2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
33 #include "transaction.h"
34 #include "btrfs_inode.h"
36 #include "print-tree.h"
37 #include "async-thread.h"
40 #include "free-space-cache.h"
42 static struct extent_io_ops btree_extent_io_ops
;
43 static void end_workqueue_fn(struct btrfs_work
*work
);
44 static void free_fs_root(struct btrfs_root
*root
);
46 static atomic_t btrfs_bdi_num
= ATOMIC_INIT(0);
49 * end_io_wq structs are used to do processing in task context when an IO is
50 * complete. This is used during reads to verify checksums, and it is used
51 * by writes to insert metadata for new file extents after IO is complete.
57 struct btrfs_fs_info
*info
;
60 struct list_head list
;
61 struct btrfs_work work
;
65 * async submit bios are used to offload expensive checksumming
66 * onto the worker threads. They checksum file and metadata bios
67 * just before they are sent down the IO stack.
69 struct async_submit_bio
{
72 struct list_head list
;
73 extent_submit_bio_hook_t
*submit_bio_start
;
74 extent_submit_bio_hook_t
*submit_bio_done
;
77 unsigned long bio_flags
;
78 struct btrfs_work work
;
81 /* These are used to set the lockdep class on the extent buffer locks.
82 * The class is set by the readpage_end_io_hook after the buffer has
83 * passed csum validation but before the pages are unlocked.
85 * The lockdep class is also set by btrfs_init_new_buffer on freshly
88 * The class is based on the level in the tree block, which allows lockdep
89 * to know that lower nodes nest inside the locks of higher nodes.
91 * We also add a check to make sure the highest level of the tree is
92 * the same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this
93 * code needs update as well.
95 #ifdef CONFIG_DEBUG_LOCK_ALLOC
96 # if BTRFS_MAX_LEVEL != 8
99 static struct lock_class_key btrfs_eb_class
[BTRFS_MAX_LEVEL
+ 1];
100 static const char *btrfs_eb_name
[BTRFS_MAX_LEVEL
+ 1] = {
110 /* highest possible level */
116 * extents on the btree inode are pretty simple, there's one extent
117 * that covers the entire device
119 static struct extent_map
*btree_get_extent(struct inode
*inode
,
120 struct page
*page
, size_t page_offset
, u64 start
, u64 len
,
123 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
124 struct extent_map
*em
;
127 read_lock(&em_tree
->lock
);
128 em
= lookup_extent_mapping(em_tree
, start
, len
);
131 BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
132 read_unlock(&em_tree
->lock
);
135 read_unlock(&em_tree
->lock
);
137 em
= alloc_extent_map(GFP_NOFS
);
139 em
= ERR_PTR(-ENOMEM
);
144 em
->block_len
= (u64
)-1;
146 em
->bdev
= BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
148 write_lock(&em_tree
->lock
);
149 ret
= add_extent_mapping(em_tree
, em
);
150 if (ret
== -EEXIST
) {
151 u64 failed_start
= em
->start
;
152 u64 failed_len
= em
->len
;
155 em
= lookup_extent_mapping(em_tree
, start
, len
);
159 em
= lookup_extent_mapping(em_tree
, failed_start
,
167 write_unlock(&em_tree
->lock
);
175 u32
btrfs_csum_data(struct btrfs_root
*root
, char *data
, u32 seed
, size_t len
)
177 return crc32c(seed
, data
, len
);
180 void btrfs_csum_final(u32 crc
, char *result
)
182 *(__le32
*)result
= ~cpu_to_le32(crc
);
186 * compute the csum for a btree block, and either verify it or write it
187 * into the csum field of the block.
189 static int csum_tree_block(struct btrfs_root
*root
, struct extent_buffer
*buf
,
193 btrfs_super_csum_size(&root
->fs_info
->super_copy
);
196 unsigned long cur_len
;
197 unsigned long offset
= BTRFS_CSUM_SIZE
;
198 char *map_token
= NULL
;
200 unsigned long map_start
;
201 unsigned long map_len
;
204 unsigned long inline_result
;
206 len
= buf
->len
- offset
;
208 err
= map_private_extent_buffer(buf
, offset
, 32,
210 &map_start
, &map_len
, KM_USER0
);
213 cur_len
= min(len
, map_len
- (offset
- map_start
));
214 crc
= btrfs_csum_data(root
, kaddr
+ offset
- map_start
,
218 unmap_extent_buffer(buf
, map_token
, KM_USER0
);
220 if (csum_size
> sizeof(inline_result
)) {
221 result
= kzalloc(csum_size
* sizeof(char), GFP_NOFS
);
225 result
= (char *)&inline_result
;
228 btrfs_csum_final(crc
, result
);
231 if (memcmp_extent_buffer(buf
, result
, 0, csum_size
)) {
234 memcpy(&found
, result
, csum_size
);
236 read_extent_buffer(buf
, &val
, 0, csum_size
);
237 if (printk_ratelimit()) {
238 printk(KERN_INFO
"btrfs: %s checksum verify "
239 "failed on %llu wanted %X found %X "
241 root
->fs_info
->sb
->s_id
,
242 (unsigned long long)buf
->start
, val
, found
,
243 btrfs_header_level(buf
));
245 if (result
!= (char *)&inline_result
)
250 write_extent_buffer(buf
, result
, 0, csum_size
);
252 if (result
!= (char *)&inline_result
)
258 * we can't consider a given block up to date unless the transid of the
259 * block matches the transid in the parent node's pointer. This is how we
260 * detect blocks that either didn't get written at all or got written
261 * in the wrong place.
263 static int verify_parent_transid(struct extent_io_tree
*io_tree
,
264 struct extent_buffer
*eb
, u64 parent_transid
)
268 if (!parent_transid
|| btrfs_header_generation(eb
) == parent_transid
)
271 lock_extent(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1, GFP_NOFS
);
272 if (extent_buffer_uptodate(io_tree
, eb
) &&
273 btrfs_header_generation(eb
) == parent_transid
) {
277 if (printk_ratelimit()) {
278 printk("parent transid verify failed on %llu wanted %llu "
280 (unsigned long long)eb
->start
,
281 (unsigned long long)parent_transid
,
282 (unsigned long long)btrfs_header_generation(eb
));
285 clear_extent_buffer_uptodate(io_tree
, eb
);
287 unlock_extent(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
293 * helper to read a given tree block, doing retries as required when
294 * the checksums don't match and we have alternate mirrors to try.
296 static int btree_read_extent_buffer_pages(struct btrfs_root
*root
,
297 struct extent_buffer
*eb
,
298 u64 start
, u64 parent_transid
)
300 struct extent_io_tree
*io_tree
;
305 io_tree
= &BTRFS_I(root
->fs_info
->btree_inode
)->io_tree
;
307 ret
= read_extent_buffer_pages(io_tree
, eb
, start
, 1,
308 btree_get_extent
, mirror_num
);
310 !verify_parent_transid(io_tree
, eb
, parent_transid
))
313 num_copies
= btrfs_num_copies(&root
->fs_info
->mapping_tree
,
319 if (mirror_num
> num_copies
)
326 * checksum a dirty tree block before IO. This has extra checks to make sure
327 * we only fill in the checksum field in the first page of a multi-page block
330 static int csum_dirty_buffer(struct btrfs_root
*root
, struct page
*page
)
332 struct extent_io_tree
*tree
;
333 u64 start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
337 struct extent_buffer
*eb
;
340 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
342 if (page
->private == EXTENT_PAGE_PRIVATE
)
346 len
= page
->private >> 2;
349 eb
= alloc_extent_buffer(tree
, start
, len
, page
, GFP_NOFS
);
350 ret
= btree_read_extent_buffer_pages(root
, eb
, start
+ PAGE_CACHE_SIZE
,
351 btrfs_header_generation(eb
));
353 found_start
= btrfs_header_bytenr(eb
);
354 if (found_start
!= start
) {
358 if (eb
->first_page
!= page
) {
362 if (!PageUptodate(page
)) {
366 found_level
= btrfs_header_level(eb
);
368 csum_tree_block(root
, eb
, 0);
370 free_extent_buffer(eb
);
375 static int check_tree_block_fsid(struct btrfs_root
*root
,
376 struct extent_buffer
*eb
)
378 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
379 u8 fsid
[BTRFS_UUID_SIZE
];
382 read_extent_buffer(eb
, fsid
, (unsigned long)btrfs_header_fsid(eb
),
385 if (!memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
)) {
389 fs_devices
= fs_devices
->seed
;
394 #ifdef CONFIG_DEBUG_LOCK_ALLOC
395 void btrfs_set_buffer_lockdep_class(struct extent_buffer
*eb
, int level
)
397 lockdep_set_class_and_name(&eb
->lock
,
398 &btrfs_eb_class
[level
],
399 btrfs_eb_name
[level
]);
403 static int btree_readpage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
404 struct extent_state
*state
)
406 struct extent_io_tree
*tree
;
410 struct extent_buffer
*eb
;
411 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
