One less parameter to __d_path
[linux-2.6/linux-2.6-openrd.git] / fs / namespace.c
blobeef57635ee07c551a79ab2ad30b9438897379ba4
1 /*
2 * linux/fs/namespace.c
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
11 #include <linux/syscalls.h>
12 #include <linux/slab.h>
13 #include <linux/sched.h>
14 #include <linux/smp_lock.h>
15 #include <linux/init.h>
16 #include <linux/kernel.h>
17 #include <linux/quotaops.h>
18 #include <linux/acct.h>
19 #include <linux/capability.h>
20 #include <linux/module.h>
21 #include <linux/sysfs.h>
22 #include <linux/seq_file.h>
23 #include <linux/mnt_namespace.h>
24 #include <linux/namei.h>
25 #include <linux/security.h>
26 #include <linux/mount.h>
27 #include <linux/ramfs.h>
28 #include <linux/log2.h>
29 #include <asm/uaccess.h>
30 #include <asm/unistd.h>
31 #include "pnode.h"
32 #include "internal.h"
34 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
35 #define HASH_SIZE (1UL << HASH_SHIFT)
37 /* spinlock for vfsmount related operations, inplace of dcache_lock */
38 __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
40 static int event;
42 static struct list_head *mount_hashtable __read_mostly;
43 static struct kmem_cache *mnt_cache __read_mostly;
44 static struct rw_semaphore namespace_sem;
46 /* /sys/fs */
47 struct kobject *fs_kobj;
48 EXPORT_SYMBOL_GPL(fs_kobj);
50 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
52 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
53 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
54 tmp = tmp + (tmp >> HASH_SHIFT);
55 return tmp & (HASH_SIZE - 1);
58 struct vfsmount *alloc_vfsmnt(const char *name)
60 struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
61 if (mnt) {
62 atomic_set(&mnt->mnt_count, 1);
63 INIT_LIST_HEAD(&mnt->mnt_hash);
64 INIT_LIST_HEAD(&mnt->mnt_child);
65 INIT_LIST_HEAD(&mnt->mnt_mounts);
66 INIT_LIST_HEAD(&mnt->mnt_list);
67 INIT_LIST_HEAD(&mnt->mnt_expire);
68 INIT_LIST_HEAD(&mnt->mnt_share);
69 INIT_LIST_HEAD(&mnt->mnt_slave_list);
70 INIT_LIST_HEAD(&mnt->mnt_slave);
71 if (name) {
72 int size = strlen(name) + 1;
73 char *newname = kmalloc(size, GFP_KERNEL);
74 if (newname) {
75 memcpy(newname, name, size);
76 mnt->mnt_devname = newname;
80 return mnt;
83 int simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
85 mnt->mnt_sb = sb;
86 mnt->mnt_root = dget(sb->s_root);
87 return 0;
90 EXPORT_SYMBOL(simple_set_mnt);
92 void free_vfsmnt(struct vfsmount *mnt)
94 kfree(mnt->mnt_devname);
95 kmem_cache_free(mnt_cache, mnt);
99 * find the first or last mount at @dentry on vfsmount @mnt depending on
100 * @dir. If @dir is set return the first mount else return the last mount.
102 struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
103 int dir)
105 struct list_head *head = mount_hashtable + hash(mnt, dentry);
106 struct list_head *tmp = head;
107 struct vfsmount *p, *found = NULL;
109 for (;;) {
110 tmp = dir ? tmp->next : tmp->prev;
111 p = NULL;
112 if (tmp == head)
113 break;
114 p = list_entry(tmp, struct vfsmount, mnt_hash);
115 if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
116 found = p;
117 break;
120 return found;
124 * lookup_mnt increments the ref count before returning
125 * the vfsmount struct.
127 struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
129 struct vfsmount *child_mnt;
130 spin_lock(&vfsmount_lock);
131 if ((child_mnt = __lookup_mnt(mnt, dentry, 1)))
132 mntget(child_mnt);
133 spin_unlock(&vfsmount_lock);
134 return child_mnt;
137 static inline int check_mnt(struct vfsmount *mnt)
139 return mnt->mnt_ns == current->nsproxy->mnt_ns;
142 static void touch_mnt_namespace(struct mnt_namespace *ns)
144 if (ns) {
145 ns->event = ++event;
146 wake_up_interruptible(&ns->poll);
150 static void __touch_mnt_namespace(struct mnt_namespace *ns)
152 if (ns && ns->event != event) {
153 ns->event = event;
154 wake_up_interruptible(&ns->poll);
158 static void detach_mnt(struct vfsmount *mnt, struct nameidata *old_nd)
160 old_nd->path.dentry = mnt->mnt_mountpoint;
161 old_nd->path.mnt = mnt->mnt_parent;
162 mnt->mnt_parent = mnt;
163 mnt->mnt_mountpoint = mnt->mnt_root;
164 list_del_init(&mnt->mnt_child);
165 list_del_init(&mnt->mnt_hash);
166 old_nd->path.dentry->d_mounted--;
169 void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
170 struct vfsmount *child_mnt)
172 child_mnt->mnt_parent = mntget(mnt);
173 child_mnt->mnt_mountpoint = dget(dentry);
174 dentry->d_mounted++;
177 static void attach_mnt(struct vfsmount *mnt, struct nameidata *nd)
179 mnt_set_mountpoint(nd->path.mnt, nd->path.dentry, mnt);
180 list_add_tail(&mnt->mnt_hash, mount_hashtable +
181 hash(nd->path.mnt, nd->path.dentry));
182 list_add_tail(&mnt->mnt_child, &nd->path.mnt->mnt_mounts);
186 * the caller must hold vfsmount_lock
188 static void commit_tree(struct vfsmount *mnt)
190 struct vfsmount *parent = mnt->mnt_parent;
191 struct vfsmount *m;
192 LIST_HEAD(head);
193 struct mnt_namespace *n = parent->mnt_ns;
195 BUG_ON(parent == mnt);
197 list_add_tail(&head, &mnt->mnt_list);
198 list_for_each_entry(m, &head, mnt_list)
199 m->mnt_ns = n;
200 list_splice(&head, n->list.prev);
202 list_add_tail(&mnt->mnt_hash, mount_hashtable +
203 hash(parent, mnt->mnt_mountpoint));
204 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
205 touch_mnt_namespace(n);
208 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
210 struct list_head *next = p->mnt_mounts.next;
211 if (next == &p->mnt_mounts) {
212 while (1) {
213 if (p == root)
214 return NULL;
215 next = p->mnt_child.next;
216 if (next != &p->mnt_parent->mnt_mounts)
217 break;
218 p = p->mnt_parent;
221 return list_entry(next, struct vfsmount, mnt_child);
224 static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
226 struct list_head *prev = p->mnt_mounts.prev;
227 while (prev != &p->mnt_mounts) {
228 p = list_entry(prev, struct vfsmount, mnt_child);
229 prev = p->mnt_mounts.prev;
231 return p;
234 static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
235 int flag)
237 struct super_block *sb = old->mnt_sb;
238 struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
240 if (mnt) {
241 mnt->mnt_flags = old->mnt_flags;
242 atomic_inc(&sb->s_active);
243 mnt->mnt_sb = sb;
244 mnt->mnt_root = dget(root);
245 mnt->mnt_mountpoint = mnt->mnt_root;
246 mnt->mnt_parent = mnt;
248 if (flag & CL_SLAVE) {
249 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
250 mnt->mnt_master = old;
251 CLEAR_MNT_SHARED(mnt);
252 } else if (!(flag & CL_PRIVATE)) {
