[IA64] make flush_tlb_kernel_range() an inline function
[linux-2.6/linux-2.6-openrd.git] / mm / page-writeback.c
blobd55cfcae2ef1fea2082d28173dd2f94e1e6666ce
1 /*
2 * mm/page-writeback.c
4 * Copyright (C) 2002, Linus Torvalds.
5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
10 * 10Apr2002 akpm@zip.com.au
11 * Initial version
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h>
36 #include <linux/pagevec.h>
39 * The maximum number of pages to writeout in a single bdflush/kupdate
40 * operation. We do this so we don't hold I_SYNC against an inode for
41 * enormous amounts of time, which would block a userspace task which has
42 * been forced to throttle against that inode. Also, the code reevaluates
43 * the dirty each time it has written this many pages.
45 #define MAX_WRITEBACK_PAGES 1024
48 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
49 * will look to see if it needs to force writeback or throttling.
51 static long ratelimit_pages = 32;
54 * When balance_dirty_pages decides that the caller needs to perform some
55 * non-background writeback, this is how many pages it will attempt to write.
56 * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably
57 * large amounts of I/O are submitted.
59 static inline long sync_writeback_pages(void)
61 return ratelimit_pages + ratelimit_pages / 2;
64 /* The following parameters are exported via /proc/sys/vm */
67 * Start background writeback (via pdflush) at this percentage
69 int dirty_background_ratio = 5;
72 * The generator of dirty data starts writeback at this percentage
74 int vm_dirty_ratio = 10;
77 * The interval between `kupdate'-style writebacks, in jiffies
79 int dirty_writeback_interval = 5 * HZ;
82 * The longest number of jiffies for which data is allowed to remain dirty
84 int dirty_expire_interval = 30 * HZ;
87 * Flag that makes the machine dump writes/reads and block dirtyings.
89 int block_dump;
92 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
93 * a full sync is triggered after this time elapses without any disk activity.
95 int laptop_mode;
97 EXPORT_SYMBOL(laptop_mode);
99 /* End of sysctl-exported parameters */
102 static void background_writeout(unsigned long _min_pages);
105 * Scale the writeback cache size proportional to the relative writeout speeds.
107 * We do this by keeping a floating proportion between BDIs, based on page
108 * writeback completions [end_page_writeback()]. Those devices that write out
109 * pages fastest will get the larger share, while the slower will get a smaller
110 * share.
112 * We use page writeout completions because we are interested in getting rid of
113 * dirty pages. Having them written out is the primary goal.
115 * We introduce a concept of time, a period over which we measure these events,
116 * because demand can/will vary over time. The length of this period itself is
117 * measured in page writeback completions.
120 static struct prop_descriptor vm_completions;
121 static struct prop_descriptor vm_dirties;
123 static unsigned long determine_dirtyable_memory(void);
126 * couple the period to the dirty_ratio:
128 * period/2 ~ roundup_pow_of_two(dirty limit)
130 static int calc_period_shift(void)
132 unsigned long dirty_total;
134 dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) / 100;
135 return 2 + ilog2(dirty_total - 1);
139 * update the period when the dirty ratio changes.
141 int dirty_ratio_handler(struct ctl_table *table, int write,
142 struct file *filp, void __user *buffer, size_t *lenp,
143 loff_t *ppos)
145 int old_ratio = vm_dirty_ratio;
146 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
147 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
148 int shift = calc_period_shift();
149 prop_change_shift(&vm_completions, shift);
150 prop_change_shift(&vm_dirties, shift);
152 return ret;
156 * Increment the BDI's writeout completion count and the global writeout
157 * completion count. Called from test_clear_page_writeback().
159 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
161 __prop_inc_percpu(&vm_completions, &bdi->completions);
164 static inline void task_dirty_inc(struct task_struct *tsk)
166 prop_inc_single(&vm_dirties, &tsk->dirties);
170 * Obtain an accurate fraction of the BDI's portion.
172 static void bdi_writeout_fraction(struct backing_dev_info *bdi,
173 long *numerator, long *denominator)
175 if (bdi_cap_writeback_dirty(bdi)) {
176 prop_fraction_percpu(&vm_completions, &bdi->completions,
177 numerator, denominator);
178 } else {
179 *numerator = 0;
180 *denominator = 1;
185 * Clip the earned share of dirty pages to that which is actually available.
186 * This avoids exceeding the total dirty_limit when the floating averages
187 * fluctuate too quickly.