414 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
415 if (page
->private == EXTENT_PAGE_PRIVATE
)
420 len
= page
->private >> 2;
423 eb
= alloc_extent_buffer(tree
, start
, len
, page
, GFP_NOFS
);
425 found_start
= btrfs_header_bytenr(eb
);
426 if (found_start
!= start
) {
427 if (printk_ratelimit()) {
428 printk(KERN_INFO
"btrfs bad tree block start "
430 (unsigned long long)found_start
,
431 (unsigned long long)eb
->start
);
436 if (eb
->first_page
!= page
) {
437 printk(KERN_INFO
"btrfs bad first page %lu %lu\n",
438 eb
->first_page
->index
, page
->index
);
443 if (check_tree_block_fsid(root
, eb
)) {
444 if (printk_ratelimit()) {
445 printk(KERN_INFO
"btrfs bad fsid on block %llu\n",
446 (unsigned long long)eb
->start
);
451 found_level
= btrfs_header_level(eb
);
453 btrfs_set_buffer_lockdep_class(eb
, found_level
);
455 ret
= csum_tree_block(root
, eb
, 1);
459 end
= min_t(u64
, eb
->len
, PAGE_CACHE_SIZE
);
460 end
= eb
->start
+ end
- 1;
462 free_extent_buffer(eb
);
467 static void end_workqueue_bio(struct bio
*bio
, int err
)
469 struct end_io_wq
*end_io_wq
= bio
->bi_private
;
470 struct btrfs_fs_info
*fs_info
;
472 fs_info
= end_io_wq
->info
;
473 end_io_wq
->error
= err
;
474 end_io_wq
->work
.func
= end_workqueue_fn
;
475 end_io_wq
->work
.flags
= 0;
477 if (bio
->bi_rw
& (1 << BIO_RW
)) {
478 if (end_io_wq
->metadata
)
479 btrfs_queue_worker(&fs_info
->endio_meta_write_workers
,
482 btrfs_queue_worker(&fs_info
->endio_write_workers
,
485 if (end_io_wq
->metadata
)
486 btrfs_queue_worker(&fs_info
->endio_meta_workers
,
489 btrfs_queue_worker(&fs_info
->endio_workers
,
494 int btrfs_bio_wq_end_io(struct btrfs_fs_info
*info
, struct bio
*bio
,
497 struct end_io_wq
*end_io_wq
;
498 end_io_wq
= kmalloc(sizeof(*end_io_wq
), GFP_NOFS
);
502 end_io_wq
->private = bio
->bi_private
;
503 end_io_wq
->end_io
= bio
->bi_end_io
;
504 end_io_wq
->info
= info
;
505 end_io_wq
->error
= 0;
506 end_io_wq
->bio
= bio
;
507 end_io_wq
->metadata
= metadata
;
509 bio
->bi_private
= end_io_wq
;
510 bio
->bi_end_io
= end_workqueue_bio
;
514 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info
*info
)
516 unsigned long limit
= min_t(unsigned long,
517 info
->workers
.max_workers
,
518 info
->fs_devices
->open_devices
);
522 int btrfs_congested_async(struct btrfs_fs_info
*info
, int iodone
)
524 return atomic_read(&info
->nr_async_bios
) >
525 btrfs_async_submit_limit(info
);
528 static void run_one_async_start(struct btrfs_work
*work
)
530 struct btrfs_fs_info
*fs_info
;
531 struct async_submit_bio
*async
;
533 async
= container_of(work
, struct async_submit_bio
, work
);
534 fs_info
= BTRFS_I(async
->inode
)->root
->fs_info
;
535 async
->submit_bio_start(async
->inode
, async
->rw
, async
->bio
,
536 async
->mirror_num
, async
->bio_flags
);
539 static void run_one_async_done(struct btrfs_work
*work
)
541 struct btrfs_fs_info
*fs_info
;
542 struct async_submit_bio
*async
;
545 async
= container_of(work
, struct async_submit_bio
, work
);
546 fs_info
= BTRFS_I(async
->inode
)->root
->fs_info
;
548 limit
= btrfs_async_submit_limit(fs_info
);
549 limit
= limit
* 2 / 3;
551 atomic_dec(&fs_info
->nr_async_submits
);
553 if (atomic_read(&fs_info
->nr_async_submits
) < limit
&&
554 waitqueue_active(&fs_info
->async_submit_wait
))
555 wake_up(&fs_info
->async_submit_wait
);
557 async
->submit_bio_done(async
->inode
, async
->rw
, async
->bio
,
558 async
->mirror_num
, async
->bio_flags
);
561 static void run_one_async_free(struct btrfs_work
*work
)
563 struct async_submit_bio
*async
;
565 async
= container_of(work
, struct async_submit_bio
, work
);
569 int btrfs_wq_submit_bio(struct btrfs_fs_info
*fs_info
, struct inode
*inode
,
570 int rw
, struct bio
*bio
, int mirror_num
,
571 unsigned long bio_flags
,
572 extent_submit_bio_hook_t
*submit_bio_start
,
573 extent_submit_bio_hook_t
*submit_bio_done
)
575 struct async_submit_bio
*async
;
577 async
= kmalloc(sizeof(*async
), GFP_NOFS
);
581 async
->inode
= inode
;
584 async
->mirror_num
= mirror_num
;
585 async
->submit_bio_start
= submit_bio_start
;
586 async
->submit_bio_done
= submit_bio_done
;
588 async
->work
.func
= run_one_async_start
;
589 async
->work
.ordered_func
= run_one_async_done
;
590 async
->work
.ordered_free
= run_one_async_free
;
592 async
->work
.flags
= 0;
593 async
->bio_flags
= bio_flags
;
595 atomic_inc(&fs_info
->nr_async_submits
);
597 if (rw
& (1 << BIO_RW_SYNCIO
))
598 btrfs_set_work_high_prio(&async
->work
);
600 btrfs_queue_worker(&fs_info
->workers
, &async
->work
);
602 while (atomic_read(&fs_info
->async_submit_draining
) &&
603 atomic_read(&fs_info
->nr_async_submits
)) {
604 wait_event(fs_info
->async_submit_wait
,
605 (atomic_read(&fs_info
->nr_async_submits
) == 0));
611 static int btree_csum_one_bio(struct bio
*bio
)
613 struct bio_vec
*bvec
= bio
->bi_io_vec
;
615 struct btrfs_root
*root
;
617 WARN_ON(bio
->bi_vcnt
<= 0);
618 while (bio_index
< bio
->bi_vcnt
) {
619 root
= BTRFS_I(bvec
->bv_page
->mapping
->host
)->root
;
620 csum_dirty_buffer(root
, bvec
->bv_page
);
627 static int __btree_submit_bio_start(struct inode
*inode
, int rw
,
628 struct bio
*bio
, int mirror_num
,
629 unsigned long bio_flags
)
632 * when we're called for a write, we're already in the async
633 * submission context. Just jump into btrfs_map_bio
635 btree_csum_one_bio(bio
);
639 static int __btree_submit_bio_done(struct inode
*inode
, int rw
, struct bio
*bio
,
640 int mirror_num
, unsigned long bio_flags
)
643 * when we're called for a write, we're already in the async
644 * submission context. Just jump into btrfs_map_bio
646 return btrfs_map_bio(BTRFS_I(inode
)->root
, rw
, bio
, mirror_num
, 1);
649 static int btree_submit_bio_hook(struct inode
*inode
, int rw
, struct bio
*bio
,
650 int mirror_num
, unsigned long bio_flags
)
654 ret
= btrfs_bio_wq_end_io(BTRFS_I(inode
)->root
->fs_info
,
658 if (!(rw
& (1 << BIO_RW
))) {
660 * called for a read, do the setup so that checksum validation
661 * can happen in the async kernel threads
663 return btrfs_map_bio(BTRFS_I(inode
)->root
, rw
, bio
,
668 * kthread helpers are used to submit writes so that checksumming
669 * can happen in parallel across all CPUs
671 return btrfs_wq_submit_bio(BTRFS_I(inode
)->root
->fs_info
,
672 inode
, rw
, bio
, mirror_num
, 0,
673 __btree_submit_bio_start
,
674 __btree_submit_bio_done
);
677 static int btree_writepage(struct page
*page
, struct writeback_control
*wbc
)
679 struct extent_io_tree
*tree
;
680 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
681 struct extent_buffer
*eb
;
684 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
685 if (!(current
->flags
& PF_MEMALLOC
)) {
686 return extent_write_full_page(tree
, page
,
687 btree_get_extent
, wbc
);
690 redirty_page_for_writepage(wbc
, page
);
691 eb
= btrfs_find_tree_block(root
, page_offset(page
),
695 was_dirty
= test_and_set_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
);
697 spin_lock(&root
->fs_info
->delalloc_lock
);
698 root
->fs_info
->dirty_metadata_bytes
+= PAGE_CACHE_SIZE
;
699 spin_unlock(&root
->fs_info
->delalloc_lock
);
701 free_extent_buffer(eb
);
707 static int btree_writepages(struct address_space
*mapping
,
708 struct writeback_control
*wbc
)
710 struct extent_io_tree
*tree
;
711 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
712 if (wbc
->sync_mode
== WB_SYNC_NONE
) {
713 struct btrfs_root
*root
= BTRFS_I(mapping
->host
)->root
;
715 unsigned long thresh
= 32 * 1024 * 1024;
717 if (wbc
->for_kupdate
)
720 /* this is a bit racy, but that's ok */
721 num_dirty
= root
->fs_info
->dirty_metadata_bytes
;
722 if (num_dirty
< thresh
)
725 return extent_writepages(tree
, mapping
, btree_get_extent
, wbc
);
728 static int btree_readpage(struct file
*file
, struct page
*page
)
730 struct extent_io_tree
*tree
;
731 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
732 return extent_read_full_page(tree
, page
, btree_get_extent
);
735 static int btree_releasepage(struct page
*page
, gfp_t gfp_flags
)
737 struct extent_io_tree
*tree
;
738 struct extent_map_tree
