drm/i915: Avoid BUG_ONs on VT switch with a wedged chipset.
[linux-2.6/linux-2.6-openrd.git] / drivers / gpu / drm / i915 / i915_gem.c
blobedc805afde05a46cbc528a93cb9bd203f128ec4f
1 /*
2 * Copyright © 2008 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include <linux/swap.h>
34 #define I915_GEM_GPU_DOMAINS (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
36 static int
37 i915_gem_object_set_domain(struct drm_gem_object *obj,
38 uint32_t read_domains,
39 uint32_t write_domain);
40 static int
41 i915_gem_object_set_domain_range(struct drm_gem_object *obj,
42 uint64_t offset,
43 uint64_t size,
44 uint32_t read_domains,
45 uint32_t write_domain);
46 static int
47 i915_gem_set_domain(struct drm_gem_object *obj,
48 struct drm_file *file_priv,
49 uint32_t read_domains,
50 uint32_t write_domain);
51 static int i915_gem_object_get_page_list(struct drm_gem_object *obj);
52 static void i915_gem_object_free_page_list(struct drm_gem_object *obj);
53 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
55 static void
56 i915_gem_cleanup_ringbuffer(struct drm_device *dev);
58 int
59 i915_gem_init_ioctl(struct drm_device *dev, void *data,
60 struct drm_file *file_priv)
62 drm_i915_private_t *dev_priv = dev->dev_private;
63 struct drm_i915_gem_init *args = data;
65 mutex_lock(&dev->struct_mutex);
67 if (args->gtt_start >= args->gtt_end ||
68 (args->gtt_start & (PAGE_SIZE - 1)) != 0 ||
69 (args->gtt_end & (PAGE_SIZE - 1)) != 0) {
70 mutex_unlock(&dev->struct_mutex);
71 return -EINVAL;
74 drm_mm_init(&dev_priv->mm.gtt_space, args->gtt_start,
75 args->gtt_end - args->gtt_start);
77 dev->gtt_total = (uint32_t) (args->gtt_end - args->gtt_start);
79 mutex_unlock(&dev->struct_mutex);
81 return 0;
84 int
85 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
86 struct drm_file *file_priv)
88 drm_i915_private_t *dev_priv = dev->dev_private;
89 struct drm_i915_gem_get_aperture *args = data;
90 struct drm_i915_gem_object *obj_priv;
92 if (!(dev->driver->driver_features & DRIVER_GEM))
93 return -ENODEV;
95 args->aper_size = dev->gtt_total;
96 args->aper_available_size = args->aper_size;
98 list_for_each_entry(obj_priv, &dev_priv->mm.active_list, list) {
99 if (obj_priv->pin_count > 0)
100 args->aper_available_size -= obj_priv->obj->size;
103 return 0;
108 * Creates a new mm object and returns a handle to it.
111 i915_gem_create_ioctl(struct drm_device *dev, void *data,
112 struct drm_file *file_priv)
114 struct drm_i915_gem_create *args = data;
115 struct drm_gem_object *obj;
116 int handle, ret;
118 args->size = roundup(args->size, PAGE_SIZE);
120 /* Allocate the new object */
121 obj = drm_gem_object_alloc(dev, args->size);
122 if (obj == NULL)
123 return -ENOMEM;
125 ret = drm_gem_handle_create(file_priv, obj, &handle);
126 mutex_lock(&dev->struct_mutex);
127 drm_gem_object_handle_unreference(obj);
128 mutex_unlock(&dev->struct_mutex);
130 if (ret)
131 return ret;
133 args->handle = handle;
135 return 0;
139 * Reads data from the object referenced by handle.
141 * On error, the contents of *data are undefined.
144 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
145 struct drm_file *file_priv)
147 struct drm_i915_gem_pread *args = data;
148 struct drm_gem_object *obj;
149 struct drm_i915_gem_object *obj_priv;
150 ssize_t read;
151 loff_t offset;
152 int ret;
154 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
155 if (obj == NULL)
156 return -EBADF;
157 obj_priv = obj->driver_private;
159 /* Bounds check source.
161 * XXX: This could use review for overflow issues...
163 if (args->offset > obj->size || args->size > obj->size ||
164 args->offset + args->size > obj->size) {
165 drm_gem_object_unreference(obj);
166 return -EINVAL;
169 mutex_lock(&dev->struct_mutex);
171 ret = i915_gem_object_set_domain_range(obj, args->offset, args->size,
172 I915_GEM_DOMAIN_CPU, 0);
173 if (ret != 0) {
174 drm_gem_object_unreference(obj);
175 mutex_unlock(&dev->struct_mutex);
176 return ret;
179 offset = args->offset;
181 read = vfs_read(obj->filp, (char __user *)(uintptr_t)args->data_ptr,
182 args->size, &offset);
183 if (read != args->size) {
184 drm_gem_object_unreference(obj);
185 mutex_unlock(&dev->struct_mutex);
186 if (read < 0)
187 return read;
188 else
189 return -EINVAL;
192 drm_gem_object_unreference(obj);
193 mutex_unlock(&dev->struct_mutex);
195 return 0;
198 /* This is the fast write path which cannot handle
199 * page faults in the source data
202 static inline int
203 fast_user_write(struct io_mapping *mapping,
204 loff_t page_base, int page_offset,
205 char __user *user_data,
206 int length)
208 char *vaddr_atomic;
209 unsigned long unwritten;
211 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
212 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
213 user_data, length);
214 io_mapping_unmap_atomic(vaddr_atomic);
215 if (unwritten)
216 return -EFAULT;
217 return 0;
220 /* Here's the write path which can sleep for
221 * page faults
224 static inline int
225 slow_user_write(struct io_mapping *mapping,
226 loff_t page_base, int page_offset,
227 char __user *user_data,
228 int length)
230 char __iomem *vaddr;
231 unsigned long unwritten;
233 vaddr = io_mapping_map_wc(mapping, page_base);
234 if (vaddr == NULL)
235 return -EFAULT;
236 unwritten = __copy_from_user(vaddr + page_offset,
237 user_data, length);
238 io_mapping_unmap(vaddr);
239 if (unwritten)
240 return -EFAULT;
241 return 0;
244 static int
245 i915_gem_gtt_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
246 struct drm_i915_gem_pwrite *args,
247 struct drm_file *file_priv)
249 struct drm_i915_gem_object *obj_priv = obj->driver_private;
250 drm_i915_private_t *dev_priv = dev->dev_private;
251 ssize_t remain;
252 loff_t offset, page_base;
253 char __user *user_data;
254 int page_offset, page_length;
255 int ret;
257 user_data = (char __user *) (uintptr_t) args->data_ptr;
258 remain = args->size;
259 if (!access_ok(VERIFY_READ, user_data, remain))
260 return -EFAULT;
263 mutex_lock(&dev->struct_mutex);
264 ret = i915_gem_object_pin(obj, 0);
265 if (ret) {
266 mutex_unlock(&dev->struct_mutex);
267 return ret;
269 ret = i915_gem_set_domain(obj, file_priv,
270 I915_GEM_DOMAIN_GTT, I915_GEM_DOMAIN_GTT);
271 if (ret)
272 goto fail;
274 obj_priv = obj->driver_private;
275 offset = obj_priv->gtt_offset + args->offset;
276 obj_priv->dirty = 1;
278 while (remain > 0) {
279 /* Operation in this page
281 * page_base = page offset within aperture
282 * page_offset = offset within page
283 * page_length = bytes to copy for this page
285 page_base = (offset & ~(PAGE_SIZE-1));
286 page_offset = offset & (PAGE_SIZE-1);
287 page_length = remain;
288 if ((page_offset + remain) > PAGE_SIZE)
289 page_length = PAGE_SIZE - page_offset;
291 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
292 page_offset, user_data, page_length);
294 /* If we get a fault while copying data, then (presumably) our
295 * source page isn't available. In this case, use the
296 * non-atomic function
298 if (ret) {
299 ret = slow_user_write (dev_priv->mm.gtt_mapping,
300 page_base, page_offset,
301 user_data, page_length);
302 if (ret)
303 goto fail;
306 remain -= page_length;
307 user_data += page_length;
308 offset += page_length;
311 fail:
312 i915_gem_object_unpin(obj);
313 mutex_unlock(&dev->struct_mutex);
315 return ret;
318 static int
319 i915_gem_shmem_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
320 struct drm_i915_gem_pwrite *args,
321 struct drm_file *file_priv)
323 int ret;
324 loff_t offset;
325 ssize_t written;
327 mutex_lock(&dev->struct_mutex);
329 ret = i915_gem_set_domain(obj, file_priv,
330 I915_GEM_DOMAIN_CPU, I915_GEM_DOMAIN_CPU);
331 if (ret) {
332 mutex_unlock(&dev->struct_mutex);
333 return ret;
336 offset = args->offset;
338 written = vfs_write(obj->filp,
339 (char __user *)(uintptr_t) args->data_ptr,
340 args->size, &offset);
341 if (written != args->size) {
342 mutex_unlock(&dev->struct_mutex);
343 if (written < 0)
344 return written;
345 else
346 return -EINVAL;
349 mutex_unlock(&dev->struct_mutex);
351 return 0;
355 * Writes data to the object referenced by handle.
357 * On error, the contents of the buffer that were to be modified are undefined.
360 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
361 struct drm_file *file_priv)
363 struct drm_i915_gem_pwrite *args = data;
364 struct drm_gem_object *obj;
365 struct drm_i915_gem_object *obj_priv;
366 int ret = 0;
368 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
369 if (obj == NULL)
370 return -EBADF;
371 obj_priv = obj->driver_private;
373 /* Bounds check destination.
375 * XXX: This could use review for overflow issues...
377 if (args->offset > obj->size || args->size > obj->size ||
378 args->offset + args->size > obj->size) {
379 drm_gem_object_unreference(obj);
380 return -EINVAL;
383 /* We can only do the GTT pwrite on untiled buffers, as otherwise
384 * it would end up going through the fenced access, and we'll get
385 * different detiling behavior between reading and writing.
