2 * Memory Migration functionality - linux/mm/migration.c
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
15 #include <linux/migrate.h>
16 #include <linux/module.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
38 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
41 * migrate_prep() needs to be called before we start compiling a list of pages
42 * to be migrated using isolate_lru_page().
44 int migrate_prep(void)
47 * Clear the LRU lists so pages can be isolated.
48 * Note that pages may be moved off the LRU after we have
49 * drained them. Those pages will fail to migrate like other
50 * pages that may be busy.
58 * Add isolated pages on the list back to the LRU under page lock
59 * to avoid leaking evictable pages back onto unevictable list.
61 * returns the number of pages put back.
63 int putback_lru_pages(struct list_head
*l
)
69 list_for_each_entry_safe(page
, page2
, l
, lru
) {
71 dec_zone_page_state(page
, NR_ISOLATED_ANON
+
72 page_is_file_cache(page
));
73 putback_lru_page(page
);
80 * Restore a potential migration pte to a working pte entry
82 static int remove_migration_pte(struct page
*new, struct vm_area_struct
*vma
,
83 unsigned long addr
, void *old
)
85 struct mm_struct
*mm
= vma
->vm_mm
;
93 pgd
= pgd_offset(mm
, addr
);
94 if (!pgd_present(*pgd
))
97 pud
= pud_offset(pgd
, addr
);
98 if (!pud_present(*pud
))
101 pmd
= pmd_offset(pud
, addr
);
102 if (!pmd_present(*pmd
))
105 ptep
= pte_offset_map(pmd
, addr
);
107 if (!is_swap_pte(*ptep
)) {
112 ptl
= pte_lockptr(mm
, pmd
);
115 if (!is_swap_pte(pte
))
118 entry
= pte_to_swp_entry(pte
);
120 if (!is_migration_entry(entry
) ||
121 migration_entry_to_page(entry
) != old
)
125 pte
= pte_mkold(mk_pte(new, vma
->vm_page_prot
));
126 if (is_write_migration_entry(entry
))
127 pte
= pte_mkwrite(pte
);
128 flush_cache_page(vma
, addr
, pte_pfn(pte
));
129 set_pte_at(mm
, addr
, ptep
, pte
);
132 page_add_anon_rmap(new, vma
, addr
);
134 page_add_file_rmap(new);
136 /* No need to invalidate - it was non-present before */
137 update_mmu_cache(vma
, addr
, pte
);
139 pte_unmap_unlock(ptep
, ptl
);
145 * Get rid of all migration entries and replace them by
146 * references to the indicated page.
148 static void remove_migration_ptes(struct page
*old
, struct page
*new)
150 rmap_walk(new, remove_migration_pte
, old
);
154 * Something used the pte of a page under migration. We need to
155 * get to the page and wait until migration is finished.
156 * When we return from this function the fault will be retried.
158 * This function is called from do_swap_page().
160 void migration_entry_wait(struct mm_struct
*mm
, pmd_t
*pmd
,
161 unsigned long address
)
168 ptep
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
170 if (!is_swap_pte(pte
))
173 entry
= pte_to_swp_entry(pte
);
174 if (!is_migration_entry(entry
))
177 page
= migration_entry_to_page(entry
);
180 * Once radix-tree replacement of page migration started, page_count
181 * *must* be zero. And, we don't want to call wait_on_page_locked()
182 * against a page without get_page().
183 * So, we use get_page_unless_zero(), here. Even failed, page fault
186 if (!get_page_unless_zero(page
))
188 pte_unmap_unlock(ptep
, ptl
);
189 wait_on_page_locked(page
);
193 pte_unmap_unlock(ptep
, ptl
);
197 * Replace the page in the mapping.
199 * The number of remaining references must be:
200 * 1 for anonymous pages without a mapping
201 * 2 for pages with a mapping
202 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
204 static int migrate_page_move_mapping(struct address_space
*mapping
,
205 struct page
*newpage
, struct page
*page
)
211 /* Anonymous page without mapping */
212 if (page_count(page
) != 1)
217 spin_lock_irq(&mapping
->tree_lock
);
219 pslot
= radix_tree_lookup_slot(&mapping
->page_tree
,
222 expected_count
= 2 + page_has_private(page
);
223 if (page_count(page
) != expected_count
||
224 (struct page
*)radix_tree_deref_slot(pslot
) != page
) {
225 spin_unlock_irq(&mapping
->tree_lock
);
229 if (!page_freeze_refs(page
, expected_count
)) {
230 spin_unlock_irq(&mapping
->tree_lock
);
235 * Now we know that no one else is looking at the page.