189 static void
190 clip_bdi_dirty_limit(struct backing_dev_info *bdi, long dirty, long *pbdi_dirty)
192 long avail_dirty;
194 avail_dirty = dirty -
195 (global_page_state(NR_FILE_DIRTY) +
196 global_page_state(NR_WRITEBACK) +
197 global_page_state(NR_UNSTABLE_NFS));
199 if (avail_dirty < 0)
200 avail_dirty = 0;
202 avail_dirty += bdi_stat(bdi, BDI_RECLAIMABLE) +
203 bdi_stat(bdi, BDI_WRITEBACK);
205 *pbdi_dirty = min(*pbdi_dirty, avail_dirty);
208 static inline void task_dirties_fraction(struct task_struct *tsk,
209 long *numerator, long *denominator)
211 prop_fraction_single(&vm_dirties, &tsk->dirties,
212 numerator, denominator);
216 * scale the dirty limit
218 * task specific dirty limit:
220 * dirty -= (dirty/8) * p_{t}
222 void task_dirty_limit(struct task_struct *tsk, long *pdirty)
224 long numerator, denominator;
225 long dirty = *pdirty;
226 u64 inv = dirty >> 3;
228 task_dirties_fraction(tsk, &numerator, &denominator);
229 inv *= numerator;
230 do_div(inv, denominator);
232 dirty -= inv;
233 if (dirty < *pdirty/2)
234 dirty = *pdirty/2;
236 *pdirty = dirty;
240 * Work out the current dirty-memory clamping and background writeout
241 * thresholds.
243 * The main aim here is to lower them aggressively if there is a lot of mapped
244 * memory around. To avoid stressing page reclaim with lots of unreclaimable
245 * pages. It is better to clamp down on writers than to start swapping, and
246 * performing lots of scanning.
248 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
250 * We don't permit the clamping level to fall below 5% - that is getting rather
251 * excessive.
253 * We make sure that the background writeout level is below the adjusted
254 * clamping level.
257 static unsigned long highmem_dirtyable_memory(unsigned long total)
259 #ifdef CONFIG_HIGHMEM
260 int node;
261 unsigned long x = 0;
263 for_each_node_state(node, N_HIGH_MEMORY) {
264 struct zone *z =
265 &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
267 x += zone_page_state(z, NR_FREE_PAGES)
268 + zone_page_state(z, NR_INACTIVE)
269 + zone_page_state(z, NR_ACTIVE);
272 * Make sure that the number of highmem pages is never larger
273 * than the number of the total dirtyable memory. This can only
274 * occur in very strange VM situations but we want to make sure
275 * that this does not occur.
277 return min(x, total);
278 #else
279 return 0;
280 #endif
283 static unsigned long determine_dirtyable_memory(void)
285 unsigned long x;
287 x = global_page_state(NR_FREE_PAGES)
288 + global_page_state(NR_INACTIVE)
289 + global_page_state(NR_ACTIVE);
290 x -= highmem_dirtyable_memory(x);
291 return x + 1; /* Ensure that we never return 0 */
294 static void
295 get_dirty_limits(long *pbackground, long *pdirty, long *pbdi_dirty,
296 struct backing_dev_info *bdi)
298 int background_ratio; /* Percentages */
299 int dirty_ratio;
300 long background;
301 long dirty;
302 unsigned long available_memory = determine_dirtyable_memory();
303 struct task_struct *tsk;
305 dirty_ratio = vm_dirty_ratio;
306 if (dirty_ratio < 5)
307 dirty_ratio = 5;
309 background_ratio = dirty_background_ratio;
310 if (background_ratio >= dirty_ratio)
311 background_ratio = dirty_ratio / 2;
313 background = (background_ratio * available_memory) / 100;
314 dirty = (dirty_ratio * available_memory) / 100;
315 tsk = current;
316 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
317 background += background / 4;
318 dirty += dirty / 4;
320 *pbackground = background;
321 *pdirty = dirty;
323 if (bdi) {
324 u64 bdi_dirty = dirty;
325 long numerator, denominator;
328 * Calculate this BDI's share of the dirty ratio.
330 bdi_writeout_fraction(bdi, &numerator, &denominator);
332 bdi_dirty *= numerator;
333 do_div(bdi_dirty, denominator);
335 *pbdi_dirty = bdi_dirty;
336 clip_bdi_dirty_limit(bdi, dirty, pbdi_dirty);
337 task_dirty_limit(current, pbdi_dirty);
342 * balance_dirty_pages() must be called by processes which are generating dirty
343 * data. It looks at the number of dirty pages in the machine and will force
344 * the caller to perform writeback if the system is over `vm_dirty_ratio'.
