net: fix kernel-doc warnings in header files
[linux-2.6/linux-2.6-openrd.git] / Documentation / lguest / lguest.c
blob0f23d67f958ff5b6ee96a0248fdd2c9b9ab65586
1 /*P:100 This is the Launcher code, a simple program which lays out the
2 * "physical" memory for the new Guest by mapping the kernel image and the
3 * virtual devices, then reads repeatedly from /dev/lguest to run the Guest.
4 :*/
5 #define _LARGEFILE64_SOURCE
6 #define _GNU_SOURCE
7 #include <stdio.h>
8 #include <string.h>
9 #include <unistd.h>
10 #include <err.h>
11 #include <stdint.h>
12 #include <stdlib.h>
13 #include <elf.h>
14 #include <sys/mman.h>
15 #include <sys/param.h>
16 #include <sys/types.h>
17 #include <sys/stat.h>
18 #include <sys/wait.h>
19 #include <fcntl.h>
20 #include <stdbool.h>
21 #include <errno.h>
22 #include <ctype.h>
23 #include <sys/socket.h>
24 #include <sys/ioctl.h>
25 #include <sys/time.h>
26 #include <time.h>
27 #include <netinet/in.h>
28 #include <net/if.h>
29 #include <linux/sockios.h>
30 #include <linux/if_tun.h>
31 #include <sys/uio.h>
32 #include <termios.h>
33 #include <getopt.h>
34 #include <zlib.h>
35 #include <assert.h>
36 #include <sched.h>
37 #include <limits.h>
38 #include <stddef.h>
39 #include "linux/lguest_launcher.h"
40 #include "linux/virtio_config.h"
41 #include "linux/virtio_net.h"
42 #include "linux/virtio_blk.h"
43 #include "linux/virtio_console.h"
44 #include "linux/virtio_ring.h"
45 #include "asm-x86/bootparam.h"
46 /*L:110 We can ignore the 38 include files we need for this program, but I do
47 * want to draw attention to the use of kernel-style types.
49 * As Linus said, "C is a Spartan language, and so should your naming be." I
50 * like these abbreviations, so we define them here. Note that u64 is always
51 * unsigned long long, which works on all Linux systems: this means that we can
52 * use %llu in printf for any u64. */
53 typedef unsigned long long u64;
54 typedef uint32_t u32;
55 typedef uint16_t u16;
56 typedef uint8_t u8;
57 /*:*/
59 #define PAGE_PRESENT 0x7 /* Present, RW, Execute */
60 #define NET_PEERNUM 1
61 #define BRIDGE_PFX "bridge:"
62 #ifndef SIOCBRADDIF
63 #define SIOCBRADDIF 0x89a2 /* add interface to bridge */
64 #endif
65 /* We can have up to 256 pages for devices. */
66 #define DEVICE_PAGES 256
67 /* This will occupy 2 pages: it must be a power of 2. */
68 #define VIRTQUEUE_NUM 128
70 /*L:120 verbose is both a global flag and a macro. The C preprocessor allows
71 * this, and although I wouldn't recommend it, it works quite nicely here. */
72 static bool verbose;
73 #define verbose(args...) \
74 do { if (verbose) printf(args); } while(0)
75 /*:*/
77 /* The pipe to send commands to the waker process */
78 static int waker_fd;
79 /* The pointer to the start of guest memory. */
80 static void *guest_base;
81 /* The maximum guest physical address allowed, and maximum possible. */
82 static unsigned long guest_limit, guest_max;
84 /* a per-cpu variable indicating whose vcpu is currently running */
85 static unsigned int __thread cpu_id;
87 /* This is our list of devices. */
88 struct device_list
90 /* Summary information about the devices in our list: ready to pass to
91 * select() to ask which need servicing.*/
92 fd_set infds;
93 int max_infd;
95 /* Counter to assign interrupt numbers. */
96 unsigned int next_irq;
98 /* Counter to print out convenient device numbers. */
99 unsigned int device_num;
101 /* The descriptor page for the devices. */
102 u8 *descpage;
104 /* A single linked list of devices. */
105 struct device *dev;
106 /* And a pointer to the last device for easy append and also for
107 * configuration appending. */
108 struct device *lastdev;
111 /* The list of Guest devices, based on command line arguments. */
112 static struct device_list devices;
114 /* The device structure describes a single device. */
115 struct device
117 /* The linked-list pointer. */
118 struct device *next;
120 /* The this device's descriptor, as mapped into the Guest. */
121 struct lguest_device_desc *desc;
123 /* The name of this device, for --verbose. */
124 const char *name;
126 /* If handle_input is set, it wants to be called when this file
127 * descriptor is ready. */
128 int fd;
129 bool (*handle_input)(int fd, struct device *me);
131 /* Any queues attached to this device */
132 struct virtqueue *vq;
134 /* Device-specific data. */
135 void *priv;
138 /* The virtqueue structure describes a queue attached to a device. */
139 struct virtqueue
141 struct virtqueue *next;
143 /* Which device owns me. */
144 struct device *dev;
146 /* The configuration for this queue. */
147 struct lguest_vqconfig config;
149 /* The actual ring of buffers. */
150 struct vring vring;
152 /* Last available index we saw. */
153 u16 last_avail_idx;
155 /* The routine to call when the Guest pings us. */
156 void (*handle_output)(int fd, struct virtqueue *me);
159 /* Remember the arguments to the program so we can "reboot" */
160 static char **main_args;
162 /* Since guest is UP and we don't run at the same time, we don't need barriers.
163 * But I include them in the code in case others copy it. */
164 #define wmb()
166 /* Convert an iovec element to the given type.
168 * This is a fairly ugly trick: we need to know the size of the type and
169 * alignment requirement to check the pointer is kosher. It's also nice to
170 * have the name of the type in case we report failure.
172 * Typing those three things all the time is cumbersome and error prone, so we
173 * have a macro which sets them all up and passes to the real function. */
174 #define convert(iov, type) \
175 ((type *)_convert((iov), sizeof(type), __alignof__(type), #type))
177 static void *_convert(struct iovec *iov, size_t size, size_t align,
178 const char *name)
180 if (iov->iov_len != size)
181 errx(1, "Bad iovec size %zu for %s", iov->iov_len, name);
182 if ((unsigned long)iov->iov_base % align != 0)
183 errx(1, "Bad alignment %p for %s", iov->iov_base, name);
184 return iov->iov_base;
187 /* The virtio configuration space is defined to be little-endian. x86 is
188 * little-endian too, but it's nice to be explicit so we have these helpers. */
189 #define cpu_to_le16(v16) (v16)
190 #define cpu_to_le32(v32) (v32)
191 #define cpu_to_le64(v64) (v64)
192 #define le16_to_cpu(v16) (v16)
193 #define le32_to_cpu(v32) (v32)
194 #define le64_to_cpu(v64) (v64)
196 /* The device virtqueue descriptors are followed by feature bitmasks. */
197 static u8 *get_feature_bits(struct device *dev)
199 return (u8 *)(dev->desc + 1)
200 + dev->desc->num_vq * sizeof(struct lguest_vqconfig);
203 /*L:100 The Launcher code itself takes us out into userspace, that scary place
204 * where pointers run wild and free! Unfortunately, like most userspace
205 * programs, it's quite boring (which is why everyone likes to hack on the
206 * kernel!). Perhaps if you make up an Lguest Drinking Game at this point, it
207 * will get you through this section. Or, maybe not.
209 * The Launcher sets up a big chunk of memory to be the Guest's "physical"
210 * memory and stores it in "guest_base". In other words, Guest physical ==
211 * Launcher virtual with an offset.
213 * This can be tough to get your head around, but usually it just means that we
214 * use these trivial conversion functions when the Guest gives us it's
215 * "physical" addresses: */
216 static void *from_guest_phys(unsigned long addr)
218 return guest_base + addr;
221 static unsigned long to_guest_phys(const void *addr)
223 return (addr - guest_base);
226 /*L:130
227 * Loading the Kernel.
