1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <asm/atomic.h>
49 #include <linux/namei.h>
51 #include <linux/module.h>
52 #include <linux/mount.h>
53 #include <linux/socket.h>
54 #include <linux/mqueue.h>
55 #include <linux/audit.h>
56 #include <linux/personality.h>
57 #include <linux/time.h>
58 #include <linux/netlink.h>
59 #include <linux/compiler.h>
60 #include <asm/unistd.h>
61 #include <linux/security.h>
62 #include <linux/list.h>
63 #include <linux/tty.h>
64 #include <linux/binfmts.h>
65 #include <linux/highmem.h>
66 #include <linux/syscalls.h>
67 #include <linux/inotify.h>
71 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
72 * for saving names from getname(). */
73 #define AUDIT_NAMES 20
75 /* Indicates that audit should log the full pathname. */
76 #define AUDIT_NAME_FULL -1
78 /* no execve audit message should be longer than this (userspace limits) */
79 #define MAX_EXECVE_AUDIT_LEN 7500
81 /* number of audit rules */
84 /* determines whether we collect data for signals sent */
87 /* When fs/namei.c:getname() is called, we store the pointer in name and
88 * we don't let putname() free it (instead we free all of the saved
89 * pointers at syscall exit time).
91 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
94 int name_len
; /* number of name's characters to log */
95 unsigned name_put
; /* call __putname() for this name */
105 struct audit_aux_data
{
106 struct audit_aux_data
*next
;
110 #define AUDIT_AUX_IPCPERM 0
112 /* Number of target pids per aux struct. */
113 #define AUDIT_AUX_PIDS 16
115 struct audit_aux_data_mq_open
{
116 struct audit_aux_data d
;
122 struct audit_aux_data_mq_sendrecv
{
123 struct audit_aux_data d
;
126 unsigned int msg_prio
;
127 struct timespec abs_timeout
;
130 struct audit_aux_data_mq_notify
{
131 struct audit_aux_data d
;
133 struct sigevent notification
;
136 struct audit_aux_data_mq_getsetattr
{
137 struct audit_aux_data d
;
139 struct mq_attr mqstat
;
142 struct audit_aux_data_ipcctl
{
143 struct audit_aux_data d
;
145 unsigned long qbytes
;
152 struct audit_aux_data_execve
{
153 struct audit_aux_data d
;
156 struct mm_struct
*mm
;
159 struct audit_aux_data_socketcall
{
160 struct audit_aux_data d
;
162 unsigned long args
[0];
165 struct audit_aux_data_sockaddr
{
166 struct audit_aux_data d
;
171 struct audit_aux_data_fd_pair
{
172 struct audit_aux_data d
;
176 struct audit_aux_data_pids
{
177 struct audit_aux_data d
;
178 pid_t target_pid
[AUDIT_AUX_PIDS
];
179 uid_t target_auid
[AUDIT_AUX_PIDS
];
180 uid_t target_uid
[AUDIT_AUX_PIDS
];
181 unsigned int target_sessionid
[AUDIT_AUX_PIDS
];
182 u32 target_sid
[AUDIT_AUX_PIDS
];
183 char target_comm
[AUDIT_AUX_PIDS
][TASK_COMM_LEN
];
187 struct audit_tree_refs
{
188 struct audit_tree_refs
*next
;
189 struct audit_chunk
*c
[31];
192 /* The per-task audit context. */
193 struct audit_context
{
194 int dummy
; /* must be the first element */
195 int in_syscall
; /* 1 if task is in a syscall */
196 enum audit_state state
;
197 unsigned int serial
; /* serial number for record */
198 struct timespec ctime
; /* time of syscall entry */
199 int major
; /* syscall number */
200 unsigned long argv
[4]; /* syscall arguments */
201 int return_valid
; /* return code is valid */
202 long return_code
;/* syscall return code */
203 int auditable
; /* 1 if record should be written */
205 struct audit_names names
[AUDIT_NAMES
];
206 char * filterkey
; /* key for rule that triggered record */
208 struct audit_context
*previous
; /* For nested syscalls */
209 struct audit_aux_data
*aux
;
210 struct audit_aux_data
*aux_pids
;
212 /* Save things to print about task_struct */
214 uid_t uid
, euid
, suid
, fsuid
;
215 gid_t gid
, egid
, sgid
, fsgid
;
216 unsigned long personality
;
222 unsigned int target_sessionid
;
224 char target_comm
[TASK_COMM_LEN
];
226 struct audit_tree_refs
*trees
, *first_trees
;
235 #define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE])
236 static inline int open_arg(int flags
, int mask
)
238 int n
= ACC_MODE(flags
);
239 if (flags
& (O_TRUNC
| O_CREAT
))
240 n
|= AUDIT_PERM_WRITE
;
244 static int audit_match_perm(struct audit_context
*ctx
, int mask
)
251 switch (audit_classify_syscall(ctx
->arch
, n
)) {
253 if ((mask
& AUDIT_PERM_WRITE
) &&
254 audit_match_class(AUDIT_CLASS_WRITE
, n
))
256 if ((mask
& AUDIT_PERM_READ
) &&
257 audit_match_class(AUDIT_CLASS_READ
, n
))
259 if ((mask
& AUDIT_PERM_ATTR
) &&
260 audit_match_class(AUDIT_CLASS_CHATTR
, n
))
263 case 1: /* 32bit on biarch */
264 if ((mask
& AUDIT_PERM_WRITE
) &&
265 audit_match_class(AUDIT_CLASS_WRITE_32
, n
))
267 if ((mask
& AUDIT_PERM_READ
) &&
268 audit_match_class(AUDIT_CLASS_READ_32
, n
))
270 if ((mask
& AUDIT_PERM_ATTR
) &&
271 audit_match_class(AUDIT_CLASS_CHATTR_32
, n
))
275 return mask
& ACC_MODE(ctx
->argv
[1]);
277 return mask
& ACC_MODE(ctx
->argv
[2]);
278 case 4: /* socketcall */
279 return ((mask
& AUDIT_PERM_WRITE
) && ctx
->argv
[0] == SYS_BIND
);
281 return mask
& AUDIT_PERM_EXEC
;
287 static int audit_match_filetype(struct audit_context
*ctx
, int which
)
289 unsigned index
= which
& ~S_IFMT
;
290 mode_t mode
= which
& S_IFMT
;
295 if (index
>= ctx
->name_count
)
297 if (ctx
->names
[index
].ino
== -1)
299 if ((ctx
->names
[index
].mode
^ mode
) & S_IFMT
)
305 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
306 * ->first_trees points to its beginning, ->trees - to the current end of data.
307 * ->tree_count is the number of free entries in array pointed to by ->trees.
308 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
309 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
310 * it's going to remain 1-element for almost any setup) until we free context itself.
311 * References in it _are_ dropped - at the same time we free/drop aux stuff.
