Merge git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core-2.6
[linux-2.6/linux-2.6-openrd.git] / drivers / net / via-velocity.c
blob317aa34b21cf6b21c42c81c33f0bb014eeb9948f
1 /*
2 * This code is derived from the VIA reference driver (copyright message
3 * below) provided to Red Hat by VIA Networking Technologies, Inc. for
4 * addition to the Linux kernel.
6 * The code has been merged into one source file, cleaned up to follow
7 * Linux coding style, ported to the Linux 2.6 kernel tree and cleaned
8 * for 64bit hardware platforms.
10 * TODO
11 * rx_copybreak/alignment
12 * More testing
14 * The changes are (c) Copyright 2004, Red Hat Inc. <alan@lxorguk.ukuu.org.uk>
15 * Additional fixes and clean up: Francois Romieu
17 * This source has not been verified for use in safety critical systems.
19 * Please direct queries about the revamped driver to the linux-kernel
20 * list not VIA.
22 * Original code:
24 * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
25 * All rights reserved.
27 * This software may be redistributed and/or modified under
28 * the terms of the GNU General Public License as published by the Free
29 * Software Foundation; either version 2 of the License, or
30 * any later version.
32 * This program is distributed in the hope that it will be useful, but
33 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
34 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
35 * for more details.
37 * Author: Chuang Liang-Shing, AJ Jiang
39 * Date: Jan 24, 2003
41 * MODULE_LICENSE("GPL");
46 #include <linux/module.h>
47 #include <linux/types.h>
48 #include <linux/init.h>
49 #include <linux/mm.h>
50 #include <linux/errno.h>
51 #include <linux/ioport.h>
52 #include <linux/pci.h>
53 #include <linux/kernel.h>
54 #include <linux/netdevice.h>
55 #include <linux/etherdevice.h>
56 #include <linux/skbuff.h>
57 #include <linux/delay.h>
58 #include <linux/timer.h>
59 #include <linux/slab.h>
60 #include <linux/interrupt.h>
61 #include <linux/string.h>
62 #include <linux/wait.h>
63 #include <linux/io.h>
64 #include <linux/if.h>
65 #include <linux/uaccess.h>
66 #include <linux/proc_fs.h>
67 #include <linux/inetdevice.h>
68 #include <linux/reboot.h>
69 #include <linux/ethtool.h>
70 #include <linux/mii.h>
71 #include <linux/in.h>
72 #include <linux/if_arp.h>
73 #include <linux/if_vlan.h>
74 #include <linux/ip.h>
75 #include <linux/tcp.h>
76 #include <linux/udp.h>
77 #include <linux/crc-ccitt.h>
78 #include <linux/crc32.h>
80 #include "via-velocity.h"
83 static int velocity_nics;
84 static int msglevel = MSG_LEVEL_INFO;
86 /**
87 * mac_get_cam_mask - Read a CAM mask
88 * @regs: register block for this velocity
89 * @mask: buffer to store mask
91 * Fetch the mask bits of the selected CAM and store them into the
92 * provided mask buffer.
94 static void mac_get_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
96 int i;
98 /* Select CAM mask */
99 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
101 writeb(0, &regs->CAMADDR);
103 /* read mask */
104 for (i = 0; i < 8; i++)
105 *mask++ = readb(&(regs->MARCAM[i]));
107 /* disable CAMEN */
108 writeb(0, &regs->CAMADDR);
110 /* Select mar */
111 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
116 * mac_set_cam_mask - Set a CAM mask
117 * @regs: register block for this velocity
118 * @mask: CAM mask to load
120 * Store a new mask into a CAM
122 static void mac_set_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
124 int i;
125 /* Select CAM mask */
126 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
128 writeb(CAMADDR_CAMEN, &regs->CAMADDR);
130 for (i = 0; i < 8; i++)
131 writeb(*mask++, &(regs->MARCAM[i]));
133 /* disable CAMEN */
134 writeb(0, &regs->CAMADDR);
136 /* Select mar */
137 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
140 static void mac_set_vlan_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
142 int i;
143 /* Select CAM mask */
144 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
146 writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL, &regs->CAMADDR);
148 for (i = 0; i < 8; i++)
149 writeb(*mask++, &(regs->MARCAM[i]));
151 /* disable CAMEN */
152 writeb(0, &regs->CAMADDR);
154 /* Select mar */
155 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
159 * mac_set_cam - set CAM data
160 * @regs: register block of this velocity
161 * @idx: Cam index
162 * @addr: 2 or 6 bytes of CAM data
164 * Load an address or vlan tag into a CAM
166 static void mac_set_cam(struct mac_regs __iomem *regs, int idx, const u8 *addr)
168 int i;
170 /* Select CAM mask */
171 BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
173 idx &= (64 - 1);
175 writeb(CAMADDR_CAMEN | idx, &regs->CAMADDR);
177 for (i = 0; i < 6; i++)
178 writeb(*addr++, &(regs->MARCAM[i]));
180 BYTE_REG_BITS_ON(CAMCR_CAMWR, &regs->CAMCR);
182 udelay(10);
184 writeb(0, &regs->CAMADDR);
186 /* Select mar */
187 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
190 static void mac_set_vlan_cam(struct mac_regs __iomem *regs, int idx,
191 const u8 *addr)
194 /* Select CAM mask */
195 BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
197 idx &= (64 - 1);
199 writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL | idx, &regs->CAMADDR);
200 writew(*((u16 *) addr), &regs->MARCAM[0]);
202 BYTE_REG_BITS_ON(CAMCR_CAMWR, &regs->CAMCR);
204 udelay(10);
206 writeb(0, &regs->CAMADDR);
208 /* Select mar */
209 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
214 * mac_wol_reset - reset WOL after exiting low power
215 * @regs: register block of this velocity
217 * Called after we drop out of wake on lan mode in order to
218 * reset the Wake on lan features. This function doesn't restore
219 * the rest of the logic from the result of sleep/wakeup
221 static void mac_wol_reset(struct mac_regs __iomem *regs)
224 /* Turn off SWPTAG right after leaving power mode */
225 BYTE_REG_BITS_OFF(STICKHW_SWPTAG, &regs->STICKHW);
226 /* clear sticky bits */
227 BYTE_REG_BITS_OFF((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
229 BYTE_REG_BITS_OFF(CHIPGCR_FCGMII, &regs->CHIPGCR);
230 BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
231 /* disable force PME-enable */
232 writeb(WOLCFG_PMEOVR, &regs->WOLCFGClr);
233 /* disable power-event config bit */
234 writew(0xFFFF, &regs->WOLCRClr);
235 /* clear power status */
236 writew(0xFFFF, &regs->WOLSRClr);
239 static const struct ethtool_ops velocity_ethtool_ops;
242 Define module options
245 MODULE_AUTHOR("VIA Networking Technologies, Inc.");
246 MODULE_LICENSE("GPL");
247 MODULE_DESCRIPTION("VIA Networking Velocity Family Gigabit Ethernet Adapter Driver");
249 #define VELOCITY_PARAM(N, D) \
250 static int N[MAX_UNITS] = OPTION_DEFAULT;\
251 module_param_array(N, int, NULL, 0); \
252 MODULE_PARM_DESC(N, D);
254 #define RX_DESC_MIN 64
255 #define RX_DESC_MAX 255
256 #define RX_DESC_DEF 64
257 VELOCITY_PARAM(RxDescriptors, "Number of receive descriptors");
259 #define TX_DESC_MIN 16
260 #define TX_DESC_MAX 256
261 #define TX_DESC_DEF 64
262 VELOCITY_PARAM(TxDescriptors, "Number of transmit descriptors");
264 #define RX_THRESH_MIN 0
265 #define RX_THRESH_MAX 3
266 #define RX_THRESH_DEF 0
267 /* rx_thresh[] is used for controlling the receive fifo threshold.
268 0: indicate the rxfifo threshold is 128 bytes.
269 1: indicate the rxfifo threshold is 512 bytes.
270 2: indicate the rxfifo threshold is 1024 bytes.
271 3: indicate the rxfifo threshold is store & forward.
273 VELOCITY_PARAM(rx_thresh, "Receive fifo threshold");
275 #define DMA_LENGTH_MIN 0
276 #define DMA_LENGTH_MAX 7
277 #define DMA_LENGTH_DEF 6
279 /* DMA_length[] is used for controlling the DMA length
280 0: 8 DWORDs
281 1: 16 DWORDs
282 2: 32 DWORDs
283 3: 64 DWORDs
284 4: 128 DWORDs
285 5: 256 DWORDs
286 6: SF(flush till emply)
287 7: SF(flush till emply)
289 VELOCITY_PARAM(DMA_length, "DMA length");
291 #define IP_ALIG_DEF 0
292 /* IP_byte_align[] is used for IP header DWORD byte aligned
293 0: indicate the IP header won't be DWORD byte aligned.(Default) .
294 1: indicate the IP header will be DWORD byte aligned.
295 In some enviroment, the IP header should be DWORD byte aligned,
296 or the packet will be droped when we receive it. (eg: IPVS)
298 VELOCITY_PARAM(IP_byte_align, "Enable IP header dword aligned");
300 #define FLOW_CNTL_DEF 1
301 #define FLOW_CNTL_MIN 1
302 #define FLOW_CNTL_MAX 5
304 /* flow_control[] is used for setting the flow control ability of NIC.
305 1: hardware deafult - AUTO (default). Use Hardware default value in ANAR.
306 2: enable TX flow control.
307 3: enable RX flow control.
308 4: enable RX/TX flow control.
309 5: disable
311 VELOCITY_PARAM(flow_control, "Enable flow control ability");
313 #define MED_LNK_DEF 0
314 #define MED_LNK_MIN 0
315 #define MED_LNK_MAX 4
316 /* speed_duplex[] is used for setting the speed and duplex mode of NIC.
317 0: indicate autonegotiation for both speed and duplex mode
318 1: indicate 100Mbps half duplex mode
319 2: indicate 100Mbps full duplex mode
320 3: indicate 10Mbps half duplex mode
321 4: indicate 10Mbps full duplex mode
323 Note:
324 if EEPROM have been set to the force mode, this option is ignored
325 by driver.
327 VELOCITY_PARAM(speed_duplex, "Setting the speed and duplex mode");
329 #define VAL_PKT_LEN_DEF 0
330 /* ValPktLen[] is used for setting the checksum offload ability of NIC.
