drm/i915: Set framebuffer alignment based upon the fence constraints.
[linux-2.6/linux-2.6-openrd.git] / kernel / power / swsusp.c
bloba92c9145155975b306d52dab08fb095e3af8370e
1 /*
2 * linux/kernel/power/swsusp.c
4 * This file provides code to write suspend image to swap and read it back.
6 * Copyright (C) 1998-2001 Gabor Kuti <seasons@fornax.hu>
7 * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@suse.cz>
9 * This file is released under the GPLv2.
11 * I'd like to thank the following people for their work:
13 * Pavel Machek <pavel@ucw.cz>:
14 * Modifications, defectiveness pointing, being with me at the very beginning,
15 * suspend to swap space, stop all tasks. Port to 2.4.18-ac and 2.5.17.
17 * Steve Doddi <dirk@loth.demon.co.uk>:
18 * Support the possibility of hardware state restoring.
20 * Raph <grey.havens@earthling.net>:
21 * Support for preserving states of network devices and virtual console
22 * (including X and svgatextmode)
24 * Kurt Garloff <garloff@suse.de>:
25 * Straightened the critical function in order to prevent compilers from
26 * playing tricks with local variables.
28 * Andreas Mohr <a.mohr@mailto.de>
30 * Alex Badea <vampire@go.ro>:
31 * Fixed runaway init
33 * Rafael J. Wysocki <rjw@sisk.pl>
34 * Reworked the freeing of memory and the handling of swap
36 * More state savers are welcome. Especially for the scsi layer...
38 * For TODOs,FIXMEs also look in Documentation/power/swsusp.txt
41 #include <linux/mm.h>
42 #include <linux/suspend.h>
43 #include <linux/spinlock.h>
44 #include <linux/kernel.h>
45 #include <linux/major.h>
46 #include <linux/swap.h>
47 #include <linux/pm.h>
48 #include <linux/swapops.h>
49 #include <linux/bootmem.h>
50 #include <linux/syscalls.h>
51 #include <linux/highmem.h>
52 #include <linux/time.h>
53 #include <linux/rbtree.h>
55 #include "power.h"
58 * Preferred image size in bytes (tunable via /sys/power/image_size).
59 * When it is set to N, swsusp will do its best to ensure the image
60 * size will not exceed N bytes, but if that is impossible, it will
61 * try to create the smallest image possible.
63 unsigned long image_size = 500 * 1024 * 1024;
65 int in_suspend __nosavedata = 0;
67 /**
68 * The following functions are used for tracing the allocated
69 * swap pages, so that they can be freed in case of an error.
72 struct swsusp_extent {
73 struct rb_node node;
74 unsigned long start;
75 unsigned long end;
78 static struct rb_root swsusp_extents = RB_ROOT;
80 static int swsusp_extents_insert(unsigned long swap_offset)
82 struct rb_node **new = &(swsusp_extents.rb_node);
83 struct rb_node *parent = NULL;
84 struct swsusp_extent *ext;
86 /* Figure out where to put the new node */
87 while (*new) {
88 ext = container_of(*new, struct swsusp_extent, node);
89 parent = *new;
90 if (swap_offset < ext->start) {
91 /* Try to merge */
92 if (swap_offset == ext->start - 1) {
93 ext->start--;
94 return 0;
96 new = &((*new)->rb_left);
97 } else if (swap_offset > ext->end) {
98 /* Try to merge */
99 if (swap_offset == ext->end + 1) {
100 ext->end++;
101 return 0;
103 new = &((*new)->rb_right);
104 } else {
105 /* It already is in the tree */
106 return -EINVAL;
109 /* Add the new node and rebalance the tree. */
110 ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
111 if (!ext)
112 return -ENOMEM;
114 ext->start = swap_offset;
115 ext->end = swap_offset;
116 rb_link_node(&ext->node, parent, new);
117 rb_insert_color(&ext->node, &swsusp_extents);
118 return 0;
122 * alloc_swapdev_block - allocate a swap page and register that it has
123 * been allocated, so that it can be freed in case of an error.
126 sector_t alloc_swapdev_block(int swap)
128 unsigned long offset;
130 offset = swp_offset(get_swap_page_of_type(swap));
131 if (offset) {
132 if (swsusp_extents_insert(offset))
133 swap_free(swp_entry(swap, offset));
134 else
135 return swapdev_block(swap, offset);
137 return 0;
141 * free_all_swap_pages - free swap pages allocated for saving image data.
142 * It also frees the extents used to register which swap entres had been
143 * allocated.
146 void free_all_swap_pages(int swap)
148 struct rb_node *node;
150 while ((node = swsusp_extents.rb_node)) {
151 struct swsusp_extent *ext;
152 unsigned long offset;
154 ext = container_of(node, struct swsusp_extent, node);
155 rb_erase(node, &swsusp_extents);
156 for (offset = ext->start; offset <= ext->end; offset++)
157 swap_free(swp_entry(swap, offset));
159 kfree(ext);
163 int swsusp_swap_in_use(void)
165 return (swsusp_extents.rb_node != NULL);
169 * swsusp_show_speed - print the time elapsed between two events represented by
170 * @start and @stop
172 * @nr_pages - number of pages processed between @start and @stop
173 * @msg - introductory message to print
176 void swsusp_show_speed(struct timeval *start, struct timeval *stop,
177 unsigned nr_pages, char *msg)
179 s64 elapsed_centisecs64;
180 int centisecs;
181 int k;
182 int kps;
184 elapsed_centisecs64 = timeval_to_ns(stop) - timeval_to_ns(start);
185 do_div(elapsed_centisecs64, NSEC_PER_SEC / 100);
186 centisecs = elapsed_centisecs64;
187 if (centisecs == 0)
188 centisecs = 1; /* avoid div-by-zero */
189 k = nr_pages * (PAGE_SIZE / 1024);
190 kps = (k * 100) / centisecs;
191 printk(KERN_INFO "PM: %s %d kbytes in %d.%02d seconds (%d.%02d MB/s)\n",
192 msg, k,
193 centisecs / 100, centisecs % 100,
194 kps / 1000, (kps % 1000) / 10);
198 * swsusp_shrink_memory - Try to free as much memory as needed
200 * ... but do not OOM-kill anyone
202 * Notice: all userland should be stopped before it is called, or
203 * livelock is possible.