*map
;
741 if (PageWriteback(page
) || PageDirty(page
))
744 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
745 map
= &BTRFS_I(page
->mapping
->host
)->extent_tree
;
747 ret
= try_release_extent_state(map
, tree
, page
, gfp_flags
);
751 ret
= try_release_extent_buffer(tree
, page
);
753 ClearPagePrivate(page
);
754 set_page_private(page
, 0);
755 page_cache_release(page
);
761 static void btree_invalidatepage(struct page
*page
, unsigned long offset
)
763 struct extent_io_tree
*tree
;
764 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
765 extent_invalidatepage(tree
, page
, offset
);
766 btree_releasepage(page
, GFP_NOFS
);
767 if (PagePrivate(page
)) {
768 printk(KERN_WARNING
"btrfs warning page private not zero "
769 "on page %llu\n", (unsigned long long)page_offset(page
));
770 ClearPagePrivate(page
);
771 set_page_private(page
, 0);
772 page_cache_release(page
);
776 static const struct address_space_operations btree_aops
= {
777 .readpage
= btree_readpage
,
778 .writepage
= btree_writepage
,
779 .writepages
= btree_writepages
,
780 .releasepage
= btree_releasepage
,
781 .invalidatepage
= btree_invalidatepage
,
782 .sync_page
= block_sync_page
,
785 int readahead_tree_block(struct btrfs_root
*root
, u64 bytenr
, u32 blocksize
,
788 struct extent_buffer
*buf
= NULL
;
789 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
792 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
795 read_extent_buffer_pages(&BTRFS_I(btree_inode
)->io_tree
,
796 buf
, 0, 0, btree_get_extent
, 0);
797 free_extent_buffer(buf
);
801 struct extent_buffer
*btrfs_find_tree_block(struct btrfs_root
*root
,
802 u64 bytenr
, u32 blocksize
)
804 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
805 struct extent_buffer
*eb
;
806 eb
= find_extent_buffer(&BTRFS_I(btree_inode
)->io_tree
,
807 bytenr
, blocksize
, GFP_NOFS
);
811 struct extent_buffer
*btrfs_find_create_tree_block(struct btrfs_root
*root
,
812 u64 bytenr
, u32 blocksize
)
814 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
815 struct extent_buffer
*eb
;
817 eb
= alloc_extent_buffer(&BTRFS_I(btree_inode
)->io_tree
,
818 bytenr
, blocksize
, NULL
, GFP_NOFS
);
823 int btrfs_write_tree_block(struct extent_buffer
*buf
)
825 return filemap_fdatawrite_range(buf
->first_page
->mapping
, buf
->start
,
826 buf
->start
+ buf
->len
- 1);
829 int btrfs_wait_tree_block_writeback(struct extent_buffer
*buf
)
831 return filemap_fdatawait_range(buf
->first_page
->mapping
,
832 buf
->start
, buf
->start
+ buf
->len
- 1);
835 struct extent_buffer
*read_tree_block(struct btrfs_root
*root
, u64 bytenr
,
836 u32 blocksize
, u64 parent_transid
)
838 struct extent_buffer
*buf
= NULL
;
839 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
840 struct extent_io_tree
*io_tree
;
843 io_tree
= &BTRFS_I(btree_inode
)->io_tree
;
845 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
849 ret
= btree_read_extent_buffer_pages(root
, buf
, 0, parent_transid
);
852 set_bit(EXTENT_BUFFER_UPTODATE
, &buf
->bflags
);
857 int clean_tree_block(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
858 struct extent_buffer
*buf
)
860 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
861 if (btrfs_header_generation(buf
) ==
862 root
->fs_info
->running_transaction
->transid
) {
863 btrfs_assert_tree_locked(buf
);
865 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &buf
->bflags
)) {
866 spin_lock(&root
->fs_info
->delalloc_lock
);
867 if (root
->fs_info
->dirty_metadata_bytes
>= buf
->len
)
868 root
->fs_info
->dirty_metadata_bytes
-= buf
->len
;
871 spin_unlock(&root
->fs_info
->delalloc_lock
);
874 /* ugh, clear_extent_buffer_dirty needs to lock the page */
875 btrfs_set_lock_blocking(buf
);
876 clear_extent_buffer_dirty(&BTRFS_I(btree_inode
)->io_tree
,
882 static int __setup_root(u32 nodesize
, u32 leafsize
, u32 sectorsize
,
883 u32 stripesize
, struct btrfs_root
*root
,
884 struct btrfs_fs_info
*fs_info
,
888 root
->commit_root
= NULL
;
889 root
->sectorsize
= sectorsize
;
890 root
->nodesize
= nodesize
;
891 root
->leafsize
= leafsize
;
892 root
->stripesize
= stripesize
;
894 root
->track_dirty
= 0;
896 root
->clean_orphans
= 0;
898 root
->fs_info
= fs_info
;
899 root
->objectid
= objectid
;
900 root
->last_trans
= 0;
901 root
->highest_objectid
= 0;
904 root
->inode_tree
.rb_node
= NULL
;
906 INIT_LIST_HEAD(&root
->dirty_list
);
907 INIT_LIST_HEAD(&root
->orphan_list
);
908 INIT_LIST_HEAD(&root
->root_list
);
909 spin_lock_init(&root
->node_lock
);
910 spin_lock_init(&root
->list_lock
);
911 spin_lock_init(&root
->inode_lock
);
912 mutex_init(&root
->objectid_mutex
);
913 mutex_init(&root
->log_mutex
);
914 init_waitqueue_head(&root
->log_writer_wait
);
915 init_waitqueue_head(&root
->log_commit_wait
[0]);
916 init_waitqueue_head(&root
->log_commit_wait
[1]);
917 atomic_set(&root
->log_commit
[0], 0);
918 atomic_set(&root
->log_commit
[1], 0);
919 atomic_set(&root
->log_writers
, 0);
921 root
->log_transid
= 0;
922 root
->last_log_commit
= 0;
923 extent_io_tree_init(&root
->dirty_log_pages
,
924 fs_info
->btree_inode
->i_mapping
, GFP_NOFS
);
926 memset(&root
->root_key
, 0, sizeof(root
->root_key
));
927 memset(&root
->root_item
, 0, sizeof(root
->root_item
));
928 memset(&root
->defrag_progress
, 0, sizeof(root
->defrag_progress
));
929 memset(&root
->root_kobj
, 0, sizeof(root
->root_kobj
));
930 root
->defrag_trans_start
= fs_info
->generation
;
931 init_completion(&root
->kobj_unregister
);
932 root
->defrag_running
= 0;
933 root
->root_key
.objectid
= objectid
;
934 root
->anon_super
.s_root
= NULL
;
935 root
->anon_super
.s_dev
= 0;
936 INIT_LIST_HEAD(&root
->anon_super
.s_list
);
937 INIT_LIST_HEAD(&root
->anon_super
.s_instances
);
938 init_rwsem(&root
->anon_super
.s_umount
);
943 static int find_and_setup_root(struct btrfs_root
*tree_root
,
944 struct btrfs_fs_info
*fs_info
,
946 struct btrfs_root
*root
)
952 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
953 tree_root
->sectorsize
, tree_root
->stripesize
,
954 root
, fs_info
, objectid
);
955 ret
= btrfs_find_last_root(tree_root
, objectid
,
956 &root
->root_item
, &root
->root_key
);
961 generation
= btrfs_root_generation(&root
->root_item
);
962 blocksize
= btrfs_level_size(root
, btrfs_root_level(&root
->root_item
));
963 root
->node
= read_tree_block(root
, btrfs_root_bytenr(&root
->root_item
),
964 blocksize
, generation
);
966 root
->commit_root
= btrfs_root_node(root
);
970 int btrfs_free_log_root_tree(struct btrfs_trans_handle
*trans
,
971 struct btrfs_fs_info
*fs_info
)
973 struct extent_buffer
*eb
;
974 struct btrfs_root
*log_root_tree
= fs_info
->log_root_tree
;
983 ret
= find_first_extent_bit(&log_root_tree
->dirty_log_pages
,
984 0, &start
, &end
, EXTENT_DIRTY
| EXTENT_NEW
);
988 clear_extent_bits(&log_root_tree
->dirty_log_pages
, start
, end
,
989 EXTENT_DIRTY
| EXTENT_NEW
, GFP_NOFS
);
991 eb
= fs_info
->log_root_tree
->node
;
993 WARN_ON(btrfs_header_level(eb
) != 0);
994 WARN_ON(btrfs_header_nritems(eb
) != 0);
996 ret
= btrfs_free_reserved_extent(fs_info
->tree_root
,
1000 free_extent_buffer(eb
);
1001 kfree(fs_info
->log_root_tree
);
1002 fs_info
->log_root_tree
= NULL
;
1006 static struct btrfs_root
*alloc_log_tree(struct btrfs_trans_handle
*trans
,
1007 struct btrfs_fs_info
*fs_info
)
1009 struct btrfs_root
*root
;
1010 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1011 struct extent_buffer
*leaf
;
1013 root
= kzalloc(sizeof(*root
), GFP_NOFS
);
1015 return ERR_PTR(-ENOMEM
);
1017 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
1018 tree_root
->sectorsize
, tree_root
->stripesize
,
1019 root
, fs_info
, BTRFS_TREE_LOG_OBJECTID
);
1021 root
->root_key
.objectid
= BTRFS_TREE_LOG_OBJECTID
;
1022 root
->root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
1023 root
->root_key
.offset
= BTRFS_TREE_LOG_OBJECTID
;
1025 * log trees do not get reference counted because they go away
1026 * before a real commit is actually done. They do store pointers
1027 * to file data extents, and those reference counts still get
1028 * updated (along with back refs to the log tree).
