[Bluetooth] Add missing stat.byte_rx counter modification
[linux-2.6/linux-2.6-openrd.git] / drivers / scsi / imm.c
blob005d2b05f32d2fbbec6dc50b54f0cff850cd2808
1 /* imm.c -- low level driver for the IOMEGA MatchMaker
2 * parallel port SCSI host adapter.
3 *
4 * (The IMM is the embedded controller in the ZIP Plus drive.)
5 *
6 * My unoffical company acronym list is 21 pages long:
7 * FLA: Four letter acronym with built in facility for
8 * future expansion to five letters.
9 */
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/blkdev.h>
15 #include <linux/parport.h>
16 #include <linux/workqueue.h>
17 #include <linux/delay.h>
18 #include <asm/io.h>
20 #include <scsi/scsi.h>
21 #include <scsi/scsi_cmnd.h>
22 #include <scsi/scsi_device.h>
23 #include <scsi/scsi_host.h>
25 /* The following #define is to avoid a clash with hosts.c */
26 #define IMM_PROBE_SPP 0x0001
27 #define IMM_PROBE_PS2 0x0002
28 #define IMM_PROBE_ECR 0x0010
29 #define IMM_PROBE_EPP17 0x0100
30 #define IMM_PROBE_EPP19 0x0200
33 typedef struct {
34 struct pardevice *dev; /* Parport device entry */
35 int base; /* Actual port address */
36 int base_hi; /* Hi Base address for ECP-ISA chipset */
37 int mode; /* Transfer mode */
38 struct scsi_cmnd *cur_cmd; /* Current queued command */
39 struct delayed_work imm_tq; /* Polling interrupt stuff */
40 unsigned long jstart; /* Jiffies at start */
41 unsigned failed:1; /* Failure flag */
42 unsigned dp:1; /* Data phase present */
43 unsigned rd:1; /* Read data in data phase */
44 unsigned wanted:1; /* Parport sharing busy flag */
45 wait_queue_head_t *waiting;
46 struct Scsi_Host *host;
47 struct list_head list;
48 } imm_struct;
50 static void imm_reset_pulse(unsigned int base);
51 static int device_check(imm_struct *dev);
53 #include "imm.h"
55 static inline imm_struct *imm_dev(struct Scsi_Host *host)
57 return *(imm_struct **)&host->hostdata;
60 static DEFINE_SPINLOCK(arbitration_lock);
62 static void got_it(imm_struct *dev)
64 dev->base = dev->dev->port->base;
65 if (dev->cur_cmd)
66 dev->cur_cmd->SCp.phase = 1;
67 else
68 wake_up(dev->waiting);
71 static void imm_wakeup(void *ref)
73 imm_struct *dev = (imm_struct *) ref;
74 unsigned long flags;
76 spin_lock_irqsave(&arbitration_lock, flags);
77 if (dev->wanted) {
78 parport_claim(dev->dev);
79 got_it(dev);
80 dev->wanted = 0;
82 spin_unlock_irqrestore(&arbitration_lock, flags);
85 static int imm_pb_claim(imm_struct *dev)
87 unsigned long flags;
88 int res = 1;
89 spin_lock_irqsave(&arbitration_lock, flags);
90 if (parport_claim(dev->dev) == 0) {
91 got_it(dev);
92 res = 0;
94 dev->wanted = res;
95 spin_unlock_irqrestore(&arbitration_lock, flags);
96 return res;
99 static void imm_pb_dismiss(imm_struct *dev)
101 unsigned long flags;
102 int wanted;
103 spin_lock_irqsave(&arbitration_lock, flags);
104 wanted = dev->wanted;
105 dev->wanted = 0;
106 spin_unlock_irqrestore(&arbitration_lock, flags);
107 if (!wanted)
108 parport_release(dev->dev);
111 static inline void imm_pb_release(imm_struct *dev)
113 parport_release(dev->dev);
116 /* This is to give the imm driver a way to modify the timings (and other
117 * parameters) by writing to the /proc/scsi/imm/0 file.
118 * Very simple method really... (Too simple, no error checking :( )
119 * Reason: Kernel hackers HATE having to unload and reload modules for
120 * testing...
121 * Also gives a method to use a script to obtain optimum timings (TODO)
123 static inline int imm_proc_write(imm_struct *dev, char *buffer, int length)
125 unsigned long x;
127 if ((length > 5) && (strncmp(buffer, "mode=", 5) == 0)) {
128 x = simple_strtoul(buffer + 5, NULL, 0);
129 dev->mode = x;
130 return length;
132 printk("imm /proc: invalid variable\n");
133 return (-EINVAL);
136 static int imm_proc_info(struct Scsi_Host *host, char *buffer, char **start,
137 off_t offset, int length, int inout)
139 imm_struct *dev = imm_dev(host);
140 int len = 0;
142 if (inout)
143 return imm_proc_write(dev, buffer, length);
145 len += sprintf(buffer + len, "Version : %s\n", IMM_VERSION);
146 len +=
147 sprintf(buffer + len, "Parport : %s\n",
148 dev->dev->port->name);
149 len +=
150 sprintf(buffer + len, "Mode : %s\n",
151 IMM_MODE_STRING[dev->mode]);
153 /* Request for beyond end of buffer */
154 if (offset > len)
155 return 0;
157 *start = buffer + offset;
158 len -= offset;
159 if (len > length)
160 len = length;
161 return len;
164 #if IMM_DEBUG > 0
165 #define imm_fail(x,y) printk("imm: imm_fail(%i) from %s at line %d\n",\
166 y, __FUNCTION__, __LINE__); imm_fail_func(x,y);
167 static inline void
168 imm_fail_func(imm_struct *dev, int error_code)
169 #else
170 static inline void
171 imm_fail(imm_struct *dev, int error_code)
172 #endif
174 /* If we fail a device then we trash status / message bytes */
175 if (dev->cur_cmd) {
176 dev->cur_cmd->result = error_code << 16;
177 dev->failed = 1;
182 * Wait for the high bit to be set.