237 get_page(newpage
); /* add cache reference */
238 if (PageSwapCache(page
)) {
239 SetPageSwapCache(newpage
);
240 set_page_private(newpage
, page_private(page
));
243 radix_tree_replace_slot(pslot
, newpage
);
245 page_unfreeze_refs(page
, expected_count
);
247 * Drop cache reference from old page.
248 * We know this isn't the last reference.
253 * If moved to a different zone then also account
254 * the page for that zone. Other VM counters will be
255 * taken care of when we establish references to the
256 * new page and drop references to the old page.
258 * Note that anonymous pages are accounted for
259 * via NR_FILE_PAGES and NR_ANON_PAGES if they
260 * are mapped to swap space.
262 __dec_zone_page_state(page
, NR_FILE_PAGES
);
263 __inc_zone_page_state(newpage
, NR_FILE_PAGES
);
264 if (PageSwapBacked(page
)) {
265 __dec_zone_page_state(page
, NR_SHMEM
);
266 __inc_zone_page_state(newpage
, NR_SHMEM
);
268 spin_unlock_irq(&mapping
->tree_lock
);
274 * Copy the page to its new location
276 static void migrate_page_copy(struct page
*newpage
, struct page
*page
)
280 copy_highpage(newpage
, page
);
283 SetPageError(newpage
);
284 if (PageReferenced(page
))
285 SetPageReferenced(newpage
);
286 if (PageUptodate(page
))
287 SetPageUptodate(newpage
);
288 if (TestClearPageActive(page
)) {
289 VM_BUG_ON(PageUnevictable(page
));
290 SetPageActive(newpage
);
291 } else if (TestClearPageUnevictable(page
))
292 SetPageUnevictable(newpage
);
293 if (PageChecked(page
))
294 SetPageChecked(newpage
);
295 if (PageMappedToDisk(page
))
296 SetPageMappedToDisk(newpage
);
298 if (PageDirty(page
)) {
299 clear_page_dirty_for_io(page
);
301 * Want to mark the page and the radix tree as dirty, and
302 * redo the accounting that clear_page_dirty_for_io undid,
303 * but we can't use set_page_dirty because that function
304 * is actually a signal that all of the page has become dirty.
305 * Wheras only part of our page may be dirty.
307 __set_page_dirty_nobuffers(newpage
);
310 mlock_migrate_page(newpage
, page
);
311 ksm_migrate_page(newpage
, page
);
313 ClearPageSwapCache(page
);
314 ClearPagePrivate(page
);
315 set_page_private(page
, 0);
316 /* page->mapping contains a flag for PageAnon() */
317 anon
= PageAnon(page
);
318 page
->mapping
= NULL
;
321 * If any waiters have accumulated on the new page then
324 if (PageWriteback(newpage
))
325 end_page_writeback(newpage
);
328 /************************************************************
329 * Migration functions
330 ***********************************************************/
332 /* Always fail migration. Used for mappings that are not movable */
333 int fail_migrate_page(struct address_space
*mapping
,
334 struct page
*newpage
, struct page
*page
)
338 EXPORT_SYMBOL(fail_migrate_page
);
341 * Common logic to directly migrate a single page suitable for
342 * pages that do not use PagePrivate/PagePrivate2.
344 * Pages are locked upon entry and exit.