253 if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old))
254 list_add(&mnt->mnt_share, &old->mnt_share);
255 if (IS_MNT_SLAVE(old))
256 list_add(&mnt->mnt_slave, &old->mnt_slave);
257 mnt->mnt_master = old->mnt_master;
259 if (flag & CL_MAKE_SHARED)
260 set_mnt_shared(mnt);
262 /* stick the duplicate mount on the same expiry list
263 * as the original if that was on one */
264 if (flag & CL_EXPIRE) {
265 spin_lock(&vfsmount_lock);
266 if (!list_empty(&old->mnt_expire))
267 list_add(&mnt->mnt_expire, &old->mnt_expire);
268 spin_unlock(&vfsmount_lock);
271 return mnt;
274 static inline void __mntput(struct vfsmount *mnt)
276 struct super_block *sb = mnt->mnt_sb;
277 dput(mnt->mnt_root);
278 free_vfsmnt(mnt);
279 deactivate_super(sb);
282 void mntput_no_expire(struct vfsmount *mnt)
284 repeat:
285 if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
286 if (likely(!mnt->mnt_pinned)) {
287 spin_unlock(&vfsmount_lock);
288 __mntput(mnt);
289 return;
291 atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
292 mnt->mnt_pinned = 0;
293 spin_unlock(&vfsmount_lock);
294 acct_auto_close_mnt(mnt);
295 security_sb_umount_close(mnt);
296 goto repeat;
300 EXPORT_SYMBOL(mntput_no_expire);
302 void mnt_pin(struct vfsmount *mnt)
304 spin_lock(&vfsmount_lock);
305 mnt->mnt_pinned++;
306 spin_unlock(&vfsmount_lock);
309 EXPORT_SYMBOL(mnt_pin);
311 void mnt_unpin(struct vfsmount *mnt)
313 spin_lock(&vfsmount_lock);
314 if (mnt->mnt_pinned) {
315 atomic_inc(&mnt->mnt_count);
316 mnt->mnt_pinned--;
318 spin_unlock(&vfsmount_lock);
321 EXPORT_SYMBOL(mnt_unpin);
323 static inline void mangle(struct seq_file *m, const char *s)
325 seq_escape(m, s, " \t\n\\");
329 * Simple .show_options callback for filesystems which don't want to
330 * implement more complex mount option showing.
332 * See also save_mount_options().
334 int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
336 const char *options = mnt->mnt_sb->s_options;
338 if (options != NULL && options[0]) {
339 seq_putc(m, ',');
340 mangle(m, options);
343 return 0;
345 EXPORT_SYMBOL(generic_show_options);
348 * If filesystem uses generic_show_options(), this function should be
349 * called from the fill_super() callback.
351 * The .remount_fs callback usually needs to be handled in a special
352 * way, to make sure, that previous options are not overwritten if the
353 * remount fails.
355 * Also note, that if the filesystem's .remount_fs function doesn't
356 * reset all options to their default value, but changes only newly
357 * given options, then the displayed options will not reflect reality
358 * any more.
360 void save_mount_options(struct super_block *sb, char *options)
362 kfree(sb->s_options);
363 sb->s_options = kstrdup(options, GFP_KERNEL);
365 EXPORT_SYMBOL(save_mount_options);
367 /* iterator */
368 static void *m_start(struct seq_file *m, loff_t *pos)
370 struct mnt_namespace *n = m->private;
372 down_read(&namespace_sem);
373 return seq_list_start(&n->list, *pos);
376 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
378 struct mnt_namespace *n = m->private;
380 return seq_list_next(v, &n->list, pos);
383 static void m_stop(struct seq_file *m, void *v)
385 up_read(&namespace_sem);
388 static int show_vfsmnt(struct seq_file *m, void *v)
390 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
391 int err = 0;
392 static struct proc_fs_info {
393 int flag;
394 char *str;
395 } fs_info[] = {
396 { MS_SYNCHRONOUS, ",sync" },
397 { MS_DIRSYNC, ",dirsync" },
398 { MS_MANDLOCK, ",mand" },
399 { 0, NULL }
401 static struct proc_fs_info mnt_info[] = {
402 { MNT_NOSUID, ",nosuid" },
403 { MNT_NODEV, ",nodev" },
404 { MNT_NOEXEC, ",noexec" },
405 { MNT_NOATIME, ",noatime" },
406 { MNT_NODIRATIME, ",nodiratime" },
407 { MNT_RELATIME, ",relatime" },
408 { 0, NULL }
410 struct proc_fs_info *fs_infop;
412 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
413 seq_putc(m, ' ');
414 seq_path(m, mnt, mnt->mnt_root, " \t\n\\");
415 seq_putc(m, ' ');
416 mangle(m, mnt->mnt_sb->s_type->name);
417 if (mnt->mnt_sb->s_subtype && mnt->mnt_sb->s_subtype[0]) {
418 seq_putc(m, '.');
419 mangle(m, mnt->mnt_sb->s_subtype);
421 seq_puts(m, mnt->mnt_sb->s_flags & MS_RDONLY ? " ro" : " rw");
422 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
423 if (mnt->mnt_sb->s_flags & fs_infop->flag)
424 seq_puts(m, fs_infop->str);
426 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
427 if (mnt->mnt_flags & fs_infop->flag)
428 seq_puts(m, fs_infop->str);
430 if (mnt->mnt_sb->s_op->show_options)
431 err = mnt->mnt_sb->s_op->show_options(m, mnt);
432 seq_puts(m, " 0 0\n");
433 return err;
436 struct seq_operations mounts_op = {
437 .start = m_start,
438 .next = m_next,
439 .stop = m_stop,
440 .show = show_vfsmnt
443 static int show_vfsstat(struct seq_file *m, void *v)
445 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
446 int err = 0;
448 /* device */
449 if (mnt->mnt_devname) {
450 seq_puts(m, "device ");
451 mangle(m, mnt->mnt_devname);
452 } else
453 seq_puts(m, "no device");
455 /* mount point */
456 seq_puts(m, " mounted on ");
457 seq_path(m, mnt, mnt->mnt_root, " \t\n\\");
458 seq_putc(m, ' ');
460 /* file system type */
461 seq_puts(m, "with fstype ");
462 mangle(m, mnt->mnt_sb->s_type->name);
464 /* optional statistics */
465 if (mnt->mnt_sb->s_op->show_stats) {
466 seq_putc(m, ' ');
467 err = mnt->mnt_sb->s_op->show_stats(m, mnt);
470 seq_putc(m, '\n');
471 return err;
474 struct seq_operations mountstats_op = {
475 .start = m_start,
476 .next = m_next,
477 .stop = m_stop,
478 .show = show_vfsstat,
482 * may_umount_tree - check if a mount tree is busy
483 * @mnt: root of mount tree
485 * This is called to check if a tree of mounts has any
486 * open files, pwds, chroots or sub mounts that are
487 * busy.
489 int may_umount_tree(struct vfsmount *mnt)
491 int actual_refs = 0;
492 int minimum_refs = 0;
493 struct vfsmount *p;
495 spin_lock(&vfsmount_lock);
496 for (p = mnt; p; p = next_mnt(p, mnt)) {
497 actual_refs += atomic_read(&p->mnt_count);
498 minimum_refs += 2;
500 spin_unlock(&vfsmount_lock);
502 if (actual_refs > minimum_refs)
503 return 0;
505 return 1;
508 EXPORT_SYMBOL(may_umount_tree);
511 * may_umount - check if a mount point is busy
512 * @mnt: root of mount
514 * This is called to check if a mount point has any
515 * open files, pwds, chroots or sub mounts. If the
516 * mount has sub mounts this will return busy
517 * regardless of whether the sub mounts are busy.