314 #ifdef CONFIG_AUDIT_TREE
315 static int put_tree_ref(struct audit_context
*ctx
, struct audit_chunk
*chunk
)
317 struct audit_tree_refs
*p
= ctx
->trees
;
318 int left
= ctx
->tree_count
;
320 p
->c
[--left
] = chunk
;
321 ctx
->tree_count
= left
;
330 ctx
->tree_count
= 30;
336 static int grow_tree_refs(struct audit_context
*ctx
)
338 struct audit_tree_refs
*p
= ctx
->trees
;
339 ctx
->trees
= kzalloc(sizeof(struct audit_tree_refs
), GFP_KERNEL
);
345 p
->next
= ctx
->trees
;
347 ctx
->first_trees
= ctx
->trees
;
348 ctx
->tree_count
= 31;
353 static void unroll_tree_refs(struct audit_context
*ctx
,
354 struct audit_tree_refs
*p
, int count
)
356 #ifdef CONFIG_AUDIT_TREE
357 struct audit_tree_refs
*q
;
360 /* we started with empty chain */
361 p
= ctx
->first_trees
;
363 /* if the very first allocation has failed, nothing to do */
368 for (q
= p
; q
!= ctx
->trees
; q
= q
->next
, n
= 31) {
370 audit_put_chunk(q
->c
[n
]);
374 while (n
-- > ctx
->tree_count
) {
375 audit_put_chunk(q
->c
[n
]);
379 ctx
->tree_count
= count
;
383 static void free_tree_refs(struct audit_context
*ctx
)
385 struct audit_tree_refs
*p
, *q
;
386 for (p
= ctx
->first_trees
; p
; p
= q
) {
392 static int match_tree_refs(struct audit_context
*ctx
, struct audit_tree
*tree
)
394 #ifdef CONFIG_AUDIT_TREE
395 struct audit_tree_refs
*p
;
400 for (p
= ctx
->first_trees
; p
!= ctx
->trees
; p
= p
->next
) {
401 for (n
= 0; n
< 31; n
++)
402 if (audit_tree_match(p
->c
[n
], tree
))
407 for (n
= ctx
->tree_count
; n
< 31; n
++)
408 if (audit_tree_match(p
->c
[n
], tree
))
415 /* Determine if any context name data matches a rule's watch data */
416 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
418 static int audit_filter_rules(struct task_struct
*tsk
,
419 struct audit_krule
*rule
,
420 struct audit_context
*ctx
,
421 struct audit_names
*name
,
422 enum audit_state
*state
)
424 int i
, j
, need_sid
= 1;
427 for (i
= 0; i
< rule
->field_count
; i
++) {
428 struct audit_field
*f
= &rule
->fields
[i
];
433 result
= audit_comparator(tsk
->pid
, f
->op
, f
->val
);
438 ctx
->ppid
= sys_getppid();
439 result
= audit_comparator(ctx
->ppid
, f
->op
, f
->val
);
443 result
= audit_comparator(tsk
->uid
, f
->op
, f
->val
);
446 result
= audit_comparator(tsk
->euid
, f
->op
, f
->val
);
449 result
= audit_comparator(tsk
->suid
, f
->op
, f
->val
);
452 result
= audit_comparator(tsk
->fsuid
, f
->op
, f
->val
);
455 result
= audit_comparator(tsk
->gid
, f
->op
, f
->val
);
458 result
= audit_comparator(tsk
->egid
, f
->op
, f
->val
);
461 result
= audit_comparator(tsk
->sgid
, f
->op
, f
->val
);
464 result
= audit_comparator(tsk
->fsgid
, f
->op
, f
->val
);
467 result
= audit_comparator(tsk
->personality
, f
->op
, f
->val
);
471 result
= audit_comparator(ctx
->arch
, f
->op
, f
->val
);
475 if (ctx
&& ctx
->return_valid
)
476 result
= audit_comparator(ctx
->return_code
, f
->op
, f
->val
);
479 if (ctx
&& ctx
->return_valid
) {
481 result
= audit_comparator(ctx
->return_valid
, f
->op
, AUDITSC_SUCCESS
);
483 result
= audit_comparator(ctx
->return_valid
, f
->op
, AUDITSC_FAILURE
);
488 result
= audit_comparator(MAJOR(name
->dev
),
491 for (j
= 0; j
< ctx
->name_count
; j
++) {
492 if (audit_comparator(MAJOR(ctx
->names
[j
].dev
), f
->op
, f
->val
)) {
501 result
= audit_comparator(MINOR(name
->dev
),
504 for (j
= 0; j
< ctx
->name_count
; j
++) {
505 if (audit_comparator(MINOR(ctx
->names
[j
].dev
), f
->op
, f
->val
)) {
514 result
= (name
->ino
== f
->val
);
516 for (j
= 0; j
< ctx
->name_count
; j
++) {
517 if (audit_comparator(ctx
->names
[j
].ino
, f
->op
, f
->val
)) {
525 if (name
&& rule
->watch
->ino
!= (unsigned long)-1)
526 result
= (name
->dev
== rule
->watch
->dev
&&
527 name
->ino
== rule
->watch
->ino
);
531 result
= match_tree_refs(ctx
, rule
->tree
);
536 result
= audit_comparator(tsk
->loginuid
, f
->op
, f
->val
);
538 case AUDIT_SUBJ_USER
:
539 case AUDIT_SUBJ_ROLE
:
540 case AUDIT_SUBJ_TYPE
:
543 /* NOTE: this may return negative values indicating
544 a temporary error. We simply treat this as a
545 match for now to avoid losing information that
546 may be wanted. An error message will also be
550 security_task_getsecid(tsk
, &sid
);
553 result
= security_audit_rule_match(sid
, f
->type
,
562 case AUDIT_OBJ_LEV_LOW
:
563 case AUDIT_OBJ_LEV_HIGH
:
564 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
567 /* Find files that match */
569 result
= security_audit_rule_match(
570 name
->osid
, f
->type
, f
->op
,
573 for (j
= 0; j
< ctx
->name_count
; j
++) {
574 if (security_audit_rule_match(
583 /* Find ipc objects that match */
585 struct audit_aux_data
*aux
;
586 for (aux
= ctx
->aux
; aux
;
588 if (aux
->type
== AUDIT_IPC
) {
589 struct audit_aux_data_ipcctl
*axi
= (void *)aux
;
590 if (security_audit_rule_match(axi
->osid
, f
->type
, f
->op
, f
->lsm_rule
, ctx
)) {
604 result
= audit_comparator(ctx
->argv
[f
->type
-AUDIT_ARG0
], f
->op
, f
->val
);
606 case AUDIT_FILTERKEY
:
607 /* ignore this field for filtering */
611 result
= audit_match_perm(ctx
, f
->val
);
614 result
= audit_match_filetype(ctx
, f
->val
);
621 if (rule
->filterkey
&& ctx
)
622 ctx
->filterkey
= kstrdup(rule
->filterkey
, GFP_ATOMIC
);
623 switch (rule
->action
) {
624 case AUDIT_NEVER
: *state
= AUDIT_DISABLED
; break;
625 case AUDIT_ALWAYS
: *state
= AUDIT_RECORD_CONTEXT
; break;
630 /* At process creation time, we can determine if system-call auditing is
631 * completely disabled for this task. Since we only have the task
632 * structure at this point, we can only check uid and gid.
634 static enum audit_state
audit_filter_task(struct task_struct
*tsk
)
636 struct audit_entry
*e
;
637 enum audit_state state
;
640 list_for_each_entry_rcu(e
, &audit_filter_list
[AUDIT_FILTER_TASK
], list
) {
641 if (audit_filter_rules(tsk
, &e
->rule
, NULL
, NULL
, &state
)) {
647 return AUDIT_BUILD_CONTEXT
;
650 /* At syscall entry and exit time, this filter is called if the
651 * audit_state is not low enough that auditing cannot take place, but is
652 * also not high enough that we already know we have to write an audit
653 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
655 static enum audit_state
audit_filter_syscall(struct task_struct
*tsk
,
656 struct audit_context
*ctx
,
657 struct list_head
*list
)
659 struct audit_entry
*e
;
660 enum audit_state state
;
662 if (audit_pid
&& tsk
->tgid
== audit_pid
)
663 return AUDIT_DISABLED
;
666 if (!list_empty(list
)) {
667 int word
= AUDIT_WORD(ctx
->major
);
668 int bit
= AUDIT_BIT(ctx
->major
);
670 list_for_each_entry_rcu(e
, list
, list
) {
671 if ((e
->rule
.mask
[word
] & bit
) == bit
&&
672 audit_filter_rules(tsk
, &e
->rule
, ctx
, NULL
,
680 return AUDIT_BUILD_CONTEXT
;
683 /* At syscall exit time, this filter is called if any audit_names[] have been
684 * collected during syscall processing. We only check rules in sublists at hash
685 * buckets applicable to the inode numbers in audit_names[].
686 * Regarding audit_state, same rules apply as for audit_filter_syscall().