184 * In principle, this could be tied to an interrupt, but the adapter
185 * doesn't appear to be designed to support interrupts. We spin on
186 * the 0x80 ready bit.
188 static unsigned char imm_wait(imm_struct *dev)
190 int k;
191 unsigned short ppb = dev->base;
192 unsigned char r;
194 w_ctr(ppb, 0x0c);
196 k = IMM_SPIN_TMO;
197 do {
198 r = r_str(ppb);
199 k--;
200 udelay(1);
202 while (!(r & 0x80) && (k));
205 * STR register (LPT base+1) to SCSI mapping:
207 * STR imm imm
208 * ===================================
209 * 0x80 S_REQ S_REQ
210 * 0x40 !S_BSY (????)
211 * 0x20 !S_CD !S_CD
212 * 0x10 !S_IO !S_IO
213 * 0x08 (????) !S_BSY
215 * imm imm meaning
216 * ==================================
217 * 0xf0 0xb8 Bit mask
218 * 0xc0 0x88 ZIP wants more data
219 * 0xd0 0x98 ZIP wants to send more data
220 * 0xe0 0xa8 ZIP is expecting SCSI command data
221 * 0xf0 0xb8 end of transfer, ZIP is sending status
223 w_ctr(ppb, 0x04);
224 if (k)
225 return (r & 0xb8);
227 /* Counter expired - Time out occurred */
228 imm_fail(dev, DID_TIME_OUT);
229 printk("imm timeout in imm_wait\n");
230 return 0; /* command timed out */
233 static int imm_negotiate(imm_struct * tmp)
236 * The following is supposedly the IEEE 1284-1994 negotiate
237 * sequence. I have yet to obtain a copy of the above standard
238 * so this is a bit of a guess...
240 * A fair chunk of this is based on the Linux parport implementation
241 * of IEEE 1284.
243 * Return 0 if data available
244 * 1 if no data available
247 unsigned short base = tmp->base;
248 unsigned char a, mode;
250 switch (tmp->mode) {
251 case IMM_NIBBLE:
252 mode = 0x00;
253 break;
254 case IMM_PS2:
255 mode = 0x01;
256 break;
257 default:
258 return 0;
261 w_ctr(base, 0x04);
262 udelay(5);
263 w_dtr(base, mode);
264 udelay(100);
265 w_ctr(base, 0x06);
266 udelay(5);
267 a = (r_str(base) & 0x20) ? 0 : 1;
268 udelay(5);
269 w_ctr(base, 0x07);
270 udelay(5);
271 w_ctr(base, 0x06);
273 if (a) {
274 printk
275 ("IMM: IEEE1284 negotiate indicates no data available.\n");
276 imm_fail(tmp, DID_ERROR);
278 return a;
282 * Clear EPP timeout bit.