519 * Doesn't take quota and stuff into account. IOW, in some cases it will
520 * give false negatives. The main reason why it's here is that we need
521 * a non-destructive way to look for easily umountable filesystems.
523 int may_umount(struct vfsmount *mnt)
525 int ret = 1;
526 spin_lock(&vfsmount_lock);
527 if (propagate_mount_busy(mnt, 2))
528 ret = 0;
529 spin_unlock(&vfsmount_lock);
530 return ret;
533 EXPORT_SYMBOL(may_umount);
535 void release_mounts(struct list_head *head)
537 struct vfsmount *mnt;
538 while (!list_empty(head)) {
539 mnt = list_first_entry(head, struct vfsmount, mnt_hash);
540 list_del_init(&mnt->mnt_hash);
541 if (mnt->mnt_parent != mnt) {
542 struct dentry *dentry;
543 struct vfsmount *m;
544 spin_lock(&vfsmount_lock);
545 dentry = mnt->mnt_mountpoint;
546 m = mnt->mnt_parent;
547 mnt->mnt_mountpoint = mnt->mnt_root;
548 mnt->mnt_parent = mnt;
549 spin_unlock(&vfsmount_lock);
550 dput(dentry);
551 mntput(m);
553 mntput(mnt);
557 void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
559 struct vfsmount *p;
561 for (p = mnt; p; p = next_mnt(p, mnt))
562 list_move(&p->mnt_hash, kill);
564 if (propagate)
565 propagate_umount(kill);
567 list_for_each_entry(p, kill, mnt_hash) {
568 list_del_init(&p->mnt_expire);
569 list_del_init(&p->mnt_list);
570 __touch_mnt_namespace(p->mnt_ns);
571 p->mnt_ns = NULL;
572 list_del_init(&p->mnt_child);
573 if (p->mnt_parent != p)
574 p->mnt_mountpoint->d_mounted--;
575 change_mnt_propagation(p, MS_PRIVATE);
579 static int do_umount(struct vfsmount *mnt, int flags)
581 struct super_block *sb = mnt->mnt_sb;
582 int retval;
583 LIST_HEAD(umount_list);
585 retval = security_sb_umount(mnt, flags);
586 if (retval)
587 return retval;
590 * Allow userspace to request a mountpoint be expired rather than
591 * unmounting unconditionally. Unmount only happens if:
592 * (1) the mark is already set (the mark is cleared by mntput())
593 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
595 if (flags & MNT_EXPIRE) {
596 if (mnt == current->fs->root.mnt ||
597 flags & (MNT_FORCE | MNT_DETACH))
598 return -EINVAL;
600 if (atomic_read(&mnt->mnt_count) != 2)
601 return -EBUSY;
603 if (!xchg(&mnt->mnt_expiry_mark, 1))
604 return -EAGAIN;
608 * If we may have to abort operations to get out of this
609 * mount, and they will themselves hold resources we must
610 * allow the fs to do things. In the Unix tradition of
611 * 'Gee thats tricky lets do it in userspace' the umount_begin
612 * might fail to complete on the first run through as other tasks
613 * must return, and the like. Thats for the mount program to worry
614 * about for the moment.
617 lock_kernel();
618 if (sb->s_op->umount_begin)
619 sb->s_op->umount_begin(mnt, flags);
620 unlock_kernel();
623 * No sense to grab the lock for this test, but test itself looks
624 * somewhat bogus. Suggestions for better replacement?
625 * Ho-hum... In principle, we might treat that as umount + switch
626 * to rootfs. GC would eventually take care of the old vfsmount.
627 * Actually it makes sense, especially if rootfs would contain a
628 * /reboot - static binary that would close all descriptors and
629 * call reboot(9). Then init(8) could umount root and exec /reboot.
631 if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
633 * Special case for "unmounting" root ...
634 * we just try to remount it readonly.
636 down_write(&sb->s_umount);
637 if (!(sb->s_flags & MS_RDONLY)) {
638 lock_kernel();
639 DQUOT_OFF(sb);
640 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
641 unlock_kernel();
643 up_write(&sb->s_umount);
644 return retval;
647 down_write(&namespace_sem);
648 spin_lock(&vfsmount_lock);
649 event++;
651 retval = -EBUSY;
652 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
653 if (!list_empty(&mnt->mnt_list))
654 umount_tree(mnt, 1, &umount_list);
655 retval = 0;
657 spin_unlock(&vfsmount_lock);
658 if (retval)
659 security_sb_umount_busy(mnt);
660 up_write(&namespace_sem);
661 release_mounts(&umount_list);
662 return retval;
666 * Now umount can handle mount points as well as block devices.
667 * This is important for filesystems which use unnamed block devices.
669 * We now support a flag for forced unmount like the other 'big iron'
670 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
673 asmlinkage long sys_umount(char __user * name, int flags)
675 struct nameidata nd;
676 int retval;
678 retval = __user_walk(name, LOOKUP_FOLLOW, &nd);
679 if (retval)
680 goto out;
681 retval = -EINVAL;
682 if (nd.path.dentry != nd.path.mnt->mnt_root)
683 goto dput_and_out;
684 if (!check_mnt(nd.path.mnt))
685 goto dput_and_out;
687 retval = -EPERM;
688 if (!capable(CAP_SYS_ADMIN))
689 goto dput_and_out;
691 retval = do_umount(nd.path.mnt, flags);
692 dput_and_out:
693 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
694 dput(nd.path.dentry);
695 mntput_no_expire(nd.path.mnt);
696 out:
697 return retval;
700 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
703 * The 2.0 compatible umount. No flags.