386 * pread/pwrite currently are reading and writing from the CPU
387 * perspective, requiring manual detiling by the client.
389 if (obj_priv->tiling_mode == I915_TILING_NONE &&
390 dev->gtt_total != 0)
391 ret = i915_gem_gtt_pwrite(dev, obj, args, file_priv);
392 else
393 ret = i915_gem_shmem_pwrite(dev, obj, args, file_priv);
395 #if WATCH_PWRITE
396 if (ret)
397 DRM_INFO("pwrite failed %d\n", ret);
398 #endif
400 drm_gem_object_unreference(obj);
402 return ret;
406 * Called when user space prepares to use an object
409 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
410 struct drm_file *file_priv)
412 struct drm_i915_gem_set_domain *args = data;
413 struct drm_gem_object *obj;
414 int ret;
416 if (!(dev->driver->driver_features & DRIVER_GEM))
417 return -ENODEV;
419 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
420 if (obj == NULL)
421 return -EBADF;
423 mutex_lock(&dev->struct_mutex);
424 #if WATCH_BUF
425 DRM_INFO("set_domain_ioctl %p(%d), %08x %08x\n",
426 obj, obj->size, args->read_domains, args->write_domain);
427 #endif
428 ret = i915_gem_set_domain(obj, file_priv,
429 args->read_domains, args->write_domain);
430 drm_gem_object_unreference(obj);
431 mutex_unlock(&dev->struct_mutex);
432 return ret;
436 * Called when user space has done writes to this buffer
439 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
440 struct drm_file *file_priv)
442 struct drm_i915_gem_sw_finish *args = data;
443 struct drm_gem_object *obj;
444 struct drm_i915_gem_object *obj_priv;
445 int ret = 0;
447 if (!(dev->driver->driver_features & DRIVER_GEM))
448 return -ENODEV;
450 mutex_lock(&dev->struct_mutex);
451 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
452 if (obj == NULL) {
453 mutex_unlock(&dev->struct_mutex);
454 return -EBADF;
457 #if WATCH_BUF
458 DRM_INFO("%s: sw_finish %d (%p %d)\n",
459 __func__, args->handle, obj, obj->size);
460 #endif
461 obj_priv = obj->driver_private;
463 /* Pinned buffers may be scanout, so flush the cache */
464 if ((obj->write_domain & I915_GEM_DOMAIN_CPU) && obj_priv->pin_count) {
465 i915_gem_clflush_object(obj);
466 drm_agp_chipset_flush(dev);
468 drm_gem_object_unreference(obj);
469 mutex_unlock(&dev->struct_mutex);
470 return ret;
474 * Maps the contents of an object, returning the address it is mapped
475 * into.
477 * While the mapping holds a reference on the contents of the object, it doesn't
478 * imply a ref on the object itself.
481 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
482 struct drm_file *file_priv)
484 struct drm_i915_gem_mmap *args = data;
485 struct drm_gem_object *obj;
486 loff_t offset;
487 unsigned long addr;
489 if (!(dev->driver->driver_features & DRIVER_GEM))
490 return -ENODEV;
492 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
493 if (obj == NULL)
494 return -EBADF;
496 offset = args->offset;
498 down_write(&current->mm->mmap_sem);
499 addr = do_mmap(obj->filp, 0, args->size,
500 PROT_READ | PROT_WRITE, MAP_SHARED,
501 args->offset);
502 up_write(&current->mm->mmap_sem);
503 mutex_lock(&dev->struct_mutex);
504 drm_gem_object_unreference(obj);
505 mutex_unlock(&dev->struct_mutex);
506 if (IS_ERR((void *)addr))
507 return addr;
509 args->addr_ptr = (uint64_t) addr;
511 return 0;
514 static void
515 i915_gem_object_free_page_list(struct drm_gem_object *obj)
517 struct drm_i915_gem_object *obj_priv = obj->driver_private;
518 int page_count = obj->size / PAGE_SIZE;
519 int i;
521 if (obj_priv->page_list == NULL)
522 return;
525 for (i = 0; i < page_count; i++)
526 if (obj_priv->page_list[i] != NULL) {
527 if (obj_priv->dirty)
528 set_page_dirty(obj_priv->page_list[i]);
529 mark_page_accessed(obj_priv->page_list[i]);
530 page_cache_release(obj_priv->page_list[i]);
532 obj_priv->dirty = 0;
534 drm_free(obj_priv->page_list,
535 page_count * sizeof(struct page *),
536 DRM_MEM_DRIVER);
537 obj_priv->page_list = NULL;
540 static void
541 i915_gem_object_move_to_active(struct drm_gem_object *obj)
543 struct drm_device *dev = obj->dev;
544 drm_i915_private_t *dev_priv = dev->dev_private;
545 struct drm_i915_gem_object *obj_priv = obj->driver_private;
547 /* Add a reference if we're newly entering the active list. */
548 if (!obj_priv->active) {
549 drm_gem_object_reference(obj);
550 obj_priv->active = 1;
552 /* Move from whatever list we were on to the tail of execution. */
553 list_move_tail(&obj_priv->list,
554 &dev_priv->mm.active_list);
558 static void
559 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
561 struct drm_device *dev = obj->dev;
562 drm_i915_private_t *dev_priv = dev->dev_private;
563 struct drm_i915_gem_object *obj_priv = obj->driver_private;
565 i915_verify_inactive(dev, __FILE__, __LINE__);
566 if (obj_priv->pin_count != 0)
567 list_del_init(&obj_priv->list);
568 else
569 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
571 if (obj_priv->active) {
572 obj_priv->active = 0;
573 drm_gem_object_unreference(obj);
575 i915_verify_inactive(dev, __FILE__, __LINE__);
579 * Creates a new sequence number, emitting a write of it to the status page
580 * plus an interrupt, which will trigger i915_user_interrupt_handler.
582 * Must be called with struct_lock held.
584 * Returned sequence numbers are nonzero on success.
586 static uint32_t
587 i915_add_request(struct drm_device *dev, uint32_t flush_domains)
589 drm_i915_private_t *dev_priv = dev->dev_private;
590 struct drm_i915_gem_request *request;
591 uint32_t seqno;
592 int was_empty;
593 RING_LOCALS;
595 request = drm_calloc(1, sizeof(*request), DRM_MEM_DRIVER);
596 if (request == NULL)
597 return 0;
599 /* Grab the seqno we're going to make this request be, and bump the
600 * next (skipping 0 so it can be the reserved no-seqno value).
602 seqno = dev_priv->mm.next_gem_seqno;
603 dev_priv->mm.next_gem_seqno++;
604 if (dev_priv->mm.next_gem_seqno == 0)
605 dev_priv->mm.next_gem_seqno++;
607 BEGIN_LP_RING(4);
608 OUT_RING(MI_STORE_DWORD_INDEX);
609 OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
610 OUT_RING(seqno);
612 OUT_RING(MI_USER_INTERRUPT);
613 ADVANCE_LP_RING();
615 DRM_DEBUG("%d\n", seqno);
617 request->seqno = seqno;
618 request->emitted_jiffies = jiffies;
619 request->flush_domains = flush_domains;
620 was_empty = list_empty(&dev_priv->mm.request_list);
621 list_add_tail(&request->list, &dev_priv->mm.request_list);
623 if (was_empty && !dev_priv->mm.suspended)
624 schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
625 return seqno;
629 * Command execution barrier
631 * Ensures that all commands in the ring are finished
632 * before signalling the CPU
634 static uint32_t
635 i915_retire_commands(struct drm_device *dev)
637 drm_i915_private_t *dev_priv = dev->dev_private;
638 uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
639 uint32_t flush_domains = 0;
640 RING_LOCALS;
642 /* The sampler always gets flushed on i965 (sigh) */
643 if (IS_I965G(dev))
644 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
645 BEGIN_LP_RING(2);
646 OUT_RING(cmd);
647 OUT_RING(0); /* noop */
648 ADVANCE_LP_RING();
649 return flush_domains;
653 * Moves buffers associated only with the given active seqno from the active
654 * to inactive list, potentially freeing them.
656 static void
657 i915_gem_retire_request(struct drm_device *dev,
658 struct drm_i915_gem_request *request)
660 drm_i915_private_t *dev_priv = dev->dev_private;
662 /* Move any buffers on the active list that are no longer referenced
663 * by the ringbuffer to the flushing/inactive lists as appropriate.
665 while (!list_empty(&dev_priv->mm.active_list)) {
666 struct drm_gem_object *obj;
667 struct drm_i915_gem_object *obj_priv;
669 obj_priv = list_first_entry(&dev_priv->mm.active_list,
670 struct drm_i915_gem_object,
671 list);
672 obj = obj_priv->obj;
674 /* If the seqno being retired doesn't match the oldest in the
675 * list, then the oldest in the list must still be newer than
676 * this seqno.
678 if (obj_priv->last_rendering_seqno != request->seqno)
679 return;
680 #if WATCH_LRU
681 DRM_INFO("%s: retire %d moves to inactive list %p\n",
682 __func__, request->seqno, obj);
683 #endif
685 if (obj->write_domain != 0) {
686 list_move_tail(&obj_priv->list,
687 &dev_priv->mm.flushing_list);
688 } else {
689 i915_gem_object_move_to_inactive(obj);
693 if (request->flush_domains != 0) {
694 struct drm_i915_gem_object *obj_priv, *next;
696 /* Clear the write domain and activity from any buffers
697 * that are just waiting for a flush matching the one retired.
699 list_for_each_entry_safe(obj_priv, next,
700 &dev_priv->mm.flushing_list, list) {
701 struct drm_gem_object *obj = obj_priv->obj;
703 if (obj->write_domain & request->flush_domains) {
704 obj->write_domain = 0;
705 i915_gem_object_move_to_inactive(obj);
713 * Returns true if seq1 is later than seq2.