345 * If we're over `background_thresh' then pdflush is woken to perform some
346 * writeout.
348 static void balance_dirty_pages(struct address_space *mapping)
350 long nr_reclaimable, bdi_nr_reclaimable;
351 long nr_writeback, bdi_nr_writeback;
352 long background_thresh;
353 long dirty_thresh;
354 long bdi_thresh;
355 unsigned long pages_written = 0;
356 unsigned long write_chunk = sync_writeback_pages();
358 struct backing_dev_info *bdi = mapping->backing_dev_info;
360 for (;;) {
361 struct writeback_control wbc = {
362 .bdi = bdi,
363 .sync_mode = WB_SYNC_NONE,
364 .older_than_this = NULL,
365 .nr_to_write = write_chunk,
366 .range_cyclic = 1,
369 get_dirty_limits(&background_thresh, &dirty_thresh,
370 &bdi_thresh, bdi);
372 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
373 global_page_state(NR_UNSTABLE_NFS);
374 nr_writeback = global_page_state(NR_WRITEBACK);
376 bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
377 bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
379 if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
380 break;
383 * Throttle it only when the background writeback cannot
384 * catch-up. This avoids (excessively) small writeouts
385 * when the bdi limits are ramping up.
387 if (nr_reclaimable + nr_writeback <
388 (background_thresh + dirty_thresh) / 2)
389 break;
391 if (!bdi->dirty_exceeded)
392 bdi->dirty_exceeded = 1;
394 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
395 * Unstable writes are a feature of certain networked
396 * filesystems (i.e. NFS) in which data may have been
397 * written to the server's write cache, but has not yet
398 * been flushed to permanent storage.
400 if (bdi_nr_reclaimable) {
401 writeback_inodes(&wbc);
402 pages_written += write_chunk - wbc.nr_to_write;
403 get_dirty_limits(&background_thresh, &dirty_thresh,
404 &bdi_thresh, bdi);
408 * In order to avoid the stacked BDI deadlock we need
409 * to ensure we accurately count the 'dirty' pages when
410 * the threshold is low.
412 * Otherwise it would be possible to get thresh+n pages
413 * reported dirty, even though there are thresh-m pages
414 * actually dirty; with m+n sitting in the percpu
415 * deltas.
417 if (bdi_thresh < 2*bdi_stat_error(bdi)) {
418 bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
419 bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK);
420 } else if (bdi_nr_reclaimable) {
421 bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
422 bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
425 if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
426 break;
427 if (pages_written >= write_chunk)
428 break; /* We've done our duty */
430 congestion_wait(WRITE, HZ/10);
433 if (bdi_nr_reclaimable + bdi_nr_writeback < bdi_thresh &&
434 bdi->dirty_exceeded)
435 bdi->dirty_exceeded = 0;
437 if (writeback_in_progress(bdi))
438 return; /* pdflush is already working this queue */
441 * In laptop mode, we wait until hitting the higher threshold before
442 * starting background writeout, and then write out all the way down
443 * to the lower threshold. So slow writers cause minimal disk activity.
445 * In normal mode, we start background writeout at the lower
446 * background_thresh, to keep the amount of dirty memory low.
448 if ((laptop_mode && pages_written) ||
449 (!laptop_mode && (global_page_state(NR_FILE_DIRTY)
450 + global_page_state(NR_UNSTABLE_NFS)
451 > background_thresh)))
452 pdflush_operation(background_writeout, 0);
455 void set_page_dirty_balance(struct page *page, int page_mkwrite)
457 if (set_page_dirty(page) || page_mkwrite) {
458 struct address_space *mapping = page_mapping(page);
460 if (mapping)
461 balance_dirty_pages_ratelimited(mapping);
466 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
467 * @mapping: address_space which was dirtied
468 * @nr_pages_dirtied: number of pages which the caller has just dirtied
470 * Processes which are dirtying memory should call in here once for each page
471 * which was newly dirtied. The function will periodically check the system's
472 * dirty state and will initiate writeback if needed.
474 * On really big machines, get_writeback_state is expensive, so try to avoid
475 * calling it too often (ratelimiting). But once we're over the dirty memory
476 * limit we decrease the ratelimiting by a lot, to prevent individual processes
477 * from overshooting the limit by (ratelimit_pages) each.
479 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
480 unsigned long nr_pages_dirtied)
482 static DEFINE_PER_CPU(unsigned long, ratelimits) = 0;
483 unsigned long ratelimit;
484 unsigned long *p;
486 ratelimit = ratelimit_pages;
487 if (mapping->backing_dev_info->dirty_exceeded)
488 ratelimit = 8;
491 * Check the rate limiting. Also, we do not want to throttle real-time
492 * tasks in balance_dirty_pages(). Period.
