2 * Copyright (c) 1999-2001 Vojtech Pavlik
3 * Copyright (c) 2007-2008 Bartlomiej Zolnierkiewicz
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 * Should you need to contact me, the author, you can do so either by
20 * e-mail - mail your message to <vojtech@ucw.cz>, or by paper mail:
21 * Vojtech Pavlik, Simunkova 1594, Prague 8, 182 00 Czech Republic
24 #include <linux/kernel.h>
25 #include <linux/ide.h>
26 #include <linux/module.h>
29 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
30 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
31 * for PIO 5, which is a nonstandard extension and UDMA6, which
32 * is currently supported only by Maxtor drives.
35 static struct ide_timing ide_timing
[] = {
37 { XFER_UDMA_6
, 0, 0, 0, 0, 0, 0, 0, 15 },
38 { XFER_UDMA_5
, 0, 0, 0, 0, 0, 0, 0, 20 },
39 { XFER_UDMA_4
, 0, 0, 0, 0, 0, 0, 0, 30 },
40 { XFER_UDMA_3
, 0, 0, 0, 0, 0, 0, 0, 45 },
42 { XFER_UDMA_2
, 0, 0, 0, 0, 0, 0, 0, 60 },
43 { XFER_UDMA_1
, 0, 0, 0, 0, 0, 0, 0, 80 },
44 { XFER_UDMA_0
, 0, 0, 0, 0, 0, 0, 0, 120 },
46 { XFER_MW_DMA_2
, 25, 0, 0, 0, 70, 25, 120, 0 },
47 { XFER_MW_DMA_1
, 45, 0, 0, 0, 80, 50, 150, 0 },
48 { XFER_MW_DMA_0
, 60, 0, 0, 0, 215, 215, 480, 0 },
50 { XFER_SW_DMA_2
, 60, 0, 0, 0, 120, 120, 240, 0 },
51 { XFER_SW_DMA_1
, 90, 0, 0, 0, 240, 240, 480, 0 },
52 { XFER_SW_DMA_0
, 120, 0, 0, 0, 480, 480, 960, 0 },
54 { XFER_PIO_5
, 20, 50, 30, 100, 50, 30, 100, 0 },
55 { XFER_PIO_4
, 25, 70, 25, 120, 70, 25, 120, 0 },
56 { XFER_PIO_3
, 30, 80, 70, 180, 80, 70, 180, 0 },
58 { XFER_PIO_2
, 30, 290, 40, 330, 100, 90, 240, 0 },
59 { XFER_PIO_1
, 50, 290, 93, 383, 125, 100, 383, 0 },
60 { XFER_PIO_0
, 70, 290, 240, 600, 165, 150, 600, 0 },
62 { XFER_PIO_SLOW
, 120, 290, 240, 960, 290, 240, 960, 0 },
67 struct ide_timing
*ide_timing_find_mode(u8 speed
)
71 for (t
= ide_timing
; t
->mode
!= speed
; t
++)
76 EXPORT_SYMBOL_GPL(ide_timing_find_mode
);
78 u16
ide_pio_cycle_time(ide_drive_t
*drive
, u8 pio
)
81 struct ide_timing
*t
= ide_timing_find_mode(XFER_PIO_0
+ pio
);
84 if (id
[ATA_ID_FIELD_VALID
] & 2) {
85 if (ata_id_has_iordy(drive
->id
))
86 cycle
= id
[ATA_ID_EIDE_PIO_IORDY
];
88 cycle
= id
[ATA_ID_EIDE_PIO
];
90 /* conservative "downgrade" for all pre-ATA2 drives */
91 if (pio
< 3 && cycle
< t
->cycle
)
92 cycle
= 0; /* use standard timing */
95 return cycle
? cycle
: t
->cycle
;
97 EXPORT_SYMBOL_GPL(ide_pio_cycle_time
);
99 #define ENOUGH(v, unit) (((v) - 1) / (unit) + 1)
100 #define EZ(v, unit) ((v) ? ENOUGH(v, unit) : 0)
102 static void ide_timing_quantize(struct ide_timing
*t
, struct ide_timing
*q
,
105 q
->setup
= EZ(t
->setup
* 1000, T
);
106 q
->act8b
= EZ(t
->act8b
* 1000, T
);
107 q
->rec8b
= EZ(t