715 static int
716 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
718 return (int32_t)(seq1 - seq2) >= 0;
721 uint32_t
722 i915_get_gem_seqno(struct drm_device *dev)
724 drm_i915_private_t *dev_priv = dev->dev_private;
726 return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
730 * This function clears the request list as sequence numbers are passed.
732 void
733 i915_gem_retire_requests(struct drm_device *dev)
735 drm_i915_private_t *dev_priv = dev->dev_private;
736 uint32_t seqno;
738 seqno = i915_get_gem_seqno(dev);
740 while (!list_empty(&dev_priv->mm.request_list)) {
741 struct drm_i915_gem_request *request;
742 uint32_t retiring_seqno;
744 request = list_first_entry(&dev_priv->mm.request_list,
745 struct drm_i915_gem_request,
746 list);
747 retiring_seqno = request->seqno;
749 if (i915_seqno_passed(seqno, retiring_seqno) ||
750 dev_priv->mm.wedged) {
751 i915_gem_retire_request(dev, request);
753 list_del(&request->list);
754 drm_free(request, sizeof(*request), DRM_MEM_DRIVER);
755 } else
756 break;
760 void
761 i915_gem_retire_work_handler(struct work_struct *work)
763 drm_i915_private_t *dev_priv;
764 struct drm_device *dev;
766 dev_priv = container_of(work, drm_i915_private_t,
767 mm.retire_work.work);
768 dev = dev_priv->dev;
770 mutex_lock(&dev->struct_mutex);
771 i915_gem_retire_requests(dev);
772 if (!dev_priv->mm.suspended &&
773 !list_empty(&dev_priv->mm.request_list))
774 schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
775 mutex_unlock(&dev->struct_mutex);
779 * Waits for a sequence number to be signaled, and cleans up the
780 * request and object lists appropriately for that event.
782 static int
783 i915_wait_request(struct drm_device *dev, uint32_t seqno)
785 drm_i915_private_t *dev_priv = dev->dev_private;
786 int ret = 0;
788 BUG_ON(seqno == 0);
790 if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
791 dev_priv->mm.waiting_gem_seqno = seqno;
792 i915_user_irq_get(dev);
793 ret = wait_event_interruptible(dev_priv->irq_queue,
794 i915_seqno_passed(i915_get_gem_seqno(dev),
795 seqno) ||
796 dev_priv->mm.wedged);
797 i915_user_irq_put(dev);
798 dev_priv->mm.waiting_gem_seqno = 0;
800 if (dev_priv->mm.wedged)
801 ret = -EIO;
803 if (ret && ret != -ERESTARTSYS)
804 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
805 __func__, ret, seqno, i915_get_gem_seqno(dev));
807 /* Directly dispatch request retiring. While we have the work queue
808 * to handle this, the waiter on a request often wants an associated
809 * buffer to have made it to the inactive list, and we would need
810 * a separate wait queue to handle that.
812 if (ret == 0)
813 i915_gem_retire_requests(dev);
815 return ret;
818 static void
819 i915_gem_flush(struct drm_device *dev,
820 uint32_t invalidate_domains,
821 uint32_t flush_domains)
823 drm_i915_private_t *dev_priv = dev->dev_private;
824 uint32_t cmd;
825 RING_LOCALS;
827 #if WATCH_EXEC
828 DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
829 invalidate_domains, flush_domains);
830 #endif
832 if (flush_domains & I915_GEM_DOMAIN_CPU)
833 drm_agp_chipset_flush(dev);
835 if ((invalidate_domains | flush_domains) & ~(I915_GEM_DOMAIN_CPU |
836 I915_GEM_DOMAIN_GTT)) {
838 * read/write caches:
840 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
841 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
842 * also flushed at 2d versus 3d pipeline switches.
844 * read-only caches:
846 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
847 * MI_READ_FLUSH is set, and is always flushed on 965.
849 * I915_GEM_DOMAIN_COMMAND may not exist?
851 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
852 * invalidated when MI_EXE_FLUSH is set.
854 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
855 * invalidated with every MI_FLUSH.
857 * TLBs:
859 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
860 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
861 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
862 * are flushed at any MI_FLUSH.
865 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
866 if ((invalidate_domains|flush_domains) &
867 I915_GEM_DOMAIN_RENDER)
868 cmd &= ~MI_NO_WRITE_FLUSH;
869 if (!IS_I965G(dev)) {
871 * On the 965, the sampler cache always gets flushed
872 * and this bit is reserved.
874 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
875 cmd |= MI_READ_FLUSH;
877 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
878 cmd |= MI_EXE_FLUSH;
880 #if WATCH_EXEC
881 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
882 #endif
883 BEGIN_LP_RING(2);
884 OUT_RING(cmd);
885 OUT_RING(0); /* noop */
886 ADVANCE_LP_RING();
891 * Ensures that all rendering to the object has completed and the object is
892 * safe to unbind from the GTT or access from the CPU.
894 static int
895 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
897 struct drm_device *dev = obj->dev;
898 struct drm_i915_gem_object *obj_priv = obj->driver_private;
899 int ret;
901 /* If there are writes queued to the buffer, flush and
902 * create a new seqno to wait for.
904 if (obj->write_domain & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT)) {
905 uint32_t write_domain = obj->write_domain;
906 #if WATCH_BUF
907 DRM_INFO("%s: flushing object %p from write domain %08x\n",
908 __func__, obj, write_domain);
909 #endif
910 i915_gem_flush(dev, 0, write_domain);
912 i915_gem_object_move_to_active(obj);
913 obj_priv->last_rendering_seqno = i915_add_request(dev,
914 write_domain);
915 BUG_ON(obj_priv->last_rendering_seqno == 0);
916 #if WATCH_LRU
917 DRM_INFO("%s: flush moves to exec list %p\n", __func__, obj);
918 #endif
921 /* If there is rendering queued on the buffer being evicted, wait for
922 * it.
924 if (obj_priv->active) {
925 #if WATCH_BUF
926 DRM_INFO("%s: object %p wait for seqno %08x\n",
927 __func__, obj, obj_priv->last_rendering_seqno);
928 #endif
929 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
930 if (ret != 0)
931 return ret;
934 return 0;
938 * Unbinds an object from the GTT aperture.
940 static int
941 i915_gem_object_unbind(struct drm_gem_object *obj)
943 struct drm_device *dev = obj->dev;
944 struct drm_i915_gem_object *obj_priv = obj->driver_private;
945 int ret = 0;
947 #if WATCH_BUF
948 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
949 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
950 #endif
951 if (obj_priv->gtt_space == NULL)
952 return 0;
954 if (obj_priv->pin_count != 0) {
955 DRM_ERROR("Attempting to unbind pinned buffer\n");
956 return -EINVAL;
959 /* Wait for any rendering to complete
961 ret = i915_gem_object_wait_rendering(obj);
962 if (ret) {
963 DRM_ERROR("wait_rendering failed: %d\n", ret);
964 return ret;
967 /* Move the object to the CPU domain to ensure that
968 * any possible CPU writes while it's not in the GTT
969 * are flushed when we go to remap it. This will
970 * also ensure that all pending GPU writes are finished
971 * before we unbind.
973 ret = i915_gem_object_set_domain(obj, I915_GEM_DOMAIN_CPU,
974 I915_GEM_DOMAIN_CPU);
975 if (ret) {
976 DRM_ERROR("set_domain failed: %d\n", ret);
977 return ret;
980 if (obj_priv->agp_mem != NULL) {
981 drm_unbind_agp(obj_priv->agp_mem);
982 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
983 obj_priv->agp_mem = NULL;
986 BUG_ON(obj_priv->active);
988 i915_gem_object_free_page_list(obj);
990 if (obj_priv->gtt_space) {
991 atomic_dec(&dev->gtt_count);
992 atomic_sub(obj->size, &dev->gtt_memory);
994 drm_mm_put_block(obj_priv->gtt_space);
995 obj_priv->gtt_space = NULL;
998 /* Remove ourselves from the LRU list if present. */
999 if (!list_empty(&obj_priv->list))
1000 list_del_init(&obj_priv->list);
1002 return 0;
1005 static int
1006 i915_gem_evict_something(struct drm_device *dev)
1008 drm_i915_private_t *dev_priv = dev->dev_private;
1009 struct drm_gem_object *obj;
1010 struct drm_i915_gem_object *obj_priv;
1011 int ret = 0;
1013 for (;;) {
1014 /* If there's an inactive buffer available now, grab it
1015 * and be done.
1017 if (!list_empty(&dev_priv->mm.inactive_list)) {
1018 obj_priv = list_first_entry(&dev_priv->mm.inactive_list,
1019 struct drm_i915_gem_object,
1020 list);
1021 obj = obj_priv->obj;
1022 BUG_ON(obj_priv->pin_count != 0);
1023 #if WATCH_LRU
1024 DRM_INFO("%s: evicting %p\n", __func__, obj);
1025 #endif
1026 BUG_ON(obj_priv->active);
1028 /* Wait on the rendering and unbind the buffer. */
1029 ret = i915_gem_object_unbind(obj);
1030 break;
1033 /* If we didn't get anything, but the ring is still processing
1034 * things, wait for one of those things to finish and hopefully
1035 * leave us a buffer to evict.
1037 if (!list_empty(&dev_priv->mm.request_list)) {
1038 struct drm_i915_gem_request *request;
1040 request = list_first_entry(&dev_priv->mm.request_list,
1041 struct drm_i915_gem_request,
1042 list);
1044 ret = i915_wait_request(dev, request->seqno);
1045 if (ret)
1046 break;
1048 /* if waiting caused an object to become inactive,
1049 * then loop around and wait for it. Otherwise, we
1050 * assume that waiting freed and unbound something,
1051 * so there should now be some space in the GTT
1053 if (!list_empty(&dev_priv->mm.inactive_list))
1054 continue;
1055 break;
1058 /* If we didn't have anything on the request list but there
1059 * are buffers awaiting a flush, emit one and try again.
1060 * When we wait on it, those buffers waiting for that flush
1061 * will get moved to inactive.