331 0: Receive frame with invalid layer 2 length (Default)
332 1: Drop frame with invalid layer 2 length
334 VELOCITY_PARAM(ValPktLen, "Receiving or Drop invalid 802.3 frame");
336 #define WOL_OPT_DEF 0
337 #define WOL_OPT_MIN 0
338 #define WOL_OPT_MAX 7
339 /* wol_opts[] is used for controlling wake on lan behavior.
340 0: Wake up if recevied a magic packet. (Default)
341 1: Wake up if link status is on/off.
342 2: Wake up if recevied an arp packet.
343 4: Wake up if recevied any unicast packet.
344 Those value can be sumed up to support more than one option.
346 VELOCITY_PARAM(wol_opts, "Wake On Lan options");
348 static int rx_copybreak = 200;
349 module_param(rx_copybreak, int, 0644);
350 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
353 * Internal board variants. At the moment we have only one
355 static struct velocity_info_tbl chip_info_table[] = {
356 {CHIP_TYPE_VT6110, "VIA Networking Velocity Family Gigabit Ethernet Adapter", 1, 0x00FFFFFFUL},
361 * Describe the PCI device identifiers that we support in this
362 * device driver. Used for hotplug autoloading.
364 static const struct pci_device_id velocity_id_table[] __devinitdata = {
365 { PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_612X) },
369 MODULE_DEVICE_TABLE(pci, velocity_id_table);
372 * get_chip_name - identifier to name
373 * @id: chip identifier
375 * Given a chip identifier return a suitable description. Returns
376 * a pointer a static string valid while the driver is loaded.
378 static const char __devinit *get_chip_name(enum chip_type chip_id)
380 int i;
381 for (i = 0; chip_info_table[i].name != NULL; i++)
382 if (chip_info_table[i].chip_id == chip_id)
383 break;
384 return chip_info_table[i].name;
388 * velocity_remove1 - device unplug
389 * @pdev: PCI device being removed
391 * Device unload callback. Called on an unplug or on module
392 * unload for each active device that is present. Disconnects
393 * the device from the network layer and frees all the resources
395 static void __devexit velocity_remove1(struct pci_dev *pdev)
397 struct net_device *dev = pci_get_drvdata(pdev);
398 struct velocity_info *vptr = netdev_priv(dev);
400 unregister_netdev(dev);
401 iounmap(vptr->mac_regs);
402 pci_release_regions(pdev);
403 pci_disable_device(pdev);
404 pci_set_drvdata(pdev, NULL);
405 free_netdev(dev);
407 velocity_nics--;
411 * velocity_set_int_opt - parser for integer options
412 * @opt: pointer to option value
413 * @val: value the user requested (or -1 for default)
414 * @min: lowest value allowed
415 * @max: highest value allowed
416 * @def: default value
417 * @name: property name
418 * @dev: device name
420 * Set an integer property in the module options. This function does
421 * all the verification and checking as well as reporting so that
422 * we don't duplicate code for each option.
424 static void __devinit velocity_set_int_opt(int *opt, int val, int min, int max, int def, char *name, const char *devname)
426 if (val == -1)
427 *opt = def;
428 else if (val < min || val > max) {
429 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (%d-%d)\n",
430 devname, name, min, max);
431 *opt = def;
432 } else {
433 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_INFO "%s: set value of parameter %s to %d\n",
434 devname, name, val);
435 *opt = val;
440 * velocity_set_bool_opt - parser for boolean options
441 * @opt: pointer to option value
442 * @val: value the user requested (or -1 for default)
443 * @def: default value (yes/no)
444 * @flag: numeric value to set for true.
445 * @name: property name
446 * @dev: device name
448 * Set a boolean property in the module options. This function does
449 * all the verification and checking as well as reporting so that
450 * we don't duplicate code for each option.
452 static void __devinit velocity_set_bool_opt(u32 *opt, int val, int def, u32 flag, char *name, const char *devname)
454 (*opt) &= (~flag);
455 if (val == -1)
456 *opt |= (def ? flag : 0);
457 else if (val < 0 || val > 1) {
458 printk(KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (0-1)\n",
459 devname, name);
460 *opt |= (def ? flag : 0);
461 } else {
462 printk(KERN_INFO "%s: set parameter %s to %s\n",
463 devname, name, val ? "TRUE" : "FALSE");
464 *opt |= (val ? flag : 0);
469 * velocity_get_options - set options on device
470 * @opts: option structure for the device
471 * @index: index of option to use in module options array
472 * @devname: device name
474 * Turn the module and command options into a single structure
475 * for the current device
477 static void __devinit velocity_get_options(struct velocity_opt *opts, int index, const char *devname)
480 velocity_set_int_opt(&opts->rx_thresh, rx_thresh[index], RX_THRESH_MIN, RX_THRESH_MAX, RX_THRESH_DEF, "rx_thresh", devname);
481 velocity_set_int_opt(&opts->DMA_length, DMA_length[index], DMA_LENGTH_MIN, DMA_LENGTH_MAX, DMA_LENGTH_DEF, "DMA_length", devname);
482 velocity_set_int_opt(&opts->numrx, RxDescriptors[index], RX_DESC_MIN, RX_DESC_MAX, RX_DESC_DEF, "RxDescriptors", devname);
483 velocity_set_int_opt(&opts->numtx, TxDescriptors[index], TX_DESC_MIN, TX_DESC_MAX, TX_DESC_DEF, "TxDescriptors", devname);
485 velocity_set_int_opt(&opts->flow_cntl, flow_control[index], FLOW_CNTL_MIN, FLOW_CNTL_MAX, FLOW_CNTL_DEF, "flow_control", devname);
486 velocity_set_bool_opt(&opts->flags, IP_byte_align[index], IP_ALIG_DEF, VELOCITY_FLAGS_IP_ALIGN, "IP_byte_align", devname);
487 velocity_set_bool_opt(&opts->flags, ValPktLen[index], VAL_PKT_LEN_DEF, VELOCITY_FLAGS_VAL_PKT_LEN, "ValPktLen", devname);
488 velocity_set_int_opt((int *) &opts->spd_dpx, speed_duplex[index], MED_LNK_MIN, MED_LNK_MAX, MED_LNK_DEF, "Media link mode", devname);
489 velocity_set_int_opt((int *) &opts->wol_opts, wol_opts[index], WOL_OPT_MIN, WOL_OPT_MAX, WOL_OPT_DEF, "Wake On Lan options", devname);
490 opts->numrx = (opts->numrx & ~3);
494 * velocity_init_cam_filter - initialise CAM
495 * @vptr: velocity to program
497 * Initialize the content addressable memory used for filters. Load
498 * appropriately according to the presence of VLAN
500 static void velocity_init_cam_filter(struct velocity_info *vptr)
502 struct mac_regs __iomem *regs = vptr->mac_regs;
504 /* Turn on MCFG_PQEN, turn off MCFG_RTGOPT */
505 WORD_REG_BITS_SET(MCFG_PQEN, MCFG_RTGOPT, &regs->MCFG);
506 WORD_REG_BITS_ON(MCFG_VIDFR, &regs->MCFG);
508 /* Disable all CAMs */
509 memset(vptr->vCAMmask, 0, sizeof(u8) * 8);
510 memset(vptr->mCAMmask, 0, sizeof(u8) * 8);
511 mac_set_vlan_cam_mask(regs, vptr->vCAMmask);
512 mac_set_cam_mask(regs, vptr->mCAMmask);
514 /* Enable VCAMs */
515 if (vptr->vlgrp) {
516 unsigned int vid, i = 0;
518 if (!vlan_group_get_device(vptr->vlgrp, 0))
519 WORD_REG_BITS_ON(MCFG_RTGOPT, &regs->MCFG);
521 for (vid = 1; (vid < VLAN_VID_MASK); vid++) {
522 if (vlan_group_get_device(vptr->vlgrp, vid)) {
523 mac_set_vlan_cam(regs, i, (u8 *) &vid);
524 vptr->vCAMmask[i / 8] |= 0x1 << (i % 8);
525 if (++i >= VCAM_SIZE)
526 break;
529 mac_set_vlan_cam_mask(regs, vptr->vCAMmask);
533 static void velocity_vlan_rx_register(struct net_device *dev,
534 struct vlan_group *grp)
536 struct velocity_info *vptr = netdev_priv(dev);
538 vptr->vlgrp = grp;
541 static void velocity_vlan_rx_add_vid(struct net_device *dev, unsigned short vid)
543 struct velocity_info *vptr = netdev_priv(dev);
545 spin_lock_irq(&vptr->lock);
546 velocity_init_cam_filter(vptr);
547 spin_unlock_irq(&vptr->lock);
550 static void velocity_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
552 struct velocity_info *vptr = netdev_priv(dev);
554 spin_lock_irq(&vptr->lock);
555 vlan_group_set_device(vptr->vlgrp, vid, NULL);
556 velocity_init_cam_filter(vptr);
557 spin_unlock_irq(&vptr->lock);
560 static void velocity_init_rx_ring_indexes(struct velocity_info *vptr)
562 vptr->rx.dirty = vptr->rx.filled = vptr->rx.curr = 0;
566 * velocity_rx_reset - handle a receive reset
567 * @vptr: velocity we are resetting
569 * Reset the ownership and status for the receive ring side.
570 * Hand all the receive queue to the NIC.
572 static void velocity_rx_reset(struct velocity_info *vptr)
575 struct mac_regs __iomem *regs = vptr->mac_regs;
576 int i;
578 velocity_init_rx_ring_indexes(vptr);
581 * Init state, all RD entries belong to the NIC
583 for (i = 0; i < vptr->options.numrx; ++i)
584 vptr->rx.ring[i].rdesc0.len |= OWNED_BY_NIC;
586 writew(vptr->options.numrx, &regs->RBRDU);
587 writel(vptr->rx.pool_dma, &regs->RDBaseLo);
588 writew(0, &regs->RDIdx);
589 writew(vptr->options.numrx - 1, &regs->RDCSize);
593 * velocity_get_opt_media_mode - get media selection
594 * @vptr: velocity adapter
596 * Get the media mode stored in EEPROM or module options and load
597 * mii_status accordingly. The requested link state information
598 * is also returned.