705 asmlinkage long sys_oldumount(char __user * name)
707 return sys_umount(name, 0);
710 #endif
712 static int mount_is_safe(struct nameidata *nd)
714 if (capable(CAP_SYS_ADMIN))
715 return 0;
716 return -EPERM;
717 #ifdef notyet
718 if (S_ISLNK(nd->path.dentry->d_inode->i_mode))
719 return -EPERM;
720 if (nd->path.dentry->d_inode->i_mode & S_ISVTX) {
721 if (current->uid != nd->path.dentry->d_inode->i_uid)
722 return -EPERM;
724 if (vfs_permission(nd, MAY_WRITE))
725 return -EPERM;
726 return 0;
727 #endif
730 static int lives_below_in_same_fs(struct dentry *d, struct dentry *dentry)
732 while (1) {
733 if (d == dentry)
734 return 1;
735 if (d == NULL || d == d->d_parent)
736 return 0;
737 d = d->d_parent;
741 struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
742 int flag)
744 struct vfsmount *res, *p, *q, *r, *s;
745 struct nameidata nd;
747 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
748 return NULL;
750 res = q = clone_mnt(mnt, dentry, flag);
751 if (!q)
752 goto Enomem;
753 q->mnt_mountpoint = mnt->mnt_mountpoint;
755 p = mnt;
756 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
757 if (!lives_below_in_same_fs(r->mnt_mountpoint, dentry))
758 continue;
760 for (s = r; s; s = next_mnt(s, r)) {
761 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
762 s = skip_mnt_tree(s);
763 continue;
765 while (p != s->mnt_parent) {
766 p = p->mnt_parent;
767 q = q->mnt_parent;
769 p = s;
770 nd.path.mnt = q;
771 nd.path.dentry = p->mnt_mountpoint;
772 q = clone_mnt(p, p->mnt_root, flag);
773 if (!q)
774 goto Enomem;
775 spin_lock(&vfsmount_lock);
776 list_add_tail(&q->mnt_list, &res->mnt_list);
777 attach_mnt(q, &nd);
778 spin_unlock(&vfsmount_lock);
781 return res;
782 Enomem:
783 if (res) {
784 LIST_HEAD(umount_list);
785 spin_lock(&vfsmount_lock);
786 umount_tree(res, 0, &umount_list);
787 spin_unlock(&vfsmount_lock);
788 release_mounts(&umount_list);
790 return NULL;
793 struct vfsmount *collect_mounts(struct vfsmount *mnt, struct dentry *dentry)
795 struct vfsmount *tree;
796 down_read(&namespace_sem);
797 tree = copy_tree(mnt, dentry, CL_COPY_ALL | CL_PRIVATE);
798 up_read(&namespace_sem);
799 return tree;
802 void drop_collected_mounts(struct vfsmount *mnt)
804 LIST_HEAD(umount_list);
805 down_read(&namespace_sem);
806 spin_lock(&vfsmount_lock);
807 umount_tree(mnt, 0, &umount_list);
808 spin_unlock(&vfsmount_lock);
809 up_read(&namespace_sem);
810 release_mounts(&umount_list);
814 * @source_mnt : mount tree to be attached
815 * @nd : place the mount tree @source_mnt is attached
816 * @parent_nd : if non-null, detach the source_mnt from its parent and
817 * store the parent mount and mountpoint dentry.
818 * (done when source_mnt is moved)
820 * NOTE: in the table below explains the semantics when a source mount
821 * of a given type is attached to a destination mount of a given type.
822 * ---------------------------------------------------------------------------
823 * | BIND MOUNT OPERATION |
824 * |**************************************************************************
825 * | source-->| shared | private | slave | unbindable |
826 * | dest | | | | |
827 * | | | | | | |
828 * | v | | | | |
829 * |**************************************************************************
830 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
831 * | | | | | |
832 * |non-shared| shared (+) | private | slave (*) | invalid |
833 * ***************************************************************************
834 * A bind operation clones the source mount and mounts the clone on the
835 * destination mount.
837 * (++) the cloned mount is propagated to all the mounts in the propagation
838 * tree of the destination mount and the cloned mount is added to
839 * the peer group of the source mount.
840 * (+) the cloned mount is created under the destination mount and is marked
841 * as shared. The cloned mount is added to the peer group of the source
842 * mount.
843 * (+++) the mount is propagated to all the mounts in the propagation tree
844 * of the destination mount and the cloned mount is made slave
845 * of the same master as that of the source mount. The cloned mount
846 * is marked as 'shared and slave'.
847 * (*) the cloned mount is made a slave of the same master as that of the
848 * source mount.
850 * ---------------------------------------------------------------------------
851 * | MOVE MOUNT OPERATION |
852 * |**************************************************************************
853 * | source-->| shared | private | slave | unbindable |
854 * | dest | | | | |
855 * | | | | | | |
856 * | v | | | | |
857 * |**************************************************************************
858 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
859 * | | | | | |
860 * |non-shared| shared (+*) | private | slave (*) | unbindable |
861 * ***************************************************************************
863 * (+) the mount is moved to the destination. And is then propagated to
864 * all the mounts in the propagation tree of the destination mount.
865 * (+*) the mount is moved to the destination.
866 * (+++) the mount is moved to the destination and is then propagated to
867 * all the mounts belonging to the destination mount's propagation tree.
868 * the mount is marked as 'shared and slave'.
869 * (*) the mount continues to be a slave at the new location.
871 * if the source mount is a tree, the operations explained above is
872 * applied to each mount in the tree.
873 * Must be called without spinlocks held, since this function can sleep
874 * in allocations.
876 static int attach_recursive_mnt(struct vfsmount *source_mnt,
877 struct nameidata *nd, struct nameidata *parent_nd)
879 LIST_HEAD(tree_list);
880 struct vfsmount *dest_mnt = nd->path.mnt;
881 struct dentry *dest_dentry = nd->path.dentry;
882 struct vfsmount *child, *p;
884 if (propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list))
885 return -EINVAL;
887 if (IS_MNT_SHARED(dest_mnt)) {
888 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
889 set_mnt_shared(p);
892 spin_lock(&vfsmount_lock);
893 if (parent_nd) {
894 detach_mnt(source_mnt, parent_nd);
895 attach_mnt(source_mnt, nd);
896 touch_mnt_namespace(current->nsproxy->mnt_ns);
897 } else {
898 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
899 commit_tree(source_mnt);
902 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
903 list_del_init(&child->mnt_hash);
904 commit_tree(child);
906 spin_unlock(&vfsmount_lock);
907 return 0;
910 static int graft_tree(struct vfsmount *mnt, struct nameidata *nd)
912 int err;
913 if (mnt->mnt_sb->s_flags & MS_NOUSER)
914 return -EINVAL;
916 if (S_ISDIR(nd->path.dentry->d_inode->i_mode) !=
917 S_ISDIR(mnt->mnt_root->d_inode->i_mode))
918 return -ENOTDIR;
920 err = -ENOENT;
921 mutex_lock(&nd->path.dentry->d_inode->i_mutex);
922 if (IS_DEADDIR(nd->path.dentry->d_inode))
923 goto out_unlock;
925 err = security_sb_check_sb(mnt, nd);
926 if (err)
927 goto out_unlock;
929 err = -ENOENT;
930 if (IS_ROOT(nd->path.dentry) || !d_unhashed(nd->path.dentry))
931 err = attach_recursive_mnt(mnt, nd, NULL);
932 out_unlock:
933 mutex_unlock(&nd->path.dentry->d_inode->i_mutex);
934 if (!err)
935 security_sb_post_addmount(mnt, nd);
936 return err;
940 * recursively change the type of the mountpoint.
941 * noinline this do_mount helper to save do_mount stack space.
943 static noinline int do_change_type(struct nameidata *nd, int flag)
945 struct vfsmount *m, *mnt = nd->path.mnt;
946 int recurse = flag & MS_REC;
947 int type = flag & ~MS_REC;
949 if (!capable(CAP_SYS_ADMIN))
950 return -EPERM;
952 if (nd->path.dentry != nd->path.mnt->mnt_root)
953 return -EINVAL;
955 down_write(&namespace_sem);
956 spin_lock(&vfsmount_lock);
957 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
958 change_mnt_propagation(m, type);
959 spin_unlock(&vfsmount_lock);
960 up_write(&namespace_sem);
961 return 0;
965 * do loopback mount.
966 * noinline this do_mount helper to save do_mount stack space.