1063 if (!list_empty(&dev_priv->mm.flushing_list)) {
1064 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1065 struct drm_i915_gem_object,
1066 list);
1067 obj = obj_priv->obj;
1069 i915_gem_flush(dev,
1070 obj->write_domain,
1071 obj->write_domain);
1072 i915_add_request(dev, obj->write_domain);
1074 obj = NULL;
1075 continue;
1078 DRM_ERROR("inactive empty %d request empty %d "
1079 "flushing empty %d\n",
1080 list_empty(&dev_priv->mm.inactive_list),
1081 list_empty(&dev_priv->mm.request_list),
1082 list_empty(&dev_priv->mm.flushing_list));
1083 /* If we didn't do any of the above, there's nothing to be done
1084 * and we just can't fit it in.
1086 return -ENOMEM;
1088 return ret;
1091 static int
1092 i915_gem_object_get_page_list(struct drm_gem_object *obj)
1094 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1095 int page_count, i;
1096 struct address_space *mapping;
1097 struct inode *inode;
1098 struct page *page;
1099 int ret;
1101 if (obj_priv->page_list)
1102 return 0;
1104 /* Get the list of pages out of our struct file. They'll be pinned
1105 * at this point until we release them.
1107 page_count = obj->size / PAGE_SIZE;
1108 BUG_ON(obj_priv->page_list != NULL);
1109 obj_priv->page_list = drm_calloc(page_count, sizeof(struct page *),
1110 DRM_MEM_DRIVER);
1111 if (obj_priv->page_list == NULL) {
1112 DRM_ERROR("Faled to allocate page list\n");
1113 return -ENOMEM;
1116 inode = obj->filp->f_path.dentry->d_inode;
1117 mapping = inode->i_mapping;
1118 for (i = 0; i < page_count; i++) {
1119 page = read_mapping_page(mapping, i, NULL);
1120 if (IS_ERR(page)) {
1121 ret = PTR_ERR(page);
1122 DRM_ERROR("read_mapping_page failed: %d\n", ret);
1123 i915_gem_object_free_page_list(obj);
1124 return ret;
1126 obj_priv->page_list[i] = page;
1128 return 0;
1132 * Finds free space in the GTT aperture and binds the object there.
1134 static int
1135 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
1137 struct drm_device *dev = obj->dev;
1138 drm_i915_private_t *dev_priv = dev->dev_private;
1139 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1140 struct drm_mm_node *free_space;
1141 int page_count, ret;
1143 if (alignment == 0)
1144 alignment = PAGE_SIZE;
1145 if (alignment & (PAGE_SIZE - 1)) {
1146 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
1147 return -EINVAL;
1150 search_free:
1151 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
1152 obj->size, alignment, 0);
1153 if (free_space != NULL) {
1154 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
1155 alignment);
1156 if (obj_priv->gtt_space != NULL) {
1157 obj_priv->gtt_space->private = obj;
1158 obj_priv->gtt_offset = obj_priv->gtt_space->start;
1161 if (obj_priv->gtt_space == NULL) {
1162 /* If the gtt is empty and we're still having trouble
1163 * fitting our object in, we're out of memory.
1165 #if WATCH_LRU
1166 DRM_INFO("%s: GTT full, evicting something\n", __func__);
1167 #endif
1168 if (list_empty(&dev_priv->mm.inactive_list) &&
1169 list_empty(&dev_priv->mm.flushing_list) &&
1170 list_empty(&dev_priv->mm.active_list)) {
1171 DRM_ERROR("GTT full, but LRU list empty\n");
1172 return -ENOMEM;
1175 ret = i915_gem_evict_something(dev);
1176 if (ret != 0) {
1177 DRM_ERROR("Failed to evict a buffer %d\n", ret);
1178 return ret;
1180 goto search_free;
1183 #if WATCH_BUF
1184 DRM_INFO("Binding object of size %d at 0x%08x\n",
1185 obj->size, obj_priv->gtt_offset);
1186 #endif
1187 ret = i915_gem_object_get_page_list(obj);
1188 if (ret) {
1189 drm_mm_put_block(obj_priv->gtt_space);
1190 obj_priv->gtt_space = NULL;
1191 return ret;
1194 page_count = obj->size / PAGE_SIZE;
1195 /* Create an AGP memory structure pointing at our pages, and bind it
1196 * into the GTT.
1198 obj_priv->agp_mem = drm_agp_bind_pages(dev,
1199 obj_priv->page_list,
1200 page_count,
1201 obj_priv->gtt_offset,
1202 obj_priv->agp_type);
1203 if (obj_priv->agp_mem == NULL) {
1204 i915_gem_object_free_page_list(obj);
1205 drm_mm_put_block(obj_priv->gtt_space);
1206 obj_priv->gtt_space = NULL;
1207 return -ENOMEM;
1209 atomic_inc(&dev->gtt_count);
1210 atomic_add(obj->size, &dev->gtt_memory);
1212 /* Assert that the object is not currently in any GPU domain. As it
1213 * wasn't in the GTT, there shouldn't be any way it could have been in
1214 * a GPU cache
1216 BUG_ON(obj->read_domains & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
1217 BUG_ON(obj->write_domain & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
1219 return 0;
1222 void
1223 i915_gem_clflush_object(struct drm_gem_object *obj)
1225 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1227 /* If we don't have a page list set up, then we're not pinned
1228 * to GPU, and we can ignore the cache flush because it'll happen
1229 * again at bind time.
1231 if (obj_priv->page_list == NULL)
1232 return;
1234 drm_clflush_pages(obj_priv->page_list, obj->size / PAGE_SIZE);
1238 * Set the next domain for the specified object. This
1239 * may not actually perform the necessary flushing/invaliding though,
1240 * as that may want to be batched with other set_domain operations
1242 * This is (we hope) the only really tricky part of gem. The goal
1243 * is fairly simple -- track which caches hold bits of the object
1244 * and make sure they remain coherent. A few concrete examples may
1245 * help to explain how it works. For shorthand, we use the notation
1246 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
1247 * a pair of read and write domain masks.
1249 * Case 1: the batch buffer
1251 * 1. Allocated
1252 * 2. Written by CPU
1253 * 3. Mapped to GTT
1254 * 4. Read by GPU
1255 * 5. Unmapped from GTT
1256 * 6. Freed
1258 * Let's take these a step at a time
1260 * 1. Allocated
1261 * Pages allocated from the kernel may still have
1262 * cache contents, so we set them to (CPU, CPU) always.
1263 * 2. Written by CPU (using pwrite)
1264 * The pwrite function calls set_domain (CPU, CPU) and
1265 * this function does nothing (as nothing changes)
1266 * 3. Mapped by GTT
1267 * This function asserts that the object is not
1268 * currently in any GPU-based read or write domains
1269 * 4. Read by GPU
1270 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
1271 * As write_domain is zero, this function adds in the
1272 * current read domains (CPU+COMMAND, 0).
1273 * flush_domains is set to CPU.
1274 * invalidate_domains is set to COMMAND
1275 * clflush is run to get data out of the CPU caches
1276 * then i915_dev_set_domain calls i915_gem_flush to
1277 * emit an MI_FLUSH and drm_agp_chipset_flush
1278 * 5. Unmapped from GTT
1279 * i915_gem_object_unbind calls set_domain (CPU, CPU)
1280 * flush_domains and invalidate_domains end up both zero
1281 * so no flushing/invalidating happens
1282 * 6. Freed
1283 * yay, done
1285 * Case 2: The shared render buffer
1287 * 1. Allocated
1288 * 2. Mapped to GTT
1289 * 3. Read/written by GPU
1290 * 4. set_domain to (CPU,CPU)
1291 * 5. Read/written by CPU
1292 * 6. Read/written by GPU
1294 * 1. Allocated
1295 * Same as last example, (CPU, CPU)
1296 * 2. Mapped to GTT
1297 * Nothing changes (assertions find that it is not in the GPU)
1298 * 3. Read/written by GPU
1299 * execbuffer calls set_domain (RENDER, RENDER)
1300 * flush_domains gets CPU
1301 * invalidate_domains gets GPU
1302 * clflush (obj)
1303 * MI_FLUSH and drm_agp_chipset_flush
1304 * 4. set_domain (CPU, CPU)
1305 * flush_domains gets GPU
1306 * invalidate_domains gets CPU
1307 * wait_rendering (obj) to make sure all drawing is complete.
1308 * This will include an MI_FLUSH to get the data from GPU
1309 * to memory
1310 * clflush (obj) to invalidate the CPU cache
1311 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
1312 * 5. Read/written by CPU
1313 * cache lines are loaded and dirtied
1314 * 6. Read written by GPU
1315 * Same as last GPU access
1317 * Case 3: The constant buffer
1319 * 1. Allocated
1320 * 2. Written by CPU
1321 * 3. Read by GPU
1322 * 4. Updated (written) by CPU again
1323 * 5. Read by GPU
1325 * 1. Allocated
1326 * (CPU, CPU)
1327 * 2. Written by CPU
1328 * (CPU, CPU)
1329 * 3. Read by GPU
1330 * (CPU+RENDER, 0)
1331 * flush_domains = CPU
1332 * invalidate_domains = RENDER
1333 * clflush (obj)
1334 * MI_FLUSH
1335 * drm_agp_chipset_flush
1336 * 4. Updated (written) by CPU again
1337 * (CPU, CPU)
1338 * flush_domains = 0 (no previous write domain)
1339 * invalidate_domains = 0 (no new read domains)
1340 * 5. Read by GPU
1341 * (CPU+RENDER, 0)
1342 * flush_domains = CPU
1343 * invalidate_domains = RENDER
1344 * clflush (obj)
1345 * MI_FLUSH
1346 * drm_agp_chipset_flush
1348 static int
1349 i915_gem_object_set_domain(struct drm_gem_object *obj,
1350 uint32_t read_domains,
1351 uint32_t write_domain)
1353 struct drm_device *dev = obj->dev;
1354 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1355 uint32_t invalidate_domains = 0;
1356 uint32_t flush_domains = 0;
1357 int ret;
1359 #if WATCH_BUF
1360 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
1361 __func__, obj,
1362 obj->read_domains, read_domains,
1363 obj->write_domain, write_domain);
1364 #endif
1366 * If the object isn't moving to a new write domain,
1367 * let the object stay in multiple read domains
1369 if (write_domain == 0)
1370 read_domains |= obj->read_domains;
1371 else
1372 obj_priv->dirty = 1;
1375 * Flush the current write domain if
1376 * the new read domains don't match. Invalidate
1377 * any read domains which differ from the old
1378 * write domain
1380 if (obj->write_domain && obj->write_domain != read_domains) {
1381 flush_domains |= obj->write_domain;
1382 invalidate_domains |= read_domains & ~obj->write_domain;
1385 * Invalidate any read caches which may have
1386 * stale data. That is, any new read domains.