600 static u32 velocity_get_opt_media_mode(struct velocity_info *vptr)
602 u32 status = 0;
604 switch (vptr->options.spd_dpx) {
605 case SPD_DPX_AUTO:
606 status = VELOCITY_AUTONEG_ENABLE;
607 break;
608 case SPD_DPX_100_FULL:
609 status = VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL;
610 break;
611 case SPD_DPX_10_FULL:
612 status = VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL;
613 break;
614 case SPD_DPX_100_HALF:
615 status = VELOCITY_SPEED_100;
616 break;
617 case SPD_DPX_10_HALF:
618 status = VELOCITY_SPEED_10;
619 break;
621 vptr->mii_status = status;
622 return status;
626 * safe_disable_mii_autopoll - autopoll off
627 * @regs: velocity registers
629 * Turn off the autopoll and wait for it to disable on the chip
631 static void safe_disable_mii_autopoll(struct mac_regs __iomem *regs)
633 u16 ww;
635 /* turn off MAUTO */
636 writeb(0, &regs->MIICR);
637 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
638 udelay(1);
639 if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
640 break;
645 * enable_mii_autopoll - turn on autopolling
646 * @regs: velocity registers
648 * Enable the MII link status autopoll feature on the Velocity
649 * hardware. Wait for it to enable.
651 static void enable_mii_autopoll(struct mac_regs __iomem *regs)
653 int ii;
655 writeb(0, &(regs->MIICR));
656 writeb(MIIADR_SWMPL, &regs->MIIADR);
658 for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
659 udelay(1);
660 if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
661 break;
664 writeb(MIICR_MAUTO, &regs->MIICR);
666 for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
667 udelay(1);
668 if (!BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
669 break;
675 * velocity_mii_read - read MII data
676 * @regs: velocity registers
677 * @index: MII register index
678 * @data: buffer for received data
680 * Perform a single read of an MII 16bit register. Returns zero
681 * on success or -ETIMEDOUT if the PHY did not respond.
683 static int velocity_mii_read(struct mac_regs __iomem *regs, u8 index, u16 *data)
685 u16 ww;
688 * Disable MIICR_MAUTO, so that mii addr can be set normally
690 safe_disable_mii_autopoll(regs);
692 writeb(index, &regs->MIIADR);
694 BYTE_REG_BITS_ON(MIICR_RCMD, &regs->MIICR);
696 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
697 if (!(readb(&regs->MIICR) & MIICR_RCMD))
698 break;
701 *data = readw(&regs->MIIDATA);
703 enable_mii_autopoll(regs);
704 if (ww == W_MAX_TIMEOUT)
705 return -ETIMEDOUT;
706 return 0;
711 * mii_check_media_mode - check media state
712 * @regs: velocity registers
714 * Check the current MII status and determine the link status
715 * accordingly
717 static u32 mii_check_media_mode(struct mac_regs __iomem *regs)
719 u32 status = 0;
720 u16 ANAR;
722 if (!MII_REG_BITS_IS_ON(BMSR_LNK, MII_REG_BMSR, regs))
723 status |= VELOCITY_LINK_FAIL;
725 if (MII_REG_BITS_IS_ON(G1000CR_1000FD, MII_REG_G1000CR, regs))
726 status |= VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL;
727 else if (MII_REG_BITS_IS_ON(G1000CR_1000, MII_REG_G1000CR, regs))
728 status |= (VELOCITY_SPEED_1000);
729 else {
730 velocity_mii_read(regs, MII_REG_ANAR, &ANAR);
731 if (ANAR & ANAR_TXFD)
732 status |= (VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL);
733 else if (ANAR & ANAR_TX)
734 status |= VELOCITY_SPEED_100;
735 else if (ANAR & ANAR_10FD)
736 status |= (VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL);
737 else
738 status |= (VELOCITY_SPEED_10);
741 if (MII_REG_BITS_IS_ON(BMCR_AUTO, MII_REG_BMCR, regs)) {
742 velocity_mii_read(regs, MII_REG_ANAR, &ANAR);
743 if ((ANAR & (ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10))
744 == (ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10)) {
745 if (MII_REG_BITS_IS_ON(G1000CR_1000 | G1000CR_1000FD, MII_REG_G1000CR, regs))
746 status |= VELOCITY_AUTONEG_ENABLE;
750 return status;
754 * velocity_mii_write - write MII data
755 * @regs: velocity registers
756 * @index: MII register index
757 * @data: 16bit data for the MII register
759 * Perform a single write to an MII 16bit register. Returns zero
760 * on success or -ETIMEDOUT if the PHY did not respond.
762 static int velocity_mii_write(struct mac_regs __iomem *regs, u8 mii_addr, u16 data)
764 u16 ww;
767 * Disable MIICR_MAUTO, so that mii addr can be set normally
769 safe_disable_mii_autopoll(regs);
771 /* MII reg offset */
772 writeb(mii_addr, &regs->MIIADR);
773 /* set MII data */
774 writew(data, &regs->MIIDATA);
776 /* turn on MIICR_WCMD */
777 BYTE_REG_BITS_ON(MIICR_WCMD, &regs->MIICR);
779 /* W_MAX_TIMEOUT is the timeout period */
780 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
781 udelay(5);
782 if (!(readb(&regs->MIICR) & MIICR_WCMD))
783 break;
785 enable_mii_autopoll(regs);
787 if (ww == W_MAX_TIMEOUT)
788 return -ETIMEDOUT;
789 return 0;
793 * set_mii_flow_control - flow control setup
794 * @vptr: velocity interface
796 * Set up the flow control on this interface according to
797 * the supplied user/eeprom options.
799 static void set_mii_flow_control(struct velocity_info *vptr)
801 /*Enable or Disable PAUSE in ANAR */
802 switch (vptr->options.flow_cntl) {
803 case FLOW_CNTL_TX:
804 MII_REG_BITS_OFF(ANAR_PAUSE, MII_REG_ANAR, vptr->mac_regs);
805 MII_REG_BITS_ON(ANAR_ASMDIR, MII_REG_ANAR, vptr->mac_regs);
806 break;
808 case FLOW_CNTL_RX:
809 MII_REG_BITS_ON(ANAR_PAUSE, MII_REG_ANAR, vptr->mac_regs);
810 MII_REG_BITS_ON(ANAR_ASMDIR, MII_REG_ANAR, vptr->mac_regs);
811 break;
813 case FLOW_CNTL_TX_RX:
814 MII_REG_BITS_ON(ANAR_PAUSE, MII_REG_ANAR, vptr->mac_regs);
815 MII_REG_BITS_ON(ANAR_ASMDIR, MII_REG_ANAR, vptr->mac_regs);
816 break;
818 case FLOW_CNTL_DISABLE:
819 MII_REG_BITS_OFF(ANAR_PAUSE, MII_REG_ANAR, vptr->mac_regs);
820 MII_REG_BITS_OFF(ANAR_ASMDIR, MII_REG_ANAR, vptr->mac_regs);
821 break;
822 default:
823 break;
828 * mii_set_auto_on - autonegotiate on
829 * @vptr: velocity
831 * Enable autonegotation on this interface
833 static void mii_set_auto_on(struct velocity_info *vptr)
835 if (MII_REG_BITS_IS_ON(BMCR_AUTO, MII_REG_BMCR, vptr->mac_regs))
836 MII_REG_BITS_ON(BMCR_REAUTO, MII_REG_BMCR, vptr->mac_regs);
837 else
838 MII_REG_BITS_ON(BMCR_AUTO, MII_REG_BMCR, vptr->mac_regs);
841 static u32 check_connection_type(struct mac_regs __iomem *regs)
843 u32 status = 0;
844 u8 PHYSR0;
845 u16 ANAR;
846 PHYSR0 = readb(&regs->PHYSR0);
849 if (!(PHYSR0 & PHYSR0_LINKGD))
850 status|=VELOCITY_LINK_FAIL;
853 if (PHYSR0 & PHYSR0_FDPX)
854 status |= VELOCITY_DUPLEX_FULL;
856 if (PHYSR0 & PHYSR0_SPDG)
857 status |= VELOCITY_SPEED_1000;
858 else if (PHYSR0 & PHYSR0_SPD10)
859 status |= VELOCITY_SPEED_10;
860 else
861 status |= VELOCITY_SPEED_100;
863 if (MII_REG_BITS_IS_ON(BMCR_AUTO, MII_REG_BMCR, regs)) {
864 velocity_mii_read(regs, MII_REG_ANAR, &ANAR);
865 if ((ANAR & (ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10))
866 == (ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10)) {
867 if (MII_REG_BITS_IS_ON(G1000CR_1000 | G1000CR_1000FD, MII_REG_G1000CR, regs))
868 status |= VELOCITY_AUTONEG_ENABLE;
872 return status;
878 * velocity_set_media_mode - set media mode
879 * @mii_status: old MII link state
881 * Check the media link state and configure the flow control
882 * PHY and also velocity hardware setup accordingly. In particular
883 * we need to set up CD polling and frame bursting.
