(ac->entry, &(ac->entry[tofree]),
4031 sizeof(void *) * ac->avail);
4033 spin_unlock_irq(&l3->list_lock);
4038 * cache_reap - Reclaim memory from caches.
4039 * @w: work descriptor
4041 * Called from workqueue/eventd every few seconds.
4042 * Purpose:
4043 * - clear the per-cpu caches for this CPU.
4044 * - return freeable pages to the main free memory pool.
4046 * If we cannot acquire the cache chain mutex then just give up - we'll try
4047 * again on the next iteration.
4049 static void cache_reap(struct work_struct *w)
4051 struct kmem_cache *searchp;
4052 struct kmem_list3 *l3;
4053 int node = numa_node_id();
4054 struct delayed_work *work =
4055 container_of(w, struct delayed_work, work);
4057 if (!mutex_trylock(&cache_chain_mutex))
4058 /* Give up. Setup the next iteration. */
4059 goto out;
4061 list_for_each_entry(searchp, &cache_chain, next) {
4062 check_irq_on();
4065 * We only take the l3 lock if absolutely necessary and we
4066 * have established with reasonable certainty that
4067 * we can do some work if the lock was obtained.
4069 l3 = searchp->nodelists[node];
4071 reap_alien(searchp, l3);
4073 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
4076 * These are racy checks but it does not matter
4077 * if we skip one check or scan twice.
4079 if (time_after(l3->next_reap, jiffies))
4080 goto next;
4082 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
4084 drain_array(searchp, l3, l3->shared, 0, node);
4086 if (l3->free_touched)
4087 l3->free_touched = 0;
4088 else {
4089 int freed;
4091 freed = drain_freelist(searchp, l3, (l3->free_limit +
4092 5 * searchp->num - 1) / (5 * searchp->num));
4093 STATS_ADD_REAPED(searchp, freed);
4095 next:
4096 cond_resched();
4098 check_irq_on();
4099 mutex_unlock(&cache_chain_mutex);
4100 next_reap_node();
4101 out:
4102 /* Set up the next iteration */
4103 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
4106 #ifdef CONFIG_SLABINFO
4108 static void print_slabinfo_header(struct seq_file *m)
4111 * Output format version, so at least we can change it
4112 * without _too_ many complaints.
4114 #if STATS
4115 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
4116 #else
4117 seq_puts(m, "slabinfo - version: 2.1\n");
4118 #endif
4119 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4120 "<objperslab> <pagesperslab>");
4121 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4122 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4123 #if STATS
4124 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4125 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4126 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4127 #endif
4128 seq_putc(m, '\n');
4131 static void *s_start(struct seq_file *m, loff_t *pos)
4133 loff_t n = *pos;
4135 mutex_lock(&cache_chain_mutex);
4136 if (!n)
4137 print_slabinfo_header(m);
4139 return seq_list_start(&cache_chain, *pos);
4142 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4144 return seq_list_next(p, &cache_chain, pos);
4147 static void s_stop(struct seq_file *m, void *p)
4149 mutex_unlock(&cache_chain_mutex);
4152 static int s_show(struct seq_file *m, void *p)
4154 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4155 struct slab *slabp;
4156 unsigned long active_objs;
4157 unsigned long num_objs;
4158 unsigned long active_slabs = 0;
4159 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4160 const char *name;
4161 char *error = NULL;
4162 int node;
4163 struct kmem_list3 *l3;
4165 active_objs = 0;
4166 num_slabs = 0;
4167 for_each_online_node(node) {
4168 l3 = cachep->nodelists[node];
4169 if (!l3)
4170 continue;
4172 check_irq_on();
4173 spin_lock_irq(&l3->list_lock);
4175 list_for_each_entry(slabp, &l3->slabs_full, list) {
4176 if (slabp->inuse != cachep->num && !error)
4177 error = "slabs_full accounting error";
4178 active_objs += cachep->num;
4179 active_slabs++;
4181 list_for_each_entry(slabp, &l3->slabs_partial, list) {