1032 leaf
= btrfs_alloc_free_block(trans
, root
, root
->leafsize
, 0,
1033 BTRFS_TREE_LOG_OBJECTID
, NULL
, 0, 0, 0);
1036 return ERR_CAST(leaf
);
1039 memset_extent_buffer(leaf
, 0, 0, sizeof(struct btrfs_header
));
1040 btrfs_set_header_bytenr(leaf
, leaf
->start
);
1041 btrfs_set_header_generation(leaf
, trans
->transid
);
1042 btrfs_set_header_backref_rev(leaf
, BTRFS_MIXED_BACKREF_REV
);
1043 btrfs_set_header_owner(leaf
, BTRFS_TREE_LOG_OBJECTID
);
1046 write_extent_buffer(root
->node
, root
->fs_info
->fsid
,
1047 (unsigned long)btrfs_header_fsid(root
->node
),
1049 btrfs_mark_buffer_dirty(root
->node
);
1050 btrfs_tree_unlock(root
->node
);
1054 int btrfs_init_log_root_tree(struct btrfs_trans_handle
*trans
,
1055 struct btrfs_fs_info
*fs_info
)
1057 struct btrfs_root
*log_root
;
1059 log_root
= alloc_log_tree(trans
, fs_info
);
1060 if (IS_ERR(log_root
))
1061 return PTR_ERR(log_root
);
1062 WARN_ON(fs_info
->log_root_tree
);
1063 fs_info
->log_root_tree
= log_root
;
1067 int btrfs_add_log_tree(struct btrfs_trans_handle
*trans
,
1068 struct btrfs_root
*root
)
1070 struct btrfs_root
*log_root
;
1071 struct btrfs_inode_item
*inode_item
;
1073 log_root
= alloc_log_tree(trans
, root
->fs_info
);
1074 if (IS_ERR(log_root
))
1075 return PTR_ERR(log_root
);
1077 log_root
->last_trans
= trans
->transid
;
1078 log_root
->root_key
.offset
= root
->root_key
.objectid
;
1080 inode_item
= &log_root
->root_item
.inode
;
1081 inode_item
->generation
= cpu_to_le64(1);
1082 inode_item
->size
= cpu_to_le64(3);
1083 inode_item
->nlink
= cpu_to_le32(1);
1084 inode_item
->nbytes
= cpu_to_le64(root
->leafsize
);
1085 inode_item
->mode
= cpu_to_le32(S_IFDIR
| 0755);
1087 btrfs_set_root_node(&log_root
->root_item
, log_root
->node
);
1089 WARN_ON(root
->log_root
);
1090 root
->log_root
= log_root
;
1091 root
->log_transid
= 0;
1092 root
->last_log_commit
= 0;
1096 struct btrfs_root
*btrfs_read_fs_root_no_radix(struct btrfs_root
*tree_root
,
1097 struct btrfs_key
*location
)
1099 struct btrfs_root
*root
;
1100 struct btrfs_fs_info
*fs_info
= tree_root
->fs_info
;
1101 struct btrfs_path
*path
;
1102 struct extent_buffer
*l
;
1107 root
= kzalloc(sizeof(*root
), GFP_NOFS
);
1109 return ERR_PTR(-ENOMEM
);
1110 if (location
->offset
== (u64
)-1) {
1111 ret
= find_and_setup_root(tree_root
, fs_info
,
1112 location
->objectid
, root
);
1115 return ERR_PTR(ret
);
1120 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
1121 tree_root
->sectorsize
, tree_root
->stripesize
,
1122 root
, fs_info
, location
->objectid
);
1124 path
= btrfs_alloc_path();
1126 ret
= btrfs_search_slot(NULL
, tree_root
, location
, path
, 0, 0);
1129 read_extent_buffer(l
, &root
->root_item
,
1130 btrfs_item_ptr_offset(l
, path
->slots
[0]),
1131 sizeof(root
->root_item
));
1132 memcpy(&root
->root_key
, location
, sizeof(*location
));
1134 btrfs_free_path(path
);
1138 return ERR_PTR(ret
);
1141 generation
= btrfs_root_generation(&root
->root_item
);
1142 blocksize
= btrfs_level_size(root
, btrfs_root_level(&root
->root_item
));
1143 root
->node
= read_tree_block(root
, btrfs_root_bytenr(&root
->root_item
),
1144 blocksize
, generation
);
1145 root
->commit_root
= btrfs_root_node(root
);
1146 BUG_ON(!root
->node
);
1148 if (location
->objectid
!= BTRFS_TREE_LOG_OBJECTID
)
1154 struct btrfs_root
*btrfs_lookup_fs_root(struct btrfs_fs_info
*fs_info
,
1157 struct btrfs_root
*root
;
1159 if (root_objectid
== BTRFS_ROOT_TREE_OBJECTID
)
1160 return fs_info
->tree_root
;
1161 if (root_objectid
== BTRFS_EXTENT_TREE_OBJECTID
)
1162 return fs_info
->extent_root
;
1164 root
= radix_tree_lookup(&fs_info
->fs_roots_radix
,
1165 (unsigned long)root_objectid
);
1169 struct btrfs_root
*btrfs_read_fs_root_no_name(struct btrfs_fs_info
*fs_info
,
1170 struct btrfs_key
*location
)
1172 struct btrfs_root
*root
;
1175 if (location
->objectid
== BTRFS_ROOT_TREE_OBJECTID
)
1176 return fs_info
->tree_root
;
1177 if (location
->objectid
== BTRFS_EXTENT_TREE_OBJECTID
)
1178 return fs_info
->extent_root
;
1179 if (location
->objectid
== BTRFS_CHUNK_TREE_OBJECTID
)
1180 return fs_info
->chunk_root
;
1181 if (location
->objectid
== BTRFS_DEV_TREE_OBJECTID
)
1182 return fs_info
->dev_root
;
1183 if (location
->objectid
== BTRFS_CSUM_TREE_OBJECTID
)
1184 return fs_info
->csum_root
;
1186 spin_lock(&fs_info
->fs_roots_radix_lock
);
1187 root
= radix_tree_lookup(&fs_info
->fs_roots_radix
,
1188 (unsigned long)location
->objectid
);
1189 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1193 ret
= btrfs_find_orphan_item(fs_info
->tree_root
, location
->objectid
);
1197 return ERR_PTR(ret
);
1199 root
= btrfs_read_fs_root_no_radix(fs_info
->tree_root
, location
);
1203 WARN_ON(btrfs_root_refs(&root
->root_item
) == 0);
1204 set_anon_super(&root
->anon_super
, NULL
);
1206 ret
= radix_tree_preload(GFP_NOFS
& ~__GFP_HIGHMEM
);
1210 spin_lock(&fs_info
->fs_roots_radix_lock
);
1211 ret
= radix_tree_insert(&fs_info
->fs_roots_radix
,
1212 (unsigned long)root
->root_key
.objectid
,
1216 root
->clean_orphans
= 1;
1218 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1219 radix_tree_preload_end();
1221 if (ret
== -EEXIST
) {
1228 ret
= btrfs_find_dead_roots(fs_info
->tree_root
,
1229 root
->root_key
.objectid
);
1234 return ERR_PTR(ret
);
1237 struct btrfs_root
*btrfs_read_fs_root(struct btrfs_fs_info
*fs_info
,
1238 struct btrfs_key
*location
,
1239 const char *name
, int namelen
)
1241 return btrfs_read_fs_root_no_name(fs_info
, location
);
1243 struct btrfs_root
*root
;
1246 root
= btrfs_read_fs_root_no_name(fs_info
, location
);
1253 ret
= btrfs_set_root_name(root
, name
, namelen
);
1255 free_extent_buffer(root
->node
);
1257 return ERR_PTR(ret
);
1260 ret
= btrfs_sysfs_add_root(root
);
1262 free_extent_buffer(root
->node
);
1265 return ERR_PTR(ret
);
1272 static int btrfs_congested_fn(void *congested_data
, int bdi_bits
)
1274 struct btrfs_fs_info
*info
= (struct btrfs_fs_info
*)congested_data
;
1276 struct btrfs_device
*device
;
1277 struct backing_dev_info
*bdi
;
1279 list_for_each_entry(device
, &info
->fs_devices
->devices
, dev_list
) {
1282 bdi
= blk_get_backing_dev_info(device
->bdev
);
1283 if (bdi
&& bdi_congested(bdi
, bdi_bits
)) {
1292 * this unplugs every device on the box, and it is only used when page
1295 static void __unplug_io_fn(struct backing_dev_info
*bdi
, struct page
*page
)
1297 struct btrfs_device
*device
;
1298 struct btrfs_fs_info
*info
;
1300 info
= (struct btrfs_fs_info
*)bdi
->unplug_io_data
;
1301 list_for_each_entry(device
, &info
->fs_devices
->devices
, dev_list
) {
1305 bdi
= blk_get_backing_dev_info(device
->bdev
);
1306 if (bdi
->unplug_io_fn
)
1307 bdi
->unplug_io_fn(bdi
, page
);
1311 static void btrfs_unplug_io_fn(struct backing_dev_info
*bdi
, struct page
*page
)
1313 struct inode
*inode
;
1314 struct extent_map_tree
*em_tree
;
1315 struct extent_map
*em
;
1316 struct address_space
*mapping
;
1319 /* the generic O_DIRECT read code does this */
1321 __unplug_io_fn(bdi
, page
);
1326 * page->mapping may change at any time. Get a consistent copy
1327 * and use that for everything below
1330 mapping
= page
->mapping
;
1334 inode
= mapping
->host
;
1337 * don't do the expensive searching for a small number of
1340 if (BTRFS_I(inode
)->root
->fs_info
->fs_devices
->open_devices
<= 2) {
1341 __unplug_io_fn(bdi
, page
);
1345 offset
= page_offset(page
);
1347 em_tree
= &BTRFS_I(inode
)->extent_tree
;
1348 read_lock(&em_tree
->lock
);
1349 em
= lookup_extent_mapping(em_tree
, offset
, PAGE_CACHE_SIZE
);
1350 read_unlock(&em_tree
->lock
);
1352 __unplug_io_fn(bdi
, page
);
1356 if (em
->block_start
>= EXTENT_MAP_LAST_BYTE
) {
1357 free_extent_map(em
);
1358 __unplug_io_fn(bdi
, page
);
1361 offset
= offset
- em
->start
;
1362 btrfs_unplug_page(&BTRFS_I(inode
)->root
->fs_info
->mapping_tree
,
1363 em
->block_start
+ offset
, page
);
1364 free_extent_map(em
);
1368 * If this fails, caller must call bdi_destroy() to get rid of the
1371 static int setup_bdi(struct btrfs_fs_info
*info
, struct backing_dev_info
*bdi
)
1375 bdi
->name
= "btrfs";
1376 bdi
->capabilities
= BDI_CAP_MAP_COPY
;
1377 err
= bdi_init(bdi
);
1381 err
= bdi_register(bdi
, NULL
, "btrfs-%d",
1382 atomic_inc_return(&btrfs_bdi_num
));
1388 bdi
->ra_pages
= default_backing_dev_info
.ra_pages
;
1389 bdi
->unplug_io_fn
= btrfs_unplug_io_fn
;
1390 bdi
->unplug_io_data