885 static int velocity_set_media_mode(struct velocity_info *vptr, u32 mii_status)
887 u32 curr_status;
888 struct mac_regs __iomem *regs = vptr->mac_regs;
890 vptr->mii_status = mii_check_media_mode(vptr->mac_regs);
891 curr_status = vptr->mii_status & (~VELOCITY_LINK_FAIL);
893 /* Set mii link status */
894 set_mii_flow_control(vptr);
897 Check if new status is consisent with current status
898 if (((mii_status & curr_status) & VELOCITY_AUTONEG_ENABLE) ||
899 (mii_status==curr_status)) {
900 vptr->mii_status=mii_check_media_mode(vptr->mac_regs);
901 vptr->mii_status=check_connection_type(vptr->mac_regs);
902 VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity link no change\n");
903 return 0;
907 if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201)
908 MII_REG_BITS_ON(AUXCR_MDPPS, MII_REG_AUXCR, vptr->mac_regs);
911 * If connection type is AUTO
913 if (mii_status & VELOCITY_AUTONEG_ENABLE) {
914 VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity is AUTO mode\n");
915 /* clear force MAC mode bit */
916 BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
917 /* set duplex mode of MAC according to duplex mode of MII */
918 MII_REG_BITS_ON(ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10, MII_REG_ANAR, vptr->mac_regs);
919 MII_REG_BITS_ON(G1000CR_1000FD | G1000CR_1000, MII_REG_G1000CR, vptr->mac_regs);
920 MII_REG_BITS_ON(BMCR_SPEED1G, MII_REG_BMCR, vptr->mac_regs);
922 /* enable AUTO-NEGO mode */
923 mii_set_auto_on(vptr);
924 } else {
925 u16 ANAR;
926 u8 CHIPGCR;
929 * 1. if it's 3119, disable frame bursting in halfduplex mode
930 * and enable it in fullduplex mode
931 * 2. set correct MII/GMII and half/full duplex mode in CHIPGCR
932 * 3. only enable CD heart beat counter in 10HD mode
935 /* set force MAC mode bit */
936 BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
938 CHIPGCR = readb(&regs->CHIPGCR);
939 CHIPGCR &= ~CHIPGCR_FCGMII;
941 if (mii_status & VELOCITY_DUPLEX_FULL) {
942 CHIPGCR |= CHIPGCR_FCFDX;
943 writeb(CHIPGCR, &regs->CHIPGCR);
944 VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced full mode\n");
945 if (vptr->rev_id < REV_ID_VT3216_A0)
946 BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
947 } else {
948 CHIPGCR &= ~CHIPGCR_FCFDX;
949 VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced half mode\n");
950 writeb(CHIPGCR, &regs->CHIPGCR);
951 if (vptr->rev_id < REV_ID_VT3216_A0)
952 BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
955 MII_REG_BITS_OFF(G1000CR_1000FD | G1000CR_1000, MII_REG_G1000CR, vptr->mac_regs);
957 if (!(mii_status & VELOCITY_DUPLEX_FULL) && (mii_status & VELOCITY_SPEED_10))
958 BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
959 else
960 BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
962 /* MII_REG_BITS_OFF(BMCR_SPEED1G, MII_REG_BMCR, vptr->mac_regs); */
963 velocity_mii_read(vptr->mac_regs, MII_REG_ANAR, &ANAR);
964 ANAR &= (~(ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10));
965 if (mii_status & VELOCITY_SPEED_100) {
966 if (mii_status & VELOCITY_DUPLEX_FULL)
967 ANAR |= ANAR_TXFD;
968 else
969 ANAR |= ANAR_TX;
970 } else {
971 if (mii_status & VELOCITY_DUPLEX_FULL)
972 ANAR |= ANAR_10FD;
973 else
974 ANAR |= ANAR_10;
976 velocity_mii_write(vptr->mac_regs, MII_REG_ANAR, ANAR);
977 /* enable AUTO-NEGO mode */
978 mii_set_auto_on(vptr);
979 /* MII_REG_BITS_ON(BMCR_AUTO, MII_REG_BMCR, vptr->mac_regs); */
981 /* vptr->mii_status=mii_check_media_mode(vptr->mac_regs); */
982 /* vptr->mii_status=check_connection_type(vptr->mac_regs); */
983 return VELOCITY_LINK_CHANGE;
987 * velocity_print_link_status - link status reporting
988 * @vptr: velocity to report on
990 * Turn the link status of the velocity card into a kernel log
991 * description of the new link state, detailing speed and duplex
992 * status
994 static void velocity_print_link_status(struct velocity_info *vptr)
997 if (vptr->mii_status & VELOCITY_LINK_FAIL) {
998 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: failed to detect cable link\n", vptr->dev->name);
999 } else if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1000 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link auto-negotiation", vptr->dev->name);
1002 if (vptr->mii_status & VELOCITY_SPEED_1000)
1003 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps");
1004 else if (vptr->mii_status & VELOCITY_SPEED_100)
1005 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps");
1006 else
1007 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps");
1009 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1010 VELOCITY_PRT(MSG_LEVEL_INFO, " full duplex\n");
1011 else
1012 VELOCITY_PRT(MSG_LEVEL_INFO, " half duplex\n");
1013 } else {
1014 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link forced", vptr->dev->name);
1015 switch (vptr->options.spd_dpx) {
1016 case SPD_DPX_100_HALF:
1017 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps half duplex\n");
1018 break;
1019 case SPD_DPX_100_FULL:
1020 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps full duplex\n");
1021 break;
1022 case SPD_DPX_10_HALF:
1023 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps half duplex\n");
1024 break;
1025 case SPD_DPX_10_FULL:
1026 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps full duplex\n");
1027 break;
1028 default:
1029 break;
1035 * enable_flow_control_ability - flow control
1036 * @vptr: veloity to configure
1038 * Set up flow control according to the flow control options
1039 * determined by the eeprom/configuration.
1041 static void enable_flow_control_ability(struct velocity_info *vptr)
1044 struct mac_regs __iomem *regs = vptr->mac_regs;
1046 switch (vptr->options.flow_cntl) {
1048 case FLOW_CNTL_DEFAULT:
1049 if (BYTE_REG_BITS_IS_ON(PHYSR0_RXFLC, &regs->PHYSR0))
1050 writel(CR0_FDXRFCEN, &regs->CR0Set);
1051 else
1052 writel(CR0_FDXRFCEN, &regs->CR0Clr);
1054 if (BYTE_REG_BITS_IS_ON(PHYSR0_TXFLC, &regs->PHYSR0))
1055 writel(CR0_FDXTFCEN, &regs->CR0Set);
1056 else
1057 writel(CR0_FDXTFCEN, &regs->CR0Clr);
1058 break;
1060 case FLOW_CNTL_TX:
1061 writel(CR0_FDXTFCEN, &regs->CR0Set);
1062 writel(CR0_FDXRFCEN, &regs->CR0Clr);
1063 break;
1065 case FLOW_CNTL_RX:
1066 writel(CR0_FDXRFCEN, &regs->CR0Set);
1067 writel(CR0_FDXTFCEN, &regs->CR0Clr);
1068 break;
1070 case FLOW_CNTL_TX_RX:
1071 writel(CR0_FDXTFCEN, &regs->CR0Set);
1072 writel(CR0_FDXRFCEN, &regs->CR0Set);
1073 break;
1075 case FLOW_CNTL_DISABLE:
1076 writel(CR0_FDXRFCEN, &regs->CR0Clr);
1077 writel(CR0_FDXTFCEN, &regs->CR0Clr);
1078 break;
1080 default:
1081 break;
1087 * velocity_soft_reset - soft reset
1088 * @vptr: velocity to reset
1090 * Kick off a soft reset of the velocity adapter and then poll
1091 * until the reset sequence has completed before returning.
1093 static int velocity_soft_reset(struct velocity_info *vptr)
1095 struct mac_regs __iomem *regs = vptr->mac_regs;
1096 int i = 0;
1098 writel(CR0_SFRST, &regs->CR0Set);
1100 for (i = 0; i < W_MAX_TIMEOUT; i++) {
1101 udelay(5);
1102 if (!DWORD_REG_BITS_IS_ON(CR0_SFRST, &regs->CR0Set))
1103 break;
1106 if (i == W_MAX_TIMEOUT) {
1107 writel(CR0_FORSRST, &regs->CR0Set);
1108 /* FIXME: PCI POSTING */
1109 /* delay 2ms */
1110 mdelay(2);
1112 return 0;
1116 * velocity_set_multi - filter list change callback
1117 * @dev: network device
1119 * Called by the network layer when the filter lists need to change
1120 * for a velocity adapter. Reload the CAMs with the new address
1121 * filter ruleset.
1123 static void velocity_set_multi(struct net_device *dev)
1125 struct velocity_info *vptr = netdev_priv(dev);
1126 struct mac_regs __iomem *regs = vptr->mac_regs;
1127 u8 rx_mode;
1128 int i;
1129 struct dev_mc_list *mclist;
1131 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1132 writel(0xffffffff, &regs->MARCAM[0]);
1133 writel(0xffffffff, &regs->MARCAM[4]);
1134 rx_mode = (RCR_AM | RCR_AB | RCR_PROM);
1135 } else if ((dev->mc_count > vptr->multicast_limit) ||
1136 (dev->flags & IFF_ALLMULTI)) {
1137 writel(0xffffffff, &regs->MARCAM[0]);
1138 writel(0xffffffff, &regs->MARCAM[4]);
1139 rx_mode = (RCR_AM | RCR_AB);
1140 } else {
1141 int offset = MCAM_SIZE - vptr->multicast_limit;
1142 mac_get_cam_mask(regs, vptr->mCAMmask);
1144 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count; i++, mclist = mclist->next) {
1145 mac_set_cam(regs, i + offset, mclist->dmi_addr);
1146 vptr->mCAMmask[(offset + i) / 8] |= 1 << ((offset + i) & 7);
1149 mac_set_cam_mask(regs, vptr->mCAMmask);
1150 rx_mode = RCR_AM | RCR_AB | RCR_AP;
1152 if (dev->mtu > 1500)
1153 rx_mode |= RCR_AL;
1155 BYTE_REG_BITS_ON(rx_mode, &regs->RCR);
1160 * MII access , media link mode setting functions
1164 * mii_init - set up MII
1165 * @vptr: velocity adapter
1166 * @mii_status: links tatus
1168 * Set up the PHY for the current link state.
1170 static void mii_init(struct velocity_info *vptr, u32 mii_status)
1172 u16 BMCR;
1174 switch (PHYID_GET_PHY_ID(vptr->phy_id)) {
1175 case PHYID_CICADA_CS8201:
1177 * Reset to hardware default
1179 MII_REG_BITS_OFF((ANAR_ASMDIR | ANAR_PAUSE), MII_REG_ANAR, vptr->mac_regs);
1181 * Turn on ECHODIS bit in NWay-forced full mode and turn it
1182 * off it in NWay-forced half mode for NWay-forced v.s.
1183 * legacy-forced issue.
1185 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1186 MII_REG_BITS_ON(TCSR_ECHODIS, MII_REG_TCSR, vptr->mac_regs);
1187 else
1188 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_REG_TCSR, vptr->mac_regs);
1190 * Turn on Link/Activity LED enable bit for CIS8201
1192 MII_REG_BITS_ON(PLED_LALBE, MII_REG_PLED, vptr->mac_regs);
1193 break;
1194 case PHYID_VT3216_32BIT:
1195 case PHYID_VT3216_64BIT:
1197 * Reset to hardware default
1199 MII_REG_BITS_ON((ANAR_ASMDIR | ANAR_PAUSE), MII_REG_ANAR, vptr->mac_regs);
1201 * Turn on ECHODIS bit in NWay-forced full mode and turn it
1202 * off it in NWay-forced half mode for NWay-forced v.s.