494 preempt_disable();
495 p = &__get_cpu_var(ratelimits);
496 *p += nr_pages_dirtied;
497 if (unlikely(*p >= ratelimit)) {
498 *p = 0;
499 preempt_enable();
500 balance_dirty_pages(mapping);
501 return;
503 preempt_enable();
505 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
507 void throttle_vm_writeout(gfp_t gfp_mask)
509 long background_thresh;
510 long dirty_thresh;
512 for ( ; ; ) {
513 get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
516 * Boost the allowable dirty threshold a bit for page
517 * allocators so they don't get DoS'ed by heavy writers
519 dirty_thresh += dirty_thresh / 10; /* wheeee... */
521 if (global_page_state(NR_UNSTABLE_NFS) +
522 global_page_state(NR_WRITEBACK) <= dirty_thresh)
523 break;
524 congestion_wait(WRITE, HZ/10);
527 * The caller might hold locks which can prevent IO completion
528 * or progress in the filesystem. So we cannot just sit here
529 * waiting for IO to complete.
531 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
532 break;
537 * writeback at least _min_pages, and keep writing until the amount of dirty
538 * memory is less than the background threshold, or until we're all clean.
540 static void background_writeout(unsigned long _min_pages)
542 long min_pages = _min_pages;
543 struct writeback_control wbc = {
544 .bdi = NULL,
545 .sync_mode = WB_SYNC_NONE,
546 .older_than_this = NULL,
547 .nr_to_write = 0,
548 .nonblocking = 1,
549 .range_cyclic = 1,
552 for ( ; ; ) {
553 long background_thresh;
554 long dirty_thresh;
556 get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
557 if (global_page_state(NR_FILE_DIRTY) +
558 global_page_state(NR_UNSTABLE_NFS) < background_thresh
559 && min_pages <= 0)
560 break;
561 wbc.more_io = 0;
562 wbc.encountered_congestion = 0;
563 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
564 wbc.pages_skipped = 0;
565 writeback_inodes(&wbc);
566 min_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
567 if (wbc.nr_to_write > 0 || wbc.pages_skipped > 0) {
568 /* Wrote less than expected */
569 if (wbc.encountered_congestion || wbc.more_io)
570 congestion_wait(WRITE, HZ/10);
571 else
572 break;
578 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
579 * the whole world. Returns 0 if a pdflush thread was dispatched. Returns
580 * -1 if all pdflush threads were busy.
582 int wakeup_pdflush(long nr_pages)
584 if (nr_pages == 0)
585 nr_pages = global_page_state(NR_FILE_DIRTY) +
586 global_page_state(NR_UNSTABLE_NFS);
587 return pdflush_operation(background_writeout, nr_pages);
590 static void wb_timer_fn(unsigned long unused);
591 static void laptop_timer_fn(unsigned long unused);
593 static DEFINE_TIMER(wb_timer, wb_timer_fn, 0, 0);
594 static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0);
597 * Periodic writeback of "old" data.
599 * Define "old": the first time one of an inode's pages is dirtied, we mark the
600 * dirtying-time in the inode's address_space. So this periodic writeback code
601 * just walks the superblock inode list, writing back any inodes which are
602 * older than a specific point in time.
604 * Try to run once per dirty_writeback_interval. But if a writeback event
605 * takes longer than a dirty_writeback_interval interval, then leave a
606 * one-second gap.
608 * older_than_this takes precedence over nr_to_write. So we'll only write back
609 * all dirty pages if they are all attached to "old" mappings.