688 enum audit_state
audit_filter_inodes(struct task_struct
*tsk
,
689 struct audit_context
*ctx
)
692 struct audit_entry
*e
;
693 enum audit_state state
;
695 if (audit_pid
&& tsk
->tgid
== audit_pid
)
696 return AUDIT_DISABLED
;
699 for (i
= 0; i
< ctx
->name_count
; i
++) {
700 int word
= AUDIT_WORD(ctx
->major
);
701 int bit
= AUDIT_BIT(ctx
->major
);
702 struct audit_names
*n
= &ctx
->names
[i
];
703 int h
= audit_hash_ino((u32
)n
->ino
);
704 struct list_head
*list
= &audit_inode_hash
[h
];
706 if (list_empty(list
))
709 list_for_each_entry_rcu(e
, list
, list
) {
710 if ((e
->rule
.mask
[word
] & bit
) == bit
&&
711 audit_filter_rules(tsk
, &e
->rule
, ctx
, n
, &state
)) {
718 return AUDIT_BUILD_CONTEXT
;
721 void audit_set_auditable(struct audit_context
*ctx
)
726 static inline struct audit_context
*audit_get_context(struct task_struct
*tsk
,
730 struct audit_context
*context
= tsk
->audit_context
;
732 if (likely(!context
))
734 context
->return_valid
= return_valid
;
737 * we need to fix up the return code in the audit logs if the actual
738 * return codes are later going to be fixed up by the arch specific
741 * This is actually a test for:
742 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
743 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
745 * but is faster than a bunch of ||
747 if (unlikely(return_code
<= -ERESTARTSYS
) &&
748 (return_code
>= -ERESTART_RESTARTBLOCK
) &&
749 (return_code
!= -ENOIOCTLCMD
))
750 context
->return_code
= -EINTR
;
752 context
->return_code
= return_code
;
754 if (context
->in_syscall
&& !context
->dummy
&& !context
->auditable
) {
755 enum audit_state state
;
757 state
= audit_filter_syscall(tsk
, context
, &audit_filter_list
[AUDIT_FILTER_EXIT
]);
758 if (state
== AUDIT_RECORD_CONTEXT
) {
759 context
->auditable
= 1;
763 state
= audit_filter_inodes(tsk
, context
);
764 if (state
== AUDIT_RECORD_CONTEXT
)
765 context
->auditable
= 1;
771 tsk
->audit_context
= NULL
;
775 static inline void audit_free_names(struct audit_context
*context
)
780 if (context
->auditable
781 ||context
->put_count
+ context
->ino_count
!= context
->name_count
) {
782 printk(KERN_ERR
"%s:%d(:%d): major=%d in_syscall=%d"
783 " name_count=%d put_count=%d"
784 " ino_count=%d [NOT freeing]\n",
786 context
->serial
, context
->major
, context
->in_syscall
,
787 context
->name_count
, context
->put_count
,
789 for (i
= 0; i
< context
->name_count
; i
++) {
790 printk(KERN_ERR
"names[%d] = %p = %s\n", i
,
791 context
->names
[i
].name
,
792 context
->names
[i
].name
?: "(null)");
799 context
->put_count
= 0;
800 context
->ino_count
= 0;
803 for (i
= 0; i
< context
->name_count
; i
++) {
804 if (context
->names
[i
].name
&& context
->names
[i
].name_put
)
805 __putname(context
->names
[i
].name
);
807 context
->name_count
= 0;
808 path_put(&context
->pwd
);
809 context
->pwd
.dentry
= NULL
;
810 context
->pwd
.mnt
= NULL
;
813 static inline void audit_free_aux(struct audit_context
*context
)
815 struct audit_aux_data
*aux
;
817 while ((aux
= context
->aux
)) {
818 context
->aux
= aux
->next
;
821 while ((aux
= context
->aux_pids
)) {
822 context
->aux_pids
= aux
->next
;
827 static inline void audit_zero_context(struct audit_context
*context
,
828 enum audit_state state
)
830 memset(context
, 0, sizeof(*context
));
831 context
->state
= state
;
834 static inline struct audit_context
*audit_alloc_context(enum audit_state state
)
836 struct audit_context
*context
;
838 if (!(context
= kmalloc(sizeof(*context
), GFP_KERNEL
)))
840 audit_zero_context(context
, state
);
845 * audit_alloc - allocate an audit context block for a task
848 * Filter on the task information and allocate a per-task audit context
849 * if necessary. Doing so turns on system call auditing for the
850 * specified task. This is called from copy_process, so no lock is
853 int audit_alloc(struct task_struct
*tsk
)
855 struct audit_context
*context
;
856 enum audit_state state
;
858 if (likely(!audit_ever_enabled
))
859 return 0; /* Return if not auditing. */
861 state
= audit_filter_task(tsk
);
862 if (likely(state
== AUDIT_DISABLED
))
865 if (!(context
= audit_alloc_context(state
))) {
866 audit_log_lost("out of memory in audit_alloc");
870 tsk
->audit_context
= context
;
871 set_tsk_thread_flag(tsk
, TIF_SYSCALL_AUDIT
);
875 static inline void audit_free_context(struct audit_context
*context
)
877 struct audit_context
*previous
;
881 previous
= context
->previous
;
882 if (previous
|| (count
&& count
< 10)) {
884 printk(KERN_ERR
"audit(:%d): major=%d name_count=%d:"
885 " freeing multiple contexts (%d)\n",
886 context
->serial
, context
->major
,
887 context
->name_count
, count
);
889 audit_free_names(context
);
890 unroll_tree_refs(context
, NULL
, 0);
891 free_tree_refs(context
);
892 audit_free_aux(context
);
893 kfree(context
->filterkey
);
898 printk(KERN_ERR
"audit: freed %d contexts\n", count
);
901 void audit_log_task_context(struct audit_buffer
*ab
)
908 security_task_getsecid(current
, &sid
);
912 error
= security_secid_to_secctx(sid
, &ctx
, &len
);
914 if (error
!= -EINVAL
)
919 audit_log_format(ab
, " subj=%s", ctx
);
920 security_release_secctx(ctx
, len
);
924 audit_panic("error in audit_log_task_context");
928 EXPORT_SYMBOL(audit_log_task_context
);
930 static void audit_log_task_info(struct audit_buffer
*ab
, struct task_struct
*tsk
)
932 char name
[sizeof(tsk
->comm
)];
933 struct mm_struct
*mm
= tsk
->mm
;
934 struct vm_area_struct
*vma
;
938 get_task_comm(name
, tsk
);
939 audit_log_format(ab
, " comm=");
940 audit_log_untrustedstring(ab
, name
);
943 down_read(&mm
->mmap_sem
);
946 if ((vma
->vm_flags
& VM_EXECUTABLE
) &&
948 audit_log_d_path(ab
, "exe=",
949 &vma
->vm_file
->f_path
);
954 up_read(&mm
->mmap_sem
);
956 audit_log_task_context(ab
);
959 static int audit_log_pid_context(struct audit_context
*context
, pid_t pid
,
960 uid_t auid
, uid_t uid
, unsigned int sessionid
,
963 struct audit_buffer
*ab
;
968 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_OBJ_PID
);
972 audit_log_format(ab
, "opid=%d oauid=%d ouid=%d oses=%d", pid
, auid
,
974 if (security_secid_to_secctx(sid
, &ctx
, &len
)) {
975 audit_log_format(ab
, " obj=(none)");
978 audit_log_format(ab
, " obj=%s", ctx
);
979 security_release_secctx(ctx
, len
);
981 audit_log_format(ab
, " ocomm=");
982 audit_log_untrustedstring(ab
, comm
);
989 * to_send and len_sent accounting are very loose estimates. We aren't
990 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
991 * within about 500 bytes (next page boundry)
993 * why snprintf? an int is up to 12 digits long. if we just assumed when
994 * logging that a[%d]= was going to be 16 characters long we would be wasting
995 * space in every audit message. In one 7500 byte message we can log up to
996 * about 1000 min size arguments. That comes down to about 50% waste of space
997 * if we didn't do the snprintf to find out how long arg_num_len was.
999 static int audit_log_single_execve_arg(struct audit_context
*context
,
1000 struct audit_buffer
**ab
,
1003 const char __user
*p
,
1006 char arg_num_len_buf
[12];
1007 const char __user
*tmp_p
= p
;
1008 /* how many digits are in arg_num? 3 is the length of a=\n */
1009 size_t arg_num_len
= snprintf(arg_num_len_buf
, 12, "%d", arg_num
) + 3;
1010 size_t len
, len_left
, to_send
;
1011 size_t max_execve_audit_len
= MAX_EXECVE_AUDIT_LEN
;
1012 unsigned int i
, has_cntl
= 0, too_long
= 0;
1015 /* strnlen_user includes the null we don't want to send */
1016 len_left
= len
= strnlen_user(p
, MAX_ARG_STRLEN
) - 1;
1019 * We just created this mm, if we can't find the strings
1020 * we just copied into it something is _very_ wrong. Similar
1021 * for strings that are too long, we should not have created
1024 if (unlikely((len
== -1) || len
> MAX_ARG_STRLEN
- 1)) {
1026 send_sig(SIGKILL
, current
, 0);
1030 /* walk the whole argument looking for non-ascii chars */
1032 if (len_left
> MAX_EXECVE_AUDIT_LEN
)
1033 to_send
= MAX_EXECVE_AUDIT_LEN
;
1036 ret
= copy_from_user(buf
, tmp_p
, to_send
);
1038 * There is no reason for this copy to be short. We just
1039 * copied them here, and the mm hasn't been exposed to user-
1044 send_sig(SIGKILL
, current
, 0);
1047 buf
[to_send
] = '\0';
1048 has_cntl
= audit_string_contains_control(buf
, to_send
);
1051 * hex messages get logged as 2 bytes, so we can only
1052 * send half as much in each message
1054 max_execve_audit_len
= MAX_EXECVE_AUDIT_LEN
/ 2;
1057 len_left
-= to_send
;
1059 } while (len_left
> 0);
1063 if (len
> max_execve_audit_len
)
1066 /* rewalk the argument actually logging the message */
1067 for (i
= 0; len_left
> 0; i
++) {
1070 if (len_left
> max_execve_audit_len
)
1071 to_send
= max_execve_audit_len
;
1075 /* do we have space left to send this argument in this ab? */
1076 room_left
= MAX_EXECVE_AUDIT_LEN
- arg_num_len
- *len_sent
;
1078 room_left
-= (to_send
* 2);
1080 room_left
-= to_send
;
1081 if (room_left
< 0) {
1084 *ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_EXECVE
);
1090 * first record needs to say how long the original string was
1091 * so we can be sure nothing was lost.