229 * We start with couple of simple helper routines. open_or_die() avoids
230 * error-checking code cluttering the callers: */
231 static int open_or_die(const char *name, int flags)
233 int fd = open(name, flags);
234 if (fd < 0)
235 err(1, "Failed to open %s", name);
236 return fd;
239 /* map_zeroed_pages() takes a number of pages. */
240 static void *map_zeroed_pages(unsigned int num)
242 int fd = open_or_die("/dev/zero", O_RDONLY);
243 void *addr;
245 /* We use a private mapping (ie. if we write to the page, it will be
246 * copied). */
247 addr = mmap(NULL, getpagesize() * num,
248 PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, fd, 0);
249 if (addr == MAP_FAILED)
250 err(1, "Mmaping %u pages of /dev/zero", num);
252 return addr;
255 /* Get some more pages for a device. */
256 static void *get_pages(unsigned int num)
258 void *addr = from_guest_phys(guest_limit);
260 guest_limit += num * getpagesize();
261 if (guest_limit > guest_max)
262 errx(1, "Not enough memory for devices");
263 return addr;
266 /* This routine is used to load the kernel or initrd. It tries mmap, but if
267 * that fails (Plan 9's kernel file isn't nicely aligned on page boundaries),
268 * it falls back to reading the memory in. */
269 static void map_at(int fd, void *addr, unsigned long offset, unsigned long len)
271 ssize_t r;
273 /* We map writable even though for some segments are marked read-only.
274 * The kernel really wants to be writable: it patches its own
275 * instructions.
277 * MAP_PRIVATE means that the page won't be copied until a write is
278 * done to it. This allows us to share untouched memory between
279 * Guests. */
280 if (mmap(addr, len, PROT_READ|PROT_WRITE|PROT_EXEC,
281 MAP_FIXED|MAP_PRIVATE, fd, offset) != MAP_FAILED)
282 return;
284 /* pread does a seek and a read in one shot: saves a few lines. */
285 r = pread(fd, addr, len, offset);
286 if (r != len)
287 err(1, "Reading offset %lu len %lu gave %zi", offset, len, r);
290 /* This routine takes an open vmlinux image, which is in ELF, and maps it into
291 * the Guest memory. ELF = Embedded Linking Format, which is the format used
292 * by all modern binaries on Linux including the kernel.
294 * The ELF headers give *two* addresses: a physical address, and a virtual
295 * address. We use the physical address; the Guest will map itself to the
296 * virtual address.
298 * We return the starting address. */
299 static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr)
301 Elf32_Phdr phdr[ehdr->e_phnum];
302 unsigned int i;
304 /* Sanity checks on the main ELF header: an x86 executable with a
305 * reasonable number of correctly-sized program headers. */
306 if (ehdr->e_type != ET_EXEC
307 || ehdr->e_machine != EM_386
308 || ehdr->e_phentsize != sizeof(Elf32_Phdr)
309 || ehdr->e_phnum < 1 || ehdr->e_phnum > 65536U/sizeof(Elf32_Phdr))
310 errx(1, "Malformed elf header");
312 /* An ELF executable contains an ELF header and a number of "program"
313 * headers which indicate which parts ("segments") of the program to
314 * load where. */
316 /* We read in all the program headers at once: */
317 if (lseek(elf_fd, ehdr->e_phoff, SEEK_SET) < 0)
318 err(1, "Seeking to program headers");
319 if (read(elf_fd, phdr, sizeof(phdr)) != sizeof(phdr))
320 err(1, "Reading program headers");
322 /* Try all the headers: there are usually only three. A read-only one,
323 * a read-write one, and a "note" section which isn't loadable. */
324 for (i = 0; i < ehdr->e_phnum; i++) {
325 /* If this isn't a loadable segment, we ignore it */
326 if (phdr[i].p_type != PT_LOAD)
327 continue;
329 verbose("Section %i: size %i addr %p\n",
330 i, phdr[i].p_memsz, (void *)phdr[i].p_paddr);
332 /* We map this section of the file at its physical address. */
333 map_at(elf_fd, from_guest_phys(phdr[i].p_paddr),
334 phdr[i].p_offset, phdr[i].p_filesz);
337 /* The entry point is given in the ELF header. */
338 return ehdr->e_entry;
341 /*L:150 A bzImage, unlike an ELF file, is not meant to be loaded. You're
342 * supposed to jump into it and it will unpack itself. We used to have to
343 * perform some hairy magic because the unpacking code scared me.
345 * Fortunately, Jeremy Fitzhardinge convinced me it wasn't that hard and wrote
346 * a small patch to jump over the tricky bits in the Guest, so now we just read
347 * the funky header so we know where in the file to load, and away we go! */
348 static unsigned long load_bzimage(int fd)
350 struct boot_params boot;
351 int r;
352 /* Modern bzImages get loaded at 1M. */
353 void *p = from_guest_phys(0x100000);
355 /* Go back to the start of the file and read the header. It should be
356 * a Linux boot header (see Documentation/i386/boot.txt) */
357 lseek(fd, 0, SEEK_SET);
358 read(fd, &boot, sizeof(boot));
360 /* Inside the setup_hdr, we expect the magic "HdrS" */
361 if (memcmp(&boot.hdr.header, "HdrS", 4) != 0)
362 errx(1, "This doesn't look like a bzImage to me");
364 /* Skip over the extra sectors of the header. */
365 lseek(fd, (boot.hdr.setup_sects+1) * 512, SEEK_SET);
367 /* Now read everything into memory. in nice big chunks. */
368 while ((r = read(fd, p, 65536)) > 0)
369 p += r;
371 /* Finally, code32_start tells us where to enter the kernel. */
372 return boot.hdr.code32_start;
375 /*L:140 Loading the kernel is easy when it's a "vmlinux", but most kernels
376 * come wrapped up in the self-decompressing "bzImage" format. With a little
377 * work, we can load those, too. */
378 static unsigned long load_kernel(int fd)
380 Elf32_Ehdr hdr;
382 /* Read in the first few bytes. */
383 if (read(fd, &hdr, sizeof(hdr)) != sizeof(hdr))
384 err(1, "Reading kernel");
386 /* If it's an ELF file, it starts with "\177ELF" */
387 if (memcmp(hdr.e_ident, ELFMAG, SELFMAG) == 0)
388 return map_elf(fd, &hdr);
390 /* Otherwise we assume it's a bzImage, and try to unpack it */
391 return load_bzimage(fd);
394 /* This is a trivial little helper to align pages. Andi Kleen hated it because
395 * it calls getpagesize() twice: "it's dumb code."
397 * Kernel guys get really het up about optimization, even when it's not
398 * necessary. I leave this code as a reaction against that. */
399 static inline unsigned long page_align(unsigned long addr)
401 /* Add upwards and truncate downwards. */
402 return ((addr + getpagesize()-1) & ~(getpagesize()-1));
405 /*L:180 An "initial ram disk" is a disk image loaded into memory along with
406 * the kernel which the kernel can use to boot from without needing any
407 * drivers. Most distributions now use this as standard: the initrd contains
408 * the code to load the appropriate driver modules for the current machine.
410 * Importantly, James Morris works for RedHat, and Fedora uses initrds for its
411 * kernels. He sent me this (and tells me when I break it). */
412 static unsigned long load_initrd(const char *name, unsigned long mem)
414 int ifd;
415 struct stat st;
416 unsigned long len;
418 ifd = open_or_die(name, O_RDONLY);
419 /* fstat() is needed to get the file size. */
420 if (fstat(ifd, &st) < 0)
421 err(1, "fstat() on initrd '%s'", name);
423 /* We map the initrd at the top of memory, but mmap wants it to be
424 * page-aligned, so we round the size up for that. */
425 len = page_align(st.st_size);
426 map_at(ifd, from_guest_phys(mem - len), 0, st.st_size);
427 /* Once a file is mapped, you can close the file descriptor. It's a
428 * little odd, but quite useful. */
429 close(ifd);
430 verbose("mapped initrd %s size=%lu @ %p\n", name, len, (void*)mem-len);
432 /* We return the initrd size. */
433 return len;
436 /* Once we know how much memory we have, we can construct simple linear page
437 * tables which set virtual == physical which will get the Guest far enough
438 * into the boot to create its own.