968 static noinline int do_loopback(struct nameidata *nd, char *old_name,
969 int recurse)
971 struct nameidata old_nd;
972 struct vfsmount *mnt = NULL;
973 int err = mount_is_safe(nd);
974 if (err)
975 return err;
976 if (!old_name || !*old_name)
977 return -EINVAL;
978 err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
979 if (err)
980 return err;
982 down_write(&namespace_sem);
983 err = -EINVAL;
984 if (IS_MNT_UNBINDABLE(old_nd.path.mnt))
985 goto out;
987 if (!check_mnt(nd->path.mnt) || !check_mnt(old_nd.path.mnt))
988 goto out;
990 err = -ENOMEM;
991 if (recurse)
992 mnt = copy_tree(old_nd.path.mnt, old_nd.path.dentry, 0);
993 else
994 mnt = clone_mnt(old_nd.path.mnt, old_nd.path.dentry, 0);
996 if (!mnt)
997 goto out;
999 err = graft_tree(mnt, nd);
1000 if (err) {
1001 LIST_HEAD(umount_list);
1002 spin_lock(&vfsmount_lock);
1003 umount_tree(mnt, 0, &umount_list);
1004 spin_unlock(&vfsmount_lock);
1005 release_mounts(&umount_list);
1008 out:
1009 up_write(&namespace_sem);
1010 path_put(&old_nd.path);
1011 return err;
1015 * change filesystem flags. dir should be a physical root of filesystem.
1016 * If you've mounted a non-root directory somewhere and want to do remount
1017 * on it - tough luck.
1018 * noinline this do_mount helper to save do_mount stack space.
1020 static noinline int do_remount(struct nameidata *nd, int flags, int mnt_flags,
1021 void *data)
1023 int err;
1024 struct super_block *sb = nd->path.mnt->mnt_sb;
1026 if (!capable(CAP_SYS_ADMIN))
1027 return -EPERM;
1029 if (!check_mnt(nd->path.mnt))
1030 return -EINVAL;
1032 if (nd->path.dentry != nd->path.mnt->mnt_root)
1033 return -EINVAL;
1035 down_write(&sb->s_umount);
1036 err = do_remount_sb(sb, flags, data, 0);
1037 if (!err)
1038 nd->path.mnt->mnt_flags = mnt_flags;
1039 up_write(&sb->s_umount);
1040 if (!err)
1041 security_sb_post_remount(nd->path.mnt, flags, data);
1042 return err;
1045 static inline int tree_contains_unbindable(struct vfsmount *mnt)
1047 struct vfsmount *p;
1048 for (p = mnt; p; p = next_mnt(p, mnt)) {
1049 if (IS_MNT_UNBINDABLE(p))
1050 return 1;
1052 return 0;
1056 * noinline this do_mount helper to save do_mount stack space.
1058 static noinline int do_move_mount(struct nameidata *nd, char *old_name)
1060 struct nameidata old_nd, parent_nd;
1061 struct vfsmount *p;
1062 int err = 0;
1063 if (!capable(CAP_SYS_ADMIN))
1064 return -EPERM;
1065 if (!old_name || !*old_name)
1066 return -EINVAL;
1067 err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
1068 if (err)
1069 return err;
1071 down_write(&namespace_sem);
1072 while (d_mountpoint(nd->path.dentry) &&
1073 follow_down(&nd->path.mnt, &nd->path.dentry))
1075 err = -EINVAL;
1076 if (!check_mnt(nd->path.mnt) || !check_mnt(old_nd.path.mnt))
1077 goto out;
1079 err = -ENOENT;
1080 mutex_lock(&nd->path.dentry->d_inode->i_mutex);
1081 if (IS_DEADDIR(nd->path.dentry->d_inode))
1082 goto out1;
1084 if (!IS_ROOT(nd->path.dentry) && d_unhashed(nd->path.dentry))
1085 goto out1;
1087 err = -EINVAL;
1088 if (old_nd.path.dentry != old_nd.path.mnt->mnt_root)
1089 goto out1;
1091 if (old_nd.path.mnt == old_nd.path.mnt->mnt_parent)
1092 goto out1;
1094 if (S_ISDIR(nd->path.dentry->d_inode->i_mode) !=
1095 S_ISDIR(old_nd.path.dentry->d_inode->i_mode))
1096 goto out1;
1098 * Don't move a mount residing in a shared parent.
1100 if (old_nd.path.mnt->mnt_parent &&
1101 IS_MNT_SHARED(old_nd.path.mnt->mnt_parent))
1102 goto out1;
1104 * Don't move a mount tree containing unbindable mounts to a destination
1105 * mount which is shared.
1107 if (IS_MNT_SHARED(nd->path.mnt) &&
1108 tree_contains_unbindable(old_nd.path.mnt))
1109 goto out1;
1110 err = -ELOOP;
1111 for (p = nd->path.mnt; p->mnt_parent != p; p = p->mnt_parent)
1112 if (p == old_nd.path.mnt)
1113 goto out1;
1115 err = attach_recursive_mnt(old_nd.path.mnt, nd, &parent_nd);
1116 if (err)
1117 goto out1;
1119 spin_lock(&vfsmount_lock);
1120 /* if the mount is moved, it should no longer be expire
1121 * automatically */
1122 list_del_init(&old_nd.path.mnt->mnt_expire);
1123 spin_unlock(&vfsmount_lock);
1124 out1:
1125 mutex_unlock(&nd->path.dentry->d_inode->i_mutex);
1126 out:
1127 up_write(&namespace_sem);
1128 if (!err)
1129 path_put(&parent_nd.path);
1130 path_put(&old_nd.path);
1131 return err;
1135 * create a new mount for userspace and request it to be added into the
1136 * namespace's tree
1137 * noinline this do_mount helper to save do_mount stack space.
1139 static noinline int do_new_mount(struct nameidata *nd, char *type, int flags,
1140 int mnt_flags, char *name, void *data)
1142 struct vfsmount *mnt;
1144 if (!type || !memchr(type, 0, PAGE_SIZE))
1145 return -EINVAL;
1147 /* we need capabilities... */
1148 if (!capable(CAP_SYS_ADMIN))
1149 return -EPERM;
1151 mnt = do_kern_mount(type, flags, name, data);
1152 if (IS_ERR(mnt))
1153 return PTR_ERR(mnt);
1155 return do_add_mount(mnt, nd, mnt_flags, NULL);
1159 * add a mount into a namespace's mount tree
1160 * - provide the option of adding the new mount to an expiration list
1162 int do_add_mount(struct vfsmount *newmnt, struct nameidata *nd,
1163 int mnt_flags, struct list_head *fslist)
1165 int err;
1167 down_write(&namespace_sem);
1168 /* Something was mounted here while we slept */
1169 while (d_mountpoint(nd->path.dentry) &&
1170 follow_down(&nd->path.mnt, &nd->path.dentry))
1172 err = -EINVAL;
1173 if (!check_mnt(nd->path.mnt))
1174 goto unlock;
1176 /* Refuse the same filesystem on the same mount point */
1177 err = -EBUSY;
1178 if (nd->path.mnt->mnt_sb == newmnt->mnt_sb &&
1179 nd->path.mnt->mnt_root == nd->path.dentry)
1180 goto unlock;
1182 err = -EINVAL;
1183 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1184 goto unlock;
1186 newmnt->mnt_flags = mnt_flags;
1187 if ((err = graft_tree(newmnt, nd)))
1188 goto unlock;
1190 if (fslist) {
1191 /* add to the specified expiration list */
1192 spin_lock(&vfsmount_lock);
1193 list_add_tail(&newmnt->mnt_expire, fslist);
1194 spin_unlock(&vfsmount_lock);
1196 up_write(&namespace_sem);
1197 return 0;
1199 unlock:
1200 up_write(&namespace_sem);
1201 mntput(newmnt);
1202 return err;
1205 EXPORT_SYMBOL_GPL(do_add_mount);
1207 static void expire_mount(struct vfsmount *mnt, struct list_head *mounts,
1208 struct list_head *umounts)
1210 spin_lock(&vfsmount_lock);