1203 * legacy-forced issue
1205 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1206 MII_REG_BITS_ON(TCSR_ECHODIS, MII_REG_TCSR, vptr->mac_regs);
1207 else
1208 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_REG_TCSR, vptr->mac_regs);
1209 break;
1211 case PHYID_MARVELL_1000:
1212 case PHYID_MARVELL_1000S:
1214 * Assert CRS on Transmit
1216 MII_REG_BITS_ON(PSCR_ACRSTX, MII_REG_PSCR, vptr->mac_regs);
1218 * Reset to hardware default
1220 MII_REG_BITS_ON((ANAR_ASMDIR | ANAR_PAUSE), MII_REG_ANAR, vptr->mac_regs);
1221 break;
1222 default:
1225 velocity_mii_read(vptr->mac_regs, MII_REG_BMCR, &BMCR);
1226 if (BMCR & BMCR_ISO) {
1227 BMCR &= ~BMCR_ISO;
1228 velocity_mii_write(vptr->mac_regs, MII_REG_BMCR, BMCR);
1233 * setup_queue_timers - Setup interrupt timers
1235 * Setup interrupt frequency during suppression (timeout if the frame
1236 * count isn't filled).
1238 static void setup_queue_timers(struct velocity_info *vptr)
1240 /* Only for newer revisions */
1241 if (vptr->rev_id >= REV_ID_VT3216_A0) {
1242 u8 txqueue_timer = 0;
1243 u8 rxqueue_timer = 0;
1245 if (vptr->mii_status & (VELOCITY_SPEED_1000 |
1246 VELOCITY_SPEED_100)) {
1247 txqueue_timer = vptr->options.txqueue_timer;
1248 rxqueue_timer = vptr->options.rxqueue_timer;
1251 writeb(txqueue_timer, &vptr->mac_regs->TQETMR);
1252 writeb(rxqueue_timer, &vptr->mac_regs->RQETMR);
1256 * setup_adaptive_interrupts - Setup interrupt suppression
1258 * @vptr velocity adapter
1260 * The velocity is able to suppress interrupt during high interrupt load.
1261 * This function turns on that feature.
1263 static void setup_adaptive_interrupts(struct velocity_info *vptr)
1265 struct mac_regs __iomem *regs = vptr->mac_regs;
1266 u16 tx_intsup = vptr->options.tx_intsup;
1267 u16 rx_intsup = vptr->options.rx_intsup;
1269 /* Setup default interrupt mask (will be changed below) */
1270 vptr->int_mask = INT_MASK_DEF;
1272 /* Set Tx Interrupt Suppression Threshold */
1273 writeb(CAMCR_PS0, &regs->CAMCR);
1274 if (tx_intsup != 0) {
1275 vptr->int_mask &= ~(ISR_PTXI | ISR_PTX0I | ISR_PTX1I |
1276 ISR_PTX2I | ISR_PTX3I);
1277 writew(tx_intsup, &regs->ISRCTL);
1278 } else
1279 writew(ISRCTL_TSUPDIS, &regs->ISRCTL);
1281 /* Set Rx Interrupt Suppression Threshold */
1282 writeb(CAMCR_PS1, &regs->CAMCR);
1283 if (rx_intsup != 0) {
1284 vptr->int_mask &= ~ISR_PRXI;
1285 writew(rx_intsup, &regs->ISRCTL);
1286 } else
1287 writew(ISRCTL_RSUPDIS, &regs->ISRCTL);
1289 /* Select page to interrupt hold timer */
1290 writeb(0, &regs->CAMCR);
1294 * velocity_init_registers - initialise MAC registers
1295 * @vptr: velocity to init
1296 * @type: type of initialisation (hot or cold)
1298 * Initialise the MAC on a reset or on first set up on the
1299 * hardware.
1301 static void velocity_init_registers(struct velocity_info *vptr,
1302 enum velocity_init_type type)
1304 struct mac_regs __iomem *regs = vptr->mac_regs;
1305 int i, mii_status;
1307 mac_wol_reset(regs);
1309 switch (type) {
1310 case VELOCITY_INIT_RESET:
1311 case VELOCITY_INIT_WOL:
1313 netif_stop_queue(vptr->dev);
1316 * Reset RX to prevent RX pointer not on the 4X location
1318 velocity_rx_reset(vptr);
1319 mac_rx_queue_run(regs);
1320 mac_rx_queue_wake(regs);
1322 mii_status = velocity_get_opt_media_mode(vptr);
1323 if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
1324 velocity_print_link_status(vptr);
1325 if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
1326 netif_wake_queue(vptr->dev);
1329 enable_flow_control_ability(vptr);
1331 mac_clear_isr(regs);
1332 writel(CR0_STOP, &regs->CR0Clr);
1333 writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT),
1334 &regs->CR0Set);
1336 break;
1338 case VELOCITY_INIT_COLD:
1339 default:
1341 * Do reset
1343 velocity_soft_reset(vptr);
1344 mdelay(5);
1346 mac_eeprom_reload(regs);
1347 for (i = 0; i < 6; i++)
1348 writeb(vptr->dev->dev_addr[i], &(regs->PAR[i]));
1351 * clear Pre_ACPI bit.
1353 BYTE_REG_BITS_OFF(CFGA_PACPI, &(regs->CFGA));
1354 mac_set_rx_thresh(regs, vptr->options.rx_thresh);
1355 mac_set_dma_length(regs, vptr->options.DMA_length);
1357 writeb(WOLCFG_SAM | WOLCFG_SAB, &regs->WOLCFGSet);
1359 * Back off algorithm use original IEEE standard
1361 BYTE_REG_BITS_SET(CFGB_OFSET, (CFGB_CRANDOM | CFGB_CAP | CFGB_MBA | CFGB_BAKOPT), &regs->CFGB);
1364 * Init CAM filter
1366 velocity_init_cam_filter(vptr);
1369 * Set packet filter: Receive directed and broadcast address
1371 velocity_set_multi(vptr->dev);
1374 * Enable MII auto-polling
1376 enable_mii_autopoll(regs);
1378 setup_adaptive_interrupts(vptr);
1380 writel(vptr->rx.pool_dma, &regs->RDBaseLo);
1381 writew(vptr->options.numrx - 1, &regs->RDCSize);
1382 mac_rx_queue_run(regs);
1383 mac_rx_queue_wake(regs);
1385 writew(vptr->options.numtx - 1, &regs->TDCSize);
1387 for (i = 0; i < vptr->tx.numq; i++) {
1388 writel(vptr->tx.pool_dma[i], &regs->TDBaseLo[i]);
1389 mac_tx_queue_run(regs, i);
1392 init_flow_control_register(vptr);
1394 writel(CR0_STOP, &regs->CR0Clr);
1395 writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT), &regs->CR0Set);
1397 mii_status = velocity_get_opt_media_mode(vptr);
1398 netif_stop_queue(vptr->dev);
1400 mii_init(vptr, mii_status);
1402 if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
1403 velocity_print_link_status(vptr);
1404 if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
1405 netif_wake_queue(vptr->dev);
1408 enable_flow_control_ability(vptr);
1409 mac_hw_mibs_init(regs);
1410 mac_write_int_mask(vptr->int_mask, regs);
1411 mac_clear_isr(regs);
1416 static void velocity_give_many_rx_descs(struct velocity_info *vptr)
1418 struct mac_regs __iomem *regs = vptr->mac_regs;
1419 int avail, dirty, unusable;
1422 * RD number must be equal to 4X per hardware spec
1423 * (programming guide rev 1.20, p.13)
1425 if (vptr->rx.filled < 4)
1426 return;
1428 wmb();
1430 unusable = vptr->rx.filled & 0x0003;
1431 dirty = vptr->rx.dirty - unusable;
1432 for (avail = vptr->rx.filled & 0xfffc; avail; avail--) {
1433 dirty = (dirty > 0) ? dirty - 1 : vptr->options.numrx - 1;
1434 vptr->rx.ring[dirty].rdesc0.len |= OWNED_BY_NIC;
1437 writew(vptr->rx.filled & 0xfffc, &regs->RBRDU);
1438 vptr->rx.filled = unusable;
1442 * velocity_init_dma_rings - set up DMA rings
1443 * @vptr: Velocity to set up
1445 * Allocate PCI mapped DMA rings for the receive and transmit layer
1446 * to use.
1448 static int velocity_init_dma_rings(struct velocity_info *vptr)
1450 struct velocity_opt *opt = &vptr->options;
1451 const unsigned int rx_ring_size = opt->numrx * sizeof(struct rx_desc);
1452 const unsigned int tx_ring_size = opt->numtx * sizeof(struct tx_desc);
1453 struct pci_dev *pdev = vptr->pdev;
1454 dma_addr_t pool_dma;
1455 void *pool;
1456 unsigned int i;
1459 * Allocate all RD/TD rings a single pool.
1461 * pci_alloc_consistent() fulfills the requirement for 64 bytes
1462 * alignment
1464 pool = pci_alloc_consistent(pdev, tx_ring_size * vptr->tx.numq +
1465 rx_ring_size, &pool_dma);
1466 if (!pool) {
1467 dev_err(&pdev->dev, "%s : DMA memory allocation failed.\n",
1468 vptr->dev->name);
1469 return -ENOMEM;
1472 vptr->rx.ring = pool;
1473 vptr->rx.pool_dma = pool_dma;
1475 pool += rx_ring_size;
1476 pool_dma += rx_ring_size;
1478 for (i = 0; i < vptr->tx.numq; i++) {
1479 vptr->tx.rings[i] = pool;
1480 vptr->tx.pool_dma[i] = pool_dma;
1481 pool += tx_ring_size;
1482 pool_dma += tx_ring_size;
1485 return 0;
1488 static void velocity_set_rxbufsize(struct velocity_info *vptr, int mtu)
1490 vptr->rx.buf_sz = (mtu <= ETH_DATA_LEN) ? PKT_BUF_SZ : mtu + 32;
1494 * velocity_alloc_rx_buf - allocate aligned receive buffer
1495 * @vptr: velocity
1496 * @idx: ring index
1498 * Allocate a new full sized buffer for the reception of a frame and
1499 * map it into PCI space for the hardware to use. The hardware
1500 * requires *64* byte alignment of the buffer which makes life
1501 * less fun than would be ideal.
1503 static int velocity_alloc_rx_buf(struct velocity_info *vptr, int idx)
1505 struct rx_desc *rd = &(vptr->rx.ring[idx]);
1506 struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]);
1508 rd_info->skb = dev_alloc_skb(vptr->rx.buf_sz + 64);
1509 if (rd_info->skb == NULL)
1510 return -ENOMEM;
1513 * Do the gymnastics to get the buffer head for data at
1514 * 64byte alignment.