1388 invalidate_domains |= read_domains & ~obj->read_domains;
1389 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
1390 #if WATCH_BUF
1391 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
1392 __func__, flush_domains, invalidate_domains);
1393 #endif
1395 * If we're invaliding the CPU cache and flushing a GPU cache,
1396 * then pause for rendering so that the GPU caches will be
1397 * flushed before the cpu cache is invalidated
1399 if ((invalidate_domains & I915_GEM_DOMAIN_CPU) &&
1400 (flush_domains & ~(I915_GEM_DOMAIN_CPU |
1401 I915_GEM_DOMAIN_GTT))) {
1402 ret = i915_gem_object_wait_rendering(obj);
1403 if (ret)
1404 return ret;
1406 i915_gem_clflush_object(obj);
1409 if ((write_domain | flush_domains) != 0)
1410 obj->write_domain = write_domain;
1412 /* If we're invalidating the CPU domain, clear the per-page CPU
1413 * domain list as well.
1415 if (obj_priv->page_cpu_valid != NULL &&
1416 (write_domain != 0 ||
1417 read_domains & I915_GEM_DOMAIN_CPU)) {
1418 drm_free(obj_priv->page_cpu_valid, obj->size / PAGE_SIZE,
1419 DRM_MEM_DRIVER);
1420 obj_priv->page_cpu_valid = NULL;
1422 obj->read_domains = read_domains;
1424 dev->invalidate_domains |= invalidate_domains;
1425 dev->flush_domains |= flush_domains;
1426 #if WATCH_BUF
1427 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
1428 __func__,
1429 obj->read_domains, obj->write_domain,
1430 dev->invalidate_domains, dev->flush_domains);
1431 #endif
1432 return 0;
1436 * Set the read/write domain on a range of the object.
1438 * Currently only implemented for CPU reads, otherwise drops to normal
1439 * i915_gem_object_set_domain().
1441 static int
1442 i915_gem_object_set_domain_range(struct drm_gem_object *obj,
1443 uint64_t offset,
1444 uint64_t size,
1445 uint32_t read_domains,
1446 uint32_t write_domain)
1448 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1449 int ret, i;
1451 if (obj->read_domains & I915_GEM_DOMAIN_CPU)
1452 return 0;
1454 if (read_domains != I915_GEM_DOMAIN_CPU ||
1455 write_domain != 0)
1456 return i915_gem_object_set_domain(obj,
1457 read_domains, write_domain);
1459 /* Wait on any GPU rendering to the object to be flushed. */
1460 ret = i915_gem_object_wait_rendering(obj);
1461 if (ret)
1462 return ret;
1464 if (obj_priv->page_cpu_valid == NULL) {
1465 obj_priv->page_cpu_valid = drm_calloc(1, obj->size / PAGE_SIZE,
1466 DRM_MEM_DRIVER);
1469 /* Flush the cache on any pages that are still invalid from the CPU's
1470 * perspective.
1472 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE; i++) {
1473 if (obj_priv->page_cpu_valid[i])
1474 continue;
1476 drm_clflush_pages(obj_priv->page_list + i, 1);
1478 obj_priv->page_cpu_valid[i] = 1;
1481 return 0;
1485 * Once all of the objects have been set in the proper domain,
1486 * perform the necessary flush and invalidate operations.
1488 * Returns the write domains flushed, for use in flush tracking.
1490 static uint32_t
1491 i915_gem_dev_set_domain(struct drm_device *dev)
1493 uint32_t flush_domains = dev->flush_domains;
1496 * Now that all the buffers are synced to the proper domains,
1497 * flush and invalidate the collected domains
1499 if (dev->invalidate_domains | dev->flush_domains) {
1500 #if WATCH_EXEC
1501 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
1502 __func__,
1503 dev->invalidate_domains,
1504 dev->flush_domains);
1505 #endif
1506 i915_gem_flush(dev,
1507 dev->invalidate_domains,
1508 dev->flush_domains);
1509 dev->invalidate_domains = 0;
1510 dev->flush_domains = 0;
1513 return flush_domains;
1517 * Pin an object to the GTT and evaluate the relocations landing in it.
1519 static int
1520 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
1521 struct drm_file *file_priv,
1522 struct drm_i915_gem_exec_object *entry)
1524 struct drm_device *dev = obj->dev;
1525 drm_i915_private_t *dev_priv = dev->dev_private;
1526 struct drm_i915_gem_relocation_entry reloc;
1527 struct drm_i915_gem_relocation_entry __user *relocs;
1528 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1529 int i, ret;
1530 void __iomem *reloc_page;
1532 /* Choose the GTT offset for our buffer and put it there. */
1533 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
1534 if (ret)
1535 return ret;
1537 entry->offset = obj_priv->gtt_offset;
1539 relocs = (struct drm_i915_gem_relocation_entry __user *)
1540 (uintptr_t) entry->relocs_ptr;
1541 /* Apply the relocations, using the GTT aperture to avoid cache
1542 * flushing requirements.
1544 for (i = 0; i < entry->relocation_count; i++) {
1545 struct drm_gem_object *target_obj;
1546 struct drm_i915_gem_object *target_obj_priv;
1547 uint32_t reloc_val, reloc_offset;
1548 uint32_t __iomem *reloc_entry;
1550 ret = copy_from_user(&reloc, relocs + i, sizeof(reloc));
1551 if (ret != 0) {
1552 i915_gem_object_unpin(obj);
1553 return ret;
1556 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
1557 reloc.target_handle);
1558 if (target_obj == NULL) {
1559 i915_gem_object_unpin(obj);
1560 return -EBADF;
1562 target_obj_priv = target_obj->driver_private;
1564 /* The target buffer should have appeared before us in the
1565 * exec_object list, so it should have a GTT space bound by now.
1567 if (target_obj_priv->gtt_space == NULL) {
1568 DRM_ERROR("No GTT space found for object %d\n",
1569 reloc.target_handle);
1570 drm_gem_object_unreference(target_obj);
1571 i915_gem_object_unpin(obj);
1572 return -EINVAL;
1575 if (reloc.offset > obj->size - 4) {
1576 DRM_ERROR("Relocation beyond object bounds: "
1577 "obj %p target %d offset %d size %d.\n",
1578 obj, reloc.target_handle,
1579 (int) reloc.offset, (int) obj->size);
1580 drm_gem_object_unreference(target_obj);
1581 i915_gem_object_unpin(obj);
1582 return -EINVAL;
1584 if (reloc.offset & 3) {
1585 DRM_ERROR("Relocation not 4-byte aligned: "
1586 "obj %p target %d offset %d.\n",
1587 obj, reloc.target_handle,
1588 (int) reloc.offset);
1589 drm_gem_object_unreference(target_obj);
1590 i915_gem_object_unpin(obj);
1591 return -EINVAL;
1594 if (reloc.write_domain && target_obj->pending_write_domain &&
1595 reloc.write_domain != target_obj->pending_write_domain) {
1596 DRM_ERROR("Write domain conflict: "
1597 "obj %p target %d offset %d "
1598 "new %08x old %08x\n",
1599 obj, reloc.target_handle,
1600 (int) reloc.offset,
1601 reloc.write_domain,
1602 target_obj->pending_write_domain);
1603 drm_gem_object_unreference(target_obj);
1604 i915_gem_object_unpin(obj);
1605 return -EINVAL;
1608 #if WATCH_RELOC
1609 DRM_INFO("%s: obj %p offset %08x target %d "
1610 "read %08x write %08x gtt %08x "
1611 "presumed %08x delta %08x\n",
1612 __func__,
1613 obj,
1614 (int) reloc.offset,
1615 (int) reloc.target_handle,
1616 (int) reloc.read_domains,
1617 (int) reloc.write_domain,
1618 (int) target_obj_priv->gtt_offset,
1619 (int) reloc.presumed_offset,
1620 reloc.delta);
1621 #endif
1623 target_obj->pending_read_domains |= reloc.read_domains;
1624 target_obj->pending_write_domain |= reloc.write_domain;
1626 /* If the relocation already has the right value in it, no
1627 * more work needs to be done.
1629 if (target_obj_priv->gtt_offset == reloc.presumed_offset) {
1630 drm_gem_object_unreference(target_obj);
1631 continue;
1634 /* Now that we're going to actually write some data in,
1635 * make sure that any rendering using this buffer's contents
1636 * is completed.
1638 i915_gem_object_wait_rendering(obj);
1640 /* As we're writing through the gtt, flush
1641 * any CPU writes before we write the relocations
1643 if (obj->write_domain & I915_GEM_DOMAIN_CPU) {
1644 i915_gem_clflush_object(obj);
1645 drm_agp_chipset_flush(dev);
1646 obj->write_domain = 0;
1649 /* Map the page containing the relocation we're going to
1650 * perform.
1652 reloc_offset = obj_priv->gtt_offset + reloc.offset;
1653 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
1654 (reloc_offset &
1655 ~(PAGE_SIZE - 1)));
1656 reloc_entry = (uint32_t __iomem *)(reloc_page +
1657 (reloc_offset & (PAGE_SIZE - 1)));
1658 reloc_val = target_obj_priv->gtt_offset + reloc.delta;
1660 #if WATCH_BUF
1661 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
1662 obj, (unsigned int) reloc.offset,
1663 readl(reloc_entry), reloc_val);
1664 #endif
1665 writel(reloc_val, reloc_entry);
1666 io_mapping_unmap_atomic(reloc_page);
1668 /* Write the updated presumed offset for this entry back out
1669 * to the user.