611 static void wb_kupdate(unsigned long arg)
613 unsigned long oldest_jif;
614 unsigned long start_jif;
615 unsigned long next_jif;
616 long nr_to_write;
617 struct writeback_control wbc = {
618 .bdi = NULL,
619 .sync_mode = WB_SYNC_NONE,
620 .older_than_this = &oldest_jif,
621 .nr_to_write = 0,
622 .nonblocking = 1,
623 .for_kupdate = 1,
624 .range_cyclic = 1,
627 sync_supers();
629 oldest_jif = jiffies - dirty_expire_interval;
630 start_jif = jiffies;
631 next_jif = start_jif + dirty_writeback_interval;
632 nr_to_write = global_page_state(NR_FILE_DIRTY) +
633 global_page_state(NR_UNSTABLE_NFS) +
634 (inodes_stat.nr_inodes - inodes_stat.nr_unused);
635 while (nr_to_write > 0) {
636 wbc.more_io = 0;
637 wbc.encountered_congestion = 0;
638 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
639 writeback_inodes(&wbc);
640 if (wbc.nr_to_write > 0) {
641 if (wbc.encountered_congestion || wbc.more_io)
642 congestion_wait(WRITE, HZ/10);
643 else
644 break; /* All the old data is written */
646 nr_to_write -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
648 if (time_before(next_jif, jiffies + HZ))
649 next_jif = jiffies + HZ;
650 if (dirty_writeback_interval)
651 mod_timer(&wb_timer, next_jif);
655 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
657 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
658 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
660 proc_dointvec_userhz_jiffies(table, write, file, buffer, length, ppos);
661 if (dirty_writeback_interval)
662 mod_timer(&wb_timer, jiffies + dirty_writeback_interval);
663 else
664 del_timer(&wb_timer);
665 return 0;
668 static void wb_timer_fn(unsigned long unused)
670 if (pdflush_operation(wb_kupdate, 0) < 0)
671 mod_timer(&wb_timer, jiffies + HZ); /* delay 1 second */
674 static void laptop_flush(unsigned long unused)
676 sys_sync();
679 static void laptop_timer_fn(unsigned long unused)
681 pdflush_operation(laptop_flush, 0);
685 * We've spun up the disk and we're in laptop mode: schedule writeback
686 * of all dirty data a few seconds from now. If the flush is already scheduled
687 * then push it back - the user is still using the disk.
689 void laptop_io_completion(void)
691 mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode);
695 * We're in laptop mode and we've just synced. The sync's writes will have
696 * caused another writeback to be scheduled by laptop_io_completion.
697 * Nothing needs to be written back anymore, so we unschedule the writeback.
699 void laptop_sync_completion(void)
701 del_timer(&laptop_mode_wb_timer);
705 * If ratelimit_pages is too high then we can get into dirty-data overload
706 * if a large number of processes all perform writes at the same time.
707 * If it is too low then SMP machines will call the (expensive)
708 * get_writeback_state too often.
710 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
711 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
712 * thresholds before writeback cuts in.
714 * But the limit should not be set too high. Because it also controls the
715 * amount of memory which the balance_dirty_pages() caller has to write back.
716 * If this is too large then the caller will block on the IO queue all the
717 * time. So limit it to four megabytes - the balance_dirty_pages() caller
718 * will write six megabyte chunks, max.
721 void writeback_set_ratelimit(void)
723 ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
724 if (ratelimit_pages < 16)
725 ratelimit_pages = 16;
726 if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
727 ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
730 static int __cpuinit
731 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
733 writeback_set_ratelimit();
734 return NOTIFY_DONE;
737 static struct notifier_block __cpuinitdata ratelimit_nb = {
738 .notifier_call = ratelimit_handler,
739 .next = NULL,
743 * Called early on to tune the page writeback dirty limits.
745 * We used to scale dirty pages according to how total memory
746 * related to pages that could be allocated for buffers (by
747 * comparing nr_free_buffer_pages() to vm_total_pages.
749 * However, that was when we used "dirty_ratio" to scale with
750 * all memory, and we don't do that any more. "dirty_ratio"
751 * is now applied to total non-HIGHPAGE memory (by subtracting
752 * totalhigh_pages from vm_total_pages), and as such we can't
753 * get into the old insane situation any more where we had
754 * large amounts of dirty pages compared to a small amount of
755 * non-HIGHMEM memory.
757 * But we might still want to scale the dirty_ratio by how
758 * much memory the box has..
760 void __init page_writeback_init(void)
762 int shift;
764 mod_timer(&wb_timer, jiffies + dirty_writeback_interval);
765 writeback_set_ratelimit();
766 register_cpu_notifier(&ratelimit_nb);
768 shift = calc_period_shift();
769 prop_descriptor_init(&vm_completions, shift);
770 prop_descriptor_init(&vm_dirties, shift);
774 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
775 * @mapping: address space structure to write
776 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
777 * @writepage: function called for each page
778 * @data: data passed to writepage function
780 * If a page is already under I/O, write_cache_pages() skips it, even
781 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
782 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
783 * and msync() need to guarantee that all the data which was dirty at the time
784 * the call was made get new I/O started against them. If wbc->sync_mode is
785 * WB_SYNC_ALL then we were called for data integrity and we must wait for
786 * existing IO to complete.