284 static inline void epp_reset(unsigned short ppb)
286 int i;
288 i = r_str(ppb);
289 w_str(ppb, i);
290 w_str(ppb, i & 0xfe);
294 * Wait for empty ECP fifo (if we are in ECP fifo mode only)
296 static inline void ecp_sync(imm_struct *dev)
298 int i, ppb_hi = dev->base_hi;
300 if (ppb_hi == 0)
301 return;
303 if ((r_ecr(ppb_hi) & 0xe0) == 0x60) { /* mode 011 == ECP fifo mode */
304 for (i = 0; i < 100; i++) {
305 if (r_ecr(ppb_hi) & 0x01)
306 return;
307 udelay(5);
309 printk("imm: ECP sync failed as data still present in FIFO.\n");
313 static int imm_byte_out(unsigned short base, const char *buffer, int len)
315 int i;
317 w_ctr(base, 0x4); /* apparently a sane mode */
318 for (i = len >> 1; i; i--) {
319 w_dtr(base, *buffer++);
320 w_ctr(base, 0x5); /* Drop STROBE low */
321 w_dtr(base, *buffer++);
322 w_ctr(base, 0x0); /* STROBE high + INIT low */
324 w_ctr(base, 0x4); /* apparently a sane mode */
325 return 1; /* All went well - we hope! */
328 static int imm_nibble_in(unsigned short base, char *buffer, int len)
330 unsigned char l;
331 int i;
334 * The following is based on documented timing signals
336 w_ctr(base, 0x4);
337 for (i = len; i; i--) {
338 w_ctr(base, 0x6);
339 l = (r_str(base) & 0xf0) >> 4;
340 w_ctr(base, 0x5);
341 *buffer++ = (r_str(base) & 0xf0) | l;
342 w_ctr(base, 0x4);
344 return 1; /* All went well - we hope! */
347 static int imm_byte_in(unsigned short base, char *buffer, int len)
349 int i;
352 * The following is based on documented timing signals
354 w_ctr(base, 0x4);
355 for (i = len; i; i--) {
356 w_ctr(base, 0x26);
357 *buffer++ = r_dtr(base);
358 w_ctr(base, 0x25);
360 return 1; /* All went well - we hope! */
363 static int imm_out(imm_struct *dev, char *buffer, int len)
365 unsigned short ppb = dev->base;
366 int r = imm_wait(dev);
369 * Make sure that:
370 * a) the SCSI bus is BUSY (device still listening)
371 * b) the device is listening
373 if ((r & 0x18) != 0x08) {
374 imm_fail(dev, DID_ERROR);
375 printk("IMM: returned SCSI status %2x\n", r);
376 return 0;
378 switch (dev->mode) {
379 case IMM_EPP_32:
380 case IMM_EPP_16:
381 case IMM_EPP_8:
382 epp_reset(ppb);
383 w_ctr(ppb, 0x4);
384 #ifdef CONFIG_SCSI_IZIP_EPP16
385 if (!(((long) buffer | len) & 0x01))
386 outsw(ppb + 4, buffer, len >> 1);
387 #else
388 if (!(((long) buffer | len) & 0x03))
389 outsl(ppb + 4, buffer, len >> 2);
390 #endif
391 else
392 outsb(ppb + 4, buffer, len);
393 w_ctr(ppb, 0xc);
394 r = !(r_str(ppb) & 0x01);
395 w_ctr(ppb, 0xc);
396 ecp_sync(dev);
397 break;
399 case IMM_NIBBLE:
400 case IMM_PS2:
401 /* 8 bit output, with a loop */
402 r = imm_byte_out(ppb, buffer, len);
403 break;
405 default:
406 printk("IMM: bug in imm_out()\n");
407 r = 0;
409 return r;
412 static int imm_in(imm_struct *dev, char *buffer, int len)
414 unsigned short ppb = dev->base;
415 int r = imm_wait(dev);
418 * Make sure that:
419 * a) the SCSI bus is BUSY (device still listening)
420 * b) the device is sending data
422 if ((r & 0x18) != 0x18) {
423 imm_fail(dev, DID_ERROR);
424 return 0;
426 switch (dev->mode) {
427 case IMM_NIBBLE:
428 /* 4 bit input, with a loop */
429 r = imm_nibble_in(ppb, buffer, len);
430 w_ctr(ppb, 0xc);
431 break;
433 case IMM_PS2:
434 /* 8 bit input, with a loop */
435 r = imm_byte_in(ppb, buffer, len);
436 w_ctr(ppb, 0xc);
437 break;
439 case IMM_EPP_32:
440 case IMM_EPP_16:
441 case IMM_EPP_8:
442 epp_reset(ppb);
443 w_ctr(ppb, 0x24);
444 #ifdef CONFIG_SCSI_IZIP_EPP16
445 if (!(((long) buffer | len) & 0x01))
446 insw(ppb + 4, buffer, len >> 1);
447 #else
448 if (!(((long) buffer | len) & 0x03))
449 insl(ppb + 4, buffer, len >> 2);
450 #endif
451 else
452 insb(ppb + 4, buffer, len);
453 w_ctr(ppb, 0x2c);
454 r = !(r_str(ppb) & 0x01);
455 w_ctr(ppb, 0x2c);
456 ecp_sync(dev);
457 break;
459 default:
460 printk("IMM: bug in imm_ins()\n");
461 r = 0;
462 break;
464 return r;
467 static int imm_cpp(unsigned short ppb, unsigned char b)
470 * Comments on udelay values refer to the
471 * Command Packet Protocol (CPP) timing diagram.
474 unsigned char s1, s2, s3;
475 w_ctr(ppb, 0x0c);
476 udelay(2); /* 1 usec - infinite */
477 w_dtr(ppb, 0xaa);
478 udelay(10); /* 7 usec - infinite */
479 w_dtr(ppb, 0x55);
480 udelay(10); /* 7 usec - infinite */
481 w_dtr(ppb, 0x00);
482 udelay(10); /* 7 usec - infinite */
483 w_dtr(ppb, 0xff);
484 udelay(10); /* 7 usec - infinite */
485 s1 = r_str(ppb) & 0xb8;
486 w_dtr(ppb, 0x87);
487 udelay(10); /* 7 usec - infinite */
488 s2 = r_str(ppb) & 0xb8;
489 w_dtr(ppb, 0x78);
490 udelay(10); /* 7 usec - infinite */
491 s3 = r_str(ppb) & 0x38;
493 * Values for b are:
494 * 0000 00aa Assign address aa to current device
495 * 0010 00aa Select device aa in EPP Winbond mode
496 * 0010 10aa Select device aa in EPP mode
497 * 0011 xxxx Deselect all devices
498 * 0110 00aa Test device aa
499 * 1101 00aa Select device aa in ECP mode
500 * 1110 00aa Select device aa in Compatible mode
502 w_dtr(ppb, b);
503 udelay(2); /* 1 usec - infinite */
504 w_ctr(ppb, 0x0c);
505 udelay(10); /* 7 usec - infinite */
506 w_ctr(ppb, 0x0d);
507 udelay(2); /* 1 usec - infinite */
508 w_ctr(ppb, 0x0c);
509 udelay(10); /* 7 usec - infinite */
510 w_dtr(ppb, 0xff);
511 udelay(10); /* 7 usec - infinite */
514 * The following table is electrical pin values.