1213 * Check if mount is still attached, if not, let whoever holds it deal
1214 * with the sucker
1216 if (mnt->mnt_parent == mnt) {
1217 spin_unlock(&vfsmount_lock);
1218 return;
1222 * Check that it is still dead: the count should now be 2 - as
1223 * contributed by the vfsmount parent and the mntget above
1225 if (!propagate_mount_busy(mnt, 2)) {
1226 /* delete from the namespace */
1227 touch_mnt_namespace(mnt->mnt_ns);
1228 list_del_init(&mnt->mnt_list);
1229 mnt->mnt_ns = NULL;
1230 umount_tree(mnt, 1, umounts);
1231 spin_unlock(&vfsmount_lock);
1232 } else {
1234 * Someone brought it back to life whilst we didn't have any
1235 * locks held so return it to the expiration list
1237 list_add_tail(&mnt->mnt_expire, mounts);
1238 spin_unlock(&vfsmount_lock);
1243 * go through the vfsmounts we've just consigned to the graveyard to
1244 * - check that they're still dead
1245 * - delete the vfsmount from the appropriate namespace under lock
1246 * - dispose of the corpse
1248 static void expire_mount_list(struct list_head *graveyard, struct list_head *mounts)
1250 struct mnt_namespace *ns;
1251 struct vfsmount *mnt;
1253 while (!list_empty(graveyard)) {
1254 LIST_HEAD(umounts);
1255 mnt = list_first_entry(graveyard, struct vfsmount, mnt_expire);
1256 list_del_init(&mnt->mnt_expire);
1258 /* don't do anything if the namespace is dead - all the
1259 * vfsmounts from it are going away anyway */
1260 ns = mnt->mnt_ns;
1261 if (!ns || !ns->root)
1262 continue;
1263 get_mnt_ns(ns);
1265 spin_unlock(&vfsmount_lock);
1266 down_write(&namespace_sem);
1267 expire_mount(mnt, mounts, &umounts);
1268 up_write(&namespace_sem);
1269 release_mounts(&umounts);
1270 mntput(mnt);
1271 put_mnt_ns(ns);
1272 spin_lock(&vfsmount_lock);
1277 * process a list of expirable mountpoints with the intent of discarding any
1278 * mountpoints that aren't in use and haven't been touched since last we came
1279 * here
1281 void mark_mounts_for_expiry(struct list_head *mounts)
1283 struct vfsmount *mnt, *next;
1284 LIST_HEAD(graveyard);
1286 if (list_empty(mounts))
1287 return;
1289 spin_lock(&vfsmount_lock);
1291 /* extract from the expiration list every vfsmount that matches the
1292 * following criteria:
1293 * - only referenced by its parent vfsmount
1294 * - still marked for expiry (marked on the last call here; marks are
1295 * cleared by mntput())
1297 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1298 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1299 atomic_read(&mnt->mnt_count) != 1)
1300 continue;
1302 mntget(mnt);
1303 list_move(&mnt->mnt_expire, &graveyard);
1306 expire_mount_list(&graveyard, mounts);
1308 spin_unlock(&vfsmount_lock);
1311 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1314 * Ripoff of 'select_parent()'
1316 * search the list of submounts for a given mountpoint, and move any
1317 * shrinkable submounts to the 'graveyard' list.
1319 static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
1321 struct vfsmount *this_parent = parent;
1322 struct list_head *next;
1323 int found = 0;
1325 repeat:
1326 next = this_parent->mnt_mounts.next;
1327 resume:
1328 while (next != &this_parent->mnt_mounts) {
1329 struct list_head *tmp = next;
1330 struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
1332 next = tmp->next;
1333 if (!(mnt->mnt_flags & MNT_SHRINKABLE))
1334 continue;
1336 * Descend a level if the d_mounts list is non-empty.
1338 if (!list_empty(&mnt->mnt_mounts)) {
1339 this_parent = mnt;
1340 goto repeat;
1343 if (!propagate_mount_busy(mnt, 1)) {
1344 mntget(mnt);
1345 list_move_tail(&mnt->mnt_expire, graveyard);
1346 found++;
1350 * All done at this level ... ascend and resume the search
1352 if (this_parent != parent) {
1353 next = this_parent->mnt_child.next;
1354 this_parent = this_parent->mnt_parent;
1355 goto resume;
1357 return found;
1361 * process a list of expirable mountpoints with the intent of discarding any
1362 * submounts of a specific parent mountpoint
1364 void shrink_submounts(struct vfsmount *mountpoint, struct list_head *mounts)
1366 LIST_HEAD(graveyard);
1367 int found;
1369 spin_lock(&vfsmount_lock);
1371 /* extract submounts of 'mountpoint' from the expiration list */
1372 while ((found = select_submounts(mountpoint, &graveyard)) != 0)
1373 expire_mount_list(&graveyard, mounts);
1375 spin_unlock(&vfsmount_lock);
1378 EXPORT_SYMBOL_GPL(shrink_submounts);
1381 * Some copy_from_user() implementations do not return the exact number of
1382 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
1383 * Note that this function differs from copy_from_user() in that it will oops
1384 * on bad values of `to', rather than returning a short copy.
1386 static long exact_copy_from_user(void *to, const void __user * from,
1387 unsigned long n)
1389 char *t = to;
1390 const char __user *f = from;
1391 char c;
1393 if (!access_ok(VERIFY_READ, from, n))
1394 return n;
1396 while (n) {
1397 if (__get_user(c, f)) {
1398 memset(t, 0, n);
1399 break;
1401 *t++ = c;
1402 f++;
1403 n--;
1405 return n;
1408 int copy_mount_options(const void __user * data, unsigned long *where)
1410 int i;
1411 unsigned long page;
1412 unsigned long size;
1414 *where = 0;
1415 if (!data)
1416 return 0;
1418 if (!(page = __get_free_page(GFP_KERNEL)))
1419 return -ENOMEM;
1421 /* We only care that *some* data at the address the user
1422 * gave us is valid. Just in case, we'll zero
1423 * the remainder of the page.
1425 /* copy_from_user cannot cross TASK_SIZE ! */
1426 size = TASK_SIZE - (unsigned long)data;
1427 if (size > PAGE_SIZE)
1428 size = PAGE_SIZE;
1430 i = size - exact_copy_from_user((void *)page, data, size);
1431 if (!i) {
1432 free_page(page);
1433 return -EFAULT;
1435 if (i != PAGE_SIZE)
1436 memset((char *)page + i, 0, PAGE_SIZE - i);
1437 *where = page;
1438 return 0;
1442 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1443 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1445 * data is a (void *) that can point to any structure up to
1446 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1447 * information (or be NULL).
1449 * Pre-0.97 versions of mount() didn't have a flags word.
1450 * When the flags word was introduced its top half was required
1451 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
1452 * Therefore, if this magic number is present, it carries no information
1453 * and must be discarded.