788 int write_cache_pages(struct address_space *mapping,
789 struct writeback_control *wbc, writepage_t writepage,
790 void *data)
792 struct backing_dev_info *bdi = mapping->backing_dev_info;
793 int ret = 0;
794 int done = 0;
795 struct pagevec pvec;
796 int nr_pages;
797 pgoff_t index;
798 pgoff_t end; /* Inclusive */
799 int scanned = 0;
800 int range_whole = 0;
802 if (wbc->nonblocking && bdi_write_congested(bdi)) {
803 wbc->encountered_congestion = 1;
804 return 0;
807 pagevec_init(&pvec, 0);
808 if (wbc->range_cyclic) {
809 index = mapping->writeback_index; /* Start from prev offset */
810 end = -1;
811 } else {
812 index = wbc->range_start >> PAGE_CACHE_SHIFT;
813 end = wbc->range_end >> PAGE_CACHE_SHIFT;
814 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
815 range_whole = 1;
816 scanned = 1;
818 retry:
819 while (!done && (index <= end) &&
820 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
821 PAGECACHE_TAG_DIRTY,
822 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
823 unsigned i;
825 scanned = 1;
826 for (i = 0; i < nr_pages; i++) {
827 struct page *page = pvec.pages[i];
830 * At this point we hold neither mapping->tree_lock nor
831 * lock on the page itself: the page may be truncated or
832 * invalidated (changing page->mapping to NULL), or even
833 * swizzled back from swapper_space to tmpfs file
834 * mapping
836 lock_page(page);
838 if (unlikely(page->mapping != mapping)) {
839 unlock_page(page);
840 continue;
843 if (!wbc->range_cyclic && page->index > end) {
844 done = 1;
845 unlock_page(page);
846 continue;
849 if (wbc->sync_mode != WB_SYNC_NONE)
850 wait_on_page_writeback(page);
852 if (PageWriteback(page) ||
853 !clear_page_dirty_for_io(page)) {
854 unlock_page(page);
855 continue;
858 ret = (*writepage)(page, wbc, data);
860 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
861 unlock_page(page);
862 ret = 0;
864 if (ret || (--(wbc->nr_to_write) <= 0))
865 done = 1;
866 if (wbc->nonblocking && bdi_write_congested(bdi)) {
867 wbc->encountered_congestion = 1;
868 done = 1;
871 pagevec_release(&pvec);
872 cond_resched();
874 if (!scanned && !done) {
876 * We hit the last page and there is more work to be done: wrap
877 * back to the start of the file
879 scanned = 1;
880 index = 0;
881 goto retry;
883 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
884 mapping->writeback_index = index;
885 return ret;
887 EXPORT_SYMBOL(write_cache_pages);
890 * Function used by generic_writepages to call the real writepage
891 * function and set the mapping flags on error
893 static int __writepage(struct page *page, struct writeback_control *wbc,
894 void *data)
896 struct address_space *mapping = data;
897 int ret = mapping->a_ops->writepage(page, wbc);
898 mapping_set_error(mapping, ret);
899 return ret;
903 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
904 * @mapping: address space structure to write
905 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
907 * This is a library function, which implements the writepages()
908 * address_space_operation.
910 int generic_writepages(struct address_space *mapping,
911 struct writeback_control *wbc)
913 /* deal with chardevs and other special file */
914 if (!mapping->a_ops->writepage)
915 return 0;
917 return write_cache_pages(mapping, wbc, __writepage, mapping);
920 EXPORT_SYMBOL(generic_writepages);
922 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
924 int ret;
926 if (wbc->nr_to_write <= 0)
927 return 0;
928 wbc->for_writepages = 1;
929 if (mapping->a_ops->writepages)
930 ret = mapping->a_ops->writepages(mapping, wbc);
931 else
932 ret = generic_writepages(mapping, wbc);
933 wbc->for_writepages = 0;
934 return ret;
938 * write_one_page - write out a single page and optionally wait on I/O
939 * @page: the page to write
940 * @wait: if true, wait on writeout
942 * The page must be locked by the caller and will be unlocked upon return.
944 * write_one_page() returns a negative error code if I/O failed.
946 int write_one_page(struct page *page, int wait)
948 struct address_space *mapping = page->mapping;
949 int ret = 0;
950 struct writeback_control wbc = {
951 .sync_mode = WB_SYNC_ALL,
952 .nr_to_write = 1,
955 BUG_ON(!PageLocked(page));
957 if (wait)
958 wait_on_page_writeback(page);
960 if (clear_page_dirty_for_io(page)) {
961 page_cache_get(page);
962 ret = mapping->a_ops->writepage(page, &wbc);
963 if (ret == 0 && wait) {
964 wait_on_page_writeback(page);
965 if (PageError(page))
966 ret = -EIO;
968 page_cache_release(page);
969 } else {
970 unlock_page(page);
972 return ret;
974 EXPORT_SYMBOL(write_one_page);
977 * For address_spaces which do not use buffers nor write back.