440 * We lay them out of the way, just below the initrd (which is why we need to
441 * know its size). */
442 static unsigned long setup_pagetables(unsigned long mem,
443 unsigned long initrd_size)
445 unsigned long *pgdir, *linear;
446 unsigned int mapped_pages, i, linear_pages;
447 unsigned int ptes_per_page = getpagesize()/sizeof(void *);
449 mapped_pages = mem/getpagesize();
451 /* Each PTE page can map ptes_per_page pages: how many do we need? */
452 linear_pages = (mapped_pages + ptes_per_page-1)/ptes_per_page;
454 /* We put the toplevel page directory page at the top of memory. */
455 pgdir = from_guest_phys(mem) - initrd_size - getpagesize();
457 /* Now we use the next linear_pages pages as pte pages */
458 linear = (void *)pgdir - linear_pages*getpagesize();
460 /* Linear mapping is easy: put every page's address into the mapping in
461 * order. PAGE_PRESENT contains the flags Present, Writable and
462 * Executable. */
463 for (i = 0; i < mapped_pages; i++)
464 linear[i] = ((i * getpagesize()) | PAGE_PRESENT);
466 /* The top level points to the linear page table pages above. */
467 for (i = 0; i < mapped_pages; i += ptes_per_page) {
468 pgdir[i/ptes_per_page]
469 = ((to_guest_phys(linear) + i*sizeof(void *))
470 | PAGE_PRESENT);
473 verbose("Linear mapping of %u pages in %u pte pages at %#lx\n",
474 mapped_pages, linear_pages, to_guest_phys(linear));
476 /* We return the top level (guest-physical) address: the kernel needs
477 * to know where it is. */
478 return to_guest_phys(pgdir);
480 /*:*/
482 /* Simple routine to roll all the commandline arguments together with spaces
483 * between them. */
484 static void concat(char *dst, char *args[])
486 unsigned int i, len = 0;
488 for (i = 0; args[i]; i++) {
489 strcpy(dst+len, args[i]);
490 strcat(dst+len, " ");
491 len += strlen(args[i]) + 1;
493 /* In case it's empty. */
494 dst[len] = '\0';
497 /*L:185 This is where we actually tell the kernel to initialize the Guest. We
498 * saw the arguments it expects when we looked at initialize() in lguest_user.c:
499 * the base of Guest "physical" memory, the top physical page to allow, the
500 * top level pagetable and the entry point for the Guest. */
501 static int tell_kernel(unsigned long pgdir, unsigned long start)
503 unsigned long args[] = { LHREQ_INITIALIZE,
504 (unsigned long)guest_base,
505 guest_limit / getpagesize(), pgdir, start };
506 int fd;
508 verbose("Guest: %p - %p (%#lx)\n",
509 guest_base, guest_base + guest_limit, guest_limit);
510 fd = open_or_die("/dev/lguest", O_RDWR);
511 if (write(fd, args, sizeof(args)) < 0)
512 err(1, "Writing to /dev/lguest");
514 /* We return the /dev/lguest file descriptor to control this Guest */
515 return fd;
517 /*:*/
519 static void add_device_fd(int fd)
521 FD_SET(fd, &devices.infds);
522 if (fd > devices.max_infd)
523 devices.max_infd = fd;
526 /*L:200
527 * The Waker.
529 * With console, block and network devices, we can have lots of input which we
530 * need to process. We could try to tell the kernel what file descriptors to
531 * watch, but handing a file descriptor mask through to the kernel is fairly
532 * icky.
534 * Instead, we fork off a process which watches the file descriptors and writes
535 * the LHREQ_BREAK command to the /dev/lguest file descriptor to tell the Host
536 * stop running the Guest. This causes the Launcher to return from the
537 * /dev/lguest read with -EAGAIN, where it will write to /dev/lguest to reset
538 * the LHREQ_BREAK and wake us up again.
540 * This, of course, is merely a different *kind* of icky.
542 static void wake_parent(int pipefd, int lguest_fd)
544 /* Add the pipe from the Launcher to the fdset in the device_list, so
545 * we watch it, too. */
546 add_device_fd(pipefd);
548 for (;;) {
549 fd_set rfds = devices.infds;
550 unsigned long args[] = { LHREQ_BREAK, 1 };
552 /* Wait until input is ready from one of the devices. */
553 select(devices.max_infd+1, &rfds, NULL, NULL, NULL);
554 /* Is it a message from the Launcher? */
555 if (FD_ISSET(pipefd, &rfds)) {
556 int fd;
557 /* If read() returns 0, it means the Launcher has
558 * exited. We silently follow. */
559 if (read(pipefd, &fd, sizeof(fd)) == 0)
560 exit(0);
561 /* Otherwise it's telling us to change what file
562 * descriptors we're to listen to. Positive means
563 * listen to a new one, negative means stop
564 * listening. */
565 if (fd >= 0)
566 FD_SET(fd, &devices.infds);
567 else
568 FD_CLR(-fd - 1, &devices.infds);
569 } else /* Send LHREQ_BREAK command. */
570 pwrite(lguest_fd, args, sizeof(args), cpu_id);
574 /* This routine just sets up a pipe to the Waker process. */
575 static int setup_waker(int lguest_fd)
577 int pipefd[2], child;
579 /* We create a pipe to talk to the Waker, and also so it knows when the
580 * Launcher dies (and closes pipe). */
581 pipe(pipefd);
582 child = fork();
583 if (child == -1)
584 err(1, "forking");
586 if (child == 0) {
587 /* We are the Waker: close the "writing" end of our copy of the
588 * pipe and start waiting for input. */
589 close(pipefd[1]);
590 wake_parent(pipefd[0], lguest_fd);
592 /* Close the reading end of our copy of the pipe. */
593 close(pipefd[0]);
595 /* Here is the fd used to talk to the waker. */
596 return pipefd[1];
600 * Device Handling.
602 * When the Guest gives us a buffer, it sends an array of addresses and sizes.
603 * We need to make sure it's not trying to reach into the Launcher itself, so
604 * we have a convenient routine which checks it and exits with an error message
605 * if something funny is going on:
607 static void *_check_pointer(unsigned long addr, unsigned int size,
608 unsigned int line)
610 /* We have to separately check addr and addr+size, because size could
611 * be huge and addr + size might wrap around. */
612 if (addr >= guest_limit || addr + size >= guest_limit)
613 errx(1, "%s:%i: Invalid address %#lx", __FILE__, line, addr);
614 /* We return a pointer for the caller's convenience, now we know it's
615 * safe to use. */
616 return from_guest_phys(addr);
618 /* A macro which transparently hands the line number to the real function. */
619 #define check_pointer(addr,size) _check_pointer(addr, size, __LINE__)
621 /* Each buffer in the virtqueues is actually a chain of descriptors. This
622 * function returns the next descriptor in the chain, or vq->vring.num if we're
623 * at the end. */
624 static unsigned next_desc(struct virtqueue *vq, unsigned int i)
626 unsigned int next;
628 /* If this descriptor says it doesn't chain, we're done. */
629 if (!(vq->vring.desc[i].flags & VRING_DESC_F_NEXT))
630 return vq->vring.num;
632 /* Check they're not leading us off end of descriptors. */
633 next = vq->vring.desc[i].next;
634 /* Make sure compiler knows to grab that: we don't want it changing! */
635 wmb();
637 if (next >= vq->vring.num)
638 errx(1, "Desc next is %u", next);
640 return next;
643 /* This looks in the virtqueue and for the first available buffer, and converts
644 * it to an iovec for convenient access. Since descriptors consist of some
645 * number of output then some number of input descriptors, it's actually two
646 * iovecs, but we pack them into one and note how many of each there were.