1671 reloc.presumed_offset = target_obj_priv->gtt_offset;
1672 ret = copy_to_user(relocs + i, &reloc, sizeof(reloc));
1673 if (ret != 0) {
1674 drm_gem_object_unreference(target_obj);
1675 i915_gem_object_unpin(obj);
1676 return ret;
1679 drm_gem_object_unreference(target_obj);
1682 #if WATCH_BUF
1683 if (0)
1684 i915_gem_dump_object(obj, 128, __func__, ~0);
1685 #endif
1686 return 0;
1689 /** Dispatch a batchbuffer to the ring
1691 static int
1692 i915_dispatch_gem_execbuffer(struct drm_device *dev,
1693 struct drm_i915_gem_execbuffer *exec,
1694 uint64_t exec_offset)
1696 drm_i915_private_t *dev_priv = dev->dev_private;
1697 struct drm_clip_rect __user *boxes = (struct drm_clip_rect __user *)
1698 (uintptr_t) exec->cliprects_ptr;
1699 int nbox = exec->num_cliprects;
1700 int i = 0, count;
1701 uint32_t exec_start, exec_len;
1702 RING_LOCALS;
1704 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
1705 exec_len = (uint32_t) exec->batch_len;
1707 if ((exec_start | exec_len) & 0x7) {
1708 DRM_ERROR("alignment\n");
1709 return -EINVAL;
1712 if (!exec_start)
1713 return -EINVAL;
1715 count = nbox ? nbox : 1;
1717 for (i = 0; i < count; i++) {
1718 if (i < nbox) {
1719 int ret = i915_emit_box(dev, boxes, i,
1720 exec->DR1, exec->DR4);
1721 if (ret)
1722 return ret;
1725 if (IS_I830(dev) || IS_845G(dev)) {
1726 BEGIN_LP_RING(4);
1727 OUT_RING(MI_BATCH_BUFFER);
1728 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
1729 OUT_RING(exec_start + exec_len - 4);
1730 OUT_RING(0);
1731 ADVANCE_LP_RING();
1732 } else {
1733 BEGIN_LP_RING(2);
1734 if (IS_I965G(dev)) {
1735 OUT_RING(MI_BATCH_BUFFER_START |
1736 (2 << 6) |
1737 MI_BATCH_NON_SECURE_I965);
1738 OUT_RING(exec_start);
1739 } else {
1740 OUT_RING(MI_BATCH_BUFFER_START |
1741 (2 << 6));
1742 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
1744 ADVANCE_LP_RING();
1748 /* XXX breadcrumb */
1749 return 0;
1752 /* Throttle our rendering by waiting until the ring has completed our requests
1753 * emitted over 20 msec ago.
1755 * This should get us reasonable parallelism between CPU and GPU but also
1756 * relatively low latency when blocking on a particular request to finish.
1758 static int
1759 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
1761 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
1762 int ret = 0;
1763 uint32_t seqno;
1765 mutex_lock(&dev->struct_mutex);
1766 seqno = i915_file_priv->mm.last_gem_throttle_seqno;
1767 i915_file_priv->mm.last_gem_throttle_seqno =
1768 i915_file_priv->mm.last_gem_seqno;
1769 if (seqno)
1770 ret = i915_wait_request(dev, seqno);
1771 mutex_unlock(&dev->struct_mutex);
1772 return ret;
1776 i915_gem_execbuffer(struct drm_device *dev, void *data,
1777 struct drm_file *file_priv)
1779 drm_i915_private_t *dev_priv = dev->dev_private;
1780 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
1781 struct drm_i915_gem_execbuffer *args = data;
1782 struct drm_i915_gem_exec_object *exec_list = NULL;
1783 struct drm_gem_object **object_list = NULL;
1784 struct drm_gem_object *batch_obj;
1785 int ret, i, pinned = 0;
1786 uint64_t exec_offset;
1787 uint32_t seqno, flush_domains;
1789 #if WATCH_EXEC
1790 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
1791 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
1792 #endif
1794 if (args->buffer_count < 1) {
1795 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
1796 return -EINVAL;
1798 /* Copy in the exec list from userland */
1799 exec_list = drm_calloc(sizeof(*exec_list), args->buffer_count,
1800 DRM_MEM_DRIVER);
1801 object_list = drm_calloc(sizeof(*object_list), args->buffer_count,
1802 DRM_MEM_DRIVER);
1803 if (exec_list == NULL || object_list == NULL) {
1804 DRM_ERROR("Failed to allocate exec or object list "
1805 "for %d buffers\n",
1806 args->buffer_count);
1807 ret = -ENOMEM;
1808 goto pre_mutex_err;
1810 ret = copy_from_user(exec_list,
1811 (struct drm_i915_relocation_entry __user *)
1812 (uintptr_t) args->buffers_ptr,
1813 sizeof(*exec_list) * args->buffer_count);
1814 if (ret != 0) {
1815 DRM_ERROR("copy %d exec entries failed %d\n",
1816 args->buffer_count, ret);
1817 goto pre_mutex_err;
1820 mutex_lock(&dev->struct_mutex);
1822 i915_verify_inactive(dev, __FILE__, __LINE__);
1824 if (dev_priv->mm.wedged) {
1825 DRM_ERROR("Execbuf while wedged\n");
1826 mutex_unlock(&dev->struct_mutex);
1827 return -EIO;
1830 if (dev_priv->mm.suspended) {
1831 DRM_ERROR("Execbuf while VT-switched.\n");
1832 mutex_unlock(&dev->struct_mutex);
1833 return -EBUSY;
1836 /* Zero the gloabl flush/invalidate flags. These
1837 * will be modified as each object is bound to the
1838 * gtt
1840 dev->invalidate_domains = 0;
1841 dev->flush_domains = 0;
1843 /* Look up object handles and perform the relocations */
1844 for (i = 0; i < args->buffer_count; i++) {
1845 object_list[i] = drm_gem_object_lookup(dev, file_priv,
1846 exec_list[i].handle);
1847 if (object_list[i] == NULL) {
1848 DRM_ERROR("Invalid object handle %d at index %d\n",
1849 exec_list[i].handle, i);
1850 ret = -EBADF;
1851 goto err;
1854 object_list[i]->pending_read_domains = 0;
1855 object_list[i]->pending_write_domain = 0;
1856 ret = i915_gem_object_pin_and_relocate(object_list[i],
1857 file_priv,
1858 &exec_list[i]);
1859 if (ret) {
1860 DRM_ERROR("object bind and relocate failed %d\n", ret);
1861 goto err;
1863 pinned = i + 1;
1866 /* Set the pending read domains for the batch buffer to COMMAND */
1867 batch_obj = object_list[args->buffer_count-1];
1868 batch_obj->pending_read_domains = I915_GEM_DOMAIN_COMMAND;
1869 batch_obj->pending_write_domain = 0;
1871 i915_verify_inactive(dev, __FILE__, __LINE__);
1873 for (i = 0; i < args->buffer_count; i++) {
1874 struct drm_gem_object *obj = object_list[i];
1875 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1877 if (obj_priv->gtt_space == NULL) {
1878 /* We evicted the buffer in the process of validating
1879 * our set of buffers in. We could try to recover by
1880 * kicking them everything out and trying again from
1881 * the start.
1883 ret = -ENOMEM;
1884 goto err;
1887 /* make sure all previous memory operations have passed */
1888 ret = i915_gem_object_set_domain(obj,
1889 obj->pending_read_domains,
1890 obj->pending_write_domain);
1891 if (ret)
1892 goto err;
1895 i915_verify_inactive(dev, __FILE__, __LINE__);
1897 /* Flush/invalidate caches and chipset buffer */
1898 flush_domains = i915_gem_dev_set_domain(dev);
1900 i915_verify_inactive(dev, __FILE__, __LINE__);
1902 #if WATCH_COHERENCY
1903 for (i = 0; i < args->buffer_count; i++) {
1904 i915_gem_object_check_coherency(object_list[i],
1905 exec_list[i].handle);
1907 #endif
1909 exec_offset = exec_list[args->buffer_count - 1].offset;
1911 #if WATCH_EXEC
1912 i915_gem_dump_object(object_list[args->buffer_count - 1],
1913 args->batch_len,
1914 __func__,
1915 ~0);
1916 #endif
1918 (void)i915_add_request(dev, flush_domains);
1920 /* Exec the batchbuffer */
1921 ret = i915_dispatch_gem_execbuffer(dev, args, exec_offset);
1922 if (ret) {
1923 DRM_ERROR("dispatch failed %d\n", ret);
1924 goto err;
1928 * Ensure that the commands in the batch buffer are
1929 * finished before the interrupt fires
1931 flush_domains = i915_retire_commands(dev);
1933 i915_verify_inactive(dev, __FILE__, __LINE__);
1936 * Get a seqno representing the execution of the current buffer,
1937 * which we can wait on. We would like to mitigate these interrupts,
1938 * likely by only creating seqnos occasionally (so that we have
1939 * *some* interrupts representing completion of buffers that we can
1940 * wait on when trying to clear up gtt space).