979 int __set_page_dirty_no_writeback(struct page *page)
981 if (!PageDirty(page))
982 SetPageDirty(page);
983 return 0;
987 * For address_spaces which do not use buffers. Just tag the page as dirty in
988 * its radix tree.
990 * This is also used when a single buffer is being dirtied: we want to set the
991 * page dirty in that case, but not all the buffers. This is a "bottom-up"
992 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
994 * Most callers have locked the page, which pins the address_space in memory.
995 * But zap_pte_range() does not lock the page, however in that case the
996 * mapping is pinned by the vma's ->vm_file reference.
998 * We take care to handle the case where the page was truncated from the
999 * mapping by re-checking page_mapping() inside tree_lock.
1001 int __set_page_dirty_nobuffers(struct page *page)
1003 if (!TestSetPageDirty(page)) {
1004 struct address_space *mapping = page_mapping(page);
1005 struct address_space *mapping2;
1007 if (!mapping)
1008 return 1;
1010 write_lock_irq(&mapping->tree_lock);
1011 mapping2 = page_mapping(page);
1012 if (mapping2) { /* Race with truncate? */
1013 BUG_ON(mapping2 != mapping);
1014 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1015 if (mapping_cap_account_dirty(mapping)) {
1016 __inc_zone_page_state(page, NR_FILE_DIRTY);
1017 __inc_bdi_stat(mapping->backing_dev_info,
1018 BDI_RECLAIMABLE);
1019 task_io_account_write(PAGE_CACHE_SIZE);
1021 radix_tree_tag_set(&mapping->page_tree,
1022 page_index(page), PAGECACHE_TAG_DIRTY);
1024 write_unlock_irq(&mapping->tree_lock);
1025 if (mapping->host) {
1026 /* !PageAnon && !swapper_space */
1027 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1029 return 1;
1031 return 0;
1033 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1036 * When a writepage implementation decides that it doesn't want to write this
1037 * page for some reason, it should redirty the locked page via
1038 * redirty_page_for_writepage() and it should then unlock the page and return 0
1040 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1042 wbc->pages_skipped++;
1043 return __set_page_dirty_nobuffers(page);
1045 EXPORT_SYMBOL(redirty_page_for_writepage);
1048 * If the mapping doesn't provide a set_page_dirty a_op, then
1049 * just fall through and assume that it wants buffer_heads.
1051 static int __set_page_dirty(struct page *page)
1053 struct address_space *mapping = page_mapping(page);
1055 if (likely(mapping)) {
1056 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
1057 #ifdef CONFIG_BLOCK
1058 if (!spd)
1059 spd = __set_page_dirty_buffers;
1060 #endif
1061 return (*spd)(page);
1063 if (!PageDirty(page)) {
1064 if (!TestSetPageDirty(page))
1065 return 1;
1067 return 0;
1070 int fastcall set_page_dirty(struct page *page)
1072 int ret = __set_page_dirty(page);
1073 if (ret)
1074 task_dirty_inc(current);
1075 return ret;
1077 EXPORT_SYMBOL(set_page_dirty);
1080 * set_page_dirty() is racy if the caller has no reference against
1081 * page->mapping->host, and if the page is unlocked. This is because another
1082 * CPU could truncate the page off the mapping and then free the mapping.
1084 * Usually, the page _is_ locked, or the caller is a user-space process which
1085 * holds a reference on the inode by having an open file.
1087 * In other cases, the page should be locked before running set_page_dirty().
1089 int set_page_dirty_lock(struct page *page)
1091 int ret;
1093 lock_page_nosync(page);
1094 ret = set_page_dirty(page);
1095 unlock_page(page);
1096 return ret;
1098 EXPORT_SYMBOL(set_page_dirty_lock);
1101 * Clear a page's dirty flag, while caring for dirty memory accounting.
1102 * Returns true if the page was previously dirty.
1104 * This is for preparing to put the page under writeout. We leave the page
1105 * tagged as dirty in the radix tree so that a concurrent write-for-sync
1106 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
1107 * implementation will run either set_page_writeback() or set_page_dirty(),
1108 * at which stage we bring the page's dirty flag and radix-tree dirty tag
1109 * back into sync.
1111 * This incoherency between the page's dirty flag and radix-tree tag is
1112 * unfortunate, but it only exists while the page is locked.