1455 long do_mount(char *dev_name, char *dir_name, char *type_page,
1456 unsigned long flags, void *data_page)
1458 struct nameidata nd;
1459 int retval = 0;
1460 int mnt_flags = 0;
1462 /* Discard magic */
1463 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
1464 flags &= ~MS_MGC_MSK;
1466 /* Basic sanity checks */
1468 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
1469 return -EINVAL;
1470 if (dev_name && !memchr(dev_name, 0, PAGE_SIZE))
1471 return -EINVAL;
1473 if (data_page)
1474 ((char *)data_page)[PAGE_SIZE - 1] = 0;
1476 /* Separate the per-mountpoint flags */
1477 if (flags & MS_NOSUID)
1478 mnt_flags |= MNT_NOSUID;
1479 if (flags & MS_NODEV)
1480 mnt_flags |= MNT_NODEV;
1481 if (flags & MS_NOEXEC)
1482 mnt_flags |= MNT_NOEXEC;
1483 if (flags & MS_NOATIME)
1484 mnt_flags |= MNT_NOATIME;
1485 if (flags & MS_NODIRATIME)
1486 mnt_flags |= MNT_NODIRATIME;
1487 if (flags & MS_RELATIME)
1488 mnt_flags |= MNT_RELATIME;
1490 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE |
1491 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT);
1493 /* ... and get the mountpoint */
1494 retval = path_lookup(dir_name, LOOKUP_FOLLOW, &nd);
1495 if (retval)
1496 return retval;
1498 retval = security_sb_mount(dev_name, &nd, type_page, flags, data_page);
1499 if (retval)
1500 goto dput_out;
1502 if (flags & MS_REMOUNT)
1503 retval = do_remount(&nd, flags & ~MS_REMOUNT, mnt_flags,
1504 data_page);
1505 else if (flags & MS_BIND)
1506 retval = do_loopback(&nd, dev_name, flags & MS_REC);
1507 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1508 retval = do_change_type(&nd, flags);
1509 else if (flags & MS_MOVE)
1510 retval = do_move_mount(&nd, dev_name);
1511 else
1512 retval = do_new_mount(&nd, type_page, flags, mnt_flags,
1513 dev_name, data_page);
1514 dput_out:
1515 path_put(&nd.path);
1516 return retval;
1520 * Allocate a new namespace structure and populate it with contents
1521 * copied from the namespace of the passed in task structure.
1523 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
1524 struct fs_struct *fs)
1526 struct mnt_namespace *new_ns;
1527 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL, *altrootmnt = NULL;
1528 struct vfsmount *p, *q;
1530 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
1531 if (!new_ns)
1532 return ERR_PTR(-ENOMEM);
1534 atomic_set(&new_ns->count, 1);
1535 INIT_LIST_HEAD(&new_ns->list);
1536 init_waitqueue_head(&new_ns->poll);
1537 new_ns->event = 0;
1539 down_write(&namespace_sem);
1540 /* First pass: copy the tree topology */
1541 new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
1542 CL_COPY_ALL | CL_EXPIRE);
1543 if (!new_ns->root) {
1544 up_write(&namespace_sem);
1545 kfree(new_ns);
1546 return ERR_PTR(-ENOMEM);;
1548 spin_lock(&vfsmount_lock);
1549 list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
1550 spin_unlock(&vfsmount_lock);
1553 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
1554 * as belonging to new namespace. We have already acquired a private
1555 * fs_struct, so tsk->fs->lock is not needed.
1557 p = mnt_ns->root;
1558 q = new_ns->root;
1559 while (p) {
1560 q->mnt_ns = new_ns;
1561 if (fs) {
1562 if (p == fs->root.mnt) {
1563 rootmnt = p;
1564 fs->root.mnt = mntget(q);
1566 if (p == fs->pwd.mnt) {
1567 pwdmnt = p;
1568 fs->pwd.mnt = mntget(q);
1570 if (p == fs->altroot.mnt) {
1571 altrootmnt = p;
1572 fs->altroot.mnt = mntget(q);
1575 p = next_mnt(p, mnt_ns->root);
1576 q = next_mnt(q, new_ns->root);
1578 up_write(&namespace_sem);
1580 if (rootmnt)
1581 mntput(rootmnt);
1582 if (pwdmnt)
1583 mntput(pwdmnt);
1584 if (altrootmnt)
1585 mntput(altrootmnt);
1587 return new_ns;
1590 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
1591 struct fs_struct *new_fs)
1593 struct mnt_namespace *new_ns;
1595 BUG_ON(!ns);
1596 get_mnt_ns(ns);
1598 if (!(flags & CLONE_NEWNS))
1599 return ns;
1601 new_ns = dup_mnt_ns(ns, new_fs);
1603 put_mnt_ns(ns);
1604 return new_ns;
1607 asmlinkage long sys_mount(char __user * dev_name, char __user * dir_name,
1608 char __user * type, unsigned long flags,
1609 void __user * data)
1611 int retval;
1612 unsigned long data_page;
1613 unsigned long type_page;
1614 unsigned long dev_page;
1615 char *dir_page;
1617 retval = copy_mount_options(type, &type_page);
1618 if (retval < 0)
1619 return retval;
1621 dir_page = getname(dir_name);
1622 retval = PTR_ERR(dir_page);
1623 if (IS_ERR(dir_page))
1624 goto out1;
1626 retval = copy_mount_options(dev_name, &dev_page);
1627 if (retval < 0)
1628 goto out2;
1630 retval = copy_mount_options(data, &data_page);
1631 if (retval < 0)
1632 goto out3;
1634 lock_kernel();
1635 retval = do_mount((char *)dev_page, dir_page, (char *)type_page,
1636 flags, (void *)data_page);
1637 unlock_kernel();
1638 free_page(data_page);
1640 out3:
1641 free_page(dev_page);
1642 out2:
1643 putname(dir_page);
1644 out1:
1645 free_page(type_page);
1646 return retval;
1650 * Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values.
1651 * It can block. Requires the big lock held.
1653 void set_fs_root(struct fs_struct *fs, struct path *path)
1655 struct path old_root;
1657 write_lock(&fs->lock);
1658 old_root = fs->root;
1659 fs->root = *path;
1660 path_get(path);
1661 write_unlock(&fs->lock);
1662 if (old_root.dentry)
1663 path_put(&old_root);
1667 * Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values.
1668 * It can block. Requires the big lock held.
1670 void set_fs_pwd(struct fs_struct *fs, struct path *path)
1672 struct path old_pwd;
1674 write_lock(&fs->lock);
1675 old_pwd = fs->pwd;
1676 fs->pwd = *path;
1677 path_get(path);
1678 write_unlock(&fs->lock);
1680 if (old_pwd.dentry)
1681 path_put(&old_pwd);
1684 static void chroot_fs_refs(struct nameidata *old_nd, struct nameidata *new_nd)
1686 struct task_struct *g, *p;
1687 struct fs_struct *fs;
1689 read_lock(&tasklist_lock);
1690 do_each_thread(g, p) {
1691 task_lock(p);
1692 fs = p->fs;
1693 if (fs) {
1694 atomic_inc(&fs->count);
1695 task_unlock(p);
1696 if (fs->root.dentry == old_nd->path.dentry
1697 && fs->root.mnt == old_nd->path.mnt)
1698 set_fs_root(fs, &new_nd->path);
1699 if (fs->pwd.dentry == old_nd->path.dentry
1700 && fs->pwd.mnt == old_nd->path.mnt)
1701 set_fs_pwd(fs, &new_nd->path);
1702 put_fs_struct(fs);
1703 } else
1704 task_unlock(p);
1705 } while_each_thread(g, p);
1706 read_unlock(&tasklist_lock);
1710 * pivot_root Semantics:
1711 * Moves the root file system of the current process to the directory put_old,
1712 * makes new_root as the new root file system of the current process, and sets
1713 * root/cwd of all processes which had them on the current root to new_root.
1715 * Restrictions:
1716 * The new_root and put_old must be directories, and must not be on the
1717 * same file system as the current process root. The put_old must be
1718 * underneath new_root, i.e. adding a non-zero number of /.. to the string
1719 * pointed to by put_old must yield the same directory as new_root. No other
1720 * file system may be mounted on put_old. After all, new_root is a mountpoint.