1093 if ((i
== 0) && (too_long
))
1094 audit_log_format(*ab
, "a%d_len=%zu ", arg_num
,
1095 has_cntl
? 2*len
: len
);
1098 * normally arguments are small enough to fit and we already
1099 * filled buf above when we checked for control characters
1100 * so don't bother with another copy_from_user
1102 if (len
>= max_execve_audit_len
)
1103 ret
= copy_from_user(buf
, p
, to_send
);
1108 send_sig(SIGKILL
, current
, 0);
1111 buf
[to_send
] = '\0';
1113 /* actually log it */
1114 audit_log_format(*ab
, "a%d", arg_num
);
1116 audit_log_format(*ab
, "[%d]", i
);
1117 audit_log_format(*ab
, "=");
1119 audit_log_n_hex(*ab
, buf
, to_send
);
1121 audit_log_format(*ab
, "\"%s\"", buf
);
1122 audit_log_format(*ab
, "\n");
1125 len_left
-= to_send
;
1126 *len_sent
+= arg_num_len
;
1128 *len_sent
+= to_send
* 2;
1130 *len_sent
+= to_send
;
1132 /* include the null we didn't log */
1136 static void audit_log_execve_info(struct audit_context
*context
,
1137 struct audit_buffer
**ab
,
1138 struct audit_aux_data_execve
*axi
)
1141 size_t len
, len_sent
= 0;
1142 const char __user
*p
;
1145 if (axi
->mm
!= current
->mm
)
1146 return; /* execve failed, no additional info */
1148 p
= (const char __user
*)axi
->mm
->arg_start
;
1150 audit_log_format(*ab
, "argc=%d ", axi
->argc
);
1153 * we need some kernel buffer to hold the userspace args. Just
1154 * allocate one big one rather than allocating one of the right size
1155 * for every single argument inside audit_log_single_execve_arg()
1156 * should be <8k allocation so should be pretty safe.
1158 buf
= kmalloc(MAX_EXECVE_AUDIT_LEN
+ 1, GFP_KERNEL
);
1160 audit_panic("out of memory for argv string\n");
1164 for (i
= 0; i
< axi
->argc
; i
++) {
1165 len
= audit_log_single_execve_arg(context
, ab
, i
,
1174 static void audit_log_exit(struct audit_context
*context
, struct task_struct
*tsk
)
1176 int i
, call_panic
= 0;
1177 struct audit_buffer
*ab
;
1178 struct audit_aux_data
*aux
;
1181 /* tsk == current */
1182 context
->pid
= tsk
->pid
;
1184 context
->ppid
= sys_getppid();
1185 context
->uid
= tsk
->uid
;
1186 context
->gid
= tsk
->gid
;
1187 context
->euid
= tsk
->euid
;
1188 context
->suid
= tsk
->suid
;
1189 context
->fsuid
= tsk
->fsuid
;
1190 context
->egid
= tsk
->egid
;
1191 context
->sgid
= tsk
->sgid
;
1192 context
->fsgid
= tsk
->fsgid
;
1193 context
->personality
= tsk
->personality
;
1195 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_SYSCALL
);
1197 return; /* audit_panic has been called */
1198 audit_log_format(ab
, "arch=%x syscall=%d",
1199 context
->arch
, context
->major
);
1200 if (context
->personality
!= PER_LINUX
)
1201 audit_log_format(ab
, " per=%lx", context
->personality
);
1202 if (context
->return_valid
)
1203 audit_log_format(ab
, " success=%s exit=%ld",
1204 (context
->return_valid
==AUDITSC_SUCCESS
)?"yes":"no",
1205 context
->return_code
);
1207 mutex_lock(&tty_mutex
);
1208 read_lock(&tasklist_lock
);
1209 if (tsk
->signal
&& tsk
->signal
->tty
&& tsk
->signal
->tty
->name
)
1210 tty
= tsk
->signal
->tty
->name
;
1213 read_unlock(&tasklist_lock
);
1214 audit_log_format(ab
,
1215 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
1216 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1217 " euid=%u suid=%u fsuid=%u"
1218 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1223 context
->name_count
,
1229 context
->euid
, context
->suid
, context
->fsuid
,
1230 context
->egid
, context
->sgid
, context
->fsgid
, tty
,
1233 mutex_unlock(&tty_mutex
);
1235 audit_log_task_info(ab
, tsk
);
1236 if (context
->filterkey
) {
1237 audit_log_format(ab
, " key=");
1238 audit_log_untrustedstring(ab
, context
->filterkey
);
1240 audit_log_format(ab
, " key=(null)");
1243 for (aux
= context
->aux
; aux
; aux
= aux
->next
) {
1245 ab
= audit_log_start(context
, GFP_KERNEL
, aux
->type
);
1247 continue; /* audit_panic has been called */
1249 switch (aux
->type
) {
1250 case AUDIT_MQ_OPEN
: {
1251 struct audit_aux_data_mq_open
*axi
= (void *)aux
;
1252 audit_log_format(ab
,
1253 "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
1254 "mq_msgsize=%ld mq_curmsgs=%ld",
1255 axi
->oflag
, axi
->mode
, axi
->attr
.mq_flags
,
1256 axi
->attr
.mq_maxmsg
, axi
->attr
.mq_msgsize
,
1257 axi
->attr
.mq_curmsgs
);
1260 case AUDIT_MQ_SENDRECV
: {
1261 struct audit_aux_data_mq_sendrecv
*axi
= (void *)aux
;
1262 audit_log_format(ab
,
1263 "mqdes=%d msg_len=%zd msg_prio=%u "
1264 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1265 axi
->mqdes
, axi
->msg_len
, axi
->msg_prio
,
1266 axi
->abs_timeout
.tv_sec
, axi
->abs_timeout
.tv_nsec
);
1269 case AUDIT_MQ_NOTIFY
: {
1270 struct audit_aux_data_mq_notify
*axi
= (void *)aux
;
1271 audit_log_format(ab
,
1272 "mqdes=%d sigev_signo=%d",
1274 axi
->notification
.sigev_signo
);
1277 case AUDIT_MQ_GETSETATTR
: {
1278 struct audit_aux_data_mq_getsetattr
*axi
= (void *)aux
;
1279 audit_log_format(ab
,
1280 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1283 axi
->mqstat
.mq_flags
, axi
->mqstat
.mq_maxmsg
,
1284 axi
->mqstat
.mq_msgsize
, axi
->mqstat
.mq_curmsgs
);
1288 struct audit_aux_data_ipcctl
*axi
= (void *)aux
;
1289 audit_log_format(ab
,
1290 "ouid=%u ogid=%u mode=%#o",
1291 axi
->uid
, axi
->gid
, axi
->mode
);
1292 if (axi
->osid
!= 0) {
1295 if (security_secid_to_secctx(
1296 axi
->osid
, &ctx
, &len
)) {
1297 audit_log_format(ab
, " osid=%u",
1301 audit_log_format(ab
, " obj=%s", ctx
);
1302 security_release_secctx(ctx
, len
);
1307 case AUDIT_IPC_SET_PERM
: {
1308 struct audit_aux_data_ipcctl
*axi
= (void *)aux
;
1309 audit_log_format(ab
,
1310 "qbytes=%lx ouid=%u ogid=%u mode=%#o",
1311 axi
->qbytes
, axi
->uid
, axi
->gid
, axi
->mode
);
1314 case AUDIT_EXECVE
: {
1315 struct audit_aux_data_execve
*axi
= (void *)aux
;
1316 audit_log_execve_info(context
, &ab
, axi
);
1319 case AUDIT_SOCKETCALL
: {
1320 struct audit_aux_data_socketcall
*axs
= (void *)aux
;
1321 audit_log_format(ab
, "nargs=%d", axs
->nargs
);
1322 for (i
=0; i
<axs
->nargs
; i
++)
1323 audit_log_format(ab
, " a%d=%lx", i
, axs
->args
[i
]);
1326 case AUDIT_SOCKADDR
: {
1327 struct audit_aux_data_sockaddr
*axs
= (void *)aux
;
1329 audit_log_format(ab
, "saddr=");
1330 audit_log_n_hex(ab
, axs
->a
, axs
->len
);
1333 case AUDIT_FD_PAIR
: {