1516 skb_reserve(rd_info->skb,
1517 64 - ((unsigned long) rd_info->skb->data & 63));
1518 rd_info->skb_dma = pci_map_single(vptr->pdev, rd_info->skb->data,
1519 vptr->rx.buf_sz, PCI_DMA_FROMDEVICE);
1522 * Fill in the descriptor to match
1525 *((u32 *) & (rd->rdesc0)) = 0;
1526 rd->size = cpu_to_le16(vptr->rx.buf_sz) | RX_INTEN;
1527 rd->pa_low = cpu_to_le32(rd_info->skb_dma);
1528 rd->pa_high = 0;
1529 return 0;
1533 static int velocity_rx_refill(struct velocity_info *vptr)
1535 int dirty = vptr->rx.dirty, done = 0;
1537 do {
1538 struct rx_desc *rd = vptr->rx.ring + dirty;
1540 /* Fine for an all zero Rx desc at init time as well */
1541 if (rd->rdesc0.len & OWNED_BY_NIC)
1542 break;
1544 if (!vptr->rx.info[dirty].skb) {
1545 if (velocity_alloc_rx_buf(vptr, dirty) < 0)
1546 break;
1548 done++;
1549 dirty = (dirty < vptr->options.numrx - 1) ? dirty + 1 : 0;
1550 } while (dirty != vptr->rx.curr);
1552 if (done) {
1553 vptr->rx.dirty = dirty;
1554 vptr->rx.filled += done;
1557 return done;
1561 * velocity_free_rd_ring - free receive ring
1562 * @vptr: velocity to clean up
1564 * Free the receive buffers for each ring slot and any
1565 * attached socket buffers that need to go away.
1567 static void velocity_free_rd_ring(struct velocity_info *vptr)
1569 int i;
1571 if (vptr->rx.info == NULL)
1572 return;
1574 for (i = 0; i < vptr->options.numrx; i++) {
1575 struct velocity_rd_info *rd_info = &(vptr->rx.info[i]);
1576 struct rx_desc *rd = vptr->rx.ring + i;
1578 memset(rd, 0, sizeof(*rd));
1580 if (!rd_info->skb)
1581 continue;
1582 pci_unmap_single(vptr->pdev, rd_info->skb_dma, vptr->rx.buf_sz,
1583 PCI_DMA_FROMDEVICE);
1584 rd_info->skb_dma = 0;
1586 dev_kfree_skb(rd_info->skb);
1587 rd_info->skb = NULL;
1590 kfree(vptr->rx.info);
1591 vptr->rx.info = NULL;
1597 * velocity_init_rd_ring - set up receive ring
1598 * @vptr: velocity to configure
1600 * Allocate and set up the receive buffers for each ring slot and
1601 * assign them to the network adapter.
1603 static int velocity_init_rd_ring(struct velocity_info *vptr)
1605 int ret = -ENOMEM;
1607 vptr->rx.info = kcalloc(vptr->options.numrx,
1608 sizeof(struct velocity_rd_info), GFP_KERNEL);
1609 if (!vptr->rx.info)
1610 goto out;
1612 velocity_init_rx_ring_indexes(vptr);
1614 if (velocity_rx_refill(vptr) != vptr->options.numrx) {
1615 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_ERR
1616 "%s: failed to allocate RX buffer.\n", vptr->dev->name);
1617 velocity_free_rd_ring(vptr);
1618 goto out;
1621 ret = 0;
1622 out:
1623 return ret;
1627 * velocity_init_td_ring - set up transmit ring
1628 * @vptr: velocity
1630 * Set up the transmit ring and chain the ring pointers together.
1631 * Returns zero on success or a negative posix errno code for
1632 * failure.
1634 static int velocity_init_td_ring(struct velocity_info *vptr)
1636 int j;
1638 /* Init the TD ring entries */
1639 for (j = 0; j < vptr->tx.numq; j++) {
1641 vptr->tx.infos[j] = kcalloc(vptr->options.numtx,
1642 sizeof(struct velocity_td_info),
1643 GFP_KERNEL);
1644 if (!vptr->tx.infos[j]) {
1645 while (--j >= 0)
1646 kfree(vptr->tx.infos[j]);
1647 return -ENOMEM;
1650 vptr->tx.tail[j] = vptr->tx.curr[j] = vptr->tx.used[j] = 0;
1652 return 0;
1656 * velocity_free_dma_rings - free PCI ring pointers
1657 * @vptr: Velocity to free from
1659 * Clean up the PCI ring buffers allocated to this velocity.
1661 static void velocity_free_dma_rings(struct velocity_info *vptr)
1663 const int size = vptr->options.numrx * sizeof(struct rx_desc) +
1664 vptr->options.numtx * sizeof(struct tx_desc) * vptr->tx.numq;
1666 pci_free_consistent(vptr->pdev, size, vptr->rx.ring, vptr->rx.pool_dma);
1670 static int velocity_init_rings(struct velocity_info *vptr, int mtu)
1672 int ret;
1674 velocity_set_rxbufsize(vptr, mtu);
1676 ret = velocity_init_dma_rings(vptr);
1677 if (ret < 0)
1678 goto out;
1680 ret = velocity_init_rd_ring(vptr);
1681 if (ret < 0)
1682 goto err_free_dma_rings_0;
1684 ret = velocity_init_td_ring(vptr);
1685 if (ret < 0)
1686 goto err_free_rd_ring_1;
1687 out:
1688 return ret;
1690 err_free_rd_ring_1:
1691 velocity_free_rd_ring(vptr);
1692 err_free_dma_rings_0:
1693 velocity_free_dma_rings(vptr);
1694 goto out;
1698 * velocity_free_tx_buf - free transmit buffer
1699 * @vptr: velocity
1700 * @tdinfo: buffer
1702 * Release an transmit buffer. If the buffer was preallocated then
1703 * recycle it, if not then unmap the buffer.
1705 static void velocity_free_tx_buf(struct velocity_info *vptr,
1706 struct velocity_td_info *tdinfo, struct tx_desc *td)
1708 struct sk_buff *skb = tdinfo->skb;
1711 * Don't unmap the pre-allocated tx_bufs
1713 if (tdinfo->skb_dma) {
1714 int i;
1716 for (i = 0; i < tdinfo->nskb_dma; i++) {
1717 size_t pktlen = max_t(size_t, skb->len, ETH_ZLEN);
1719 /* For scatter-gather */
1720 if (skb_shinfo(skb)->nr_frags > 0)
1721 pktlen = max_t(size_t, pktlen,
1722 td->td_buf[i].size & ~TD_QUEUE);
1724 pci_unmap_single(vptr->pdev, tdinfo->skb_dma[i],
1725 le16_to_cpu(pktlen), PCI_DMA_TODEVICE);
1728 dev_kfree_skb_irq(skb);
1729 tdinfo->skb = NULL;
1734 * FIXME: could we merge this with velocity_free_tx_buf ?
1736 static void velocity_free_td_ring_entry(struct velocity_info *vptr,
1737 int q, int n)
1739 struct velocity_td_info *td_info = &(vptr->tx.infos[q][n]);
1740 int i;
1742 if (td_info == NULL)
1743 return;
1745 if (td_info->skb) {
1746 for (i = 0; i < td_info->nskb_dma; i++) {
1747 if (td_info->skb_dma[i]) {
1748 pci_unmap_single(vptr->pdev, td_info->skb_dma[i],
1749 td_info->skb->len, PCI_DMA_TODEVICE);
1750 td_info->skb_dma[i] = 0;
1753 dev_kfree_skb(td_info->skb);
1754 td_info->skb = NULL;
1759 * velocity_free_td_ring - free td ring
1760 * @vptr: velocity
1762 * Free up the transmit ring for this particular velocity adapter.
1763 * We free the ring contents but not the ring itself.
1765 static void velocity_free_td_ring(struct velocity_info *vptr)
1767 int i, j;
1769 for (j = 0; j < vptr->tx.numq; j++) {
1770 if (vptr->tx.infos[j] == NULL)
1771 continue;
1772 for (i = 0; i < vptr->options.numtx; i++)
1773 velocity_free_td_ring_entry(vptr, j, i);
1775 kfree(vptr->tx.infos[j]);
1776 vptr->tx.infos[j] = NULL;
1781 static void velocity_free_rings(struct velocity_info *vptr)
1783 velocity_free_td_ring(vptr);
1784 velocity_free_rd_ring(vptr);
1785 velocity_free_dma_rings(vptr);
1789 * velocity_error - handle error from controller
1790 * @vptr: velocity
1791 * @status: card status
1793 * Process an error report from the hardware and attempt to recover
1794 * the card itself. At the moment we cannot recover from some
1795 * theoretically impossible errors but this could be fixed using
1796 * the pci_device_failed logic to bounce the hardware
1799 static void velocity_error(struct velocity_info *vptr, int status)
1802 if (status & ISR_TXSTLI) {
1803 struct mac_regs __iomem *regs = vptr->mac_regs;
1805 printk(KERN_ERR "TD structure error TDindex=%hx\n", readw(&regs->TDIdx[0]));
1806 BYTE_REG_BITS_ON(TXESR_TDSTR, &regs->TXESR);
1807 writew(TRDCSR_RUN, &regs->TDCSRClr);
1808 netif_stop_queue(vptr->dev);
1810 /* FIXME: port over the pci_device_failed code and use it
1811 here */
1814 if (status & ISR_SRCI) {
1815 struct mac_regs __iomem *regs = vptr->mac_regs;
1816 int linked;
1818 if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1819 vptr->mii_status = check_connection_type(regs);
1822 * If it is a 3119, disable frame bursting in
1823 * halfduplex mode and enable it in fullduplex
1824 * mode
1826 if (vptr->rev_id < REV_ID_VT3216_A0) {
1827 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1828 BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
1829 else
1830 BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
1833 * Only enable CD heart beat counter in 10HD mode
1835 if (!(vptr->mii_status & VELOCITY_DUPLEX_FULL) && (vptr->mii_status & VELOCITY_SPEED_10))
1836 BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
1837 else
1838 BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
1840 setup_queue_timers(vptr);
1843 * Get link status from PHYSR0
1845 linked = readb(&regs->PHYSR0) & PHYSR0_LINKGD;
1847 if (linked) {
1848 vptr->mii_status &= ~VELOCITY_LINK_FAIL;
1849 netif_carrier_on(vptr->dev);
1850 } else {
1851 vptr->mii_status |= VELOCITY_LINK_FAIL;
1852 netif_carrier_off(vptr->dev);
1855 velocity_print_link_status(vptr);
1856 enable_flow_control_ability(vptr);
1859 * Re-enable auto-polling because SRCI will disable
1860 * auto-polling
1863 enable_mii_autopoll(regs);
1865 if (vptr->mii_status & VELOCITY_LINK_FAIL)
1866 netif_stop_queue(vptr->dev);
1867 else
1868 netif_wake_queue(vptr->dev);
1871 if (status & ISR_MIBFI)
1872 velocity_update_hw_mibs(vptr);
1873 if (status & ISR_LSTEI)
1874 mac_rx_queue_wake(vptr->mac_regs);
1878 * tx_srv - transmit interrupt service
1879 * @vptr; Velocity
1881 * Scan the queues looking for transmitted packets that
1882 * we can complete and clean up. Update any statistics as
1883 * necessary/
1885 static int velocity_tx_srv(struct velocity_info *vptr)
1887 struct tx_desc *td;
1888 int qnum;
1889 int full = 0;
1890 int idx;
1891 int works = 0;
1892 struct velocity_td_info *tdinfo;
1893 struct net_device_stats *stats = &vptr->dev->stats;
1895 for (qnum = 0; qnum < vptr->tx.numq; qnum++) {
1896 for (idx = vptr->tx.tail[qnum]; vptr->tx.used[qnum] > 0;
1897 idx = (idx + 1) % vptr->options.numtx) {
1900 * Get Tx Descriptor
1902 td = &(vptr->tx.rings[qnum][idx]);
1903 tdinfo = &(vptr->tx.infos[qnum][idx]);
1905 if (td->tdesc0.len & OWNED_BY_NIC)
1906 break;
1908 if ((works++ > 15))
1909 break;
1911 if (td->tdesc0.TSR & TSR0_TERR) {
1912 stats->tx_errors++;
1913 stats->tx_dropped++;
1914 if (td->tdesc0.TSR & TSR0_CDH)
1915 stats->tx_heartbeat_errors++;
1916 if (td->tdesc0.TSR & TSR0_CRS)
1917 stats->tx_carrier_errors++;
1918 if (td->tdesc0.TSR & TSR0_ABT)
1919 stats->tx_aborted_errors++;
1920 if (td->tdesc0.TSR & TSR0_OWC)
1921 stats->tx_window_errors++;
1922 } else {
1923 stats->tx_packets++;
1924 stats->tx_bytes += tdinfo->skb->len;
1926 velocity_free_tx_buf(vptr, tdinfo, td);
1927 vptr->tx.used[qnum]--;
1929 vptr->tx.tail[qnum] = idx;
1931 if (AVAIL_TD(vptr, qnum) < 1)
1932 full = 1;
1935 * Look to see if we should kick the transmit network
1936 * layer for more work.