4182 if (slabp->inuse == cachep->num && !error)
4183 error = "slabs_partial inuse accounting error";
4184 if (!slabp->inuse && !error)
4185 error = "slabs_partial/inuse accounting error";
4186 active_objs += slabp->inuse;
4187 active_slabs++;
4189 list_for_each_entry(slabp, &l3->slabs_free, list) {
4190 if (slabp->inuse && !error)
4191 error = "slabs_free/inuse accounting error";
4192 num_slabs++;
4194 free_objects += l3->free_objects;
4195 if (l3->shared)
4196 shared_avail += l3->shared->avail;
4198 spin_unlock_irq(&l3->list_lock);
4200 num_slabs += active_slabs;
4201 num_objs = num_slabs * cachep->num;
4202 if (num_objs - active_objs != free_objects && !error)
4203 error = "free_objects accounting error";
4205 name = cachep->name;
4206 if (error)
4207 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4209 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4210 name, active_objs, num_objs, cachep->buffer_size,
4211 cachep->num, (1 << cachep->gfporder));
4212 seq_printf(m, " : tunables %4u %4u %4u",
4213 cachep->limit, cachep->batchcount, cachep->shared);
4214 seq_printf(m, " : slabdata %6lu %6lu %6lu",
4215 active_slabs, num_slabs, shared_avail);
4216 #if STATS
4217 { /* list3 stats */
4218 unsigned long high = cachep->high_mark;
4219 unsigned long allocs = cachep->num_allocations;
4220 unsigned long grown = cachep->grown;
4221 unsigned long reaped = cachep->reaped;
4222 unsigned long errors = cachep->errors;
4223 unsigned long max_freeable = cachep->max_freeable;
4224 unsigned long node_allocs = cachep->node_allocs;
4225 unsigned long node_frees = cachep->node_frees;
4226 unsigned long overflows = cachep->node_overflow;
4228 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
4229 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
4230 reaped, errors, max_freeable, node_allocs,
4231 node_frees, overflows);
4233 /* cpu stats */
4235 unsigned long allochit = atomic_read(&cachep->allochit);
4236 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4237 unsigned long freehit = atomic_read(&cachep->freehit);
4238 unsigned long freemiss = atomic_read(&cachep->freemiss);
4240 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4241 allochit, allocmiss, freehit, freemiss);
4243 #endif
4244 seq_putc(m, '\n');
4245 return 0;
4249 * slabinfo_op - iterator that generates /proc/slabinfo
4251 * Output layout:
4252 * cache-name
4253 * num-active-objs
4254 * total-objs
4255 * object size
4256 * num-active-slabs
4257 * total-slabs
4258 * num-pages-per-slab
4259 * + further values on SMP and with statistics enabled
4262 const struct seq_operations slabinfo_op = {
4263 .start = s_start,
4264 .next = s_next,
4265 .stop = s_stop,
4266 .show = s_show,
4269 #define MAX_SLABINFO_WRITE 128
4271 * slabinfo_write - Tuning for the slab allocator
4272 * @file: unused
4273 * @buffer: user buffer
4274 * @count: data length
4275 * @ppos: unused
4277 ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4278 size_t count, loff_t *ppos)
4280 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4281 int limit, batchcount, shared, res;
4282 struct kmem_cache *cachep;
4284 if (count > MAX_SLABINFO_WRITE)
4285 return -EINVAL;
4286 if (copy_from_user(&kbuf, buffer, count))
4287 return -EFAULT;
4288 kbuf[MAX_SLABINFO_WRITE] = '\0';
4290 tmp = strchr(kbuf, ' ');
4291 if (!tmp)
4292 return -EINVAL;
4293 *tmp = '\0';
4294 tmp++;
4295 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4296 return -EINVAL;
4298 /* Find the cache in the chain of caches. */
4299 mutex_lock(&cache_chain_mutex);
4300 res = -EINVAL;
4301 list_for_each_entry(cachep, &cache_chain, next) {
4302 if (!strcmp(cachep->name, kbuf)) {
4303 if (limit < 1 || batchcount < 1 ||
4304 batchcount > limit || shared < 0) {
4305 res = 0;
4306 } else {
4307 res = do_tune_cpucache(cachep, limit,
4308 batchcount, shared);
4310 break;
4313 mutex_unlock(&cache_chain_mutex);
4314 if (res >= 0)