515 * (BSY is inverted at the CTR register)
517 * BSY ACK POut SEL Fault
518 * S1 0 X 1 1 1
519 * S2 1 X 0 1 1
520 * S3 L X 1 1 S
522 * L => Last device in chain
523 * S => Selected
525 * Observered values for S1,S2,S3 are:
526 * Disconnect => f8/58/78
527 * Connect => f8/58/70
529 if ((s1 == 0xb8) && (s2 == 0x18) && (s3 == 0x30))
530 return 1; /* Connected */
531 if ((s1 == 0xb8) && (s2 == 0x18) && (s3 == 0x38))
532 return 0; /* Disconnected */
534 return -1; /* No device present */
537 static inline int imm_connect(imm_struct *dev, int flag)
539 unsigned short ppb = dev->base;
541 imm_cpp(ppb, 0xe0); /* Select device 0 in compatible mode */
542 imm_cpp(ppb, 0x30); /* Disconnect all devices */
544 if ((dev->mode == IMM_EPP_8) ||
545 (dev->mode == IMM_EPP_16) ||
546 (dev->mode == IMM_EPP_32))
547 return imm_cpp(ppb, 0x28); /* Select device 0 in EPP mode */
548 return imm_cpp(ppb, 0xe0); /* Select device 0 in compatible mode */
551 static void imm_disconnect(imm_struct *dev)
553 imm_cpp(dev->base, 0x30); /* Disconnect all devices */
556 static int imm_select(imm_struct *dev, int target)
558 int k;
559 unsigned short ppb = dev->base;
562 * Firstly we want to make sure there is nothing
563 * holding onto the SCSI bus.
565 w_ctr(ppb, 0xc);
567 k = IMM_SELECT_TMO;
568 do {
569 k--;
570 } while ((r_str(ppb) & 0x08) && (k));
572 if (!k)
573 return 0;
576 * Now assert the SCSI ID (HOST and TARGET) on the data bus
578 w_ctr(ppb, 0x4);
579 w_dtr(ppb, 0x80 | (1 << target));
580 udelay(1);
583 * Deassert SELIN first followed by STROBE
585 w_ctr(ppb, 0xc);
586 w_ctr(ppb, 0xd);
589 * ACK should drop low while SELIN is deasserted.
590 * FAULT should drop low when the SCSI device latches the bus.
592 k = IMM_SELECT_TMO;
593 do {
594 k--;
596 while (!(r_str(ppb) & 0x08) && (k));
599 * Place the interface back into a sane state (status mode)
601 w_ctr(ppb, 0xc);
602 return (k) ? 1 : 0;
605 static int imm_init(imm_struct *dev)
607 if (imm_connect(dev, 0) != 1)
608 return -EIO;
609 imm_reset_pulse(dev->base);
610 mdelay(1); /* Delay to allow devices to settle */
611 imm_disconnect(dev);
612 mdelay(1); /* Another delay to allow devices to settle */
613 return device_check(dev);
616 static inline int imm_send_command(struct scsi_cmnd *cmd)
618 imm_struct *dev = imm_dev(cmd->device->host);
619 int k;
621 /* NOTE: IMM uses byte pairs */
622 for (k = 0; k < cmd->cmd_len; k += 2)
623 if (!imm_out(dev, &cmd->cmnd[k], 2))
624 return 0;
625 return 1;
629 * The bulk flag enables some optimisations in the data transfer loops,
630 * it should be true for any command that transfers data in integral
631 * numbers of sectors.
633 * The driver appears to remain stable if we speed up the parallel port
634 * i/o in this function, but not elsewhere.
636 static int imm_completion(struct scsi_cmnd *cmd)
638 /* Return codes:
639 * -1 Error
640 * 0 Told to schedule
641 * 1 Finished data transfer
643 imm_struct *dev = imm_dev(cmd->device->host);
644 unsigned short ppb = dev->base;
645 unsigned long start_jiffies = jiffies;
647 unsigned char r, v;
648 int fast, bulk, status;
650 v = cmd->cmnd[0];
651 bulk = ((v == READ_6) ||
652 (v == READ_10) || (v == WRITE_6) || (v == WRITE_10));
655 * We only get here if the drive is ready to comunicate,
656 * hence no need for a full imm_wait.
658 w_ctr(ppb, 0x0c);
659 r = (r_str(ppb) & 0xb8);
662 * while (device is not ready to send status byte)
663 * loop;
665 while (r != (unsigned char) 0xb8) {
667 * If we have been running for more than a full timer tick
668 * then take a rest.