206 #define SHRINK_BITE 10000
207 static inline unsigned long __shrink_memory(long tmp)
209 if (tmp > SHRINK_BITE)
210 tmp = SHRINK_BITE;
211 return shrink_all_memory(tmp);
214 int swsusp_shrink_memory(void)
216 long tmp;
217 struct zone *zone;
218 unsigned long pages = 0;
219 unsigned int i = 0;
220 char *p = "-\\|/";
221 struct timeval start, stop;
223 printk(KERN_INFO "PM: Shrinking memory... ");
224 do_gettimeofday(&start);
225 do {
226 long size, highmem_size;
228 highmem_size = count_highmem_pages();
229 size = count_data_pages() + PAGES_FOR_IO + SPARE_PAGES;
230 tmp = size;
231 size += highmem_size;
232 for_each_zone (zone)
233 if (populated_zone(zone)) {
234 tmp += snapshot_additional_pages(zone);
235 if (is_highmem(zone)) {
236 highmem_size -=
237 zone_page_state(zone, NR_FREE_PAGES);
238 } else {
239 tmp -= zone_page_state(zone, NR_FREE_PAGES);
240 tmp += zone->lowmem_reserve[ZONE_NORMAL];
244 if (highmem_size < 0)
245 highmem_size = 0;
247 tmp += highmem_size;
248 if (tmp > 0) {
249 tmp = __shrink_memory(tmp);
250 if (!tmp)
251 return -ENOMEM;
252 pages += tmp;
253 } else if (size > image_size / PAGE_SIZE) {
254 tmp = __shrink_memory(size - (image_size / PAGE_SIZE));
255 pages += tmp;
257 printk("\b%c", p[i++%4]);
258 } while (tmp > 0);
259 do_gettimeofday(&stop);
260 printk("\bdone (%lu pages freed)\n", pages);
261 swsusp_show_speed(&start, &stop, pages, "Freed");
263 return 0;
267 * Platforms, like ACPI, may want us to save some memory used by them during
268 * hibernation and to restore the contents of this memory during the subsequent
269 * resume. The code below implements a mechanism allowing us to do that.
272 struct nvs_page {
273 unsigned long phys_start;
274 unsigned int size;
275 void *kaddr;
276 void *data;
277 struct list_head node;
280 static LIST_HEAD(nvs_list);
283 * hibernate_nvs_register - register platform NVS memory region to save
284 * @start - physical address of the region
285 * @size - size of the region
287 * The NVS region need not be page-aligned (both ends) and we arrange
288 * things so that the data from page-aligned addresses in this region will
289 * be copied into separate RAM pages.
291 int hibernate_nvs_register(unsigned long start, unsigned long size)
293 struct nvs_page *entry, *next;
295 while (size > 0) {
296 unsigned int nr_bytes;
298 entry = kzalloc(sizeof(struct nvs_page), GFP_KERNEL);
299 if (!entry)
300 goto Error;
302 list_add_tail(&entry->node, &nvs_list);
303 entry->phys_start = start;
304 nr_bytes = PAGE_SIZE - (start & ~PAGE_MASK);
305 entry->size = (size < nr_bytes) ? size : nr_bytes;
307 start += entry->size;
308 size -= entry->size;
310 return 0;
312 Error:
313 list_for_each_entry_safe(entry, next, &nvs_list, node) {
314 list_del(&entry->node);
315 kfree(entry);
317 return -ENOMEM;
321 * hibernate_nvs_free - free data pages allocated for saving NVS regions
323 void hibernate_nvs_free(void)
325 struct nvs_page *entry;
327 list_for_each_entry(entry, &nvs_list, node)
328 if (entry->data) {
329 free_page((unsigned long)entry->data);
330 entry->data = NULL;
331 if (entry->kaddr) {
332 iounmap(entry->kaddr);
333 entry->kaddr = NULL;
339 * hibernate_nvs_alloc - allocate memory necessary for saving NVS regions
341 int hibernate_nvs_alloc(void)
343 struct nvs_page *entry;
345 list_for_each_entry(entry, &nvs_list, node) {
346 entry->data = (void *)__get_free_page(GFP_KERNEL);
347 if (!entry->data) {
348 hibernate_nvs_free();
349 return -ENOMEM;
352 return 0;
356 * hibernate_nvs_save - save NVS memory regions
358 void hibernate_nvs_save(void)
360 struct nvs_page *entry;
362 printk(KERN_INFO "PM: Saving platform NVS memory\n");
364 list_for_each_entry(entry, &nvs_list, node)
365 if (entry->data) {
366 entry->kaddr = ioremap(entry->phys_start, entry->size);
367 memcpy(entry->data, entry->kaddr, entry->size);
372 * hibernate_nvs_restore - restore NVS memory regions
374 * This function is going to be called with interrupts disabled, so it
375 * cannot iounmap the virtual addresses used to access the NVS region.
377 void hibernate_nvs_restore(void)
379 struct nvs_page *entry;
381 printk(KERN_INFO "PM: Restoring platform NVS memory\n");
383 list_for_each_entry(entry, &nvs_list, node)
384 if (entry->data)
385 memcpy(entry->kaddr, entry->data, entry->size);