1334 struct audit_aux_data_fd_pair
*axs
= (void *)aux
;
1335 audit_log_format(ab
, "fd0=%d fd1=%d", axs
->fd
[0], axs
->fd
[1]);
1342 for (aux
= context
->aux_pids
; aux
; aux
= aux
->next
) {
1343 struct audit_aux_data_pids
*axs
= (void *)aux
;
1345 for (i
= 0; i
< axs
->pid_count
; i
++)
1346 if (audit_log_pid_context(context
, axs
->target_pid
[i
],
1347 axs
->target_auid
[i
],
1349 axs
->target_sessionid
[i
],
1351 axs
->target_comm
[i
]))
1355 if (context
->target_pid
&&
1356 audit_log_pid_context(context
, context
->target_pid
,
1357 context
->target_auid
, context
->target_uid
,
1358 context
->target_sessionid
,
1359 context
->target_sid
, context
->target_comm
))
1362 if (context
->pwd
.dentry
&& context
->pwd
.mnt
) {
1363 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_CWD
);
1365 audit_log_d_path(ab
, "cwd=", &context
->pwd
);
1369 for (i
= 0; i
< context
->name_count
; i
++) {
1370 struct audit_names
*n
= &context
->names
[i
];
1372 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_PATH
);
1374 continue; /* audit_panic has been called */
1376 audit_log_format(ab
, "item=%d", i
);
1379 switch(n
->name_len
) {
1380 case AUDIT_NAME_FULL
:
1381 /* log the full path */
1382 audit_log_format(ab
, " name=");
1383 audit_log_untrustedstring(ab
, n
->name
);
1386 /* name was specified as a relative path and the
1387 * directory component is the cwd */
1388 audit_log_d_path(ab
, " name=", &context
->pwd
);
1391 /* log the name's directory component */
1392 audit_log_format(ab
, " name=");
1393 audit_log_n_untrustedstring(ab
, n
->name
,
1397 audit_log_format(ab
, " name=(null)");
1399 if (n
->ino
!= (unsigned long)-1) {
1400 audit_log_format(ab
, " inode=%lu"
1401 " dev=%02x:%02x mode=%#o"
1402 " ouid=%u ogid=%u rdev=%02x:%02x",
1415 if (security_secid_to_secctx(
1416 n
->osid
, &ctx
, &len
)) {
1417 audit_log_format(ab
, " osid=%u", n
->osid
);
1420 audit_log_format(ab
, " obj=%s", ctx
);
1421 security_release_secctx(ctx
, len
);
1428 /* Send end of event record to help user space know we are finished */
1429 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_EOE
);
1433 audit_panic("error converting sid to string");
1437 * audit_free - free a per-task audit context
1438 * @tsk: task whose audit context block to free
1440 * Called from copy_process and do_exit
1442 void audit_free(struct task_struct
*tsk
)
1444 struct audit_context
*context
;
1446 context
= audit_get_context(tsk
, 0, 0);
1447 if (likely(!context
))
1450 /* Check for system calls that do not go through the exit
1451 * function (e.g., exit_group), then free context block.
1452 * We use GFP_ATOMIC here because we might be doing this
1453 * in the context of the idle thread */
1454 /* that can happen only if we are called from do_exit() */
1455 if (context
->in_syscall
&& context
->auditable
)
1456 audit_log_exit(context
, tsk
);
1458 audit_free_context(context
);
1462 * audit_syscall_entry - fill in an audit record at syscall entry
1463 * @tsk: task being audited
1464 * @arch: architecture type
1465 * @major: major syscall type (function)
1466 * @a1: additional syscall register 1
1467 * @a2: additional syscall register 2
1468 * @a3: additional syscall register 3
1469 * @a4: additional syscall register 4
1471 * Fill in audit context at syscall entry. This only happens if the
1472 * audit context was created when the task was created and the state or
1473 * filters demand the audit context be built. If the state from the
1474 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1475 * then the record will be written at syscall exit time (otherwise, it
1476 * will only be written if another part of the kernel requests that it
1479 void audit_syscall_entry(int arch
, int major
,
1480 unsigned long a1
, unsigned long a2
,
1481 unsigned long a3
, unsigned long a4
)
1483 struct task_struct
*tsk
= current
;
1484 struct audit_context
*context
= tsk
->audit_context
;
1485 enum audit_state state
;
1487 if (unlikely(!context
))
1491 * This happens only on certain architectures that make system
1492 * calls in kernel_thread via the entry.S interface, instead of
1493 * with direct calls. (If you are porting to a new
1494 * architecture, hitting this condition can indicate that you
1495 * got the _exit/_leave calls backward in entry.S.)
1499 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1501 * This also happens with vm86 emulation in a non-nested manner
1502 * (entries without exits), so this case must be caught.
1504 if (context
->in_syscall
) {
1505 struct audit_context
*newctx
;
1509 "audit(:%d) pid=%d in syscall=%d;"
1510 " entering syscall=%d\n",
1511 context
->serial
, tsk
->pid
, context
->major
, major
);
1513 newctx
= audit_alloc_context(context
->state
);
1515 newctx
->previous
= context
;
1517 tsk
->audit_context
= newctx
;
1519 /* If we can't alloc a new context, the best we
1520 * can do is to leak memory (any pending putname
1521 * will be lost). The only other alternative is
1522 * to abandon auditing. */
1523 audit_zero_context(context
, context
->state
);
1526 BUG_ON(context
->in_syscall
|| context
->name_count
);
1531 context
->arch
= arch
;
1532 context
->major
= major
;
1533 context
->argv
[0] = a1
;
1534 context
->argv
[1] = a2
;
1535 context
->argv
[2] = a3
;
1536 context
->argv
[3] = a4
;
1538 state
= context
->state
;
1539 context
->dummy
= !audit_n_rules
;
1540 if (!context
->dummy
&& (state
== AUDIT_SETUP_CONTEXT
|| state
== AUDIT_BUILD_CONTEXT
))
1541 state
= audit_filter_syscall(tsk
, context
, &audit_filter_list
[AUDIT_FILTER_ENTRY
]);
1542 if (likely(state
== AUDIT_DISABLED
))
1545 context
->serial
= 0;
1546 context
->ctime
= CURRENT_TIME
;
1547 context
->in_syscall
= 1;
1548 context
->auditable
= !!(state
== AUDIT_RECORD_CONTEXT
);
1553 * audit_syscall_exit - deallocate audit context after a system call
1554 * @tsk: task being audited
1555 * @valid: success/failure flag
1556 * @return_code: syscall return value
1558 * Tear down after system call. If the audit context has been marked as
1559 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1560 * filtering, or because some other part of the kernel write an audit
1561 * message), then write out the syscall information. In call cases,
1562 * free the names stored from getname().