670 if (time_after(jiffies, start_jiffies + 1))
671 return 0;
674 * FAIL if:
675 * a) Drive status is screwy (!ready && !present)
676 * b) Drive is requesting/sending more data than expected
678 if (((r & 0x88) != 0x88) || (cmd->SCp.this_residual <= 0)) {
679 imm_fail(dev, DID_ERROR);
680 return -1; /* ERROR_RETURN */
682 /* determine if we should use burst I/O */
683 if (dev->rd == 0) {
684 fast = (bulk
685 && (cmd->SCp.this_residual >=
686 IMM_BURST_SIZE)) ? IMM_BURST_SIZE : 2;
687 status = imm_out(dev, cmd->SCp.ptr, fast);
688 } else {
689 fast = (bulk
690 && (cmd->SCp.this_residual >=
691 IMM_BURST_SIZE)) ? IMM_BURST_SIZE : 1;
692 status = imm_in(dev, cmd->SCp.ptr, fast);
695 cmd->SCp.ptr += fast;
696 cmd->SCp.this_residual -= fast;
698 if (!status) {
699 imm_fail(dev, DID_BUS_BUSY);
700 return -1; /* ERROR_RETURN */
702 if (cmd->SCp.buffer && !cmd->SCp.this_residual) {
703 /* if scatter/gather, advance to the next segment */
704 if (cmd->SCp.buffers_residual--) {
705 cmd->SCp.buffer++;
706 cmd->SCp.this_residual =
707 cmd->SCp.buffer->length;
708 cmd->SCp.ptr =
709 page_address(cmd->SCp.buffer->page) +
710 cmd->SCp.buffer->offset;
713 * Make sure that we transfer even number of bytes
714 * otherwise it makes imm_byte_out() messy.
716 if (cmd->SCp.this_residual & 0x01)
717 cmd->SCp.this_residual++;
720 /* Now check to see if the drive is ready to comunicate */
721 w_ctr(ppb, 0x0c);
722 r = (r_str(ppb) & 0xb8);
724 /* If not, drop back down to the scheduler and wait a timer tick */
725 if (!(r & 0x80))
726 return 0;
728 return 1; /* FINISH_RETURN */
732 * Since the IMM itself doesn't generate interrupts, we use
733 * the scheduler's task queue to generate a stream of call-backs and
734 * complete the request when the drive is ready.
736 static void imm_interrupt(struct work_struct *work)
738 imm_struct *dev = container_of(work, imm_struct, imm_tq.work);
739 struct scsi_cmnd *cmd = dev->cur_cmd;
740 struct Scsi_Host *host = cmd->device->host;
741 unsigned long flags;
743 if (!cmd) {
744 printk("IMM: bug in imm_interrupt\n");
745 return;
747 if (imm_engine(dev, cmd)) {
748 schedule_delayed_work(&dev->imm_tq, 1);
749 return;
751 /* Command must of completed hence it is safe to let go... */
752 #if IMM_DEBUG > 0
753 switch ((cmd->result >> 16) & 0xff) {
754 case DID_OK:
755 break;
756 case DID_NO_CONNECT:
757 printk("imm: no device at SCSI ID %i\n", cmd->device->id);
758 break;
759 case DID_BUS_BUSY:
760 printk("imm: BUS BUSY - EPP timeout detected\n");
761 break;
762 case DID_TIME_OUT:
763 printk("imm: unknown timeout\n");
764 break;
765 case DID_ABORT:
766 printk("imm: told to abort\n");
767 break;
768 case DID_PARITY:
769 printk("imm: parity error (???)\n");
770 break;
771 case DID_ERROR:
772 printk("imm: internal driver error\n");
773 break;
774 case DID_RESET:
775 printk("imm: told to reset device\n");
776 break;
777 case DID_BAD_INTR:
778 printk("imm: bad interrupt (???)\n");
779 break;
780 default:
781 printk("imm: bad return code (%02x)\n",
782 (cmd->result >> 16) & 0xff);
784 #endif
786 if (cmd->SCp.phase > 1)
787 imm_disconnect(dev);
789 imm_pb_dismiss(dev);
791 spin_lock_irqsave(host->host_lock, flags);
792 dev->cur_cmd = NULL;
793 cmd->scsi_done(cmd);
794 spin_unlock_irqrestore(host->host_lock, flags);
795 return;
798 static int imm_engine(imm_struct *dev, struct scsi_cmnd *cmd)
800 unsigned short ppb = dev->base;
801 unsigned char l = 0, h = 0;
802 int retv, x;
804 /* First check for any errors that may have occurred
805 * Here we check for internal errors
807 if (dev->failed)
808 return 0;
810 switch (cmd->SCp.phase) {
811 case 0: /* Phase 0 - Waiting for parport */
812 if (time_after(jiffies, dev->jstart + HZ)) {