1938 if (netif_queue_stopped(vptr->dev) && (full == 0) &&
1939 (!(vptr->mii_status & VELOCITY_LINK_FAIL))) {
1940 netif_wake_queue(vptr->dev);
1942 return works;
1946 * velocity_rx_csum - checksum process
1947 * @rd: receive packet descriptor
1948 * @skb: network layer packet buffer
1950 * Process the status bits for the received packet and determine
1951 * if the checksum was computed and verified by the hardware
1953 static inline void velocity_rx_csum(struct rx_desc *rd, struct sk_buff *skb)
1955 skb->ip_summed = CHECKSUM_NONE;
1957 if (rd->rdesc1.CSM & CSM_IPKT) {
1958 if (rd->rdesc1.CSM & CSM_IPOK) {
1959 if ((rd->rdesc1.CSM & CSM_TCPKT) ||
1960 (rd->rdesc1.CSM & CSM_UDPKT)) {
1961 if (!(rd->rdesc1.CSM & CSM_TUPOK))
1962 return;
1964 skb->ip_summed = CHECKSUM_UNNECESSARY;
1970 * velocity_rx_copy - in place Rx copy for small packets
1971 * @rx_skb: network layer packet buffer candidate
1972 * @pkt_size: received data size
1973 * @rd: receive packet descriptor
1974 * @dev: network device
1976 * Replace the current skb that is scheduled for Rx processing by a
1977 * shorter, immediatly allocated skb, if the received packet is small
1978 * enough. This function returns a negative value if the received
1979 * packet is too big or if memory is exhausted.
1981 static int velocity_rx_copy(struct sk_buff **rx_skb, int pkt_size,
1982 struct velocity_info *vptr)
1984 int ret = -1;
1985 if (pkt_size < rx_copybreak) {
1986 struct sk_buff *new_skb;
1988 new_skb = netdev_alloc_skb_ip_align(vptr->dev, pkt_size);
1989 if (new_skb) {
1990 new_skb->ip_summed = rx_skb[0]->ip_summed;
1991 skb_copy_from_linear_data(*rx_skb, new_skb->data, pkt_size);
1992 *rx_skb = new_skb;
1993 ret = 0;
1997 return ret;
2001 * velocity_iph_realign - IP header alignment
2002 * @vptr: velocity we are handling
2003 * @skb: network layer packet buffer
2004 * @pkt_size: received data size
2006 * Align IP header on a 2 bytes boundary. This behavior can be
2007 * configured by the user.
2009 static inline void velocity_iph_realign(struct velocity_info *vptr,
2010 struct sk_buff *skb, int pkt_size)
2012 if (vptr->flags & VELOCITY_FLAGS_IP_ALIGN) {
2013 memmove(skb->data + 2, skb->data, pkt_size);
2014 skb_reserve(skb, 2);
2020 * velocity_receive_frame - received packet processor
2021 * @vptr: velocity we are handling
2022 * @idx: ring index
2024 * A packet has arrived. We process the packet and if appropriate
2025 * pass the frame up the network stack
2027 static int velocity_receive_frame(struct velocity_info *vptr, int idx)
2029 void (*pci_action)(struct pci_dev *, dma_addr_t, size_t, int);
2030 struct net_device_stats *stats = &vptr->dev->stats;
2031 struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]);
2032 struct rx_desc *rd = &(vptr->rx.ring[idx]);
2033 int pkt_len = le16_to_cpu(rd->rdesc0.len) & 0x3fff;
2034 struct sk_buff *skb;
2036 if (rd->rdesc0.RSR & (RSR_STP | RSR_EDP)) {
2037 VELOCITY_PRT(MSG_LEVEL_VERBOSE, KERN_ERR " %s : the received frame span multple RDs.\n", vptr->dev->name);
2038 stats->rx_length_errors++;
2039 return -EINVAL;
2042 if (rd->rdesc0.RSR & RSR_MAR)
2043 stats->multicast++;
2045 skb = rd_info->skb;
2047 pci_dma_sync_single_for_cpu(vptr->pdev, rd_info->skb_dma,
2048 vptr->rx.buf_sz, PCI_DMA_FROMDEVICE);
2051 * Drop frame not meeting IEEE 802.3
2054 if (vptr->flags & VELOCITY_FLAGS_VAL_PKT_LEN) {
2055 if (rd->rdesc0.RSR & RSR_RL) {
2056 stats->rx_length_errors++;
2057 return -EINVAL;
2061 pci_action = pci_dma_sync_single_for_device;
2063 velocity_rx_csum(rd, skb);
2065 if (velocity_rx_copy(&skb, pkt_len, vptr) < 0) {
2066 velocity_iph_realign(vptr, skb, pkt_len);
2067 pci_action = pci_unmap_single;
2068 rd_info->skb = NULL;
2071 pci_action(vptr->pdev, rd_info->skb_dma, vptr->rx.buf_sz,
2072 PCI_DMA_FROMDEVICE);
2074 skb_put(skb, pkt_len - 4);
2075 skb->protocol = eth_type_trans(skb, vptr->dev);
2077 if (vptr->vlgrp && (rd->rdesc0.RSR & RSR_DETAG)) {
2078 vlan_hwaccel_rx(skb, vptr->vlgrp,
2079 swab16(le16_to_cpu(rd->rdesc1.PQTAG)));
2080 } else
2081 netif_rx(skb);
2083 stats->rx_bytes += pkt_len;
2085 return 0;
2090 * velocity_rx_srv - service RX interrupt
2091 * @vptr: velocity
2093 * Walk the receive ring of the velocity adapter and remove
2094 * any received packets from the receive queue. Hand the ring
2095 * slots back to the adapter for reuse.
2097 static int velocity_rx_srv(struct velocity_info *vptr, int budget_left)
2099 struct net_device_stats *stats = &vptr->dev->stats;
2100 int rd_curr = vptr->rx.curr;
2101 int works = 0;
2103 while (works < budget_left) {
2104 struct rx_desc *rd = vptr->rx.ring + rd_curr;
2106 if (!vptr->rx.info[rd_curr].skb)
2107 break;
2109 if (rd->rdesc0.len & OWNED_BY_NIC)
2110 break;
2112 rmb();
2115 * Don't drop CE or RL error frame although RXOK is off
2117 if (rd->rdesc0.RSR & (RSR_RXOK | RSR_CE | RSR_RL)) {
2118 if (velocity_receive_frame(vptr, rd_curr) < 0)
2119 stats->rx_dropped++;
2120 } else {
2121 if (rd->rdesc0.RSR & RSR_CRC)
2122 stats->rx_crc_errors++;
2123 if (rd->rdesc0.RSR & RSR_FAE)
2124 stats->rx_frame_errors++;
2126 stats->rx_dropped++;
2129 rd->size |= RX_INTEN;
2131 rd_curr++;
2132 if (rd_curr >= vptr->options.numrx)
2133 rd_curr = 0;
2134 works++;
2137 vptr->rx.curr = rd_curr;
2139 if ((works > 0) && (velocity_rx_refill(vptr) > 0))
2140 velocity_give_many_rx_descs(vptr);
2142 VAR_USED(stats);
2143 return works;
2146 static int velocity_poll(struct napi_struct *napi, int budget)
2148 struct velocity_info *vptr = container_of(napi,
2149 struct velocity_info, napi);
2150 unsigned int rx_done;
2151 unsigned long flags;
2153 spin_lock_irqsave(&vptr->lock, flags);
2155 * Do rx and tx twice for performance (taken from the VIA
2156 * out-of-tree driver).