648 * This function returns the descriptor number found, or vq->vring.num (which
649 * is never a valid descriptor number) if none was found. */
650 static unsigned get_vq_desc(struct virtqueue *vq,
651 struct iovec iov[],
652 unsigned int *out_num, unsigned int *in_num)
654 unsigned int i, head;
656 /* Check it isn't doing very strange things with descriptor numbers. */
657 if ((u16)(vq->vring.avail->idx - vq->last_avail_idx) > vq->vring.num)
658 errx(1, "Guest moved used index from %u to %u",
659 vq->last_avail_idx, vq->vring.avail->idx);
661 /* If there's nothing new since last we looked, return invalid. */
662 if (vq->vring.avail->idx == vq->last_avail_idx)
663 return vq->vring.num;
665 /* Grab the next descriptor number they're advertising, and increment
666 * the index we've seen. */
667 head = vq->vring.avail->ring[vq->last_avail_idx++ % vq->vring.num];
669 /* If their number is silly, that's a fatal mistake. */
670 if (head >= vq->vring.num)
671 errx(1, "Guest says index %u is available", head);
673 /* When we start there are none of either input nor output. */
674 *out_num = *in_num = 0;
676 i = head;
677 do {
678 /* Grab the first descriptor, and check it's OK. */
679 iov[*out_num + *in_num].iov_len = vq->vring.desc[i].len;
680 iov[*out_num + *in_num].iov_base
681 = check_pointer(vq->vring.desc[i].addr,
682 vq->vring.desc[i].len);
683 /* If this is an input descriptor, increment that count. */
684 if (vq->vring.desc[i].flags & VRING_DESC_F_WRITE)
685 (*in_num)++;
686 else {
687 /* If it's an output descriptor, they're all supposed
688 * to come before any input descriptors. */
689 if (*in_num)
690 errx(1, "Descriptor has out after in");
691 (*out_num)++;
694 /* If we've got too many, that implies a descriptor loop. */
695 if (*out_num + *in_num > vq->vring.num)
696 errx(1, "Looped descriptor");
697 } while ((i = next_desc(vq, i)) != vq->vring.num);
699 return head;
702 /* After we've used one of their buffers, we tell them about it. We'll then
703 * want to send them an interrupt, using trigger_irq(). */
704 static void add_used(struct virtqueue *vq, unsigned int head, int len)
706 struct vring_used_elem *used;
708 /* The virtqueue contains a ring of used buffers. Get a pointer to the
709 * next entry in that used ring. */
710 used = &vq->vring.used->ring[vq->vring.used->idx % vq->vring.num];
711 used->id = head;
712 used->len = len;
713 /* Make sure buffer is written before we update index. */
714 wmb();
715 vq->vring.used->idx++;
718 /* This actually sends the interrupt for this virtqueue */
719 static void trigger_irq(int fd, struct virtqueue *vq)
721 unsigned long buf[] = { LHREQ_IRQ, vq->config.irq };
723 /* If they don't want an interrupt, don't send one. */
724 if (vq->vring.avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
725 return;
727 /* Send the Guest an interrupt tell them we used something up. */
728 if (write(fd, buf, sizeof(buf)) != 0)
729 err(1, "Triggering irq %i", vq->config.irq);
732 /* And here's the combo meal deal. Supersize me! */
733 static void add_used_and_trigger(int fd, struct virtqueue *vq,
734 unsigned int head, int len)
736 add_used(vq, head, len);
737 trigger_irq(fd, vq);
741 * The Console
743 * Here is the input terminal setting we save, and the routine to restore them
744 * on exit so the user gets their terminal back. */
745 static struct termios orig_term;
746 static void restore_term(void)
748 tcsetattr(STDIN_FILENO, TCSANOW, &orig_term);
751 /* We associate some data with the console for our exit hack. */
752 struct console_abort
754 /* How many times have they hit ^C? */
755 int count;
756 /* When did they start? */
757 struct timeval start;
760 /* This is the routine which handles console input (ie. stdin). */
761 static bool handle_console_input(int fd, struct device *dev)
763 int len;
764 unsigned int head, in_num, out_num;
765 struct iovec iov[dev->vq->vring.num];
766 struct console_abort *abort = dev->priv;
768 /* First we need a console buffer from the Guests's input virtqueue. */
769 head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
771 /* If they're not ready for input, stop listening to this file
772 * descriptor. We'll start again once they add an input buffer. */
773 if (head == dev->vq->vring.num)
774 return false;
776 if (out_num)
777 errx(1, "Output buffers in console in queue?");
779 /* This is why we convert to iovecs: the readv() call uses them, and so
780 * it reads straight into the Guest's buffer. */
781 len = readv(dev->fd, iov, in_num);
782 if (len <= 0) {
783 /* This implies that the console is closed, is /dev/null, or
784 * something went terribly wrong. */
785 warnx("Failed to get console input, ignoring console.");
786 /* Put the input terminal back. */
787 restore_term();
788 /* Remove callback from input vq, so it doesn't restart us. */
789 dev->vq->handle_output = NULL;
790 /* Stop listening to this fd: don't call us again. */
791 return false;
794 /* Tell the Guest about the new input. */
795 add_used_and_trigger(fd, dev->vq, head, len);
797 /* Three ^C within one second? Exit.
799 * This is such a hack, but works surprisingly well. Each ^C has to be
800 * in a buffer by itself, so they can't be too fast. But we check that
801 * we get three within about a second, so they can't be too slow. */
802 if (len == 1 && ((char *)iov[0].iov_base)[0] == 3) {
803 if (!abort->count++)
804 gettimeofday(&abort->start, NULL);
805 else if (abort->count == 3) {
806 struct timeval now;
807 gettimeofday(&now, NULL);
808 if (now.tv_sec <= abort->start.tv_sec+1) {
809 unsigned long args[] = { LHREQ_BREAK, 0 };
810 /* Close the fd so Waker will know it has to
811 * exit. */
812 close(waker_fd);
813 /* Just in case waker is blocked in BREAK, send
814 * unbreak now. */
815 write(fd, args, sizeof(args));
816 exit(2);
818 abort->count = 0;
820 } else
821 /* Any other key resets the abort counter. */
822 abort->count = 0;
824 /* Everything went OK! */
825 return true;
828 /* Handling output for console is simple: we just get all the output buffers
829 * and write them to stdout. */
830 static void handle_console_output(int fd, struct virtqueue *vq)
832 unsigned int head, out, in;
833 int len;
834 struct iovec iov[vq->vring.num];
836 /* Keep getting output buffers from the Guest until we run out. */
837 while ((head = get_vq_desc(vq, iov, &out, &in)) != vq->vring.num) {
838 if (in)
839 errx(1, "Input buffers in output queue?");
840 len = writev(STDOUT_FILENO, iov, out);
841 add_used_and_trigger(fd, vq, head, len);
846 * The Network
848 * Handling output for network is also simple: we get all the output buffers
849 * and write them (ignoring the first element) to this device's file descriptor
850 * (stdout). */
851 static void handle_net_output(int fd, struct virtqueue *vq)
853 unsigned int head, out, in;
854 int len;
855 struct iovec iov[vq->vring.num];
857 /* Keep getting output buffers from the Guest until we run out. */
858 while ((head = get_vq_desc(vq, iov, &out, &in)) != vq->vring.num) {
859 if (in)
860 errx(1, "Input buffers in output queue?");
861 /* Check header, but otherwise ignore it (we told the Guest we
862 * supported no features, so it shouldn't have anything
863 * interesting). */
864 (void)convert(&iov[0], struct virtio_net_hdr);
865 len = writev(vq->dev->fd, iov+1, out-1);
866 add_used_and_trigger(fd, vq, head, len);
870 /* This is where we handle a packet coming in from the tun device to our
871 * Guest. */
872 static bool handle_tun_input(int fd, struct device *dev)
874 unsigned int head, in_num, out_num;
875 int len;
876 struct iovec iov[dev->vq->vring.num];
877 struct virtio_net_hdr *hdr;
879 /* First we need a network buffer from the Guests's recv virtqueue. */
880 head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
881 if (head == dev->vq->vring.num) {
882 /* Now, it's expected that if we try to send a packet too
883 * early, the Guest won't be ready yet. Wait until the device
884 * status says it's ready. */
885 /* FIXME: Actually want DRIVER_ACTIVE here. */
886 if (dev->desc->status & VIRTIO_CONFIG_S_DRIVER_OK)
887 warn("network: no dma buffer!");
888 /* We'll turn this back on if input buffers are registered. */
889 return false;
890 } else if (out_num)
891 errx(1, "Output buffers in network recv queue?");
893 /* First element is the header: we set it to 0 (no features). */
894 hdr = convert(&iov[0], struct virtio_net_hdr);
895 hdr->flags = 0;
896 hdr->gso_type = VIRTIO_NET_HDR_GSO_NONE;
898 /* Read the packet from the device directly into the Guest's buffer. */
899 len = readv(dev->fd, iov+1, in_num-1);
900 if (len <= 0)
901 err(1, "reading network");
903 /* Tell the Guest about the new packet. */
904 add_used_and_trigger(fd, dev->vq, head, sizeof(*hdr) + len);
906 verbose("tun input packet len %i [%02x %02x] (%s)\n", len,
907 ((u8 *)iov[1].iov_base)[0], ((u8 *)iov[1].iov_base)[1],
908 head != dev->vq->vring.num ? "sent" : "discarded");
910 /* All good. */
911 return true;
914 /*L:215 This is the callback attached to the network and console input
915 * virtqueues: it ensures we try again, in case we stopped console or net
916 * delivery because Guest didn't have any buffers. */
917 static void enable_fd(int fd, struct virtqueue *vq)
919 add_device_fd(vq->dev->fd);
920 /* Tell waker to listen to it again */
921 write(waker_fd, &vq->dev->fd, sizeof(vq->dev->fd));
924 /* Resetting a device is fairly easy. */
925 static void reset_device(struct device *dev)
927 struct virtqueue *vq;
929 verbose("Resetting device %s\n", dev->name);
930 /* Clear the status. */
931 dev->desc->status = 0;
933 /* Clear any features they've acked. */
934 memset(get_feature_bits(dev) + dev->desc->feature_len, 0,
935 dev->desc->feature_len);
937 /* Zero out the virtqueues. */