= info
;
1391 bdi
->congested_fn
= btrfs_congested_fn
;
1392 bdi
->congested_data
= info
;
1396 static int bio_ready_for_csum(struct bio
*bio
)
1402 struct extent_io_tree
*io_tree
= NULL
;
1403 struct btrfs_fs_info
*info
= NULL
;
1404 struct bio_vec
*bvec
;
1408 bio_for_each_segment(bvec
, bio
, i
) {
1409 page
= bvec
->bv_page
;
1410 if (page
->private == EXTENT_PAGE_PRIVATE
) {
1411 length
+= bvec
->bv_len
;
1414 if (!page
->private) {
1415 length
+= bvec
->bv_len
;
1418 length
= bvec
->bv_len
;
1419 buf_len
= page
->private >> 2;
1420 start
= page_offset(page
) + bvec
->bv_offset
;
1421 io_tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
1422 info
= BTRFS_I(page
->mapping
->host
)->root
->fs_info
;
1424 /* are we fully contained in this bio? */
1425 if (buf_len
<= length
)
1428 ret
= extent_range_uptodate(io_tree
, start
+ length
,
1429 start
+ buf_len
- 1);
1434 * called by the kthread helper functions to finally call the bio end_io
1435 * functions. This is where read checksum verification actually happens
1437 static void end_workqueue_fn(struct btrfs_work
*work
)
1440 struct end_io_wq
*end_io_wq
;
1441 struct btrfs_fs_info
*fs_info
;
1444 end_io_wq
= container_of(work
, struct end_io_wq
, work
);
1445 bio
= end_io_wq
->bio
;
1446 fs_info
= end_io_wq
->info
;
1448 /* metadata bio reads are special because the whole tree block must
1449 * be checksummed at once. This makes sure the entire block is in
1450 * ram and up to date before trying to verify things. For
1451 * blocksize <= pagesize, it is basically a noop
1453 if (!(bio
->bi_rw
& (1 << BIO_RW
)) && end_io_wq
->metadata
&&
1454 !bio_ready_for_csum(bio
)) {
1455 btrfs_queue_worker(&fs_info
->endio_meta_workers
,
1459 error
= end_io_wq
->error
;
1460 bio
->bi_private
= end_io_wq
->private;
1461 bio
->bi_end_io
= end_io_wq
->end_io
;
1463 bio_endio(bio
, error
);
1466 static int cleaner_kthread(void *arg
)
1468 struct btrfs_root
*root
= arg
;
1472 if (root
->fs_info
->closing
)
1475 vfs_check_frozen(root
->fs_info
->sb
, SB_FREEZE_WRITE
);
1477 if (!(root
->fs_info
->sb
->s_flags
& MS_RDONLY
) &&
1478 mutex_trylock(&root
->fs_info
->cleaner_mutex
)) {
1479 btrfs_run_delayed_iputs(root
);
1480 btrfs_clean_old_snapshots(root
);
1481 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
1484 if (freezing(current
)) {
1488 if (root
->fs_info
->closing
)
1490 set_current_state(TASK_INTERRUPTIBLE
);
1492 __set_current_state(TASK_RUNNING
);
1494 } while (!kthread_should_stop());
1498 static int transaction_kthread(void *arg
)
1500 struct btrfs_root
*root
= arg
;
1501 struct btrfs_trans_handle
*trans
;
1502 struct btrfs_transaction
*cur
;
1504 unsigned long delay
;
1509 if (root
->fs_info
->closing
)
1513 vfs_check_frozen(root
->fs_info
->sb
, SB_FREEZE_WRITE
);
1514 mutex_lock(&root
->fs_info
->transaction_kthread_mutex
);
1516 mutex_lock(&root
->fs_info
->trans_mutex
);
1517 cur
= root
->fs_info
->running_transaction
;
1519 mutex_unlock(&root
->fs_info
->trans_mutex
);
1523 now
= get_seconds();
1524 if (now
< cur
->start_time
|| now
- cur
->start_time
< 30) {
1525 mutex_unlock(&root
->fs_info
->trans_mutex
);
1529 mutex_unlock(&root
->fs_info
->trans_mutex
);
1530 trans
= btrfs_start_transaction(root
, 1);
1531 ret
= btrfs_commit_transaction(trans
, root
);
1534 wake_up_process(root
->fs_info
->cleaner_kthread
);
1535 mutex_unlock(&root
->fs_info
->transaction_kthread_mutex
);
1537 if (freezing(current
)) {
1540 if (root
->fs_info
->closing
)
1542 set_current_state(TASK_INTERRUPTIBLE
);
1543 schedule_timeout(delay
);
1544 __set_current_state(TASK_RUNNING
);
1546 } while (!kthread_should_stop());
1550 struct btrfs_root
*open_ctree(struct super_block
*sb
,
1551 struct btrfs_fs_devices
*fs_devices
,
1561 struct btrfs_key location
;
1562 struct buffer_head
*bh
;
1563 struct btrfs_root
*extent_root
= kzalloc(sizeof(struct btrfs_root
),
1565 struct btrfs_root
*csum_root
= kzalloc(sizeof(struct btrfs_root
),
1567 struct btrfs_root
*tree_root
= kzalloc(sizeof(struct btrfs_root
),
1569 struct btrfs_fs_info
*fs_info
= kzalloc(sizeof(*fs_info
),
1571 struct btrfs_root
*chunk_root
= kzalloc(sizeof(struct btrfs_root
),
1573 struct btrfs_root
*dev_root
= kzalloc(sizeof(struct btrfs_root
),
1575 struct btrfs_root
*log_tree_root
;
1580 struct btrfs_super_block
*disk_super
;
1582 if (!extent_root
|| !tree_root
|| !fs_info
||
1583 !chunk_root
|| !dev_root
|| !csum_root
) {
1588 ret
= init_srcu_struct(&fs_info
->subvol_srcu
);
1594 ret
= setup_bdi(fs_info
, &fs_info
->bdi
);
1600 fs_info
->btree_inode
= new_inode(sb
);
1601 if (!fs_info
->btree_inode
) {
1606 INIT_RADIX_TREE(&fs_info
->fs_roots_radix
, GFP_ATOMIC
);
1607 INIT_LIST_HEAD(&fs_info
->trans_list
);
1608 INIT_LIST_HEAD(&fs_info
->dead_roots
);
1609 INIT_LIST_HEAD(&fs_info
->delayed_iputs
);
1610 INIT_LIST_HEAD(&fs_info
->hashers
);
1611 INIT_LIST_HEAD(&fs_info
->delalloc_inodes
);
1612 INIT_LIST_HEAD(&fs_info
->ordered_operations
);
1613 INIT_LIST_HEAD(&fs_info
->caching_block_groups
);
1614 spin_lock_init(&fs_info
->delalloc_lock
);
1615 spin_lock_init(&fs_info
->new_trans_lock
);
1616 spin_lock_init(&fs_info
->ref_cache_lock
);
1617 spin_lock_init(&fs_info
->fs_roots_radix_lock
);
1618 spin_lock_init(&fs_info
->delayed_iput_lock
);
1620 init_completion(&fs_info
->kobj_unregister
);
1621 fs_info
->tree_root
= tree_root
;
1622 fs_info
->extent_root
= extent_root
;
1623 fs_info
->csum_root
= csum_root
;
1624 fs_info
->chunk_root
= chunk_root
;
1625 fs_info
->dev_root
= dev_root
;
1626 fs_info
->fs_devices
= fs_devices
;
1627 INIT_LIST_HEAD(&fs_info
->dirty_cowonly_roots
);
1628 INIT_LIST_HEAD(&fs_info
->space_info
);
1629 btrfs_mapping_init(&fs_info
->mapping_tree
);
1630 atomic_set(&fs_info
->nr_async_submits
, 0);
1631 atomic_set(&fs_info
->async_delalloc_pages
, 0);
1632 atomic_set(&fs_info
->async_submit_draining
, 0);
1633 atomic_set(&fs_info
->nr_async_bios
, 0);
1635 fs_info
->max_extent
= (u64
)-1;
1636 fs_info
->max_inline
= 8192 * 1024;
1637 fs_info
->metadata_ratio
= 0;
1639 fs_info
->thread_pool_size
= min_t(unsigned long,
1640 num_online_cpus() + 2, 8);
1642 INIT_LIST_HEAD(&fs_info
->ordered_extents
);
1643 spin_lock_init(&fs_info
->ordered_extent_lock
);
1645 sb
->s_blocksize
= 4096;
1646 sb
->s_blocksize_bits
= blksize_bits(4096);
1647 sb
->s_bdi
= &fs_info
->bdi
;
1649 fs_info
->btree_inode
->i_ino
= BTRFS_BTREE_INODE_OBJECTID
;
1650 fs_info
->btree_inode
->i_nlink
= 1;
1652 * we set the i_size on the btree inode to the max possible int.
1653 * the real end of the address space is determined by all of
1654 * the devices in the system
1656 fs_info
->btree_inode
->i_size
= OFFSET_MAX
;
1657 fs_info
->btree_inode
->i_mapping
->a_ops
= &btree_aops
;
1658 fs_info
->btree_inode
->i_mapping
->backing_dev_info
= &fs_info
->bdi
;
1660 RB_CLEAR_NODE(&BTRFS_I(fs_info
->btree_inode
)->rb_node
);
1661 extent_io_tree_init(&BTRFS_I(fs_info
->btree_inode
)->io_tree
,
1662 fs_info
->btree_inode
->i_mapping
,
1664 extent_map_tree_init(&BTRFS_I(fs_info
->btree_inode
)->extent_tree
,
1667 BTRFS_I(fs_info
->btree_inode
)->io_tree
.ops
= &btree_extent_io_ops
;
1669 BTRFS_I(fs_info
->btree_inode
)->root
= tree_root
;
1670 memset(&BTRFS_I(fs_info
->btree_inode
)->location
, 0,
1671 sizeof(struct btrfs_key
));
1672 BTRFS_I(fs_info
->btree_inode
)->dummy_inode
= 1;
1673 insert_inode_hash(fs_info
->btree_inode
);
1675 spin_lock_init(&fs_info
->block_group_cache_lock
);
1676 fs_info
->block_group_cache_tree
.rb_node
= NULL
;
1678 extent_io_tree_init(&fs_info
->freed_extents
[0],
1679 fs_info
->btree_inode
->i_mapping
, GFP_NOFS
);
1680 extent_io_tree_init(&fs_info
->freed_extents
[1],
1681 fs_info
->btree_inode
->i_mapping
, GFP_NOFS
);
1682 fs_info
->pinned_extents
= &fs_info
->freed_extents
[0];
1683 fs_info
->do_barriers
= 1;
1686 mutex_init(&fs_info
->trans_mutex
);
1687 mutex_init(&fs_info
->ordered_operations_mutex
);
1688 mutex_init(&fs_info
->tree_log_mutex
);
1689 mutex_init(&fs_info
->chunk_mutex
);
1690 mutex_init(&fs_info
->transaction_kthread_mutex
);
1691 mutex_init(&fs_info
->cleaner_mutex
);
1692 mutex_init(&fs_info
->volume_mutex
);
1693 init_rwsem(&fs_info
->extent_commit_sem
);
1694 init_rwsem(&fs_info
->cleanup_work_sem
);
1695 init_rwsem(&fs_info
->subvol_sem
);
1697 btrfs_init_free_cluster(&fs_info
->meta_alloc_cluster
);
1698 btrfs_init_free_cluster(&fs_info