814 * We waited more than a second
815 * for parport to call us
817 imm_fail(dev, DID_BUS_BUSY);
818 return 0;
820 return 1; /* wait until imm_wakeup claims parport */
821 /* Phase 1 - Connected */
822 case 1:
823 imm_connect(dev, CONNECT_EPP_MAYBE);
824 cmd->SCp.phase++;
826 /* Phase 2 - We are now talking to the scsi bus */
827 case 2:
828 if (!imm_select(dev, scmd_id(cmd))) {
829 imm_fail(dev, DID_NO_CONNECT);
830 return 0;
832 cmd->SCp.phase++;
834 /* Phase 3 - Ready to accept a command */
835 case 3:
836 w_ctr(ppb, 0x0c);
837 if (!(r_str(ppb) & 0x80))
838 return 1;
840 if (!imm_send_command(cmd))
841 return 0;
842 cmd->SCp.phase++;
844 /* Phase 4 - Setup scatter/gather buffers */
845 case 4:
846 if (cmd->use_sg) {
847 /* if many buffers are available, start filling the first */
848 cmd->SCp.buffer =
849 (struct scatterlist *) cmd->request_buffer;
850 cmd->SCp.this_residual = cmd->SCp.buffer->length;
851 cmd->SCp.ptr =
852 page_address(cmd->SCp.buffer->page) +
853 cmd->SCp.buffer->offset;
854 } else {
855 /* else fill the only available buffer */
856 cmd->SCp.buffer = NULL;
857 cmd->SCp.this_residual = cmd->request_bufflen;
858 cmd->SCp.ptr = cmd->request_buffer;
860 cmd->SCp.buffers_residual = cmd->use_sg - 1;
861 cmd->SCp.phase++;
862 if (cmd->SCp.this_residual & 0x01)
863 cmd->SCp.this_residual++;
864 /* Phase 5 - Pre-Data transfer stage */
865 case 5:
866 /* Spin lock for BUSY */
867 w_ctr(ppb, 0x0c);
868 if (!(r_str(ppb) & 0x80))
869 return 1;
871 /* Require negotiation for read requests */
872 x = (r_str(ppb) & 0xb8);
873 dev->rd = (x & 0x10) ? 1 : 0;
874 dev->dp = (x & 0x20) ? 0 : 1;
876 if ((dev->dp) && (dev->rd))
877 if (imm_negotiate(dev))
878 return 0;
879 cmd->SCp.phase++;
881 /* Phase 6 - Data transfer stage */
882 case 6:
883 /* Spin lock for BUSY */
884 w_ctr(ppb, 0x0c);
885 if (!(r_str(ppb) & 0x80))
886 return 1;
888 if (dev->dp) {
889 retv = imm_completion(cmd);
890 if (retv == -1)
891 return 0;
892 if (retv == 0)
893 return 1;
895 cmd->SCp.phase++;
897 /* Phase 7 - Post data transfer stage */
898 case 7:
899 if ((dev->dp) && (dev->rd)) {
900 if ((dev->mode == IMM_NIBBLE) || (dev->mode == IMM_PS2)) {
901 w_ctr(ppb, 0x4);
902 w_ctr(ppb, 0xc);
903 w_ctr(ppb, 0xe);
904 w_ctr(ppb, 0x4);
907 cmd->SCp.phase++;
909 /* Phase 8 - Read status/message */
910 case 8:
911 /* Check for data overrun */
912 if (imm_wait(dev) != (unsigned char) 0xb8) {
913 imm_fail(dev, DID_ERROR);
914 return 0;
916 if (imm_negotiate(dev))
917 return 0;
918 if (imm_in(dev, &l, 1)) { /* read status byte */
919 /* Check for optional message byte */
920 if (imm_wait(dev) == (unsigned char) 0xb8)
921 imm_in(dev, &h, 1);
922 cmd->result = (DID_OK << 16) + (l & STATUS_MASK);
924 if ((dev->mode == IMM_NIBBLE) || (dev->mode == IMM_PS2)) {
925 w_ctr(ppb, 0x4);
926 w_ctr(ppb, 0xc);
927 w_ctr(ppb, 0xe);
928 w_ctr(ppb, 0x4);
930 return 0; /* Finished */
931 break;
933 default:
934 printk("imm: Invalid scsi phase\n");
936 return 0;
939 static int imm_queuecommand(struct scsi_cmnd *cmd,
940 void (*done)(struct scsi_cmnd *))
942 imm_struct *dev = imm_dev(cmd->device->host);
944 if (dev->cur_cmd) {
945 printk("IMM: bug in imm_queuecommand\n");
946 return 0;
948 dev->failed = 0;
949 dev->jstart = jiffies;
950 dev->cur_cmd = cmd;
951 cmd->scsi_done = done;
952 cmd->result = DID_ERROR << 16; /* default return code */
953 cmd->SCp.phase = 0; /* bus free */
955 schedule_delayed_work(&dev->imm_tq, 0);
957 imm_pb_claim(dev);
959 return 0;
963 * Apparently the disk->capacity attribute is off by 1 sector
964 * for all disk drives. We add the one here, but it should really
965 * be done in sd.c. Even if it gets fixed there, this will still
966 * work.