938 for (vq = dev->vq; vq; vq = vq->next) {
939 memset(vq->vring.desc, 0,
940 vring_size(vq->config.num, getpagesize()));
941 vq->last_avail_idx = 0;
945 /* This is the generic routine we call when the Guest uses LHCALL_NOTIFY. */
946 static void handle_output(int fd, unsigned long addr)
948 struct device *i;
949 struct virtqueue *vq;
951 /* Check each device and virtqueue. */
952 for (i = devices.dev; i; i = i->next) {
953 /* Notifications to device descriptors reset the device. */
954 if (from_guest_phys(addr) == i->desc) {
955 reset_device(i);
956 return;
959 /* Notifications to virtqueues mean output has occurred. */
960 for (vq = i->vq; vq; vq = vq->next) {
961 if (vq->config.pfn != addr/getpagesize())
962 continue;
964 /* Guest should acknowledge (and set features!) before
965 * using the device. */
966 if (i->desc->status == 0) {
967 warnx("%s gave early output", i->name);
968 return;
971 if (strcmp(vq->dev->name, "console") != 0)
972 verbose("Output to %s\n", vq->dev->name);
973 if (vq->handle_output)
974 vq->handle_output(fd, vq);
975 return;
979 /* Early console write is done using notify on a nul-terminated string
980 * in Guest memory. */
981 if (addr >= guest_limit)
982 errx(1, "Bad NOTIFY %#lx", addr);
984 write(STDOUT_FILENO, from_guest_phys(addr),
985 strnlen(from_guest_phys(addr), guest_limit - addr));
988 /* This is called when the Waker wakes us up: check for incoming file
989 * descriptors. */
990 static void handle_input(int fd)
992 /* select() wants a zeroed timeval to mean "don't wait". */
993 struct timeval poll = { .tv_sec = 0, .tv_usec = 0 };
995 for (;;) {
996 struct device *i;
997 fd_set fds = devices.infds;
999 /* If nothing is ready, we're done. */
1000 if (select(devices.max_infd+1, &fds, NULL, NULL, &poll) == 0)
1001 break;
1003 /* Otherwise, call the device(s) which have readable
1004 * file descriptors and a method of handling them. */
1005 for (i = devices.dev; i; i = i->next) {
1006 if (i->handle_input && FD_ISSET(i->fd, &fds)) {
1007 int dev_fd;
1008 if (i->handle_input(fd, i))
1009 continue;
1011 /* If handle_input() returns false, it means we
1012 * should no longer service it. Networking and
1013 * console do this when there's no input
1014 * buffers to deliver into. Console also uses
1015 * it when it discovers that stdin is
1016 * closed. */
1017 FD_CLR(i->fd, &devices.infds);
1018 /* Tell waker to ignore it too, by sending a
1019 * negative fd number (-1, since 0 is a valid
1020 * FD number). */
1021 dev_fd = -i->fd - 1;
1022 write(waker_fd, &dev_fd, sizeof(dev_fd));
1028 /*L:190
1029 * Device Setup
1031 * All devices need a descriptor so the Guest knows it exists, and a "struct
1032 * device" so the Launcher can keep track of it. We have common helper
1033 * routines to allocate and manage them. */
1035 /* The layout of the device page is a "struct lguest_device_desc" followed by a
1036 * number of virtqueue descriptors, then two sets of feature bits, then an
1037 * array of configuration bytes. This routine returns the configuration
1038 * pointer. */
1039 static u8 *device_config(const struct device *dev)
1041 return (void *)(dev->desc + 1)
1042 + dev->desc->num_vq * sizeof(struct lguest_vqconfig)
1043 + dev->desc->feature_len * 2;
1046 /* This routine allocates a new "struct lguest_device_desc" from descriptor
1047 * table page just above the Guest's normal memory. It returns a pointer to
1048 * that descriptor. */
1049 static struct lguest_device_desc *new_dev_desc(u16 type)
1051 struct lguest_device_desc d = { .type = type };
1052 void *p;
1054 /* Figure out where the next device config is, based on the last one. */
1055 if (devices.lastdev)
1056 p = device_config(devices.lastdev)
1057 + devices.lastdev->desc->config_len;
1058 else
1059 p = devices.descpage;
1061 /* We only have one page for all the descriptors. */
1062 if (p + sizeof(d) > (void *)devices.descpage + getpagesize())
1063 errx(1, "Too many devices");
1065 /* p might not be aligned, so we memcpy in. */
1066 return memcpy(p, &d, sizeof(d));
1069 /* Each device descriptor is followed by the description of its virtqueues. We
1070 * specify how many descriptors the virtqueue is to have. */
1071 static void add_virtqueue(struct device *dev, unsigned int num_descs,
1072 void (*handle_output)(int fd, struct virtqueue *me))
1074 unsigned int pages;
1075 struct virtqueue **i, *vq = malloc(sizeof(*vq));
1076 void *p;
1078 /* First we need some pages for this virtqueue. */
1079 pages = (vring_size(num_descs, getpagesize()) + getpagesize() - 1)
1080 / getpagesize();
1081 p = get_pages(pages);
1083 /* Initialize the virtqueue */
1084 vq->next = NULL;
1085 vq->last_avail_idx = 0;
1086 vq->dev = dev;
1088 /* Initialize the configuration. */
1089 vq->config.num = num_descs;
1090 vq->config.irq = devices.next_irq++;
1091 vq->config.pfn = to_guest_phys(p) / getpagesize();
1093 /* Initialize the vring. */
1094 vring_init(&vq->vring, num_descs, p, getpagesize());
1096 /* Append virtqueue to this device's descriptor. We use
1097 * device_config() to get the end of the device's current virtqueues;
1098 * we check that we haven't added any config or feature information
1099 * yet, otherwise we'd be overwriting them. */
1100 assert(dev->desc->config_len == 0 && dev->desc->feature_len == 0);
1101 memcpy(device_config(dev), &vq->config, sizeof(vq->config));
1102 dev->desc->num_vq++;
1104 verbose("Virtqueue page %#lx\n", to_guest_phys(p));
1106 /* Add to tail of list, so dev->vq is first vq, dev->vq->next is
1107 * second. */
1108 for (i = &dev->vq; *i; i = &(*i)->next);
1109 *i = vq;
1111 /* Set the routine to call when the Guest does something to this
1112 * virtqueue. */
1113 vq->handle_output = handle_output;
1115 /* As an optimization, set the advisory "Don't Notify Me" flag if we
1116 * don't have a handler */
1117 if (!handle_output)
1118 vq->vring.used->flags = VRING_USED_F_NO_NOTIFY;
1121 /* The first half of the feature bitmask is for us to advertise features. The
1122 * second half if for the Guest to accept features. */
1123 static void add_feature(struct device *dev, unsigned bit)
1125 u8 *features = get_feature_bits(dev);
1127 /* We can't extend the feature bits once we've added config bytes */
1128 if (dev->desc->feature_len <= bit / CHAR_BIT) {
1129 assert(dev->desc->config_len == 0);
1130 dev->desc->feature_len = (bit / CHAR_BIT) + 1;
1133 features[bit / CHAR_BIT] |= (1 << (bit % CHAR_BIT));
1136 /* This routine sets the configuration fields for an existing device's
1137 * descriptor. It only works for the last device, but that's OK because that's
1138 * how we use it. */
1139 static void set_config(struct device *dev, unsigned len, const void *conf)
1141 /* Check we haven't overflowed our single page. */
1142 if (device_config(dev) + len > devices.descpage + getpagesize())
1143 errx(1, "Too many devices");
1145 /* Copy in the config information, and store the length. */
1146 memcpy(device_config(dev), conf, len);
1147 dev->desc->config_len = len;
1150 /* This routine does all the creation and setup of a new device, including
1151 * calling new_dev_desc() to allocate the descriptor and device memory. */
1152 static struct device *new_device(const char *name, u16 type, int fd,
1153 bool (*handle_input)(int, struct device *))
1155 struct device *dev = malloc(sizeof(*dev));
1157 /* Now we populate the fields one at a time. */
1158 dev->fd = fd;
1159 /* If we have an input handler for this file descriptor, then we add it
1160 * to the device_list's fdset and maxfd. */
1161 if (handle_input)
1162 add_device_fd(dev->fd);
1163 dev->desc = new_dev_desc(type);
1164 dev->handle_input = handle_input;
1165 dev->name = name;
1166 dev->vq = NULL;
1168 /* Append to device list. Prepending to a single-linked list is
1169 * easier, but the user expects the devices to be arranged on the bus
1170 * in command-line order. The first network device on the command line
1171 * is eth0, the first block device /dev/vda, etc. */
1172 if (devices.lastdev)
1173 devices.lastdev->next = dev;
1174 else
1175 devices.dev = dev;
1176 devices.lastdev = dev;
1178 return dev;
1181 /* Our first setup routine is the console. It's a fairly simple device, but
1182 * UNIX tty handling makes it uglier than it could be. */
1183 static void setup_console(void)
1185 struct device *dev;
1187 /* If we can save the initial standard input settings... */
1188 if (tcgetattr(STDIN_FILENO, &orig_term) == 0) {
1189 struct termios term = orig_term;
1190 /* Then we turn off echo, line buffering and ^C etc. We want a
1191 * raw input stream to the Guest. */
1192 term.c_lflag &= ~(ISIG|ICANON|ECHO);
1193 tcsetattr(STDIN_FILENO, TCSANOW, &term);
1194 /* If we exit gracefully, the original settings will be
1195 * restored so the user can see what they're typing. */
1196 atexit(restore_term);
1199 dev = new_device("console", VIRTIO_ID_CONSOLE,
1200 STDIN_FILENO, handle_console_input);
1201 /* We store the console state in dev->priv, and initialize it. */
1202 dev->priv = malloc(sizeof(struct console_abort));
1203 ((struct console_abort *)dev->priv)->count = 0;
1205 /* The console needs two virtqueues: the input then the output. When
1206 * they put something the input queue, we make sure we're listening to
1207 * stdin. When they put something in the output queue, we write it to
1208 * stdout. */
1209 add_virtqueue(dev, VIRTQUEUE_NUM, enable_fd);
1210 add_virtqueue(dev, VIRTQUEUE_NUM, handle_console_output);
1212 verbose("device %u: console\n", devices.device_num++);
1214 /*:*/
1216 /*M:010 Inter-guest networking is an interesting area. Simplest is to have a
1217 * --sharenet=<name> option which opens or creates a named pipe. This can be
1218 * used to send packets to another guest in a 1:1 manner.