1722 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
1723 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
1724 * in this situation.
1726 * Notes:
1727 * - we don't move root/cwd if they are not at the root (reason: if something
1728 * cared enough to change them, it's probably wrong to force them elsewhere)
1729 * - it's okay to pick a root that isn't the root of a file system, e.g.
1730 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
1731 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
1732 * first.
1734 asmlinkage long sys_pivot_root(const char __user * new_root,
1735 const char __user * put_old)
1737 struct vfsmount *tmp;
1738 struct nameidata new_nd, old_nd, parent_nd, root_parent, user_nd;
1739 int error;
1741 if (!capable(CAP_SYS_ADMIN))
1742 return -EPERM;
1744 lock_kernel();
1746 error = __user_walk(new_root, LOOKUP_FOLLOW | LOOKUP_DIRECTORY,
1747 &new_nd);
1748 if (error)
1749 goto out0;
1750 error = -EINVAL;
1751 if (!check_mnt(new_nd.path.mnt))
1752 goto out1;
1754 error = __user_walk(put_old, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old_nd);
1755 if (error)
1756 goto out1;
1758 error = security_sb_pivotroot(&old_nd, &new_nd);
1759 if (error) {
1760 path_put(&old_nd.path);
1761 goto out1;
1764 read_lock(&current->fs->lock);
1765 user_nd.path = current->fs->root;
1766 path_get(&current->fs->root);
1767 read_unlock(&current->fs->lock);
1768 down_write(&namespace_sem);
1769 mutex_lock(&old_nd.path.dentry->d_inode->i_mutex);
1770 error = -EINVAL;
1771 if (IS_MNT_SHARED(old_nd.path.mnt) ||
1772 IS_MNT_SHARED(new_nd.path.mnt->mnt_parent) ||
1773 IS_MNT_SHARED(user_nd.path.mnt->mnt_parent))
1774 goto out2;
1775 if (!check_mnt(user_nd.path.mnt))
1776 goto out2;
1777 error = -ENOENT;
1778 if (IS_DEADDIR(new_nd.path.dentry->d_inode))
1779 goto out2;
1780 if (d_unhashed(new_nd.path.dentry) && !IS_ROOT(new_nd.path.dentry))
1781 goto out2;
1782 if (d_unhashed(old_nd.path.dentry) && !IS_ROOT(old_nd.path.dentry))
1783 goto out2;
1784 error = -EBUSY;
1785 if (new_nd.path.mnt == user_nd.path.mnt ||
1786 old_nd.path.mnt == user_nd.path.mnt)
1787 goto out2; /* loop, on the same file system */
1788 error = -EINVAL;
1789 if (user_nd.path.mnt->mnt_root != user_nd.path.dentry)
1790 goto out2; /* not a mountpoint */
1791 if (user_nd.path.mnt->mnt_parent == user_nd.path.mnt)
1792 goto out2; /* not attached */
1793 if (new_nd.path.mnt->mnt_root != new_nd.path.dentry)
1794 goto out2; /* not a mountpoint */
1795 if (new_nd.path.mnt->mnt_parent == new_nd.path.mnt)
1796 goto out2; /* not attached */
1797 /* make sure we can reach put_old from new_root */
1798 tmp = old_nd.path.mnt;
1799 spin_lock(&vfsmount_lock);
1800 if (tmp != new_nd.path.mnt) {
1801 for (;;) {
1802 if (tmp->mnt_parent == tmp)
1803 goto out3; /* already mounted on put_old */
1804 if (tmp->mnt_parent == new_nd.path.mnt)
1805 break;
1806 tmp = tmp->mnt_parent;
1808 if (!is_subdir(tmp->mnt_mountpoint, new_nd.path.dentry))
1809 goto out3;
1810 } else if (!is_subdir(old_nd.path.dentry, new_nd.path.dentry))
1811 goto out3;
1812 detach_mnt(new_nd.path.mnt, &parent_nd);
1813 detach_mnt(user_nd.path.mnt, &root_parent);
1814 /* mount old root on put_old */
1815 attach_mnt(user_nd.path.mnt, &old_nd);
1816 /* mount new_root on / */
1817 attach_mnt(new_nd.path.mnt, &root_parent);
1818 touch_mnt_namespace(current->nsproxy->mnt_ns);
1819 spin_unlock(&vfsmount_lock);
1820 chroot_fs_refs(&user_nd, &new_nd);
1821 security_sb_post_pivotroot(&user_nd, &new_nd);
1822 error = 0;
1823 path_put(&root_parent.path);
1824 path_put(&parent_nd.path);
1825 out2:
1826 mutex_unlock(&old_nd.path.dentry->d_inode->i_mutex);
1827 up_write(&namespace_sem);
1828 path_put(&user_nd.path);
1829 path_put(&old_nd.path);
1830 out1:
1831 path_put(&new_nd.path);
1832 out0:
1833 unlock_kernel();
1834 return error;
1835 out3:
1836 spin_unlock(&vfsmount_lock);
1837 goto out2;
1840 static void __init init_mount_tree(void)
1842 struct vfsmount *mnt;
1843 struct mnt_namespace *ns;
1844 struct path root;
1846 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
1847 if (IS_ERR(mnt))
1848 panic("Can't create rootfs");
1849 ns = kmalloc(sizeof(*ns), GFP_KERNEL);
1850 if (!ns)
1851 panic("Can't allocate initial namespace");
1852 atomic_set(&ns->count, 1);
1853 INIT_LIST_HEAD(&ns->list);
1854 init_waitqueue_head(&ns->poll);
1855 ns->event = 0;
1856 list_add(&mnt->mnt_list, &ns->list);
1857 ns->root = mnt;
1858 mnt->mnt_ns = ns;
1860 init_task.nsproxy->mnt_ns = ns;
1861 get_mnt_ns(ns);
1863 root.mnt = ns->root;
1864 root.dentry = ns->root->mnt_root;
1866 set_fs_pwd(current->fs, &root);
1867 set_fs_root(current->fs, &root);
1870 void __init mnt_init(void)
1872 unsigned u;
1873 int err;
1875 init_rwsem(&namespace_sem);
1877 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
1878 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1880 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
1882 if (!mount_hashtable)
1883 panic("Failed to allocate mount hash table\n");
1885 printk("Mount-cache hash table entries: %lu\n", HASH_SIZE);
1887 for (u = 0; u < HASH_SIZE; u++)
1888 INIT_LIST_HEAD(&mount_hashtable[u]);
1890 err = sysfs_init();
1891 if (err)
1892 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
1893 __FUNCTION__, err);
1894 fs_kobj = kobject_create_and_add("fs", NULL);
1895 if (!fs_kobj)
1896 printk(KERN_WARNING "%s: kobj create error\n", __FUNCTION__);
1897 init_rootfs();
1898 init_mount_tree();
1901 void __put_mnt_ns(struct mnt_namespace *ns)
1903 struct vfsmount *root = ns->root;
1904 LIST_HEAD(umount_list);
1905 ns->root = NULL;
1906 spin_unlock(&vfsmount_lock);
1907 down_write(&namespace_sem);
1908 spin_lock(&vfsmount_lock);
1909 umount_tree(root, 0, &umount_list);
1910 spin_unlock(&vfsmount_lock);
1911 up_write(&namespace_sem);
1912 release_mounts(&umount_list);
1913 kfree(ns);