346 int migrate_page(struct address_space
*mapping
,
347 struct page
*newpage
, struct page
*page
)
351 BUG_ON(PageWriteback(page
)); /* Writeback must be complete */
353 rc
= migrate_page_move_mapping(mapping
, newpage
, page
);
358 migrate_page_copy(newpage
, page
);
361 EXPORT_SYMBOL(migrate_page
);
365 * Migration function for pages with buffers. This function can only be used
366 * if the underlying filesystem guarantees that no other references to "page"
369 int buffer_migrate_page(struct address_space
*mapping
,
370 struct page
*newpage
, struct page
*page
)
372 struct buffer_head
*bh
, *head
;
375 if (!page_has_buffers(page
))
376 return migrate_page(mapping
, newpage
, page
);
378 head
= page_buffers(page
);
380 rc
= migrate_page_move_mapping(mapping
, newpage
, page
);
389 bh
= bh
->b_this_page
;
391 } while (bh
!= head
);
393 ClearPagePrivate(page
);
394 set_page_private(newpage
, page_private(page
));
395 set_page_private(page
, 0);
401 set_bh_page(bh
, newpage
, bh_offset(bh
));
402 bh
= bh
->b_this_page
;
404 } while (bh
!= head
);
406 SetPagePrivate(newpage
);
408 migrate_page_copy(newpage
, page
);
414 bh
= bh
->b_this_page
;
416 } while (bh
!= head
);
420 EXPORT_SYMBOL(buffer_migrate_page
);
424 * Writeback a page to clean the dirty state
426 static int writeout(struct address_space
*mapping
, struct page
*page
)
428 struct writeback_control wbc
= {
429 .sync_mode
= WB_SYNC_NONE
,
432 .range_end
= LLONG_MAX
,
438 if (!mapping
->a_ops
->writepage
)
439 /* No write method for the address space */
442 if (!clear_page_dirty_for_io(page
))
443 /* Someone else already triggered a write */
447 * A dirty page may imply that the underlying filesystem has
448 * the page on some queue. So the page must be clean for
449 * migration. Writeout may mean we loose the lock and the
450 * page state is no longer what we checked for earlier.
451 * At this point we know that the migration attempt cannot
454 remove_migration_ptes(page
, page
);
456 rc
= mapping
->a_ops
->writepage(page
, &wbc
);
458 if (rc
!= AOP_WRITEPAGE_ACTIVATE
)
459 /* unlocked. Relock */
462 return (rc
< 0) ? -EIO
: -EAGAIN
;
466 * Default handling if a filesystem does not provide a migration function.
468 static int fallback_migrate_page(struct address_space
*mapping
,
469 struct page
*newpage
, struct page
*page
)
472 return writeout(mapping
, page
);
475 * Buffers may be managed in a filesystem specific way.
476 * We must have no buffers or drop them.
478 if (page_has_private(page
) &&
479 !try_to_release_page(page
, GFP_KERNEL
))
482 return migrate_page(mapping
, newpage
, page
);
486 * Move a page to a newly allocated page
487 * The page is locked and all ptes have been successfully removed.
489 * The new page will have replaced the old page if this function
496 static int move_to_new_page(struct page
*newpage
, struct page
*page
)
498 struct address_space
*mapping
;
502 * Block others from accessing the page when we get around to
503 * establishing additional references. We are the only one
504 * holding a reference to the new page at this point.
506 if (!trylock_page(newpage
))
509 /* Prepare mapping for the new page.*/
510 newpage
->index
= page
->index
;
511 newpage
->mapping
= page
->mapping
;
512 if (PageSwapBacked(page
))
513 SetPageSwapBacked(newpage
);
515 mapping
= page_mapping(page
);
517 rc
= migrate_page(mapping
, newpage
, page
);
518 else if (mapping
->a_ops
->migratepage
)
520 * Most pages have a mapping and most filesystems
521 * should provide a migration function. Anonymous
522 * pages are part of swap space which also has its
523 * own migration function. This is the most common
524 * path for page migration.
526 rc
= mapping
->a_ops
->migratepage(mapping
,
529 rc
= fallback_migrate_page(mapping
, newpage
, page
);
532 remove_migration_ptes(page
, newpage
);
534 newpage
->mapping
= NULL
;
536 unlock_page(newpage
);
542 * Obtain the lock on page, remove all ptes and migrate the page
543 * to the newly allocated page in newpage.