1220 * More sopisticated is to use one of the tools developed for project like UML
1221 * to do networking.
1223 * Faster is to do virtio bonding in kernel. Doing this 1:1 would be
1224 * completely generic ("here's my vring, attach to your vring") and would work
1225 * for any traffic. Of course, namespace and permissions issues need to be
1226 * dealt with. A more sophisticated "multi-channel" virtio_net.c could hide
1227 * multiple inter-guest channels behind one interface, although it would
1228 * require some manner of hotplugging new virtio channels.
1230 * Finally, we could implement a virtio network switch in the kernel. :*/
1232 static u32 str2ip(const char *ipaddr)
1234 unsigned int byte[4];
1236 sscanf(ipaddr, "%u.%u.%u.%u", &byte[0], &byte[1], &byte[2], &byte[3]);
1237 return (byte[0] << 24) | (byte[1] << 16) | (byte[2] << 8) | byte[3];
1240 /* This code is "adapted" from libbridge: it attaches the Host end of the
1241 * network device to the bridge device specified by the command line.
1243 * This is yet another James Morris contribution (I'm an IP-level guy, so I
1244 * dislike bridging), and I just try not to break it. */
1245 static void add_to_bridge(int fd, const char *if_name, const char *br_name)
1247 int ifidx;
1248 struct ifreq ifr;
1250 if (!*br_name)
1251 errx(1, "must specify bridge name");
1253 ifidx = if_nametoindex(if_name);
1254 if (!ifidx)
1255 errx(1, "interface %s does not exist!", if_name);
1257 strncpy(ifr.ifr_name, br_name, IFNAMSIZ);
1258 ifr.ifr_ifindex = ifidx;
1259 if (ioctl(fd, SIOCBRADDIF, &ifr) < 0)
1260 err(1, "can't add %s to bridge %s", if_name, br_name);
1263 /* This sets up the Host end of the network device with an IP address, brings
1264 * it up so packets will flow, the copies the MAC address into the hwaddr
1265 * pointer. */
1266 static void configure_device(int fd, const char *devname, u32 ipaddr,
1267 unsigned char hwaddr[6])
1269 struct ifreq ifr;
1270 struct sockaddr_in *sin = (struct sockaddr_in *)&ifr.ifr_addr;
1272 /* Don't read these incantations. Just cut & paste them like I did! */
1273 memset(&ifr, 0, sizeof(ifr));
1274 strcpy(ifr.ifr_name, devname);
1275 sin->sin_family = AF_INET;
1276 sin->sin_addr.s_addr = htonl(ipaddr);
1277 if (ioctl(fd, SIOCSIFADDR, &ifr) != 0)
1278 err(1, "Setting %s interface address", devname);
1279 ifr.ifr_flags = IFF_UP;
1280 if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0)
1281 err(1, "Bringing interface %s up", devname);
1283 /* SIOC stands for Socket I/O Control. G means Get (vs S for Set
1284 * above). IF means Interface, and HWADDR is hardware address.
1285 * Simple! */
1286 if (ioctl(fd, SIOCGIFHWADDR, &ifr) != 0)
1287 err(1, "getting hw address for %s", devname);
1288 memcpy(hwaddr, ifr.ifr_hwaddr.sa_data, 6);
1291 /*L:195 Our network is a Host<->Guest network. This can either use bridging or
1292 * routing, but the principle is the same: it uses the "tun" device to inject
1293 * packets into the Host as if they came in from a normal network card. We
1294 * just shunt packets between the Guest and the tun device. */
1295 static void setup_tun_net(const char *arg)
1297 struct device *dev;
1298 struct ifreq ifr;
1299 int netfd, ipfd;
1300 u32 ip;
1301 const char *br_name = NULL;
1302 struct virtio_net_config conf;
1304 /* We open the /dev/net/tun device and tell it we want a tap device. A
1305 * tap device is like a tun device, only somehow different. To tell
1306 * the truth, I completely blundered my way through this code, but it
1307 * works now! */
1308 netfd = open_or_die("/dev/net/tun", O_RDWR);
1309 memset(&ifr, 0, sizeof(ifr));
1310 ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
1311 strcpy(ifr.ifr_name, "tap%d");
1312 if (ioctl(netfd, TUNSETIFF, &ifr) != 0)
1313 err(1, "configuring /dev/net/tun");
1314 /* We don't need checksums calculated for packets coming in this
1315 * device: trust us! */
1316 ioctl(netfd, TUNSETNOCSUM, 1);
1318 /* First we create a new network device. */
1319 dev = new_device("net", VIRTIO_ID_NET, netfd, handle_tun_input);
1321 /* Network devices need a receive and a send queue, just like
1322 * console. */
1323 add_virtqueue(dev, VIRTQUEUE_NUM, enable_fd);
1324 add_virtqueue(dev, VIRTQUEUE_NUM, handle_net_output);
1326 /* We need a socket to perform the magic network ioctls to bring up the
1327 * tap interface, connect to the bridge etc. Any socket will do! */
1328 ipfd = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);
1329 if (ipfd < 0)
1330 err(1, "opening IP socket");
1332 /* If the command line was --tunnet=bridge:<name> do bridging. */
1333 if (!strncmp(BRIDGE_PFX, arg, strlen(BRIDGE_PFX))) {
1334 ip = INADDR_ANY;
1335 br_name = arg + strlen(BRIDGE_PFX);
1336 add_to_bridge(ipfd, ifr.ifr_name, br_name);
1337 } else /* It is an IP address to set up the device with */
1338 ip = str2ip(arg);
1340 /* Set up the tun device, and get the mac address for the interface. */
1341 configure_device(ipfd, ifr.ifr_name, ip, conf.mac);
1343 /* Tell Guest what MAC address to use. */
1344 add_feature(dev, VIRTIO_NET_F_MAC);
1345 set_config(dev, sizeof(conf), &conf);
1347 /* We don't need the socket any more; setup is done. */
1348 close(ipfd);
1350 verbose("device %u: tun net %u.%u.%u.%u\n",
1351 devices.device_num++,
1352 (u8)(ip>>24),(u8)(ip>>16),(u8)(ip>>8),(u8)ip);
1353 if (br_name)
1354 verbose("attached to bridge: %s\n", br_name);
1357 /* Our block (disk) device should be really simple: the Guest asks for a block
1358 * number and we read or write that position in the file. Unfortunately, that
1359 * was amazingly slow: the Guest waits until the read is finished before
1360 * running anything else, even if it could have been doing useful work.
1362 * We could use async I/O, except it's reputed to suck so hard that characters
1363 * actually go missing from your code when you try to use it.