1942 seqno = i915_add_request(dev, flush_domains);
1943 BUG_ON(seqno == 0);
1944 i915_file_priv->mm.last_gem_seqno = seqno;
1945 for (i = 0; i < args->buffer_count; i++) {
1946 struct drm_gem_object *obj = object_list[i];
1947 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1949 i915_gem_object_move_to_active(obj);
1950 obj_priv->last_rendering_seqno = seqno;
1951 #if WATCH_LRU
1952 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
1953 #endif
1955 #if WATCH_LRU
1956 i915_dump_lru(dev, __func__);
1957 #endif
1959 i915_verify_inactive(dev, __FILE__, __LINE__);
1961 /* Copy the new buffer offsets back to the user's exec list. */
1962 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
1963 (uintptr_t) args->buffers_ptr,
1964 exec_list,
1965 sizeof(*exec_list) * args->buffer_count);
1966 if (ret)
1967 DRM_ERROR("failed to copy %d exec entries "
1968 "back to user (%d)\n",
1969 args->buffer_count, ret);
1970 err:
1971 if (object_list != NULL) {
1972 for (i = 0; i < pinned; i++)
1973 i915_gem_object_unpin(object_list[i]);
1975 for (i = 0; i < args->buffer_count; i++)
1976 drm_gem_object_unreference(object_list[i]);
1978 mutex_unlock(&dev->struct_mutex);
1980 pre_mutex_err:
1981 drm_free(object_list, sizeof(*object_list) * args->buffer_count,
1982 DRM_MEM_DRIVER);
1983 drm_free(exec_list, sizeof(*exec_list) * args->buffer_count,
1984 DRM_MEM_DRIVER);
1986 return ret;
1990 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
1992 struct drm_device *dev = obj->dev;
1993 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1994 int ret;
1996 i915_verify_inactive(dev, __FILE__, __LINE__);
1997 if (obj_priv->gtt_space == NULL) {
1998 ret = i915_gem_object_bind_to_gtt(obj, alignment);
1999 if (ret != 0) {
2000 DRM_ERROR("Failure to bind: %d", ret);
2001 return ret;
2004 obj_priv->pin_count++;
2006 /* If the object is not active and not pending a flush,
2007 * remove it from the inactive list
2009 if (obj_priv->pin_count == 1) {
2010 atomic_inc(&dev->pin_count);
2011 atomic_add(obj->size, &dev->pin_memory);
2012 if (!obj_priv->active &&
2013 (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
2014 I915_GEM_DOMAIN_GTT)) == 0 &&
2015 !list_empty(&obj_priv->list))
2016 list_del_init(&obj_priv->list);
2018 i915_verify_inactive(dev, __FILE__, __LINE__);
2020 return 0;
2023 void
2024 i915_gem_object_unpin(struct drm_gem_object *obj)
2026 struct drm_device *dev = obj->dev;
2027 drm_i915_private_t *dev_priv = dev->dev_private;
2028 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2030 i915_verify_inactive(dev, __FILE__, __LINE__);
2031 obj_priv->pin_count--;
2032 BUG_ON(obj_priv->pin_count < 0);
2033 BUG_ON(obj_priv->gtt_space == NULL);
2035 /* If the object is no longer pinned, and is
2036 * neither active nor being flushed, then stick it on
2037 * the inactive list
2039 if (obj_priv->pin_count == 0) {
2040 if (!obj_priv->active &&
2041 (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
2042 I915_GEM_DOMAIN_GTT)) == 0)
2043 list_move_tail(&obj_priv->list,
2044 &dev_priv->mm.inactive_list);
2045 atomic_dec(&dev->pin_count);
2046 atomic_sub(obj->size, &dev->pin_memory);
2048 i915_verify_inactive(dev, __FILE__, __LINE__);
2052 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
2053 struct drm_file *file_priv)
2055 struct drm_i915_gem_pin *args = data;
2056 struct drm_gem_object *obj;
2057 struct drm_i915_gem_object *obj_priv;
2058 int ret;
2060 mutex_lock(&dev->struct_mutex);
2062 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
2063 if (obj == NULL) {
2064 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
2065 args->handle);
2066 mutex_unlock(&dev->struct_mutex);
2067 return -EBADF;
2069 obj_priv = obj->driver_private;
2071 ret = i915_gem_object_pin(obj, args->alignment);
2072 if (ret != 0) {
2073 drm_gem_object_unreference(obj);
2074 mutex_unlock(&dev->struct_mutex);
2075 return ret;
2078 /* XXX - flush the CPU caches for pinned objects
2079 * as the X server doesn't manage domains yet
2081 if (obj->write_domain & I915_GEM_DOMAIN_CPU) {
2082 i915_gem_clflush_object(obj);
2083 drm_agp_chipset_flush(dev);
2084 obj->write_domain = 0;
2086 args->offset = obj_priv->gtt_offset;
2087 drm_gem_object_unreference(obj);
2088 mutex_unlock(&dev->struct_mutex);
2090 return 0;
2094 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
2095 struct drm_file *file_priv)
2097 struct drm_i915_gem_pin *args = data;
2098 struct drm_gem_object *obj;
2100 mutex_lock(&dev->struct_mutex);
2102 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
2103 if (obj == NULL) {
2104 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
2105 args->handle);
2106 mutex_unlock(&dev->struct_mutex);
2107 return -EBADF;
2110 i915_gem_object_unpin(obj);
2112 drm_gem_object_unreference(obj);
2113 mutex_unlock(&dev->struct_mutex);
2114 return 0;
2118 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
2119 struct drm_file *file_priv)
2121 struct drm_i915_gem_busy *args = data;
2122 struct drm_gem_object *obj;
2123 struct drm_i915_gem_object *obj_priv;
2125 mutex_lock(&dev->struct_mutex);
2126 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
2127 if (obj == NULL) {
2128 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
2129 args->handle);
2130 mutex_unlock(&dev->struct_mutex);
2131 return -EBADF;
2134 obj_priv = obj->driver_private;
2135 args->busy = obj_priv->active;
2137 drm_gem_object_unreference(obj);
2138 mutex_unlock(&dev->struct_mutex);
2139 return 0;
2143 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
2144 struct drm_file *file_priv)
2146 return i915_gem_ring_throttle(dev, file_priv);
2149 int i915_gem_init_object(struct drm_gem_object *obj)
2151 struct drm_i915_gem_object *obj_priv;
2153 obj_priv = drm_calloc(1, sizeof(*obj_priv), DRM_MEM_DRIVER);
2154 if (obj_priv == NULL)
2155 return -ENOMEM;
2158 * We've just allocated pages from the kernel,
2159 * so they've just been written by the CPU with
2160 * zeros. They'll need to be clflushed before we
2161 * use them with the GPU.
2163 obj->write_domain = I915_GEM_DOMAIN_CPU;
2164 obj->read_domains = I915_GEM_DOMAIN_CPU;
2166 obj_priv->agp_type = AGP_USER_MEMORY;
2168 obj->driver_private = obj_priv;
2169 obj_priv->obj = obj;
2170 INIT_LIST_HEAD(&obj_priv->list);
2171 return 0;
2174 void i915_gem_free_object(struct drm_gem_object *obj)
2176 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2178 while (obj_priv->pin_count > 0)
2179 i915_gem_object_unpin(obj);
2181 i915_gem_object_unbind(obj);
2183 drm_free(obj_priv->page_cpu_valid, 1, DRM_MEM_DRIVER);
2184 drm_free(obj->driver_private, 1, DRM_MEM_DRIVER);
2187 static int
2188 i915_gem_set_domain(struct drm_gem_object *obj,
2189 struct drm_file *file_priv,
2190 uint32_t read_domains,
2191 uint32_t write_domain)
2193 struct drm_device *dev = obj->dev;
2194 int ret;
2195 uint32_t flush_domains;
2197 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
2199 ret = i915_gem_object_set_domain(obj, read_domains, write_domain);
2200 if (ret)
2201 return ret;
2202 flush_domains = i915_gem_dev_set_domain(obj->dev);
2204 if (flush_domains & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT))
2205 (void) i915_add_request(dev, flush_domains);
2207 return 0;
2210 /** Unbinds all objects that are on the given buffer list. */
2211 static int
2212 i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
2214 struct drm_gem_object *obj;
2215 struct drm_i915_gem_object *obj_priv;
2216 int ret;
2218 while (!list_empty(head)) {
2219 obj_priv = list_first_entry(head,
2220 struct drm_i915_gem_object,
2221 list);
2222 obj = obj_priv->obj;
2224 if (obj_priv->pin_count != 0) {
2225 DRM_ERROR("Pinned object in unbind list\n");
2226 mutex_unlock(&dev->struct_mutex);
2227 return -EINVAL;
2230 ret = i915_gem_object_unbind(obj);
2231 if (ret != 0) {
2232 DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
2233 ret);
2234 mutex_unlock(&dev->struct_mutex);
2235 return ret;
2240 return 0;
2243 static int
2244 i915_gem_idle(struct drm_device *dev)
2246 drm_i915_private_t *dev_priv = dev->dev_private;
2247 uint32_t seqno, cur_seqno, last_seqno;
2248 int stuck, ret;
2250 mutex_lock(&dev->struct_mutex);
2252 if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
2253 mutex_unlock(&dev->struct_mutex);
2254 return 0;
2257 /* Hack! Don't let anybody do execbuf while we don't control the chip.
2258 * We need to replace this with a semaphore, or something.
2260 dev_priv->mm.suspended = 1;
2262 /* Cancel the retire work handler, wait for it to finish if running
2264 mutex_unlock(&dev->struct_mutex);
2265 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
2266 mutex_lock(&dev->struct_mutex);
2268 i915_kernel_lost_context(dev);
2270 /* Flush the GPU along with all non-CPU write domains
2272 i915_gem_flush(dev, ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT),
2273 ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
2274 seqno = i915_add_request(dev, ~(I915_GEM_DOMAIN_CPU |
2275 I915_GEM_DOMAIN_GTT));
2277 if (seqno == 0) {
2278 mutex_unlock(&dev->struct_mutex);
2279 return -ENOMEM;
2282 dev_priv->mm.waiting_gem_seqno = seqno;
2283 last_seqno = 0;
2284 stuck = 0;
2285 for (;;) {
2286 cur_seqno = i915_get_gem_seqno(dev);
2287 if (i915_seqno_passed(cur_seqno, seqno))
2288 break;
2289 if (last_seqno == cur_seqno) {
2290 if (stuck++ > 100) {
2291 DRM_ERROR("hardware wedged\n");
2292 dev_priv->mm.wedged = 1;
2293 DRM_WAKEUP(&dev_priv->irq_queue);
2294 break;
2297 msleep(10);
2298 last_seqno = cur_seqno;
2300 dev_priv->mm.waiting_gem_seqno = 0;
2302 i915_gem_retire_requests(dev);
2304 if (!dev_priv->mm.wedged) {
2305 /* Active and flushing should now be empty as we've
2306 * waited for a sequence higher than any pending execbuffer
2308 WARN_ON(!list_empty(&dev_priv->mm.active_list));
2309 WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
2310 /* Request should now be empty as we've also waited
2311 * for the last request in the list
2313 WARN_ON(!list_empty(&dev_priv->mm.request_list));
2316 /* Empty the active and flushing lists to inactive. If there's
2317 * anything left at this point, it means that we're wedged and
2318 * nothing good's going to happen by leaving them there. So strip
2319 * the GPU domains and just stuff them onto inactive.