545 static int unmap_and_move(new_page_t get_new_page
, unsigned long private,
546 struct page
*page
, int force
, int offlining
)
550 struct page
*newpage
= get_new_page(page
, private, &result
);
553 struct mem_cgroup
*mem
= NULL
;
558 if (page_count(page
) == 1) {
559 /* page was freed from under us. So we are done. */
563 /* prepare cgroup just returns 0 or -ENOMEM */
566 if (!trylock_page(page
)) {
573 * Only memory hotplug's offline_pages() caller has locked out KSM,
574 * and can safely migrate a KSM page. The other cases have skipped
575 * PageKsm along with PageReserved - but it is only now when we have
576 * the page lock that we can be certain it will not go KSM beneath us
577 * (KSM will not upgrade a page from PageAnon to PageKsm when it sees
578 * its pagecount raised, but only here do we take the page lock which
581 if (PageKsm(page
) && !offlining
) {
586 /* charge against new page */
587 charge
= mem_cgroup_prepare_migration(page
, &mem
);
588 if (charge
== -ENOMEM
) {
594 if (PageWriteback(page
)) {
597 wait_on_page_writeback(page
);
600 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
601 * we cannot notice that anon_vma is freed while we migrates a page.
602 * This rcu_read_lock() delays freeing anon_vma pointer until the end
603 * of migration. File cache pages are no problem because of page_lock()
604 * File Caches may use write_page() or lock_page() in migration, then,
605 * just care Anon page here.
607 if (PageAnon(page
)) {
613 * Corner case handling:
614 * 1. When a new swap-cache page is read into, it is added to the LRU
615 * and treated as swapcache but it has no rmap yet.
616 * Calling try_to_unmap() against a page->mapping==NULL page will
617 * trigger a BUG. So handle it here.
618 * 2. An orphaned page (see truncate_complete_page) might have
619 * fs-private metadata. The page can be picked up due to memory
620 * offlining. Everywhere else except page reclaim, the page is
621 * invisible to the vm, so the page can not be migrated. So try to
622 * free the metadata, so the page can be freed.
624 if (!page
->mapping
) {
625 if (!PageAnon(page
) && page_has_private(page
)) {
627 * Go direct to try_to_free_buffers() here because
628 * a) that's what try_to_release_page() would do anyway
629 * b) we may be under rcu_read_lock() here, so we can't
630 * use GFP_KERNEL which is what try_to_release_page()
631 * needs to be effective.
633 try_to_free_buffers(page
);
639 /* Establish migration ptes or remove ptes */
640 try_to_unmap(page
, TTU_MIGRATION
|TTU_IGNORE_MLOCK
|TTU_IGNORE_ACCESS
);
643 if (!page_mapped(page
))
644 rc
= move_to_new_page(newpage
, page
);
647 remove_migration_ptes(page
, page
);
653 mem_cgroup_end_migration(mem
, page
, newpage
);
659 * A page that has been migrated has all references
660 * removed and will be freed. A page that has not been
661 * migrated will have kepts its references and be
664 list_del(&page
->lru
);
665 dec_zone_page_state(page
, NR_ISOLATED_ANON
+
666 page_is_file_cache(page
));
667 putback_lru_page(page
);
673 * Move the new page to the LRU. If migration was not successful
674 * then this will free the page.
676 putback_lru_page(newpage
);
682 *result
= page_to_nid(newpage
);
690 * The function takes one list of pages to migrate and a function
691 * that determines from the page to be migrated and the private data
692 * the target of the move and allocates the page.
694 * The function returns after 10 attempts or if no pages
695 * are movable anymore because to has become empty
696 * or no retryable pages exist anymore. All pages will be
697 * returned to the LRU or freed.
699 * Return: Number of pages not migrated or error code.
701 int migrate_pages(struct list_head
*from
,
702 new_page_t get_new_page
, unsigned long private, int offlining
)
709 int swapwrite
= current
->flags
& PF_SWAPWRITE
;
713 current
->flags
|= PF_SWAPWRITE
;
715 for(pass
= 0; pass
< 10 && retry
; pass
++) {
718 list_for_each_entry_safe(page
, page2
, from
, lru
) {
721 rc
= unmap_and_move(get_new_page
, private,
722 page
, pass
> 2, offlining
);
733 /* Permanent failure */
742 current
->flags
&= ~PF_SWAPWRITE
;
744 putback_lru_pages(from
);
749 return nr_failed
+ retry
;
754 * Move a list of individual pages
756 struct page_to_node
{
763 static struct page
*new_page_node(struct page
*p
, unsigned long private,
766 struct page_to_node
*pm
= (struct page_to_node
*)private;
768 while (pm
->node
!= MAX_NUMNODES
&& pm
->page
!= p
)
771 if (pm
->node
== MAX_NUMNODES
)
774 *result
= &pm
->status
;
776 return alloc_pages_exact_node(pm
->node
,
777 GFP_HIGHUSER_MOVABLE
| GFP_THISNODE
, 0);
781 * Move a set of pages as indicated in the pm array. The addr
782 * field must be set to the virtual address of the page to be moved
783 * and the node number must contain a valid target node.