1365 * So we farm the I/O out to thread, and communicate with it via a pipe. */
1367 /* This hangs off device->priv. */
1368 struct vblk_info
1370 /* The size of the file. */
1371 off64_t len;
1373 /* The file descriptor for the file. */
1374 int fd;
1376 /* IO thread listens on this file descriptor [0]. */
1377 int workpipe[2];
1379 /* IO thread writes to this file descriptor to mark it done, then
1380 * Launcher triggers interrupt to Guest. */
1381 int done_fd;
1383 /*:*/
1385 /*L:210
1386 * The Disk
1388 * Remember that the block device is handled by a separate I/O thread. We head
1389 * straight into the core of that thread here:
1391 static bool service_io(struct device *dev)
1393 struct vblk_info *vblk = dev->priv;
1394 unsigned int head, out_num, in_num, wlen;
1395 int ret;
1396 struct virtio_blk_inhdr *in;
1397 struct virtio_blk_outhdr *out;
1398 struct iovec iov[dev->vq->vring.num];
1399 off64_t off;
1401 /* See if there's a request waiting. If not, nothing to do. */
1402 head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
1403 if (head == dev->vq->vring.num)
1404 return false;
1406 /* Every block request should contain at least one output buffer
1407 * (detailing the location on disk and the type of request) and one
1408 * input buffer (to hold the result). */
1409 if (out_num == 0 || in_num == 0)
1410 errx(1, "Bad virtblk cmd %u out=%u in=%u",
1411 head, out_num, in_num);
1413 out = convert(&iov[0], struct virtio_blk_outhdr);
1414 in = convert(&iov[out_num+in_num-1], struct virtio_blk_inhdr);
1415 off = out->sector * 512;
1417 /* The block device implements "barriers", where the Guest indicates
1418 * that it wants all previous writes to occur before this write. We
1419 * don't have a way of asking our kernel to do a barrier, so we just
1420 * synchronize all the data in the file. Pretty poor, no? */
1421 if (out->type & VIRTIO_BLK_T_BARRIER)
1422 fdatasync(vblk->fd);
1424 /* In general the virtio block driver is allowed to try SCSI commands.
1425 * It'd be nice if we supported eject, for example, but we don't. */
1426 if (out->type & VIRTIO_BLK_T_SCSI_CMD) {
1427 fprintf(stderr, "Scsi commands unsupported\n");
1428 in->status = VIRTIO_BLK_S_UNSUPP;
1429 wlen = sizeof(*in);
1430 } else if (out->type & VIRTIO_BLK_T_OUT) {
1431 /* Write */
1433 /* Move to the right location in the block file. This can fail
1434 * if they try to write past end. */
1435 if (lseek64(vblk->fd, off, SEEK_SET) != off)
1436 err(1, "Bad seek to sector %llu", out->sector);
1438 ret = writev(vblk->fd, iov+1, out_num-1);
1439 verbose("WRITE to sector %llu: %i\n", out->sector, ret);
1441 /* Grr... Now we know how long the descriptor they sent was, we
1442 * make sure they didn't try to write over the end of the block
1443 * file (possibly extending it). */
1444 if (ret > 0 && off + ret > vblk->len) {
1445 /* Trim it back to the correct length */
1446 ftruncate64(vblk->fd, vblk->len);
1447 /* Die, bad Guest, die. */
1448 errx(1, "Write past end %llu+%u", off, ret);
1450 wlen = sizeof(*in);
1451 in->status = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
1452 } else {
1453 /* Read */
1455 /* Move to the right location in the block file. This can fail
1456 * if they try to read past end. */
1457 if (lseek64(vblk->fd, off, SEEK_SET) != off)
1458 err(1, "Bad seek to sector %llu", out->sector);
1460 ret = readv(vblk->fd, iov+1, in_num-1);
1461 verbose("READ from sector %llu: %i\n", out->sector, ret);
1462 if (ret >= 0) {
1463 wlen = sizeof(*in) + ret;
1464 in->status = VIRTIO_BLK_S_OK;
1465 } else {
1466 wlen = sizeof(*in);
1467 in->status = VIRTIO_BLK_S_IOERR;
1471 /* We can't trigger an IRQ, because we're not the Launcher. It does
1472 * that when we tell it we're done. */
1473 add_used(dev->vq, head, wlen);
1474 return true;
1477 /* This is the thread which actually services the I/O. */
1478 static int io_thread(void *_dev)
1480 struct device *dev = _dev;
1481 struct vblk_info *vblk = dev->priv;
1482 char c;
1484 /* Close other side of workpipe so we get 0 read when main dies. */
1485 close(vblk->workpipe[1]);
1486 /* Close the other side of the done_fd pipe. */
1487 close(dev->fd);
1489 /* When this read fails, it means Launcher died, so we follow. */
1490 while (read(vblk->workpipe[0], &c, 1) == 1) {
1491 /* We acknowledge each request immediately to reduce latency,
1492 * rather than waiting until we've done them all. I haven't
1493 * measured to see if it makes any difference. */
1494 while (service_io(dev))
1495 write(vblk->done_fd, &c, 1);
1497 return 0;
1500 /* Now we've seen the I/O thread, we return to the Launcher to see what happens
1501 * when the thread tells us it's completed some I/O. */
1502 static bool handle_io_finish(int fd, struct device *dev)
1504 char c;
1506 /* If the I/O thread died, presumably it printed the error, so we
1507 * simply exit. */
1508 if (read(dev->fd, &c, 1) != 1)
1509 exit(1);
1511 /* It did some work, so trigger the irq. */
1512 trigger_irq(fd, dev->vq);
1513 return true;
1516 /* When the Guest submits some I/O, we just need to wake the I/O thread. */
1517 static void handle_virtblk_output(int fd, struct virtqueue *vq)
1519 struct vblk_info *vblk = vq->dev->priv;
1520 char c = 0;
1522 /* Wake up I/O thread and tell it to go to work! */
1523 if (write(vblk->workpipe[1], &c, 1) != 1)
1524 /* Presumably it indicated why it died. */
1525 exit(1);
1528 /*L:198 This actually sets up a virtual block device. */
1529 static void setup_block_file(const char *filename)
1531 int p[2];
1532 struct device *dev;
1533 struct vblk_info *vblk;
1534 void *stack;
1535 struct virtio_blk_config conf;
1537 /* This is the pipe the I/O thread will use to tell us I/O is done. */
1538 pipe(p);
1540 /* The device responds to return from I/O thread. */
1541 dev = new_device("block", VIRTIO_ID_BLOCK, p[0], handle_io_finish);
1543 /* The device has one virtqueue, where the Guest places requests. */
1544 add_virtqueue(dev, VIRTQUEUE_NUM, handle_virtblk_output);
1546 /* Allocate the room for our own bookkeeping */
1547 vblk = dev->priv = malloc(sizeof(*vblk));
1549 /* First we open the file and store the length. */
1550 vblk->fd = open_or_die(filename, O_RDWR|O_LARGEFILE);
1551 vblk->len = lseek64(vblk->fd, 0, SEEK_END);
1553 /* We support barriers. */
1554 add_feature(dev, VIRTIO_BLK_F_BARRIER);
1556 /* Tell Guest how many sectors this device has. */
1557 conf.capacity = cpu_to_le64(vblk->len / 512);
1559 /* Tell Guest not to put in too many descriptors at once: two are used
1560 * for the in and out elements. */
1561 add_feature(dev, VIRTIO_BLK_F_SEG_MAX);
1562 conf.seg_max = cpu_to_le32(VIRTQUEUE_NUM - 2);
1564 set_config(dev, sizeof(conf), &conf);
1566 /* The I/O thread writes to this end of the pipe when done. */
1567 vblk->done_fd = p[1];
1569 /* This is the second pipe, which is how we tell the I/O thread about
1570 * more work. */
1571 pipe(vblk->workpipe);
1573 /* Create stack for thread and run it */
1574 stack = malloc(32768);
1575 /* SIGCHLD - We dont "wait" for our cloned thread, so prevent it from
1576 * becoming a zombie. */
1577 if (clone(io_thread, stack + 32768, CLONE_VM | SIGCHLD, dev) == -1)
1578 err(1, "Creating clone");
1580 /* We don't need to keep the I/O thread's end of the pipes open. */
1581 close(vblk->done_fd);
1582 close(vblk->workpipe[0]);
1584 verbose("device %u: virtblock %llu sectors\n",
1585 devices.device_num, le64_to_cpu(conf.capacity));
1587 /* That's the end of device setup. :*/
1589 /* Reboot */
1590 static void __attribute__((noreturn)) restart_guest(void)
1592 unsigned int i;
1594 /* Closing pipes causes the waker thread and io_threads to die, and
1595 * closing /dev/lguest cleans up the Guest. Since we don't track all
1596 * open fds, we simply close everything beyond stderr. */
1597 for (i = 3; i < FD_SETSIZE; i++)
1598 close(i);
1599 execv(main_args[0], main_args);
1600 err(1, "Could not exec %s", main_args[0]);
1603 /*L:220 Finally we reach the core of the Launcher, which runs the Guest, serves
1604 * its input and output, and finally, lays it to rest. */
1605 static void __attribute__((noreturn)) run_guest(int lguest_fd)
1607 for (;;) {
1608 unsigned long args[] = { LHREQ_BREAK, 0 };
1609 unsigned long notify_addr;
1610 int readval;
1612 /* We read from the /dev/lguest device to run the Guest. */
1613 readval = pread(lguest_fd, &notify_addr,
1614 sizeof(notify_addr), cpu_id);
1616 /* One unsigned long means the Guest did HCALL_NOTIFY */
1617 if (readval == sizeof(notify_addr)) {
1618 verbose("Notify on address %#lx\n", notify_addr);
1619 handle_output(lguest_fd, notify_addr);
1620 continue;
1621 /* ENOENT means the Guest died. Reading tells us why. */
1622 } else if (errno == ENOENT) {
1623 char reason[1024] = { 0 };
1624 pread(lguest_fd, reason, sizeof(reason)-1, cpu_id);
1625 errx(1, "%s", reason);
1626 /* ERESTART means that we need to reboot the guest */
1627 } else if (errno == ERESTART) {
1628 restart_guest();
1629 /* EAGAIN means the Waker wanted us to look at some input.