->data_alloc_cluster
);
1700 init_waitqueue_head(&fs_info
->transaction_throttle
);
1701 init_waitqueue_head(&fs_info
->transaction_wait
);
1702 init_waitqueue_head(&fs_info
->async_submit_wait
);
1704 __setup_root(4096, 4096, 4096, 4096, tree_root
,
1705 fs_info
, BTRFS_ROOT_TREE_OBJECTID
);
1708 bh
= btrfs_read_dev_super(fs_devices
->latest_bdev
);
1712 memcpy(&fs_info
->super_copy
, bh
->b_data
, sizeof(fs_info
->super_copy
));
1713 memcpy(&fs_info
->super_for_commit
, &fs_info
->super_copy
,
1714 sizeof(fs_info
->super_for_commit
));
1717 memcpy(fs_info
->fsid
, fs_info
->super_copy
.fsid
, BTRFS_FSID_SIZE
);
1719 disk_super
= &fs_info
->super_copy
;
1720 if (!btrfs_super_root(disk_super
))
1723 ret
= btrfs_parse_options(tree_root
, options
);
1729 features
= btrfs_super_incompat_flags(disk_super
) &
1730 ~BTRFS_FEATURE_INCOMPAT_SUPP
;
1732 printk(KERN_ERR
"BTRFS: couldn't mount because of "
1733 "unsupported optional features (%Lx).\n",
1734 (unsigned long long)features
);
1739 features
= btrfs_super_incompat_flags(disk_super
);
1740 if (!(features
& BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF
)) {
1741 features
|= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF
;
1742 btrfs_set_super_incompat_flags(disk_super
, features
);
1745 features
= btrfs_super_compat_ro_flags(disk_super
) &
1746 ~BTRFS_FEATURE_COMPAT_RO_SUPP
;
1747 if (!(sb
->s_flags
& MS_RDONLY
) && features
) {
1748 printk(KERN_ERR
"BTRFS: couldn't mount RDWR because of "
1749 "unsupported option features (%Lx).\n",
1750 (unsigned long long)features
);
1755 btrfs_init_workers(&fs_info
->generic_worker
,
1756 "genwork", 1, NULL
);
1758 btrfs_init_workers(&fs_info
->workers
, "worker",
1759 fs_info
->thread_pool_size
,
1760 &fs_info
->generic_worker
);
1762 btrfs_init_workers(&fs_info
->delalloc_workers
, "delalloc",
1763 fs_info
->thread_pool_size
,
1764 &fs_info
->generic_worker
);
1766 btrfs_init_workers(&fs_info
->submit_workers
, "submit",
1767 min_t(u64
, fs_devices
->num_devices
,
1768 fs_info
->thread_pool_size
),
1769 &fs_info
->generic_worker
);
1770 btrfs_init_workers(&fs_info
->enospc_workers
, "enospc",
1771 fs_info
->thread_pool_size
,
1772 &fs_info
->generic_worker
);
1774 /* a higher idle thresh on the submit workers makes it much more
1775 * likely that bios will be send down in a sane order to the
1778 fs_info
->submit_workers
.idle_thresh
= 64;
1780 fs_info
->workers
.idle_thresh
= 16;
1781 fs_info
->workers
.ordered
= 1;
1783 fs_info
->delalloc_workers
.idle_thresh
= 2;
1784 fs_info
->delalloc_workers
.ordered
= 1;
1786 btrfs_init_workers(&fs_info
->fixup_workers
, "fixup", 1,
1787 &fs_info
->generic_worker
);
1788 btrfs_init_workers(&fs_info
->endio_workers
, "endio",
1789 fs_info
->thread_pool_size
,
1790 &fs_info
->generic_worker
);
1791 btrfs_init_workers(&fs_info
->endio_meta_workers
, "endio-meta",
1792 fs_info
->thread_pool_size
,
1793 &fs_info
->generic_worker
);
1794 btrfs_init_workers(&fs_info
->endio_meta_write_workers
,
1795 "endio-meta-write", fs_info
->thread_pool_size
,
1796 &fs_info
->generic_worker
);
1797 btrfs_init_workers(&fs_info
->endio_write_workers
, "endio-write",
1798 fs_info
->thread_pool_size
,
1799 &fs_info
->generic_worker
);
1802 * endios are largely parallel and should have a very
1805 fs_info
->endio_workers
.idle_thresh
= 4;
1806 fs_info
->endio_meta_workers
.idle_thresh
= 4;
1808 fs_info
->endio_write_workers
.idle_thresh
= 2;
1809 fs_info
->endio_meta_write_workers
.idle_thresh
= 2;
1811 btrfs_start_workers(&fs_info
->workers
, 1);
1812 btrfs_start_workers(&fs_info
->generic_worker
, 1);
1813 btrfs_start_workers(&fs_info
->submit_workers
, 1);
1814 btrfs_start_workers(&fs_info
->delalloc_workers
, 1);
1815 btrfs_start_workers(&fs_info
->fixup_workers
, 1);
1816 btrfs_start_workers(&fs_info
->endio_workers
, 1);
1817 btrfs_start_workers(&fs_info
->endio_meta_workers
, 1);
1818 btrfs_start_workers(&fs_info
->endio_meta_write_workers
, 1);
1819 btrfs_start_workers(&fs_info
->endio_write_workers
, 1);
1820 btrfs_start_workers(&fs_info
->enospc_workers
, 1);
1822 fs_info
->bdi
.ra_pages
*= btrfs_super_num_devices(disk_super
);
1823 fs_info
->bdi
.ra_pages
= max(fs_info
->bdi
.ra_pages
,
1824 4 * 1024 * 1024 / PAGE_CACHE_SIZE
);
1826 nodesize
= btrfs_super_nodesize(disk_super
);
1827 leafsize
= btrfs_super_leafsize(disk_super
);
1828 sectorsize
= btrfs_super_sectorsize(disk_super
);
1829 stripesize
= btrfs_super_stripesize(disk_super
);
1830 tree_root
->nodesize
= nodesize
;
1831 tree_root
->leafsize
= leafsize
;
1832 tree_root
->sectorsize
= sectorsize
;
1833 tree_root
->stripesize
= stripesize
;
1835 sb
->s_blocksize
= sectorsize
;
1836 sb
->s_blocksize_bits
= blksize_bits(sectorsize
);
1838 if (strncmp((char *)(&disk_super
->magic
), BTRFS_MAGIC
,
1839 sizeof(disk_super
->magic
))) {
1840 printk(KERN_INFO
"btrfs: valid FS not found on %s\n", sb
->s_id
);
1841 goto fail_sb_buffer
;
1844 mutex_lock(&fs_info
->chunk_mutex
);
1845 ret
= btrfs_read_sys_array(tree_root
);
1846 mutex_unlock(&fs_info
->chunk_mutex
);
1848 printk(KERN_WARNING
"btrfs: failed to read the system "
1849 "array on %s\n", sb
->s_id
);
1850 goto fail_sb_buffer
;
1853 blocksize
= btrfs_level_size(tree_root
,
1854 btrfs_super_chunk_root_level(disk_super
));
1855 generation
= btrfs_super_chunk_root_generation(disk_super
);
1857 __setup_root(nodesize
, leafsize
, sectorsize
, stripesize
,
1858 chunk_root
, fs_info
, BTRFS_CHUNK_TREE_OBJECTID
);
1860 chunk_root
->node
= read_tree_block(chunk_root
,
1861 btrfs_super_chunk_root(disk_super
),
1862 blocksize
, generation
);
1863 BUG_ON(!chunk_root
->node
);
1864 if (!test_bit(EXTENT_BUFFER_UPTODATE
, &chunk_root
->node
->bflags
)) {
1865 printk(KERN_WARNING
"btrfs: failed to read chunk root on %s\n",
1867 goto fail_chunk_root
;
1869 btrfs_set_root_node(&chunk_root
->root_item
, chunk_root
->node
);
1870 chunk_root
->commit_root
= btrfs_root_node(chunk_root
);
1872 read_extent_buffer(chunk_root
->node
, fs_info
->chunk_tree_uuid
,
1873 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root
->node
),
1876 mutex_lock(&fs_info
->chunk_mutex
);
1877 ret
= btrfs_read_chunk_tree(chunk_root
);
1878 mutex_unlock(&fs_info
->chunk_mutex
);
1880 printk(KERN_WARNING
"btrfs: failed to read chunk tree on %s\n",
1882 goto fail_chunk_root
;
1885 btrfs_close_extra_devices(fs_devices
);
1887 blocksize
= btrfs_level_size(tree_root
,
1888 btrfs_super_root_level(disk_super
));
1889 generation
= btrfs_super_generation(disk_super
);
1891 tree_root
->node
= read_tree_block(tree_root
,
1892 btrfs_super_root(disk_super
),
1893 blocksize
, generation
);
1894 if (!tree_root
->node
)
1895 goto fail_chunk_root
;
1896 if (!test_bit(EXTENT_BUFFER_UPTODATE
, &tree_root
->node
->bflags
)) {
1897 printk(KERN_WARNING
"btrfs: failed to read tree root on %s\n",
1899 goto fail_tree_root
;
1901 btrfs_set_root_node(&tree_root
->root_item
, tree_root
->node
);
1902 tree_root
->commit_root
= btrfs_root_node(tree_root
);
1904 ret
= find_and_setup_root(tree_root
, fs_info
,
1905 BTRFS_EXTENT_TREE_OBJECTID
, extent_root
);
1907 goto fail_tree_root
;
1908 extent_root
->track_dirty
= 1;
1910 ret
= find_and_setup_root(tree_root
, fs_info
,
1911 BTRFS_DEV_TREE_OBJECTID
, dev_root
);
1913 goto fail_extent_root
;
1914 dev_root
->track_dirty
= 1;
1916 ret
= find_and_setup_root(tree_root
, fs_info
,
1917 BTRFS_CSUM_TREE_OBJECTID
, csum_root
);
1921 csum_root
->track_dirty
= 1;
1923 btrfs_read_block_groups(extent_root
);
1925 fs_info
->generation
= generation
;
1926 fs_info
->last_trans_committed
= generation
;
1927 fs_info
->data_alloc_profile
= (u64
)-1;
1928 fs_info
->metadata_alloc_profile
= (u64
)-1;
1929 fs_info
->system_alloc_profile
= fs_info
->metadata_alloc_profile
;
1930 fs_info
->cleaner_kthread
= kthread_run(cleaner_kthread
, tree_root
,
1932 if (IS_ERR(fs_info
->cleaner_kthread
))
1933 goto fail_csum_root
;
1935 fs_info
->transaction_kthread
= kthread_run(transaction_kthread
,
1937 "btrfs-transaction");
1938 if (IS_ERR(fs_info
->transaction_kthread
))
1941 if (!btrfs_test_opt(tree_root
, SSD
) &&
1942 !btrfs_test_opt(tree_root
, NOSSD
) &&
1943 !fs_info
->fs_devices
->rotating
) {
1944 printk(KERN_INFO
"Btrfs detected SSD devices, enabling SSD "
1946 btrfs_set_opt(fs_info
->mount_opt
, SSD
);
1949 if (btrfs_super_log_root(disk_super
) != 0) {
1950 u64 bytenr
= btrfs_super_log_root(disk_super