784 * The pm array ends with node = MAX_NUMNODES.
786 static int do_move_page_to_node_array(struct mm_struct
*mm
,
787 struct page_to_node
*pm
,
791 struct page_to_node
*pp
;
794 down_read(&mm
->mmap_sem
);
797 * Build a list of pages to migrate
799 for (pp
= pm
; pp
->node
!= MAX_NUMNODES
; pp
++) {
800 struct vm_area_struct
*vma
;
804 vma
= find_vma(mm
, pp
->addr
);
805 if (!vma
|| !vma_migratable(vma
))
808 page
= follow_page(vma
, pp
->addr
, FOLL_GET
);
818 /* Use PageReserved to check for zero page */
819 if (PageReserved(page
) || PageKsm(page
))
823 err
= page_to_nid(page
);
827 * Node already in the right place
832 if (page_mapcount(page
) > 1 &&
836 err
= isolate_lru_page(page
);
838 list_add_tail(&page
->lru
, &pagelist
);
839 inc_zone_page_state(page
, NR_ISOLATED_ANON
+
840 page_is_file_cache(page
));
844 * Either remove the duplicate refcount from
845 * isolate_lru_page() or drop the page ref if it was
854 if (!list_empty(&pagelist
))
855 err
= migrate_pages(&pagelist
, new_page_node
,
856 (unsigned long)pm
, 0);
858 up_read(&mm
->mmap_sem
);
863 * Migrate an array of page address onto an array of nodes and fill
864 * the corresponding array of status.
866 static int do_pages_move(struct mm_struct
*mm
, struct task_struct
*task
,
867 unsigned long nr_pages
,
868 const void __user
* __user
*pages
,
869 const int __user
*nodes
,
870 int __user
*status
, int flags
)
872 struct page_to_node
*pm
;
873 nodemask_t task_nodes
;
874 unsigned long chunk_nr_pages
;
875 unsigned long chunk_start
;
878 task_nodes
= cpuset_mems_allowed(task
);
881 pm
= (struct page_to_node
*)__get_free_page(GFP_KERNEL
);
888 * Store a chunk of page_to_node array in a page,
889 * but keep the last one as a marker
891 chunk_nr_pages
= (PAGE_SIZE
/ sizeof(struct page_to_node
)) - 1;
893 for (chunk_start
= 0;
894 chunk_start
< nr_pages
;
895 chunk_start
+= chunk_nr_pages
) {
898 if (chunk_start
+ chunk_nr_pages
> nr_pages
)
899 chunk_nr_pages
= nr_pages
- chunk_start
;
901 /* fill the chunk pm with addrs and nodes from user-space */
902 for (j
= 0; j
< chunk_nr_pages
; j
++) {
903 const void __user
*p
;
907 if (get_user(p
, pages
+ j
+ chunk_start
))
909 pm
[j
].addr
= (unsigned long) p
;
911 if (get_user(node
, nodes
+ j
+ chunk_start
))
915 if (node
< 0 || node
>= MAX_NUMNODES
)
918 if (!node_state(node
, N_HIGH_MEMORY
))
922 if (!node_isset(node
, task_nodes
))
928 /* End marker for this chunk */
929 pm
[chunk_nr_pages
].node
= MAX_NUMNODES
;
931 /* Migrate this chunk */
932 err
= do_move_page_to_node_array(mm
, pm
,
933 flags
& MPOL_MF_MOVE_ALL
);
937 /* Return status information */
938 for (j
= 0; j
< chunk_nr_pages
; j
++)
939 if (put_user(pm
[j
].status
, status
+ j
+ chunk_start
)) {
947 free_page((unsigned long)pm
);
953 * Determine the nodes of an array of pages and store it in an array of status.