1114 int clear_page_dirty_for_io(struct page *page)
1116 struct address_space *mapping = page_mapping(page);
1118 BUG_ON(!PageLocked(page));
1120 ClearPageReclaim(page);
1121 if (mapping && mapping_cap_account_dirty(mapping)) {
1123 * Yes, Virginia, this is indeed insane.
1125 * We use this sequence to make sure that
1126 * (a) we account for dirty stats properly
1127 * (b) we tell the low-level filesystem to
1128 * mark the whole page dirty if it was
1129 * dirty in a pagetable. Only to then
1130 * (c) clean the page again and return 1 to
1131 * cause the writeback.
1133 * This way we avoid all nasty races with the
1134 * dirty bit in multiple places and clearing
1135 * them concurrently from different threads.
1137 * Note! Normally the "set_page_dirty(page)"
1138 * has no effect on the actual dirty bit - since
1139 * that will already usually be set. But we
1140 * need the side effects, and it can help us
1141 * avoid races.
1143 * We basically use the page "master dirty bit"
1144 * as a serialization point for all the different
1145 * threads doing their things.
1147 if (page_mkclean(page))
1148 set_page_dirty(page);
1150 * We carefully synchronise fault handlers against
1151 * installing a dirty pte and marking the page dirty
1152 * at this point. We do this by having them hold the
1153 * page lock at some point after installing their
1154 * pte, but before marking the page dirty.
1155 * Pages are always locked coming in here, so we get
1156 * the desired exclusion. See mm/memory.c:do_wp_page()
1157 * for more comments.
1159 if (TestClearPageDirty(page)) {
1160 dec_zone_page_state(page, NR_FILE_DIRTY);
1161 dec_bdi_stat(mapping->backing_dev_info,
1162 BDI_RECLAIMABLE);
1163 return 1;
1165 return 0;
1167 return TestClearPageDirty(page);
1169 EXPORT_SYMBOL(clear_page_dirty_for_io);
1171 int test_clear_page_writeback(struct page *page)
1173 struct address_space *mapping = page_mapping(page);
1174 int ret;
1176 if (mapping) {
1177 struct backing_dev_info *bdi = mapping->backing_dev_info;
1178 unsigned long flags;
1180 write_lock_irqsave(&mapping->tree_lock, flags);
1181 ret = TestClearPageWriteback(page);
1182 if (ret) {
1183 radix_tree_tag_clear(&mapping->page_tree,
1184 page_index(page),
1185 PAGECACHE_TAG_WRITEBACK);
1186 if (bdi_cap_writeback_dirty(bdi)) {
1187 __dec_bdi_stat(bdi, BDI_WRITEBACK);
1188 __bdi_writeout_inc(bdi);
1191 write_unlock_irqrestore(&mapping->tree_lock, flags);
1192 } else {
1193 ret = TestClearPageWriteback(page);
1195 if (ret)
1196 dec_zone_page_state(page, NR_WRITEBACK);
1197 return ret;
1200 int test_set_page_writeback(struct page *page)
1202 struct address_space *mapping = page_mapping(page);
1203 int ret;
1205 if (mapping) {
1206 struct backing_dev_info *bdi = mapping->backing_dev_info;
1207 unsigned long flags;
1209 write_lock_irqsave(&mapping->tree_lock, flags);
1210 ret = TestSetPageWriteback(page);
1211 if (!ret) {
1212 radix_tree_tag_set(&mapping->page_tree,
1213 page_index(page),
1214 PAGECACHE_TAG_WRITEBACK);
1215 if (bdi_cap_writeback_dirty(bdi))
1216 __inc_bdi_stat(bdi, BDI_WRITEBACK);
1218 if (!PageDirty(page))
1219 radix_tree_tag_clear(&mapping->page_tree,
1220 page_index(page),
1221 PAGECACHE_TAG_DIRTY);
1222 write_unlock_irqrestore(&mapping->tree_lock, flags);
1223 } else {
1224 ret = TestSetPageWriteback(page);
1226 if (!ret)
1227 inc_zone_page_state(page, NR_WRITEBACK);
1228 return ret;
1231 EXPORT_SYMBOL(test_set_page_writeback);
1234 * Return true if any of the pages in the mapping are marked with the
1235 * passed tag.
1237 int mapping_tagged(struct address_space *mapping, int tag)
1239 int ret;
1240 rcu_read_lock();
1241 ret = radix_tree_tagged(&mapping->page_tree, tag);
1242 rcu_read_unlock();
1243 return ret;
1245 EXPORT_SYMBOL(mapping_tagged);