1564 void audit_syscall_exit(int valid
, long return_code
)
1566 struct task_struct
*tsk
= current
;
1567 struct audit_context
*context
;
1569 context
= audit_get_context(tsk
, valid
, return_code
);
1571 if (likely(!context
))
1574 if (context
->in_syscall
&& context
->auditable
)
1575 audit_log_exit(context
, tsk
);
1577 context
->in_syscall
= 0;
1578 context
->auditable
= 0;
1580 if (context
->previous
) {
1581 struct audit_context
*new_context
= context
->previous
;
1582 context
->previous
= NULL
;
1583 audit_free_context(context
);
1584 tsk
->audit_context
= new_context
;
1586 audit_free_names(context
);
1587 unroll_tree_refs(context
, NULL
, 0);
1588 audit_free_aux(context
);
1589 context
->aux
= NULL
;
1590 context
->aux_pids
= NULL
;
1591 context
->target_pid
= 0;
1592 context
->target_sid
= 0;
1593 kfree(context
->filterkey
);
1594 context
->filterkey
= NULL
;
1595 tsk
->audit_context
= context
;
1599 static inline void handle_one(const struct inode
*inode
)
1601 #ifdef CONFIG_AUDIT_TREE
1602 struct audit_context
*context
;
1603 struct audit_tree_refs
*p
;
1604 struct audit_chunk
*chunk
;
1606 if (likely(list_empty(&inode
->inotify_watches
)))
1608 context
= current
->audit_context
;
1610 count
= context
->tree_count
;
1612 chunk
= audit_tree_lookup(inode
);
1616 if (likely(put_tree_ref(context
, chunk
)))
1618 if (unlikely(!grow_tree_refs(context
))) {
1619 printk(KERN_WARNING
"out of memory, audit has lost a tree reference\n");
1620 audit_set_auditable(context
);
1621 audit_put_chunk(chunk
);
1622 unroll_tree_refs(context
, p
, count
);
1625 put_tree_ref(context
, chunk
);
1629 static void handle_path(const struct dentry
*dentry
)
1631 #ifdef CONFIG_AUDIT_TREE
1632 struct audit_context
*context
;
1633 struct audit_tree_refs
*p
;
1634 const struct dentry
*d
, *parent
;
1635 struct audit_chunk
*drop
;
1639 context
= current
->audit_context
;
1641 count
= context
->tree_count
;
1646 seq
= read_seqbegin(&rename_lock
);
1648 struct inode
*inode
= d
->d_inode
;
1649 if (inode
&& unlikely(!list_empty(&inode
->inotify_watches
))) {
1650 struct audit_chunk
*chunk
;
1651 chunk
= audit_tree_lookup(inode
);
1653 if (unlikely(!put_tree_ref(context
, chunk
))) {
1659 parent
= d
->d_parent
;
1664 if (unlikely(read_seqretry(&rename_lock
, seq
) || drop
)) { /* in this order */
1667 /* just a race with rename */
1668 unroll_tree_refs(context
, p
, count
);
1671 audit_put_chunk(drop
);
1672 if (grow_tree_refs(context
)) {
1673 /* OK, got more space */
1674 unroll_tree_refs(context
, p
, count
);
1679 "out of memory, audit has lost a tree reference\n");
1680 unroll_tree_refs(context
, p
, count
);
1681 audit_set_auditable(context
);
1689 * audit_getname - add a name to the list
1690 * @name: name to add
1692 * Add a name to the list of audit names for this context.
1693 * Called from fs/namei.c:getname().
1695 void __audit_getname(const char *name
)
1697 struct audit_context
*context
= current
->audit_context
;
1699 if (IS_ERR(name
) || !name
)
1702 if (!context
->in_syscall
) {
1703 #if AUDIT_DEBUG == 2
1704 printk(KERN_ERR
"%s:%d(:%d): ignoring getname(%p)\n",
1705 __FILE__
, __LINE__
, context
->serial
, name
);
1710 BUG_ON(context
->name_count
>= AUDIT_NAMES
);
1711 context
->names
[context
->name_count
].name
= name
;
1712 context
->names
[context
->name_count
].name_len
= AUDIT_NAME_FULL
;
1713 context
->names
[context
->name_count
].name_put
= 1;
1714 context
->names
[context
->name_count
].ino
= (unsigned long)-1;
1715 context
->names
[context
->name_count
].osid
= 0;
1716 ++context
->name_count
;
1717 if (!context
->pwd
.dentry
) {
1718 read_lock(¤t
->fs
->lock
);
1719 context
->pwd
= current
->fs
->pwd
;
1720 path_get(¤t
->fs
->pwd
);
1721 read_unlock(¤t
->fs
->lock
);
1726 /* audit_putname - intercept a putname request
1727 * @name: name to intercept and delay for putname
1729 * If we have stored the name from getname in the audit context,
1730 * then we delay the putname until syscall exit.
1731 * Called from include/linux/fs.h:putname().
1733 void audit_putname(const char *name
)
1735 struct audit_context
*context
= current
->audit_context
;
1738 if (!context
->in_syscall
) {
1739 #if AUDIT_DEBUG == 2
1740 printk(KERN_ERR
"%s:%d(:%d): __putname(%p)\n",
1741 __FILE__
, __LINE__
, context
->serial
, name
);
1742 if (context
->name_count
) {
1744 for (i
= 0; i
< context
->name_count
; i
++)
1745 printk(KERN_ERR
"name[%d] = %p = %s\n", i
,
1746 context
->names
[i
].name
,
1747 context
->names
[i
].name
?: "(null)");
1754 ++context
->put_count
;
1755 if (context
->put_count
> context
->name_count
) {
1756 printk(KERN_ERR
"%s:%d(:%d): major=%d"
1757 " in_syscall=%d putname(%p) name_count=%d"
1760 context
->serial
, context
->major
,
1761 context
->in_syscall
, name
, context
->name_count
,
1762 context
->put_count
);
1769 static int audit_inc_name_count(struct audit_context
*context
,
1770 const struct inode
*inode
)
1772 if (context
->name_count
>= AUDIT_NAMES
) {
1774 printk(KERN_DEBUG
"name_count maxed, losing inode data: "
1775 "dev=%02x:%02x, inode=%lu\n",
1776 MAJOR(inode
->i_sb
->s_dev
),
1777 MINOR(inode
->i_sb
->s_dev
),
1781 printk(KERN_DEBUG
"name_count maxed, losing inode data\n");
1784 context
->name_count
++;
1786 context
->ino_count
++;
1791 /* Copy inode data into an audit_names. */
1792 static void audit_copy_inode(struct audit_names
*name
, const struct inode
*inode
)
1794 name
->ino
= inode
->i_ino
;
1795 name
->dev
= inode
->i_sb
->s_dev
;
1796 name
->mode
= inode
->i_mode
;
1797 name
->uid
= inode
->i_uid
;
1798 name
->gid
= inode
->i_gid
;
1799 name
->rdev
= inode
->i_rdev
;
1800 security_inode_getsecid(inode
, &name
->osid
);
1804 * audit_inode - store the inode and device from a lookup
1805 * @name: name being audited
1806 * @dentry: dentry being audited
1808 * Called from fs/namei.c:path_lookup().
1810 void __audit_inode(const char *name
, const struct dentry
*dentry
)
1813 struct audit_context
*context
= current
->audit_context
;
1814 const struct inode
*inode
= dentry
->d_inode
;
1816 if (!context
->in_syscall
)
1818 if (context
->name_count
1819 && context
->names
[context
->name_count
-1].name
1820 && context
->names
[context
->name_count
-1].name
== name
)
1821 idx
= context
->name_count
- 1;
1822 else if (context
->name_count
> 1
1823 && context
->names
[context
->name_count
-2].name
1824 && context
->names
[context
->name_count
-2].name
== name
)
1825 idx
= context
->name_count
- 2;
1827 /* FIXME: how much do we care about inodes that have no
1828 * associated name? */
1829 if (audit_inc_name_count(context
, inode
))
1831 idx
= context
->name_count
- 1;
1832 context
->names
[idx
].name
= NULL
;
1834 handle_path(dentry
);
1835 audit_copy_inode(&context
->names
[idx
], inode
);
1839 * audit_inode_child - collect inode info for created/removed objects
1840 * @dname: inode's dentry name
1841 * @dentry: dentry being audited
1842 * @parent: inode of dentry parent
1844 * For syscalls that create or remove filesystem objects, audit_inode
1845 * can only collect information for the filesystem object's parent.
1846 * This call updates the audit context with the child's information.
1847 * Syscalls that create a new filesystem object must be hooked after
1848 * the object is created. Syscalls that remove a filesystem object
1849 * must be hooked prior, in order to capture the target inode during
1850 * unsuccessful attempts.
1852 void __audit_inode_child(const char *dname
, const struct dentry
*dentry
,
1853 const struct inode
*parent
)
1856 struct audit_context
*context
= current
->audit_context
;
1857 const char *found_parent
= NULL
, *found_child
= NULL
;
1858 const struct inode
*inode
= dentry
->d_inode
;
1861 if (!context
->in_syscall
)
1866 /* determine matching parent */
1870 /* parent is more likely, look for it first */
1871 for (idx
= 0; idx
< context
->name_count
; idx
++) {
1872 struct audit_names
*n
= &context
->names
[idx
];
1877 if (n
->ino
== parent
->i_ino
&&
1878 !audit_compare_dname_path(dname
, n
->name
, &dirlen
)) {
1879 n
->name_len
= dirlen
; /* update parent data in place */
1880 found_parent
= n
->name
;
1885 /* no matching parent, look for matching child */
1886 for (idx
= 0; idx
< context
->name_count
; idx
++) {
1887 struct audit_names
*n
= &context
->names
[idx
];
1892 /* strcmp() is the more likely scenario */
1893 if (!strcmp(dname
, n
->name
) ||
1894 !audit_compare_dname_path(dname
, n
->name
, &dirlen
)) {
1896 audit_copy_inode(n
, inode
);
1898 n
->ino
= (unsigned long)-1;
1899 found_child
= n
->name
;
1905 if (!found_parent
) {
1906 if (audit_inc_name_count(context
, parent
))
1908 idx
= context
->name_count
- 1;
1909 context
->names
[idx
].name
= NULL
;
1910 audit_copy_inode(&context
->names
[idx
], parent
);
1914 if (audit_inc_name_count(context
, inode
))
1916 idx
= context
->name_count
- 1;
1918 /* Re-use the name belonging to the slot for a matching parent
1919 * directory. All names for this context are relinquished in
1920 * audit_free_names() */
1922 context
->names
[idx
].name
= found_parent
;
1923 context
->names
[idx
].name_len
= AUDIT_NAME_FULL
;
1924 /* don't call __putname() */
1925 context
->names
[idx
].name_put
= 0;
1927 context
->names
[idx
].name
= NULL
;
1931 audit_copy_inode(&context
->names
[idx
], inode
);
1933 context
->names
[idx
].ino
= (unsigned long)-1;
1936 EXPORT_SYMBOL_GPL(__audit_inode_child
);
1939 * auditsc_get_stamp - get local copies of audit_context values
1940 * @ctx: audit_context for the task
1941 * @t: timespec to store time recorded in the audit_context
1942 * @serial: serial value that is recorded in the audit_context
1944 * Also sets the context as auditable.