);
1952 if (fs_devices
->rw_devices
== 0) {
1953 printk(KERN_WARNING
"Btrfs log replay required "
1956 goto fail_trans_kthread
;
1959 btrfs_level_size(tree_root
,
1960 btrfs_super_log_root_level(disk_super
));
1962 log_tree_root
= kzalloc(sizeof(struct btrfs_root
),
1965 __setup_root(nodesize
, leafsize
, sectorsize
, stripesize
,
1966 log_tree_root
, fs_info
, BTRFS_TREE_LOG_OBJECTID
);
1968 log_tree_root
->node
= read_tree_block(tree_root
, bytenr
,
1971 ret
= btrfs_recover_log_trees(log_tree_root
);
1974 if (sb
->s_flags
& MS_RDONLY
) {
1975 ret
= btrfs_commit_super(tree_root
);
1980 ret
= btrfs_find_orphan_roots(tree_root
);
1983 if (!(sb
->s_flags
& MS_RDONLY
)) {
1984 ret
= btrfs_recover_relocation(tree_root
);
1987 "btrfs: failed to recover relocation\n");
1989 goto fail_trans_kthread
;
1993 location
.objectid
= BTRFS_FS_TREE_OBJECTID
;
1994 location
.type
= BTRFS_ROOT_ITEM_KEY
;
1995 location
.offset
= (u64
)-1;
1997 fs_info
->fs_root
= btrfs_read_fs_root_no_name(fs_info
, &location
);
1998 if (!fs_info
->fs_root
)
1999 goto fail_trans_kthread
;
2001 if (!(sb
->s_flags
& MS_RDONLY
)) {
2002 down_read(&fs_info
->cleanup_work_sem
);
2003 btrfs_orphan_cleanup(fs_info
->fs_root
);
2004 up_read(&fs_info
->cleanup_work_sem
);
2010 kthread_stop(fs_info
->transaction_kthread
);
2012 kthread_stop(fs_info
->cleaner_kthread
);
2015 * make sure we're done with the btree inode before we stop our
2018 filemap_write_and_wait(fs_info
->btree_inode
->i_mapping
);
2019 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
2022 free_extent_buffer(csum_root
->node
);
2023 free_extent_buffer(csum_root
->commit_root
);
2025 free_extent_buffer(dev_root
->node
);
2026 free_extent_buffer(dev_root
->commit_root
);
2028 free_extent_buffer(extent_root
->node
);
2029 free_extent_buffer(extent_root
->commit_root
);
2031 free_extent_buffer(tree_root
->node
);
2032 free_extent_buffer(tree_root
->commit_root
);
2034 free_extent_buffer(chunk_root
->node
);
2035 free_extent_buffer(chunk_root
->commit_root
);
2037 btrfs_stop_workers(&fs_info
->generic_worker
);
2038 btrfs_stop_workers(&fs_info
->fixup_workers
);
2039 btrfs_stop_workers(&fs_info
->delalloc_workers
);
2040 btrfs_stop_workers(&fs_info
->workers
);
2041 btrfs_stop_workers(&fs_info
->endio_workers
);
2042 btrfs_stop_workers(&fs_info
->endio_meta_workers
);
2043 btrfs_stop_workers(&fs_info
->endio_meta_write_workers
);
2044 btrfs_stop_workers(&fs_info
->endio_write_workers
);
2045 btrfs_stop_workers(&fs_info
->submit_workers
);
2046 btrfs_stop_workers(&fs_info
->enospc_workers
);
2048 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
2049 iput(fs_info
->btree_inode
);
2051 btrfs_close_devices(fs_info
->fs_devices
);
2052 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
2054 bdi_destroy(&fs_info
->bdi
);
2056 cleanup_srcu_struct(&fs_info
->subvol_srcu
);
2064 return ERR_PTR(err
);
2067 static void btrfs_end_buffer_write_sync(struct buffer_head
*bh
, int uptodate
)
2069 char b
[BDEVNAME_SIZE
];
2072 set_buffer_uptodate(bh
);
2074 if (!buffer_eopnotsupp(bh
) && printk_ratelimit()) {
2075 printk(KERN_WARNING
"lost page write due to "
2076 "I/O error on %s\n",
2077 bdevname(bh
->b_bdev
, b
));
2079 /* note, we dont' set_buffer_write_io_error because we have
2080 * our own ways of dealing with the IO errors
2082 clear_buffer_uptodate(bh
);
2088 struct buffer_head
*btrfs_read_dev_super(struct block_device
*bdev
)
2090 struct buffer_head
*bh
;
2091 struct buffer_head
*latest
= NULL
;
2092 struct btrfs_super_block
*super
;
2097 /* we would like to check all the supers, but that would make
2098 * a btrfs mount succeed after a mkfs from a different FS.
2099 * So, we need to add a special mount option to scan for
2100 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2102 for (i
= 0; i
< 1; i
++) {
2103 bytenr
= btrfs_sb_offset(i
);
2104 if (bytenr
+ 4096 >= i_size_read(bdev
->bd_inode
))
2106 bh
= __bread(bdev
, bytenr
/ 4096, 4096);
2110 super
= (struct btrfs_super_block
*)bh
->b_data
;
2111 if (btrfs_super_bytenr(super
) != bytenr
||
2112 strncmp((char *)(&super
->magic
), BTRFS_MAGIC
,
2113 sizeof(super
->magic
))) {
2118 if (!latest
|| btrfs_super_generation(super
) > transid
) {
2121 transid
= btrfs_super_generation(super
);
2130 * this should be called twice, once with wait == 0 and
2131 * once with wait == 1. When wait == 0 is done, all the buffer heads
2132 * we write are pinned.
2134 * They are released when wait == 1 is done.
2135 * max_mirrors must be the same for both runs, and it indicates how
2136 * many supers on this one device should be written.
2138 * max_mirrors == 0 means to write them all.
2140 static int write_dev_supers(struct btrfs_device
*device
,
2141 struct btrfs_super_block
*sb
,
2142 int do_barriers
, int wait
, int max_mirrors
)
2144 struct buffer_head
*bh
;
2150 int last_barrier
= 0;
2152 if (max_mirrors
== 0)
2153 max_mirrors
= BTRFS_SUPER_MIRROR_MAX
;
2155 /* make sure only the last submit_bh does a barrier */
2157 for (i
= 0; i
< max_mirrors
; i
++) {
2158 bytenr
= btrfs_sb_offset(i
);
2159 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>=
2160 device
->total_bytes
)
2166 for (i
= 0; i
< max_mirrors
; i
++) {
2167 bytenr
= btrfs_sb_offset(i
);
2168 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>= device
->total_bytes
)
2172 bh
= __find_get_block(device
->bdev
, bytenr
/ 4096,
2173 BTRFS_SUPER_INFO_SIZE
);
2176 if (!buffer_uptodate(bh
))
2179 /* drop our reference */
2182 /* drop the reference from the wait == 0 run */
2186 btrfs_set_super_bytenr(sb
, bytenr
);
2189 crc
= btrfs_csum_data(NULL
, (char *)sb
+
2190 BTRFS_CSUM_SIZE
, crc
,
2191 BTRFS_SUPER_INFO_SIZE
-
2193 btrfs_csum_final(crc
, sb
->csum
);
2196 * one reference for us, and we leave it for the
2199 bh
= __getblk(device
->bdev
, bytenr
/ 4096,
2200 BTRFS_SUPER_INFO_SIZE
);
2201 memcpy(bh
->b_data
, sb
, BTRFS_SUPER_INFO_SIZE
);
2203 /* one reference for submit_bh */
2206 set_buffer_uptodate(bh
);
2208 bh
->b_end_io
= btrfs_end_buffer_write_sync
;
2211 if (i
== last_barrier
&& do_barriers
&& device
->barriers
) {
2212 ret
= submit_bh(WRITE_BARRIER
, bh
);
2213 if (ret
== -EOPNOTSUPP
) {
2214 printk("btrfs: disabling barriers on dev %s\n",
2216 set_buffer_uptodate(bh
);
2217 device
->barriers
= 0;
2218 /* one reference for submit_bh */
2221 ret
= submit_bh(WRITE_SYNC
, bh
);
2224 ret
= submit_bh(WRITE_SYNC
, bh
);
2230 return errors
< i
? 0 : -1;
2233 int write_all_supers(struct btrfs_root
*root
, int max_mirrors
)
2235 struct list_head
*head
;
2236 struct btrfs_device
*dev
;
2237 struct btrfs_super_block
*sb
;
2238 struct btrfs_dev_item
*dev_item
;
2242 int total_errors
= 0;
2245 max_errors
= btrfs_super_num_devices(&root
->fs_info
->super_copy
) - 1;
2246 do_barriers
= !btrfs_test_opt(root
, NOBARRIER
);
2248 sb
= &root
->fs_info
->super_for_commit
;
2249 dev_item
= &sb
->dev_item
;
2251 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2252 head
= &root
->fs_info
->fs_devices
->devices
;
2253 list_for_each_entry(dev
, head
, dev_list
) {
2258 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
2261 btrfs_set_stack_device_generation(dev_item
, 0);
2262 btrfs_set_stack_device_type(dev_item
, dev
->type
);
2263 btrfs_set_stack_device_id(dev_item
, dev
->devid
);
2264 btrfs_set_stack_device_total_bytes(dev_item
, dev
->total_bytes
);
2265 btrfs_set_stack_device_bytes_used(dev_item
, dev
->bytes_used
);
2266 btrfs_set_stack_device_io_align(dev_item
, dev
->io_align
);
2267 btrfs_set_stack_device_io_width(dev_item
, dev
->io_width
);
2268 btrfs_set_stack_device_sector_size(dev_item
, dev
->sector_size
);
2269 memcpy(dev_item
->uuid
, dev
->uuid
, BTRFS_UUID_SIZE
);
2270 memcpy(dev_item
->fsid
, dev
->fs_devices
->fsid
, BTRFS_UUID_SIZE
);
2272 flags
= btrfs_super_flags(sb
);
2273 btrfs_set_super_flags(sb
, flags
| BTRFS_HEADER_FLAG_WRITTEN
);
2275 ret
= write_dev_supers(dev
, sb
, do_barriers
, 0, max_mirrors
);
2279 if (total_errors
> max_errors
) {
2280 printk(KERN_ERR
"btrfs: %d errors while writing supers\n",
2286 list_for_each_entry(dev
, head
, dev_list
) {
2289 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
2292 ret
= write_dev_supers(dev
, sb
, do_barriers
, 1, max_mirrors
);
2296 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2297 if (total_errors
> max_errors
) {
2298 printk(KERN_ERR
"btrfs: %d errors while writing supers\n",