968 static int imm_biosparam(struct scsi_device *sdev, struct block_device *dev,
969 sector_t capacity, int ip[])
971 ip[0] = 0x40;
972 ip[1] = 0x20;
973 ip[2] = ((unsigned long) capacity + 1) / (ip[0] * ip[1]);
974 if (ip[2] > 1024) {
975 ip[0] = 0xff;
976 ip[1] = 0x3f;
977 ip[2] = ((unsigned long) capacity + 1) / (ip[0] * ip[1]);
979 return 0;
982 static int imm_abort(struct scsi_cmnd *cmd)
984 imm_struct *dev = imm_dev(cmd->device->host);
986 * There is no method for aborting commands since Iomega
987 * have tied the SCSI_MESSAGE line high in the interface
990 switch (cmd->SCp.phase) {
991 case 0: /* Do not have access to parport */
992 case 1: /* Have not connected to interface */
993 dev->cur_cmd = NULL; /* Forget the problem */
994 return SUCCESS;
995 break;
996 default: /* SCSI command sent, can not abort */
997 return FAILED;
998 break;
1002 static void imm_reset_pulse(unsigned int base)
1004 w_ctr(base, 0x04);
1005 w_dtr(base, 0x40);
1006 udelay(1);
1007 w_ctr(base, 0x0c);
1008 w_ctr(base, 0x0d);
1009 udelay(50);
1010 w_ctr(base, 0x0c);
1011 w_ctr(base, 0x04);
1014 static int imm_reset(struct scsi_cmnd *cmd)
1016 imm_struct *dev = imm_dev(cmd->device->host);
1018 if (cmd->SCp.phase)
1019 imm_disconnect(dev);
1020 dev->cur_cmd = NULL; /* Forget the problem */
1022 imm_connect(dev, CONNECT_NORMAL);
1023 imm_reset_pulse(dev->base);
1024 mdelay(1); /* device settle delay */
1025 imm_disconnect(dev);
1026 mdelay(1); /* device settle delay */
1027 return SUCCESS;
1030 static int device_check(imm_struct *dev)
1032 /* This routine looks for a device and then attempts to use EPP
1033 to send a command. If all goes as planned then EPP is available. */
1035 static char cmd[6] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1036 int loop, old_mode, status, k, ppb = dev->base;
1037 unsigned char l;
1039 old_mode = dev->mode;
1040 for (loop = 0; loop < 8; loop++) {
1041 /* Attempt to use EPP for Test Unit Ready */
1042 if ((ppb & 0x0007) == 0x0000)
1043 dev->mode = IMM_EPP_32;
1045 second_pass:
1046 imm_connect(dev, CONNECT_EPP_MAYBE);
1047 /* Select SCSI device */
1048 if (!imm_select(dev, loop)) {
1049 imm_disconnect(dev);
1050 continue;
1052 printk("imm: Found device at ID %i, Attempting to use %s\n",
1053 loop, IMM_MODE_STRING[dev->mode]);
1055 /* Send SCSI command */
1056 status = 1;
1057 w_ctr(ppb, 0x0c);
1058 for (l = 0; (l < 3) && (status); l++)
1059 status = imm_out(dev, &cmd[l << 1], 2);
1061 if (!status) {
1062 imm_disconnect(dev);
1063 imm_connect(dev, CONNECT_EPP_MAYBE);
1064 imm_reset_pulse(dev->base);
1065 udelay(1000);
1066 imm_disconnect(dev);
1067 udelay(1000);
1068 if (dev->mode == IMM_EPP_32) {
1069 dev->mode = old_mode;
1070 goto second_pass;
1072 printk("imm: Unable to establish communication\n");
1073 return -EIO;
1075 w_ctr(ppb, 0x0c);
1077 k = 1000000; /* 1 Second */
1078 do {
1079 l = r_str(ppb);
1080 k--;
1081 udelay(1);
1082 } while (!(l & 0x80) && (k));
1084 l &= 0xb8;
1086 if (l != 0xb8) {
1087 imm_disconnect(dev);
1088 imm_connect(dev, CONNECT_EPP_MAYBE);
1089 imm_reset_pulse(dev->base);
1090 udelay(1000);
1091 imm_disconnect(dev);
1092 udelay(1000);
1093 if (dev->mode == IMM_EPP_32) {
1094 dev->mode = old_mode;
1095 goto second_pass;
1097 printk
1098 ("imm: Unable to establish communication\n");
1099 return -EIO;
1101 imm_disconnect(dev);
1102 printk
1103 ("imm: Communication established at 0x%x with ID %i using %s\n",
1104 ppb, loop, IMM_MODE_STRING[dev->mode]);
1105 imm_connect(dev, CONNECT_EPP_MAYBE);
1106 imm_reset_pulse(dev->base);
1107 udelay(1000);
1108 imm_disconnect(dev);
1109 udelay(1000);
1110 return 0;
1112 printk("imm: No devices found\n");
1113 return -ENODEV;
1117 * imm cannot deal with highmem, so this causes all IO pages for this host
1118 * to reside in low memory (hence mapped)
1120 static int imm_adjust_queue(struct scsi_device *device)
1122 blk_queue_bounce_limit(device->request_queue, BLK_BOUNCE_HIGH);
1123 return 0;
1126 static struct scsi_host_template imm_template = {
1127 .module = THIS_MODULE,