1946 void auditsc_get_stamp(struct audit_context
*ctx
,
1947 struct timespec
*t
, unsigned int *serial
)
1950 ctx
->serial
= audit_serial();
1951 t
->tv_sec
= ctx
->ctime
.tv_sec
;
1952 t
->tv_nsec
= ctx
->ctime
.tv_nsec
;
1953 *serial
= ctx
->serial
;
1957 /* global counter which is incremented every time something logs in */
1958 static atomic_t session_id
= ATOMIC_INIT(0);
1961 * audit_set_loginuid - set a task's audit_context loginuid
1962 * @task: task whose audit context is being modified
1963 * @loginuid: loginuid value
1967 * Called (set) from fs/proc/base.c::proc_loginuid_write().
1969 int audit_set_loginuid(struct task_struct
*task
, uid_t loginuid
)
1971 unsigned int sessionid
= atomic_inc_return(&session_id
);
1972 struct audit_context
*context
= task
->audit_context
;
1974 if (context
&& context
->in_syscall
) {
1975 struct audit_buffer
*ab
;
1977 ab
= audit_log_start(NULL
, GFP_KERNEL
, AUDIT_LOGIN
);
1979 audit_log_format(ab
, "login pid=%d uid=%u "
1980 "old auid=%u new auid=%u"
1981 " old ses=%u new ses=%u",
1982 task
->pid
, task
->uid
,
1983 task
->loginuid
, loginuid
,
1984 task
->sessionid
, sessionid
);
1988 task
->sessionid
= sessionid
;
1989 task
->loginuid
= loginuid
;
1994 * __audit_mq_open - record audit data for a POSIX MQ open
1997 * @u_attr: queue attributes
1999 * Returns 0 for success or NULL context or < 0 on error.
2001 int __audit_mq_open(int oflag
, mode_t mode
, struct mq_attr __user
*u_attr
)
2003 struct audit_aux_data_mq_open
*ax
;
2004 struct audit_context
*context
= current
->audit_context
;
2009 if (likely(!context
))
2012 ax
= kmalloc(sizeof(*ax
), GFP_ATOMIC
);
2016 if (u_attr
!= NULL
) {
2017 if (copy_from_user(&ax
->attr
, u_attr
, sizeof(ax
->attr
))) {
2022 memset(&ax
->attr
, 0, sizeof(ax
->attr
));
2027 ax
->d
.type
= AUDIT_MQ_OPEN
;
2028 ax
->d
.next
= context
->aux
;
2029 context
->aux
= (void *)ax
;
2034 * __audit_mq_timedsend - record audit data for a POSIX MQ timed send
2035 * @mqdes: MQ descriptor
2036 * @msg_len: Message length
2037 * @msg_prio: Message priority
2038 * @u_abs_timeout: Message timeout in absolute time
2040 * Returns 0 for success or NULL context or < 0 on error.
2042 int __audit_mq_timedsend(mqd_t mqdes
, size_t msg_len
, unsigned int msg_prio
,
2043 const struct timespec __user
*u_abs_timeout
)
2045 struct audit_aux_data_mq_sendrecv
*ax
;
2046 struct audit_context
*context
= current
->audit_context
;
2051 if (likely(!context
))
2054 ax
= kmalloc(sizeof(*ax
), GFP_ATOMIC
);
2058 if (u_abs_timeout
!= NULL
) {
2059 if (copy_from_user(&ax
->abs_timeout
, u_abs_timeout
, sizeof(ax
->abs_timeout
))) {
2064 memset(&ax
->abs_timeout
, 0, sizeof(ax
->abs_timeout
));
2067 ax
->msg_len
= msg_len
;
2068 ax
->msg_prio
= msg_prio
;
2070 ax
->d
.type
= AUDIT_MQ_SENDRECV
;
2071 ax
->d
.next
= context
->aux
;
2072 context
->aux
= (void *)ax
;
2077 * __audit_mq_timedreceive - record audit data for a POSIX MQ timed receive
2078 * @mqdes: MQ descriptor
2079 * @msg_len: Message length
2080 * @u_msg_prio: Message priority
2081 * @u_abs_timeout: Message timeout in absolute time
2083 * Returns 0 for success or NULL context or < 0 on error.
2085 int __audit_mq_timedreceive(mqd_t mqdes
, size_t msg_len
,
2086 unsigned int __user
*u_msg_prio
,
2087 const struct timespec __user
*u_abs_timeout
)
2089 struct audit_aux_data_mq_sendrecv
*ax
;
2090 struct audit_context
*context
= current
->audit_context
;
2095 if (likely(!context
))
2098 ax
= kmalloc(sizeof(*ax
), GFP_ATOMIC
);
2102 if (u_msg_prio
!= NULL
) {
2103 if (get_user(ax
->msg_prio
, u_msg_prio
)) {
2110 if (u_abs_timeout
!= NULL
) {
2111 if (copy_from_user(&ax
->abs_timeout
, u_abs_timeout
, sizeof(ax
->abs_timeout
))) {
2116 memset(&ax
->abs_timeout
, 0, sizeof(ax
->abs_timeout
));
2119 ax
->msg_len
= msg_len
;
2121 ax
->d
.type
= AUDIT_MQ_SENDRECV
;
2122 ax
->d
.next
= context
->aux
;
2123 context
->aux
= (void *)ax
;
2128 * __audit_mq_notify - record audit data for a POSIX MQ notify
2129 * @mqdes: MQ descriptor
2130 * @u_notification: Notification event
2132 * Returns 0 for success or NULL context or < 0 on error.
2135 int __audit_mq_notify(mqd_t mqdes
, const struct sigevent __user
*u_notification
)
2137 struct audit_aux_data_mq_notify
*ax
;
2138 struct audit_context
*context
= current
->audit_context
;
2143 if (likely(!context
))
2146 ax
= kmalloc(sizeof(*ax
), GFP_ATOMIC
);
2150 if (u_notification
!= NULL
) {
2151 if (copy_from_user(&ax
->notification
, u_notification
, sizeof(ax
->notification
))) {
2156 memset(&ax
->notification
, 0, sizeof(ax
->notification
));
2160 ax
->d
.type
= AUDIT_MQ_NOTIFY
;
2161 ax
->d
.next
= context
->aux
;
2162 context
->aux
= (void *)ax
;
2167 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2168 * @mqdes: MQ descriptor
2171 * Returns 0 for success or NULL context or < 0 on error.
2173 int __audit_mq_getsetattr(mqd_t mqdes
, struct mq_attr
*mqstat
)
2175 struct audit_aux_data_mq_getsetattr
*ax
;
2176 struct audit_context
*context
= current
->audit_context
;
2181 if (likely(!context
))
2184 ax
= kmalloc(sizeof(*ax
), GFP_ATOMIC
);
2189 ax
->mqstat
= *mqstat
;
2191 ax
->d
.type
= AUDIT_MQ_GETSETATTR
;
2192 ax
->d
.next
= context
->aux
;
2193 context
->aux
= (void *)ax
;
2198 * audit_ipc_obj - record audit data for ipc object
2199 * @ipcp: ipc permissions
2201 * Returns 0 for success or NULL context or < 0 on error.