955 static void do_pages_stat_array(struct mm_struct
*mm
, unsigned long nr_pages
,
956 const void __user
**pages
, int *status
)
960 down_read(&mm
->mmap_sem
);
962 for (i
= 0; i
< nr_pages
; i
++) {
963 unsigned long addr
= (unsigned long)(*pages
);
964 struct vm_area_struct
*vma
;
968 vma
= find_vma(mm
, addr
);
972 page
= follow_page(vma
, addr
, 0);
979 /* Use PageReserved to check for zero page */
980 if (!page
|| PageReserved(page
) || PageKsm(page
))
983 err
= page_to_nid(page
);
991 up_read(&mm
->mmap_sem
);
995 * Determine the nodes of a user array of pages and store it in
996 * a user array of status.
998 static int do_pages_stat(struct mm_struct
*mm
, unsigned long nr_pages
,
999 const void __user
* __user
*pages
,
1002 #define DO_PAGES_STAT_CHUNK_NR 16
1003 const void __user
*chunk_pages
[DO_PAGES_STAT_CHUNK_NR
];
1004 int chunk_status
[DO_PAGES_STAT_CHUNK_NR
];
1005 unsigned long i
, chunk_nr
= DO_PAGES_STAT_CHUNK_NR
;
1008 for (i
= 0; i
< nr_pages
; i
+= chunk_nr
) {
1009 if (chunk_nr
> nr_pages
- i
)
1010 chunk_nr
= nr_pages
- i
;
1012 err
= copy_from_user(chunk_pages
, &pages
[i
],
1013 chunk_nr
* sizeof(*chunk_pages
));
1019 do_pages_stat_array(mm
, chunk_nr
, chunk_pages
, chunk_status
);
1021 err
= copy_to_user(&status
[i
], chunk_status
,
1022 chunk_nr
* sizeof(*chunk_status
));
1035 * Move a list of pages in the address space of the currently executing
1038 SYSCALL_DEFINE6(move_pages
, pid_t
, pid
, unsigned long, nr_pages
,
1039 const void __user
* __user
*, pages
,
1040 const int __user
*, nodes
,
1041 int __user
*, status
, int, flags
)
1043 const struct cred
*cred
= current_cred(), *tcred
;
1044 struct task_struct
*task
;
1045 struct mm_struct
*mm
;
1049 if (flags
& ~(MPOL_MF_MOVE
|MPOL_MF_MOVE_ALL
))
1052 if ((flags
& MPOL_MF_MOVE_ALL
) && !capable(CAP_SYS_NICE
))
1055 /* Find the mm_struct */
1056 read_lock(&tasklist_lock
);
1057 task
= pid
? find_task_by_vpid(pid
) : current
;
1059 read_unlock(&tasklist_lock
);
1062 mm
= get_task_mm(task
);
1063 read_unlock(&tasklist_lock
);
1069 * Check if this process has the right to modify the specified
1070 * process. The right exists if the process has administrative
1071 * capabilities, superuser privileges or the same
1072 * userid as the target process.
1075 tcred
= __task_cred(task
);
1076 if (cred
->euid
!= tcred
->suid
&& cred
->euid
!= tcred
->uid
&&
1077 cred
->uid
!= tcred
->suid
&& cred
->uid
!= tcred
->uid
&&
1078 !capable(CAP_SYS_NICE
)) {
1085 err
= security_task_movememory(task
);
1090 err
= do_pages_move(mm
, task
, nr_pages
, pages
, nodes
, status
,
1093 err
= do_pages_stat(mm
, nr_pages
, pages
, status
);
1102 * Call migration functions in the vma_ops that may prepare
1103 * memory in a vm for migration. migration functions may perform
1104 * the migration for vmas that do not have an underlying page struct.
1106 int migrate_vmas(struct mm_struct
*mm
, const nodemask_t
*to
,
1107 const nodemask_t
*from
, unsigned long flags
)
1109 struct vm_area_struct
*vma
;
1112 for (vma
= mm
->mmap
; vma
&& !err
; vma
= vma
->vm_next
) {
1113 if (vma
->vm_ops
&& vma
->vm_ops
->migrate
) {
1114 err
= vma
->vm_ops
->migrate(vma
, to
, from
, flags
);