2321 while (!list_empty(&dev_priv->mm.active_list)) {
2322 struct drm_i915_gem_object *obj_priv;
2324 obj_priv = list_first_entry(&dev_priv->mm.active_list,
2325 struct drm_i915_gem_object,
2326 list);
2327 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
2328 i915_gem_object_move_to_inactive(obj_priv->obj);
2331 while (!list_empty(&dev_priv->mm.flushing_list)) {
2332 struct drm_i915_gem_object *obj_priv;
2334 obj_priv = list_first_entry(&dev_priv->mm.active_list,
2335 struct drm_i915_gem_object,
2336 list);
2337 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
2338 i915_gem_object_move_to_inactive(obj_priv->obj);
2342 /* Move all inactive buffers out of the GTT. */
2343 ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
2344 WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
2345 if (ret) {
2346 mutex_unlock(&dev->struct_mutex);
2347 return ret;
2350 i915_gem_cleanup_ringbuffer(dev);
2351 mutex_unlock(&dev->struct_mutex);
2353 return 0;
2356 static int
2357 i915_gem_init_hws(struct drm_device *dev)
2359 drm_i915_private_t *dev_priv = dev->dev_private;
2360 struct drm_gem_object *obj;
2361 struct drm_i915_gem_object *obj_priv;
2362 int ret;
2364 /* If we need a physical address for the status page, it's already
2365 * initialized at driver load time.
2367 if (!I915_NEED_GFX_HWS(dev))
2368 return 0;
2370 obj = drm_gem_object_alloc(dev, 4096);
2371 if (obj == NULL) {
2372 DRM_ERROR("Failed to allocate status page\n");
2373 return -ENOMEM;
2375 obj_priv = obj->driver_private;
2376 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
2378 ret = i915_gem_object_pin(obj, 4096);
2379 if (ret != 0) {
2380 drm_gem_object_unreference(obj);
2381 return ret;
2384 dev_priv->status_gfx_addr = obj_priv->gtt_offset;
2386 dev_priv->hw_status_page = kmap(obj_priv->page_list[0]);
2387 if (dev_priv->hw_status_page == NULL) {
2388 DRM_ERROR("Failed to map status page.\n");
2389 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
2390 drm_gem_object_unreference(obj);
2391 return -EINVAL;
2393 dev_priv->hws_obj = obj;
2394 memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
2395 I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
2396 I915_READ(HWS_PGA); /* posting read */
2397 DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
2399 return 0;
2402 static int
2403 i915_gem_init_ringbuffer(struct drm_device *dev)
2405 drm_i915_private_t *dev_priv = dev->dev_private;
2406 struct drm_gem_object *obj;
2407 struct drm_i915_gem_object *obj_priv;
2408 int ret;
2409 u32 head;
2411 ret = i915_gem_init_hws(dev);
2412 if (ret != 0)
2413 return ret;
2415 obj = drm_gem_object_alloc(dev, 128 * 1024);
2416 if (obj == NULL) {
2417 DRM_ERROR("Failed to allocate ringbuffer\n");
2418 return -ENOMEM;
2420 obj_priv = obj->driver_private;
2422 ret = i915_gem_object_pin(obj, 4096);
2423 if (ret != 0) {
2424 drm_gem_object_unreference(obj);
2425 return ret;
2428 /* Set up the kernel mapping for the ring. */
2429 dev_priv->ring.Size = obj->size;
2430 dev_priv->ring.tail_mask = obj->size - 1;
2432 dev_priv->ring.map.offset = dev->agp->base + obj_priv->gtt_offset;
2433 dev_priv->ring.map.size = obj->size;
2434 dev_priv->ring.map.type = 0;
2435 dev_priv->ring.map.flags = 0;
2436 dev_priv->ring.map.mtrr = 0;
2438 drm_core_ioremap_wc(&dev_priv->ring.map, dev);
2439 if (dev_priv->ring.map.handle == NULL) {
2440 DRM_ERROR("Failed to map ringbuffer.\n");
2441 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
2442 drm_gem_object_unreference(obj);
2443 return -EINVAL;
2445 dev_priv->ring.ring_obj = obj;
2446 dev_priv->ring.virtual_start = dev_priv->ring.map.handle;
2448 /* Stop the ring if it's running. */
2449 I915_WRITE(PRB0_CTL, 0);
2450 I915_WRITE(PRB0_TAIL, 0);
2451 I915_WRITE(PRB0_HEAD, 0);
2453 /* Initialize the ring. */
2454 I915_WRITE(PRB0_START, obj_priv->gtt_offset);
2455 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
2457 /* G45 ring initialization fails to reset head to zero */
2458 if (head != 0) {
2459 DRM_ERROR("Ring head not reset to zero "
2460 "ctl %08x head %08x tail %08x start %08x\n",
2461 I915_READ(PRB0_CTL),
2462 I915_READ(PRB0_HEAD),
2463 I915_READ(PRB0_TAIL),
2464 I915_READ(PRB0_START));
2465 I915_WRITE(PRB0_HEAD, 0);
2467 DRM_ERROR("Ring head forced to zero "
2468 "ctl %08x head %08x tail %08x start %08x\n",
2469 I915_READ(PRB0_CTL),
2470 I915_READ(PRB0_HEAD),
2471 I915_READ(PRB0_TAIL),
2472 I915_READ(PRB0_START));
2475 I915_WRITE(PRB0_CTL,
2476 ((obj->size - 4096) & RING_NR_PAGES) |
2477 RING_NO_REPORT |
2478 RING_VALID);
2480 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
2482 /* If the head is still not zero, the ring is dead */
2483 if (head != 0) {
2484 DRM_ERROR("Ring initialization failed "
2485 "ctl %08x head %08x tail %08x start %08x\n",
2486 I915_READ(PRB0_CTL),
2487 I915_READ(PRB0_HEAD),
2488 I915_READ(PRB0_TAIL),
2489 I915_READ(PRB0_START));
2490 return -EIO;
2493 /* Update our cache of the ring state */
2494 i915_kernel_lost_context(dev);
2496 return 0;
2499 static void
2500 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
2502 drm_i915_private_t *dev_priv = dev->dev_private;
2504 if (dev_priv->ring.ring_obj == NULL)
2505 return;
2507 drm_core_ioremapfree(&dev_priv->ring.map, dev);
2509 i915_gem_object_unpin(dev_priv->ring.ring_obj);
2510 drm_gem_object_unreference(dev_priv->ring.ring_obj);
2511 dev_priv->ring.ring_obj = NULL;
2512 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
2514 if (dev_priv->hws_obj != NULL) {
2515 struct drm_gem_object *obj = dev_priv->hws_obj;
2516 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2518 kunmap(obj_priv->page_list[0]);
2519 i915_gem_object_unpin(obj);
2520 drm_gem_object_unreference(obj);
2521 dev_priv->hws_obj = NULL;
2522 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
2523 dev_priv->hw_status_page = NULL;
2525 /* Write high address into HWS_PGA when disabling. */
2526 I915_WRITE(HWS_PGA, 0x1ffff000);
2531 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
2532 struct drm_file *file_priv)
2534 drm_i915_private_t *dev_priv = dev->dev_private;
2535 int ret;
2537 if (dev_priv->mm.wedged) {
2538 DRM_ERROR("Reenabling wedged hardware, good luck\n");
2539 dev_priv->mm.wedged = 0;
2542 ret = i915_gem_init_ringbuffer(dev);
2543 if (ret != 0)
2544 return ret;
2546 dev_priv->mm.gtt_mapping = io_mapping_create_wc(dev->agp->base,
2547 dev->agp->agp_info.aper_size
2548 * 1024 * 1024);
2550 mutex_lock(&dev->struct_mutex);
2551 BUG_ON(!list_empty(&dev_priv->mm.active_list));
2552 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
2553 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
2554 BUG_ON(!list_empty(&dev_priv->mm.request_list));
2555 dev_priv->mm.suspended = 0;
2556 mutex_unlock(&dev->struct_mutex);
2558 drm_irq_install(dev);
2560 return 0;
2564 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
2565 struct drm_file *file_priv)
2567 drm_i915_private_t *dev_priv = dev->dev_private;
2568 int ret;
2570 ret = i915_gem_idle(dev);
2571 drm_irq_uninstall(dev);
2573 io_mapping_free(dev_priv->mm.gtt_mapping);
2574 return ret;
2577 void
2578 i915_gem_lastclose(struct drm_device *dev)
2580 int ret;
2582 ret = i915_gem_idle(dev);
2583 if (ret)
2584 DRM_ERROR("failed to idle hardware: %d\n", ret);
2587 void
2588 i915_gem_load(struct drm_device *dev)
2590 drm_i915_private_t *dev_priv = dev->dev_private;
2592 INIT_LIST_HEAD(&dev_priv->mm.active_list);
2593 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
2594 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
2595 INIT_LIST_HEAD(&dev_priv->mm.request_list);
2596 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
2597 i915_gem_retire_work_handler);
2598 dev_priv->mm.next_gem_seqno = 1;
2600 i915_gem_detect_bit_6_swizzle(dev);