2305 int write_ctree_super(struct btrfs_trans_handle
*trans
,
2306 struct btrfs_root
*root
, int max_mirrors
)
2310 ret
= write_all_supers(root
, max_mirrors
);
2314 int btrfs_free_fs_root(struct btrfs_fs_info
*fs_info
, struct btrfs_root
*root
)
2316 spin_lock(&fs_info
->fs_roots_radix_lock
);
2317 radix_tree_delete(&fs_info
->fs_roots_radix
,
2318 (unsigned long)root
->root_key
.objectid
);
2319 spin_unlock(&fs_info
->fs_roots_radix_lock
);
2321 if (btrfs_root_refs(&root
->root_item
) == 0)
2322 synchronize_srcu(&fs_info
->subvol_srcu
);
2328 static void free_fs_root(struct btrfs_root
*root
)
2330 WARN_ON(!RB_EMPTY_ROOT(&root
->inode_tree
));
2331 if (root
->anon_super
.s_dev
) {
2332 down_write(&root
->anon_super
.s_umount
);
2333 kill_anon_super(&root
->anon_super
);
2335 free_extent_buffer(root
->node
);
2336 free_extent_buffer(root
->commit_root
);
2341 static int del_fs_roots(struct btrfs_fs_info
*fs_info
)
2344 struct btrfs_root
*gang
[8];
2347 while (!list_empty(&fs_info
->dead_roots
)) {
2348 gang
[0] = list_entry(fs_info
->dead_roots
.next
,
2349 struct btrfs_root
, root_list
);
2350 list_del(&gang
[0]->root_list
);
2352 if (gang
[0]->in_radix
) {
2353 btrfs_free_fs_root(fs_info
, gang
[0]);
2355 free_extent_buffer(gang
[0]->node
);
2356 free_extent_buffer(gang
[0]->commit_root
);
2362 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
2367 for (i
= 0; i
< ret
; i
++)
2368 btrfs_free_fs_root(fs_info
, gang
[i
]);
2373 int btrfs_cleanup_fs_roots(struct btrfs_fs_info
*fs_info
)
2375 u64 root_objectid
= 0;
2376 struct btrfs_root
*gang
[8];
2381 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
2382 (void **)gang
, root_objectid
,
2387 root_objectid
= gang
[ret
- 1]->root_key
.objectid
+ 1;
2388 for (i
= 0; i
< ret
; i
++) {
2389 root_objectid
= gang
[i
]->root_key
.objectid
;
2390 btrfs_orphan_cleanup(gang
[i
]);
2397 int btrfs_commit_super(struct btrfs_root
*root
)
2399 struct btrfs_trans_handle
*trans
;
2402 mutex_lock(&root
->fs_info
->cleaner_mutex
);
2403 btrfs_run_delayed_iputs(root
);
2404 btrfs_clean_old_snapshots(root
);
2405 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
2407 /* wait until ongoing cleanup work done */
2408 down_write(&root
->fs_info
->cleanup_work_sem
);
2409 up_write(&root
->fs_info
->cleanup_work_sem
);
2411 trans
= btrfs_start_transaction(root
, 1);
2412 ret
= btrfs_commit_transaction(trans
, root
);
2414 /* run commit again to drop the original snapshot */
2415 trans
= btrfs_start_transaction(root
, 1);
2416 btrfs_commit_transaction(trans
, root
);
2417 ret
= btrfs_write_and_wait_transaction(NULL
, root
);
2420 ret
= write_ctree_super(NULL
, root
, 0);
2424 int close_ctree(struct btrfs_root
*root
)
2426 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2429 fs_info
->closing
= 1;
2432 kthread_stop(root
->fs_info
->transaction_kthread
);
2433 kthread_stop(root
->fs_info
->cleaner_kthread
);
2435 if (!(fs_info
->sb
->s_flags
& MS_RDONLY
)) {
2436 ret
= btrfs_commit_super(root
);
2438 printk(KERN_ERR
"btrfs: commit super ret %d\n", ret
);
2441 fs_info
->closing
= 2;
2444 if (fs_info
->delalloc_bytes
) {
2445 printk(KERN_INFO
"btrfs: at unmount delalloc count %llu\n",
2446 (unsigned long long)fs_info
->delalloc_bytes
);
2448 if (fs_info
->total_ref_cache_size
) {
2449 printk(KERN_INFO
"btrfs: at umount reference cache size %llu\n",
2450 (unsigned long long)fs_info
->total_ref_cache_size
);
2453 free_extent_buffer(fs_info
->extent_root
->node
);
2454 free_extent_buffer(fs_info
->extent_root
->commit_root
);
2455 free_extent_buffer(fs_info
->tree_root
->node
);
2456 free_extent_buffer(fs_info
->tree_root
->commit_root
);
2457 free_extent_buffer(root
->fs_info
->chunk_root
->node
);
2458 free_extent_buffer(root
->fs_info
->chunk_root
->commit_root
);
2459 free_extent_buffer(root
->fs_info
->dev_root
->node
);
2460 free_extent_buffer(root
->fs_info
->dev_root
->commit_root
);
2461 free_extent_buffer(root
->fs_info
->csum_root
->node
);
2462 free_extent_buffer(root
->fs_info
->csum_root
->commit_root
);
2464 btrfs_free_block_groups(root
->fs_info
);
2466 del_fs_roots(fs_info
);
2468 iput(fs_info
->btree_inode
);
2470 btrfs_stop_workers(&fs_info
->generic_worker
);
2471 btrfs_stop_workers(&fs_info
->fixup_workers
);
2472 btrfs_stop_workers(&fs_info
->delalloc_workers
);
2473 btrfs_stop_workers(&fs_info
->workers
);
2474 btrfs_stop_workers(&fs_info
->endio_workers
);
2475 btrfs_stop_workers(&fs_info
->endio_meta_workers
);
2476 btrfs_stop_workers(&fs_info
->endio_meta_write_workers
);
2477 btrfs_stop_workers(&fs_info
->endio_write_workers
);
2478 btrfs_stop_workers(&fs_info
->submit_workers
);
2479 btrfs_stop_workers(&fs_info
->enospc_workers
);
2481 btrfs_close_devices(fs_info
->fs_devices
);
2482 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
2484 bdi_destroy(&fs_info
->bdi
);
2485 cleanup_srcu_struct(&fs_info
->subvol_srcu
);
2487 kfree(fs_info
->extent_root
);
2488 kfree(fs_info
->tree_root
);
2489 kfree(fs_info
->chunk_root
);
2490 kfree(fs_info
->dev_root
);
2491 kfree(fs_info
->csum_root
);
2495 int btrfs_buffer_uptodate(struct extent_buffer
*buf
, u64 parent_transid
)
2498 struct inode
*btree_inode
= buf
->first_page
->mapping
->host
;
2500 ret
= extent_buffer_uptodate(&BTRFS_I(btree_inode
)->io_tree
, buf
);
2504 ret
= verify_parent_transid(&BTRFS_I(btree_inode
)->io_tree
, buf
,
2509 int btrfs_set_buffer_uptodate(struct extent_buffer
*buf
)
2511 struct inode
*btree_inode
= buf
->first_page
->mapping
->host
;
2512 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode
)->io_tree
,
2516 void btrfs_mark_buffer_dirty(struct extent_buffer
*buf
)
2518 struct btrfs_root
*root
= BTRFS_I(buf
->first_page
->mapping
->host
)->root
;
2519 u64 transid
= btrfs_header_generation(buf
);
2520 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
2523 btrfs_assert_tree_locked(buf
);
2524 if (transid
!= root
->fs_info
->generation
) {
2525 printk(KERN_CRIT
"btrfs transid mismatch buffer %llu, "
2526 "found %llu running %llu\n",
2527 (unsigned long long)buf
->start
,
2528 (unsigned long long)transid
,
2529 (unsigned long long)root
->fs_info
->generation
);
2532 was_dirty
= set_extent_buffer_dirty(&BTRFS_I(btree_inode
)->io_tree
,
2535 spin_lock(&root
->fs_info
->delalloc_lock
);
2536 root
->fs_info
->dirty_metadata_bytes
+= buf
->len
;
2537 spin_unlock(&root
->fs_info
->delalloc_lock
);
2541 void btrfs_btree_balance_dirty(struct btrfs_root
*root
, unsigned long nr
)
2544 * looks as though older kernels can get into trouble with
2545 * this code, they end up stuck in balance_dirty_pages forever
2548 unsigned long thresh
= 32 * 1024 * 1024;
2550 if (current
->flags
& PF_MEMALLOC
)
2553 num_dirty
= root
->fs_info
->dirty_metadata_bytes
;
2555 if (num_dirty
> thresh
) {
2556 balance_dirty_pages_ratelimited_nr(
2557 root
->fs_info
->btree_inode
->i_mapping
, 1);
2562 int btrfs_read_buffer(struct extent_buffer
*buf
, u64 parent_transid
)
2564 struct btrfs_root
*root
= BTRFS_I(buf
->first_page
->mapping
->host
)->root
;
2566 ret
= btree_read_extent_buffer_pages(root
, buf
, 0, parent_transid
);
2568 set_bit(EXTENT_BUFFER_UPTODATE
, &buf
->bflags
);
2572 int btree_lock_page_hook(struct page
*page
)
2574 struct inode
*inode
= page
->mapping
->host
;
2575 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2576 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
2577 struct extent_buffer
*eb
;
2579 u64 bytenr
= page_offset(page
);
2581 if (page
->private == EXTENT_PAGE_PRIVATE
)
2584 len
= page
->private >> 2;
2585 eb
= find_extent_buffer(io_tree
, bytenr
, len
, GFP_NOFS
);
2589 btrfs_tree_lock(eb
);
2590 btrfs_set_header_flag(eb
, BTRFS_HEADER_FLAG_WRITTEN
);
2592 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
)) {
2593 spin_lock(&root
->fs_info
->delalloc_lock
);
2594 if (root
->fs_info
->dirty_metadata_bytes
>= eb
->len
)
2595 root
->fs_info
->dirty_metadata_bytes
-= eb
->len
;
2598 spin_unlock(&root
->fs_info
->delalloc_lock
);
2601 btrfs_tree_unlock(eb
);
2602 free_extent_buffer(eb
);
2608 static struct extent_io_ops btree_extent_io_ops
= {
2609 .write_cache_pages_lock_hook
= btree_lock_page_hook
,
2610 .readpage_end_io_hook
= btree_readpage_end_io_hook
,
2611 .submit_bio_hook
= btree_submit_bio_hook
,
2612 /* note we're sharing with inode.c for the merge bio hook */
2613 .merge_bio_hook
= btrfs_merge_bio_hook
,