1128 .proc_name = "imm",
1129 .proc_info = imm_proc_info,
1130 .name = "Iomega VPI2 (imm) interface",
1131 .queuecommand = imm_queuecommand,
1132 .eh_abort_handler = imm_abort,
1133 .eh_bus_reset_handler = imm_reset,
1134 .eh_host_reset_handler = imm_reset,
1135 .bios_param = imm_biosparam,
1136 .this_id = 7,
1137 .sg_tablesize = SG_ALL,
1138 .cmd_per_lun = 1,
1139 .use_clustering = ENABLE_CLUSTERING,
1140 .can_queue = 1,
1141 .slave_alloc = imm_adjust_queue,
1144 /***************************************************************************
1145 * Parallel port probing routines *
1146 ***************************************************************************/
1148 static LIST_HEAD(imm_hosts);
1150 static int __imm_attach(struct parport *pb)
1152 struct Scsi_Host *host;
1153 imm_struct *dev;
1154 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(waiting);
1155 DEFINE_WAIT(wait);
1156 int ports;
1157 int modes, ppb;
1158 int err = -ENOMEM;
1160 init_waitqueue_head(&waiting);
1162 dev = kzalloc(sizeof(imm_struct), GFP_KERNEL);
1163 if (!dev)
1164 return -ENOMEM;
1167 dev->base = -1;
1168 dev->mode = IMM_AUTODETECT;
1169 INIT_LIST_HEAD(&dev->list);
1171 dev->dev = parport_register_device(pb, "imm", NULL, imm_wakeup,
1172 NULL, 0, dev);
1174 if (!dev->dev)
1175 goto out;
1178 /* Claim the bus so it remembers what we do to the control
1179 * registers. [ CTR and ECP ]
1181 err = -EBUSY;
1182 dev->waiting = &waiting;
1183 prepare_to_wait(&waiting, &wait, TASK_UNINTERRUPTIBLE);
1184 if (imm_pb_claim(dev))
1185 schedule_timeout(3 * HZ);
1186 if (dev->wanted) {
1187 printk(KERN_ERR "imm%d: failed to claim parport because "
1188 "a pardevice is owning the port for too long "
1189 "time!\n", pb->number);
1190 imm_pb_dismiss(dev);
1191 dev->waiting = NULL;
1192 finish_wait(&waiting, &wait);
1193 goto out1;
1195 dev->waiting = NULL;
1196 finish_wait(&waiting, &wait);
1197 ppb = dev->base = dev->dev->port->base;
1198 dev->base_hi = dev->dev->port->base_hi;
1199 w_ctr(ppb, 0x0c);
1200 modes = dev->dev->port->modes;
1202 /* Mode detection works up the chain of speed
1203 * This avoids a nasty if-then-else-if-... tree
1205 dev->mode = IMM_NIBBLE;
1207 if (modes & PARPORT_MODE_TRISTATE)
1208 dev->mode = IMM_PS2;
1210 /* Done configuration */
1212 err = imm_init(dev);
1214 imm_pb_release(dev);
1216 if (err)
1217 goto out1;
1219 /* now the glue ... */
1220 if (dev->mode == IMM_NIBBLE || dev->mode == IMM_PS2)
1221 ports = 3;
1222 else
1223 ports = 8;
1225 INIT_DELAYED_WORK(&dev->imm_tq, imm_interrupt);
1227 err = -ENOMEM;
1228 host = scsi_host_alloc(&imm_template, sizeof(imm_struct *));
1229 if (!host)
1230 goto out1;
1231 host->io_port = pb->base;
1232 host->n_io_port = ports;
1233 host->dma_channel = -1;
1234 host->unique_id = pb->number;
1235 *(imm_struct **)&host->hostdata = dev;
1236 dev->host = host;
1237 list_add_tail(&dev->list, &imm_hosts);
1238 err = scsi_add_host(host, NULL);
1239 if (err)
1240 goto out2;
1241 scsi_scan_host(host);
1242 return 0;
1244 out2:
1245 list_del_init(&dev->list);
1246 scsi_host_put(host);
1247 out1:
1248 parport_unregister_device(dev->dev);
1249 out:
1250 kfree(dev);
1251 return err;
1254 static void imm_attach(struct parport *pb)
1256 __imm_attach(pb);
1259 static void imm_detach(struct parport *pb)
1261 imm_struct *dev;
1262 list_for_each_entry(dev, &imm_hosts, list) {
1263 if (dev->dev->port == pb) {
1264 list_del_init(&dev->list);
1265 scsi_remove_host(dev->host);
1266 scsi_host_put(dev->host);
1267 parport_unregister_device(dev->dev);
1268 kfree(dev);
1269 break;
1274 static struct parport_driver imm_driver = {
1275 .name = "imm",
1276 .attach = imm_attach,
1277 .detach = imm_detach,
1280 static int __init imm_driver_init(void)
1282 printk("imm: Version %s\n", IMM_VERSION);
1283 return parport_register_driver(&imm_driver);
1286 static void __exit imm_driver_exit(void)
1288 parport_unregister_driver(&imm_driver);
1291 module_init(imm_driver_init);
1292 module_exit(imm_driver_exit);
1294 MODULE_LICENSE("GPL");