4315 res = count;
4316 return res;
4319 #ifdef CONFIG_DEBUG_SLAB_LEAK
4321 static void *leaks_start(struct seq_file *m, loff_t *pos)
4323 mutex_lock(&cache_chain_mutex);
4324 return seq_list_start(&cache_chain, *pos);
4327 static inline int add_caller(unsigned long *n, unsigned long v)
4329 unsigned long *p;
4330 int l;
4331 if (!v)
4332 return 1;
4333 l = n[1];
4334 p = n + 2;
4335 while (l) {
4336 int i = l/2;
4337 unsigned long *q = p + 2 * i;
4338 if (*q == v) {
4339 q[1]++;
4340 return 1;
4342 if (*q > v) {
4343 l = i;
4344 } else {
4345 p = q + 2;
4346 l -= i + 1;
4349 if (++n[1] == n[0])
4350 return 0;
4351 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4352 p[0] = v;
4353 p[1] = 1;
4354 return 1;
4357 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4359 void *p;
4360 int i;
4361 if (n[0] == n[1])
4362 return;
4363 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4364 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4365 continue;
4366 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4367 return;
4371 static void show_symbol(struct seq_file *m, unsigned long address)
4373 #ifdef CONFIG_KALLSYMS
4374 unsigned long offset, size;
4375 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4377 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4378 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4379 if (modname[0])
4380 seq_printf(m, " [%s]", modname);
4381 return;
4383 #endif
4384 seq_printf(m, "%p", (void *)address);
4387 static int leaks_show(struct seq_file *m, void *p)
4389 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4390 struct slab *slabp;
4391 struct kmem_list3 *l3;
4392 const char *name;
4393 unsigned long *n = m->private;
4394 int node;
4395 int i;
4397 if (!(cachep->flags & SLAB_STORE_USER))
4398 return 0;
4399 if (!(cachep->flags & SLAB_RED_ZONE))
4400 return 0;
4402 /* OK, we can do it */
4404 n[1] = 0;
4406 for_each_online_node(node) {
4407 l3 = cachep->nodelists[node];
4408 if (!l3)
4409 continue;
4411 check_irq_on();
4412 spin_lock_irq(&l3->list_lock);
4414 list_for_each_entry(slabp, &l3->slabs_full, list)
4415 handle_slab(n, cachep, slabp);
4416 list_for_each_entry(slabp, &l3->slabs_partial, list)
4417 handle_slab(n, cachep, slabp);
4418 spin_unlock_irq(&l3->list_lock);
4420 name = cachep->name;
4421 if (n[0] == n[1]) {
4422 /* Increase the buffer size */
4423 mutex_unlock(&cache_chain_mutex);
4424 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4425 if (!m->private) {
4426 /* Too bad, we are really out */
4427 m->private = n;
4428 mutex_lock(&cache_chain_mutex);
4429 return -ENOMEM;
4431 *(unsigned long *)m->private = n[0] * 2;
4432 kfree(n);
4433 mutex_lock(&cache_chain_mutex);
4434 /* Now make sure this entry will be retried */
4435 m->count = m->size;
4436 return 0;
4438 for (i = 0; i < n[1]; i++) {
4439 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4440 show_symbol(m, n[2*i+2]);
4441 seq_putc(m, '\n');
4444 return 0;
4447 const struct seq_operations slabstats_op = {
4448 .start = leaks_start,
4449 .next = s_next,
4450 .stop = s_stop,
4451 .show = leaks_show,
4453 #endif
4454 #endif
4457 * ksize - get the actual amount of memory allocated for a given object
4458 * @objp: Pointer to the object
4460 * kmalloc may internally round up allocations and return more memory
4461 * than requested. ksize() can be used to determine the actual amount of
4462 * memory allocated. The caller may use this additional memory, even though
4463 * a smaller amount of memory was initially specified with the kmalloc call.
4464 * The caller must guarantee that objp points to a valid object previously
4465 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4466 * must not be freed during the duration of the call.
4468 size_t ksize(const void *objp)
4470 BUG_ON(!objp);
4471 if (unlikely(objp == ZERO_SIZE_PTR))
4472 return 0;
4474 return obj_size(virt_to_cache(objp));
4476 EXPORT_SYMBOL(ksize);