->rec8b
* 1000, T
);
108 q
->cyc8b
= EZ(t
->cyc8b
* 1000, T
);
109 q
->active
= EZ(t
->active
* 1000, T
);
110 q
->recover
= EZ(t
->recover
* 1000, T
);
111 q
->cycle
= EZ(t
->cycle
* 1000, T
);
112 q
->udma
= EZ(t
->udma
* 1000, UT
);
115 void ide_timing_merge(struct ide_timing
*a
, struct ide_timing
*b
,
116 struct ide_timing
*m
, unsigned int what
)
118 if (what
& IDE_TIMING_SETUP
)
119 m
->setup
= max(a
->setup
, b
->setup
);
120 if (what
& IDE_TIMING_ACT8B
)
121 m
->act8b
= max(a
->act8b
, b
->act8b
);
122 if (what
& IDE_TIMING_REC8B
)
123 m
->rec8b
= max(a
->rec8b
, b
->rec8b
);
124 if (what
& IDE_TIMING_CYC8B
)
125 m
->cyc8b
= max(a
->cyc8b
, b
->cyc8b
);
126 if (what
& IDE_TIMING_ACTIVE
)
127 m
->active
= max(a
->active
, b
->active
);
128 if (what
& IDE_TIMING_RECOVER
)
129 m
->recover
= max(a
->recover
, b
->recover
);
130 if (what
& IDE_TIMING_CYCLE
)
131 m
->cycle
= max(a
->cycle
, b
->cycle
);
132 if (what
& IDE_TIMING_UDMA
)
133 m
->udma
= max(a
->udma
, b
->udma
);
135 EXPORT_SYMBOL_GPL(ide_timing_merge
);
137 int ide_timing_compute(ide_drive_t
*drive
, u8 speed
,
138 struct ide_timing
*t
, int T
, int UT
)
141 struct ide_timing
*s
, p
;
146 s
= ide_timing_find_mode(speed
);
151 * Copy the timing from the table.
156 * If the drive is an EIDE drive, it can tell us it needs extended
157 * PIO/MWDMA cycle timing.
159 if (id
[ATA_ID_FIELD_VALID
] & 2) { /* EIDE drive */
160 memset(&p
, 0, sizeof(p
));
162 if (speed
<= XFER_PIO_2
)
163 p
.cycle
= p
.cyc8b
= id
[ATA_ID_EIDE_PIO
];
164 else if (speed
<= XFER_PIO_5
)
165 p
.cycle
= p
.cyc8b
= id
[ATA_ID_EIDE_PIO_IORDY
];
166 else if (speed
>= XFER_MW_DMA_0
&& speed
<= XFER_MW_DMA_2
)
167 p
.cycle
= id
[ATA_ID_EIDE_DMA_MIN
];
169 ide_timing_merge(&p
, t
, t
, IDE_TIMING_CYCLE
| IDE_TIMING_CYC8B
);
173 * Convert the timing to bus clock counts.
175 ide_timing_quantize(t
, t
, T
, UT
);
178 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
179 * S.M.A.R.T and some other commands. We have to ensure that the
180 * DMA cycle timing is slower/equal than the fastest PIO timing.
182 if (speed
>= XFER_SW_DMA_0
) {
183 u8 pio
= ide_get_best_pio_mode(drive
, 255, 5);
184 ide_timing_compute(drive
, XFER_PIO_0
+ pio
, &p
, T
, UT
);
185 ide_timing_merge(&p
, t
, t
, IDE_TIMING_ALL
);
189 * Lengthen active & recovery time so that cycle time is correct.
191 if (t
->act8b
+ t
->rec8b
< t
->cyc8b
) {
192 t
->act8b
+= (t
->cyc8b
- (t
->act8b
+ t
->rec8b
)) / 2;
193 t
->rec8b
= t
->cyc8b
- t
->act8b
;
196 if (t
->active
+ t
->recover
< t
->cycle
) {
197 t
->active
+= (t
->cycle
- (t
->active
+ t
->recover
)) / 2;
198 t
->recover
= t
->cycle
- t
->active
;
203 EXPORT_SYMBOL_GPL(ide_timing_compute
);