2203 int __audit_ipc_obj(struct kern_ipc_perm
*ipcp
)
2205 struct audit_aux_data_ipcctl
*ax
;
2206 struct audit_context
*context
= current
->audit_context
;
2208 ax
= kmalloc(sizeof(*ax
), GFP_ATOMIC
);
2212 ax
->uid
= ipcp
->uid
;
2213 ax
->gid
= ipcp
->gid
;
2214 ax
->mode
= ipcp
->mode
;
2215 security_ipc_getsecid(ipcp
, &ax
->osid
);
2216 ax
->d
.type
= AUDIT_IPC
;
2217 ax
->d
.next
= context
->aux
;
2218 context
->aux
= (void *)ax
;
2223 * audit_ipc_set_perm - record audit data for new ipc permissions
2224 * @qbytes: msgq bytes
2225 * @uid: msgq user id
2226 * @gid: msgq group id
2227 * @mode: msgq mode (permissions)
2229 * Returns 0 for success or NULL context or < 0 on error.
2231 int __audit_ipc_set_perm(unsigned long qbytes
, uid_t uid
, gid_t gid
, mode_t mode
)
2233 struct audit_aux_data_ipcctl
*ax
;
2234 struct audit_context
*context
= current
->audit_context
;
2236 ax
= kmalloc(sizeof(*ax
), GFP_ATOMIC
);
2240 ax
->qbytes
= qbytes
;
2245 ax
->d
.type
= AUDIT_IPC_SET_PERM
;
2246 ax
->d
.next
= context
->aux
;
2247 context
->aux
= (void *)ax
;
2251 int audit_bprm(struct linux_binprm
*bprm
)
2253 struct audit_aux_data_execve
*ax
;
2254 struct audit_context
*context
= current
->audit_context
;
2256 if (likely(!audit_enabled
|| !context
|| context
->dummy
))
2259 ax
= kmalloc(sizeof(*ax
), GFP_KERNEL
);
2263 ax
->argc
= bprm
->argc
;
2264 ax
->envc
= bprm
->envc
;
2266 ax
->d
.type
= AUDIT_EXECVE
;
2267 ax
->d
.next
= context
->aux
;
2268 context
->aux
= (void *)ax
;
2274 * audit_socketcall - record audit data for sys_socketcall
2275 * @nargs: number of args
2278 * Returns 0 for success or NULL context or < 0 on error.
2280 int audit_socketcall(int nargs
, unsigned long *args
)
2282 struct audit_aux_data_socketcall
*ax
;
2283 struct audit_context
*context
= current
->audit_context
;
2285 if (likely(!context
|| context
->dummy
))
2288 ax
= kmalloc(sizeof(*ax
) + nargs
* sizeof(unsigned long), GFP_KERNEL
);
2293 memcpy(ax
->args
, args
, nargs
* sizeof(unsigned long));
2295 ax
->d
.type
= AUDIT_SOCKETCALL
;
2296 ax
->d
.next
= context
->aux
;
2297 context
->aux
= (void *)ax
;
2302 * __audit_fd_pair - record audit data for pipe and socketpair
2303 * @fd1: the first file descriptor
2304 * @fd2: the second file descriptor
2306 * Returns 0 for success or NULL context or < 0 on error.
2308 int __audit_fd_pair(int fd1
, int fd2
)
2310 struct audit_context
*context
= current
->audit_context
;
2311 struct audit_aux_data_fd_pair
*ax
;
2313 if (likely(!context
)) {
2317 ax
= kmalloc(sizeof(*ax
), GFP_KERNEL
);
2325 ax
->d
.type
= AUDIT_FD_PAIR
;
2326 ax
->d
.next
= context
->aux
;
2327 context
->aux
= (void *)ax
;
2332 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2333 * @len: data length in user space
2334 * @a: data address in kernel space
2336 * Returns 0 for success or NULL context or < 0 on error.
2338 int audit_sockaddr(int len
, void *a
)
2340 struct audit_aux_data_sockaddr
*ax
;
2341 struct audit_context
*context
= current
->audit_context
;
2343 if (likely(!context
|| context
->dummy
))
2346 ax
= kmalloc(sizeof(*ax
) + len
, GFP_KERNEL
);
2351 memcpy(ax
->a
, a
, len
);
2353 ax
->d
.type
= AUDIT_SOCKADDR
;
2354 ax
->d
.next
= context
->aux
;
2355 context
->aux
= (void *)ax
;
2359 void __audit_ptrace(struct task_struct
*t
)
2361 struct audit_context
*context
= current
->audit_context
;
2363 context
->target_pid
= t
->pid
;
2364 context
->target_auid
= audit_get_loginuid(t
);
2365 context
->target_uid
= t
->uid
;
2366 context
->target_sessionid
= audit_get_sessionid(t
);
2367 security_task_getsecid(t
, &context
->target_sid
);
2368 memcpy(context
->target_comm
, t
->comm
, TASK_COMM_LEN
);
2372 * audit_signal_info - record signal info for shutting down audit subsystem
2373 * @sig: signal value
2374 * @t: task being signaled
2376 * If the audit subsystem is being terminated, record the task (pid)
2377 * and uid that is doing that.
2379 int __audit_signal_info(int sig
, struct task_struct
*t
)
2381 struct audit_aux_data_pids
*axp
;
2382 struct task_struct
*tsk
= current
;
2383 struct audit_context
*ctx
= tsk
->audit_context
;
2385 if (audit_pid
&& t
->tgid
== audit_pid
) {
2386 if (sig
== SIGTERM
|| sig
== SIGHUP
|| sig
== SIGUSR1
|| sig
== SIGUSR2
) {
2387 audit_sig_pid
= tsk
->pid
;
2388 if (tsk
->loginuid
!= -1)
2389 audit_sig_uid
= tsk
->loginuid
;
2391 audit_sig_uid
= tsk
->uid
;
2392 security_task_getsecid(tsk
, &audit_sig_sid
);
2394 if (!audit_signals
|| audit_dummy_context())
2398 /* optimize the common case by putting first signal recipient directly
2399 * in audit_context */
2400 if (!ctx
->target_pid
) {
2401 ctx
->target_pid
= t
->tgid
;
2402 ctx
->target_auid
= audit_get_loginuid(t
);
2403 ctx
->target_uid
= t
->uid
;
2404 ctx
->target_sessionid
= audit_get_sessionid(t
);
2405 security_task_getsecid(t
, &ctx
->target_sid
);
2406 memcpy(ctx
->target_comm
, t
->comm
, TASK_COMM_LEN
);
2410 axp
= (void *)ctx
->aux_pids
;
2411 if (!axp
|| axp
->pid_count
== AUDIT_AUX_PIDS
) {
2412 axp
= kzalloc(sizeof(*axp
), GFP_ATOMIC
);
2416 axp
->d
.type
= AUDIT_OBJ_PID
;
2417 axp
->d
.next
= ctx
->aux_pids
;
2418 ctx
->aux_pids
= (void *)axp
;
2420 BUG_ON(axp
->pid_count
>= AUDIT_AUX_PIDS
);
2422 axp
->target_pid
[axp
->pid_count
] = t
->tgid
;
2423 axp
->target_auid
[axp
->pid_count
] = audit_get_loginuid(t
);
2424 axp
->target_uid
[axp
->pid_count
] = t
->uid
;
2425 axp
->target_sessionid
[axp
->pid_count
] = audit_get_sessionid(t
);
2426 security_task_getsecid(t
, &axp
->target_sid
[axp
->pid_count
]);
2427 memcpy(axp
->target_comm
[axp
->pid_count
], t
->comm
, TASK_COMM_LEN
);
2434 * audit_core_dumps - record information about processes that end abnormally
2435 * @signr: signal value
2437 * If a process ends with a core dump, something fishy is going on and we
2438 * should record the event for investigation.
2440 void audit_core_dumps(long signr
)
2442 struct audit_buffer
*ab
;
2444 uid_t auid
= audit_get_loginuid(current
);
2445 unsigned int sessionid
= audit_get_sessionid(current
);
2450 if (signr
== SIGQUIT
) /* don't care for those */
2453 ab
= audit_log_start(NULL
, GFP_KERNEL
, AUDIT_ANOM_ABEND
);
2454 audit_log_format(ab
, "auid=%u uid=%u gid=%u ses=%u",
2455 auid
, current
->uid
, current
->gid
, sessionid
);
2456 security_task_getsecid(current
, &sid
);
2461 if (security_secid_to_secctx(sid
, &ctx
, &len
))
2462 audit_log_format(ab
, " ssid=%u", sid
);
2464 audit_log_format(ab
, " subj=%s", ctx
);
2465 security_release_secctx(ctx
, len
);
2468 audit_log_format(ab
, " pid=%d comm=", current
->pid
);
2469 audit_log_untrustedstring(ab
, current
->comm
);
2470 audit_log_format(ab
, " sig=%ld", signr
);