1630 * Anything else means a bug or incompatible change. */
1631 } else if (errno != EAGAIN)
1632 err(1, "Running guest failed");
1634 /* Only service input on thread for CPU 0. */
1635 if (cpu_id != 0)
1636 continue;
1638 /* Service input, then unset the BREAK to release the Waker. */
1639 handle_input(lguest_fd);
1640 if (pwrite(lguest_fd, args, sizeof(args), cpu_id) < 0)
1641 err(1, "Resetting break");
1645 * This is the end of the Launcher. The good news: we are over halfway
1646 * through! The bad news: the most fiendish part of the code still lies ahead
1647 * of us.
1649 * Are you ready? Take a deep breath and join me in the core of the Host, in
1650 * "make Host".
1653 static struct option opts[] = {
1654 { "verbose", 0, NULL, 'v' },
1655 { "tunnet", 1, NULL, 't' },
1656 { "block", 1, NULL, 'b' },
1657 { "initrd", 1, NULL, 'i' },
1658 { NULL },
1660 static void usage(void)
1662 errx(1, "Usage: lguest [--verbose] "
1663 "[--tunnet=(<ipaddr>|bridge:<bridgename>)\n"
1664 "|--block=<filename>|--initrd=<filename>]...\n"
1665 "<mem-in-mb> vmlinux [args...]");
1668 /*L:105 The main routine is where the real work begins: */
1669 int main(int argc, char *argv[])
1671 /* Memory, top-level pagetable, code startpoint and size of the
1672 * (optional) initrd. */
1673 unsigned long mem = 0, pgdir, start, initrd_size = 0;
1674 /* Two temporaries and the /dev/lguest file descriptor. */
1675 int i, c, lguest_fd;
1676 /* The boot information for the Guest. */
1677 struct boot_params *boot;
1678 /* If they specify an initrd file to load. */
1679 const char *initrd_name = NULL;
1681 /* Save the args: we "reboot" by execing ourselves again. */
1682 main_args = argv;
1683 /* We don't "wait" for the children, so prevent them from becoming
1684 * zombies. */
1685 signal(SIGCHLD, SIG_IGN);
1687 /* First we initialize the device list. Since console and network
1688 * device receive input from a file descriptor, we keep an fdset
1689 * (infds) and the maximum fd number (max_infd) with the head of the
1690 * list. We also keep a pointer to the last device. Finally, we keep
1691 * the next interrupt number to hand out (1: remember that 0 is used by
1692 * the timer). */
1693 FD_ZERO(&devices.infds);
1694 devices.max_infd = -1;
1695 devices.lastdev = NULL;
1696 devices.next_irq = 1;
1698 cpu_id = 0;
1699 /* We need to know how much memory so we can set up the device
1700 * descriptor and memory pages for the devices as we parse the command
1701 * line. So we quickly look through the arguments to find the amount
1702 * of memory now. */
1703 for (i = 1; i < argc; i++) {
1704 if (argv[i][0] != '-') {
1705 mem = atoi(argv[i]) * 1024 * 1024;
1706 /* We start by mapping anonymous pages over all of
1707 * guest-physical memory range. This fills it with 0,
1708 * and ensures that the Guest won't be killed when it
1709 * tries to access it. */
1710 guest_base = map_zeroed_pages(mem / getpagesize()
1711 + DEVICE_PAGES);
1712 guest_limit = mem;
1713 guest_max = mem + DEVICE_PAGES*getpagesize();
1714 devices.descpage = get_pages(1);
1715 break;
1719 /* The options are fairly straight-forward */
1720 while ((c = getopt_long(argc, argv, "v", opts, NULL)) != EOF) {
1721 switch (c) {
1722 case 'v':
1723 verbose = true;
1724 break;
1725 case 't':
1726 setup_tun_net(optarg);
1727 break;
1728 case 'b':
1729 setup_block_file(optarg);
1730 break;
1731 case 'i':
1732 initrd_name = optarg;
1733 break;
1734 default:
1735 warnx("Unknown argument %s", argv[optind]);
1736 usage();
1739 /* After the other arguments we expect memory and kernel image name,
1740 * followed by command line arguments for the kernel. */
1741 if (optind + 2 > argc)
1742 usage();
1744 verbose("Guest base is at %p\n", guest_base);
1746 /* We always have a console device */
1747 setup_console();
1749 /* Now we load the kernel */
1750 start = load_kernel(open_or_die(argv[optind+1], O_RDONLY));
1752 /* Boot information is stashed at physical address 0 */
1753 boot = from_guest_phys(0);
1755 /* Map the initrd image if requested (at top of physical memory) */
1756 if (initrd_name) {
1757 initrd_size = load_initrd(initrd_name, mem);
1758 /* These are the location in the Linux boot header where the
1759 * start and size of the initrd are expected to be found. */
1760 boot->hdr.ramdisk_image = mem - initrd_size;
1761 boot->hdr.ramdisk_size = initrd_size;
1762 /* The bootloader type 0xFF means "unknown"; that's OK. */
1763 boot->hdr.type_of_loader = 0xFF;
1766 /* Set up the initial linear pagetables, starting below the initrd. */
1767 pgdir = setup_pagetables(mem, initrd_size);
1769 /* The Linux boot header contains an "E820" memory map: ours is a
1770 * simple, single region. */
1771 boot->e820_entries = 1;
1772 boot->e820_map[0] = ((struct e820entry) { 0, mem, E820_RAM });
1773 /* The boot header contains a command line pointer: we put the command
1774 * line after the boot header. */
1775 boot->hdr.cmd_line_ptr = to_guest_phys(boot + 1);
1776 /* We use a simple helper to copy the arguments separated by spaces. */
1777 concat((char *)(boot + 1), argv+optind+2);
1779 /* Boot protocol version: 2.07 supports the fields for lguest. */
1780 boot->hdr.version = 0x207;
1782 /* The hardware_subarch value of "1" tells the Guest it's an lguest. */
1783 boot->hdr.hardware_subarch = 1;
1785 /* Tell the entry path not to try to reload segment registers. */
1786 boot->hdr.loadflags |= KEEP_SEGMENTS;
1788 /* We tell the kernel to initialize the Guest: this returns the open
1789 * /dev/lguest file descriptor. */
1790 lguest_fd = tell_kernel(pgdir, start);
1792 /* We fork off a child process, which wakes the Launcher whenever one
1793 * of the input file descriptors needs attention. Otherwise we would
1794 * run the Guest until it tries to output something. */
1795 waker_fd = setup_waker(lguest_fd);
1797 /* Finally, run the Guest. This doesn't return. */
1798 run_guest(lguest_fd);
1800 /*:*/
1802 /*M:999
1803 * Mastery is done: you now know everything I do.
1805 * But surely you have seen code, features and bugs in your wanderings which
1806 * you now yearn to attack? That is the real game, and I look forward to you
1807 * patching and forking lguest into the Your-Name-Here-visor.
1809 * Farewell, and good coding!
1810 * Rusty Russell.