2158 rx_done = velocity_rx_srv(vptr, budget / 2);
2159 velocity_tx_srv(vptr);
2160 rx_done += velocity_rx_srv(vptr, budget - rx_done);
2161 velocity_tx_srv(vptr);
2163 /* If budget not fully consumed, exit the polling mode */
2164 if (rx_done < budget) {
2165 napi_complete(napi);
2166 mac_enable_int(vptr->mac_regs);
2168 spin_unlock_irqrestore(&vptr->lock, flags);
2170 return rx_done;
2174 * velocity_intr - interrupt callback
2175 * @irq: interrupt number
2176 * @dev_instance: interrupting device
2178 * Called whenever an interrupt is generated by the velocity
2179 * adapter IRQ line. We may not be the source of the interrupt
2180 * and need to identify initially if we are, and if not exit as
2181 * efficiently as possible.
2183 static irqreturn_t velocity_intr(int irq, void *dev_instance)
2185 struct net_device *dev = dev_instance;
2186 struct velocity_info *vptr = netdev_priv(dev);
2187 u32 isr_status;
2189 spin_lock(&vptr->lock);
2190 isr_status = mac_read_isr(vptr->mac_regs);
2192 /* Not us ? */
2193 if (isr_status == 0) {
2194 spin_unlock(&vptr->lock);
2195 return IRQ_NONE;
2198 /* Ack the interrupt */
2199 mac_write_isr(vptr->mac_regs, isr_status);
2201 if (likely(napi_schedule_prep(&vptr->napi))) {
2202 mac_disable_int(vptr->mac_regs);
2203 __napi_schedule(&vptr->napi);
2206 if (isr_status & (~(ISR_PRXI | ISR_PPRXI | ISR_PTXI | ISR_PPTXI)))
2207 velocity_error(vptr, isr_status);
2209 spin_unlock(&vptr->lock);
2211 return IRQ_HANDLED;
2215 * velocity_open - interface activation callback
2216 * @dev: network layer device to open
2218 * Called when the network layer brings the interface up. Returns
2219 * a negative posix error code on failure, or zero on success.
2221 * All the ring allocation and set up is done on open for this
2222 * adapter to minimise memory usage when inactive
2224 static int velocity_open(struct net_device *dev)
2226 struct velocity_info *vptr = netdev_priv(dev);
2227 int ret;
2229 ret = velocity_init_rings(vptr, dev->mtu);
2230 if (ret < 0)
2231 goto out;
2233 /* Ensure chip is running */
2234 pci_set_power_state(vptr->pdev, PCI_D0);
2236 velocity_init_registers(vptr, VELOCITY_INIT_COLD);
2238 ret = request_irq(vptr->pdev->irq, velocity_intr, IRQF_SHARED,
2239 dev->name, dev);
2240 if (ret < 0) {
2241 /* Power down the chip */
2242 pci_set_power_state(vptr->pdev, PCI_D3hot);
2243 velocity_free_rings(vptr);
2244 goto out;
2247 velocity_give_many_rx_descs(vptr);
2249 mac_enable_int(vptr->mac_regs);
2250 netif_start_queue(dev);
2251 napi_enable(&vptr->napi);
2252 vptr->flags |= VELOCITY_FLAGS_OPENED;
2253 out:
2254 return ret;
2258 * velocity_shutdown - shut down the chip
2259 * @vptr: velocity to deactivate
2261 * Shuts down the internal operations of the velocity and
2262 * disables interrupts, autopolling, transmit and receive
2264 static void velocity_shutdown(struct velocity_info *vptr)
2266 struct mac_regs __iomem *regs = vptr->mac_regs;
2267 mac_disable_int(regs);
2268 writel(CR0_STOP, &regs->CR0Set);
2269 writew(0xFFFF, &regs->TDCSRClr);
2270 writeb(0xFF, &regs->RDCSRClr);
2271 safe_disable_mii_autopoll(regs);
2272 mac_clear_isr(regs);
2276 * velocity_change_mtu - MTU change callback
2277 * @dev: network device
2278 * @new_mtu: desired MTU
2280 * Handle requests from the networking layer for MTU change on
2281 * this interface. It gets called on a change by the network layer.
2282 * Return zero for success or negative posix error code.
2284 static int velocity_change_mtu(struct net_device *dev, int new_mtu)
2286 struct velocity_info *vptr = netdev_priv(dev);
2287 int ret = 0;
2289 if ((new_mtu < VELOCITY_MIN_MTU) || new_mtu > (VELOCITY_MAX_MTU)) {
2290 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_NOTICE "%s: Invalid MTU.\n",
2291 vptr->dev->name);
2292 ret = -EINVAL;
2293 goto out_0;
2296 if (!netif_running(dev)) {
2297 dev->mtu = new_mtu;
2298 goto out_0;
2301 if (dev->mtu != new_mtu) {
2302 struct velocity_info *tmp_vptr;
2303 unsigned long flags;
2304 struct rx_info rx;
2305 struct tx_info tx;
2307 tmp_vptr = kzalloc(sizeof(*tmp_vptr), GFP_KERNEL);
2308 if (!tmp_vptr) {
2309 ret = -ENOMEM;
2310 goto out_0;
2313 tmp_vptr->dev = dev;
2314 tmp_vptr->pdev = vptr->pdev;
2315 tmp_vptr->options = vptr->options;
2316 tmp_vptr->tx.numq = vptr->tx.numq;
2318 ret = velocity_init_rings(tmp_vptr, new_mtu);
2319 if (ret < 0)
2320 goto out_free_tmp_vptr_1;
2322 spin_lock_irqsave(&vptr->lock, flags);
2324 netif_stop_queue(dev);
2325 velocity_shutdown(vptr);
2327 rx = vptr->rx;
2328 tx = vptr->tx;
2330 vptr->rx = tmp_vptr->rx;
2331 vptr->tx = tmp_vptr->tx;
2333 tmp_vptr->rx = rx;
2334 tmp_vptr->tx = tx;
2336 dev->mtu = new_mtu;
2338 velocity_init_registers(vptr, VELOCITY_INIT_COLD);
2340 velocity_give_many_rx_descs(vptr);
2342 mac_enable_int(vptr->mac_regs);
2343 netif_start_queue(dev);
2345 spin_unlock_irqrestore(&vptr->lock, flags);
2347 velocity_free_rings(tmp_vptr);
2349 out_free_tmp_vptr_1:
2350 kfree(tmp_vptr);
2352 out_0:
2353 return ret;
2357 * velocity_mii_ioctl - MII ioctl handler
2358 * @dev: network device
2359 * @ifr: the ifreq block for the ioctl
2360 * @cmd: the command
2362 * Process MII requests made via ioctl from the network layer. These
2363 * are used by tools like kudzu to interrogate the link state of the
2364 * hardware
2366 static int velocity_mii_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2368 struct velocity_info *vptr = netdev_priv(dev);
2369 struct mac_regs __iomem *regs = vptr->mac_regs;
2370 unsigned long flags;
2371 struct mii_ioctl_data *miidata = if_mii(ifr);
2372 int err;
2374 switch (cmd) {
2375 case SIOCGMIIPHY:
2376 miidata->phy_id = readb(&regs->MIIADR) & 0x1f;
2377 break;
2378 case SIOCGMIIREG:
2379 if (velocity_mii_read(vptr->mac_regs, miidata->reg_num & 0x1f, &(miidata->val_out)) < 0)
2380 return -ETIMEDOUT;
2381 break;
2382 case SIOCSMIIREG:
2383 spin_lock_irqsave(&vptr->lock, flags);
2384 err = velocity_mii_write(vptr->mac_regs, miidata->reg_num & 0x1f, miidata->val_in);
2385 spin_unlock_irqrestore(&vptr->lock, flags);
2386 check_connection_type(vptr->mac_regs);
2387 if (err)
2388 return err;
2389 break;
2390 default:
2391 return -EOPNOTSUPP;
2393 return 0;
2398 * velocity_ioctl - ioctl entry point
2399 * @dev: network device
2400 * @rq: interface request ioctl
2401 * @cmd: command code
2403 * Called when the user issues an ioctl request to the network
2404 * device in question. The velocity interface supports MII.
2406 static int velocity_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2408 struct velocity_info *vptr = netdev_priv(dev);
2409 int ret;
2411 /* If we are asked for information and the device is power
2412 saving then we need to bring the device back up to talk to it */
2414 if (!netif_running(dev))
2415 pci_set_power_state(vptr->pdev, PCI_D0);
2417 switch (cmd) {
2418 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
2419 case SIOCGMIIREG: /* Read MII PHY register. */
2420 case SIOCSMIIREG: /* Write to MII PHY register. */
2421 ret = velocity_mii_ioctl(dev, rq, cmd);
2422 break;
2424 default:
2425 ret = -EOPNOTSUPP;
2427 if (!netif_running(dev))
2428 pci_set_power_state(vptr->pdev, PCI_D3hot);
2431 return ret;
2435 * velocity_get_status - statistics callback
2436 * @dev: network device
2438 * Callback from the network layer to allow driver statistics
2439 * to be resynchronized with hardware collected state. In the
2440 * case of the velocity we need to pull the MIB counters from
2441 * the hardware into the counters before letting the network
2442 * layer display them.
2444 static struct net_device_stats *velocity_get_stats(struct net_device *dev)
2446 struct velocity_info *vptr = netdev_priv(dev);
2448 /* If the hardware is down, don't touch MII */
2449 if (!netif_running(dev))
2450 return &dev->stats;
2452 spin_lock_irq(&vptr->lock);
2453 velocity_update_hw_mibs(vptr);
2454 spin_unlock_irq(&vptr->lock);
2456 dev->stats.rx_packets = vptr->mib_counter[HW_MIB_ifRxAllPkts];
2457 dev->stats.rx_errors = vptr->mib_counter[HW_MIB_ifRxErrorPkts];
2458 dev->stats.rx_length_errors = vptr->mib_counter[HW_MIB_ifInRangeLengthErrors];
2460 // unsigned long rx_dropped; /* no space in linux buffers */
2461 dev->stats.collisions = vptr->mib_counter[HW_MIB_ifTxEtherCollisions];
2462 /* detailed rx_errors: */
2463 // unsigned long rx_length_errors;
2464 // unsigned long rx_over_errors; /* receiver ring buff overflow */
2465 dev->stats.rx_crc_errors = vptr->mib_counter[HW_MIB_ifRxPktCRCE];
2466 // unsigned long rx_frame_errors; /* recv'd frame alignment error */
2467 // unsigned long rx_fifo_errors; /* recv'r fifo overrun */
2468 // unsigned long rx_missed_errors; /* receiver missed packet */
2470 /* detailed tx_errors */
2471 // unsigned long tx_fifo_errors;
2473 return &dev->stats;
2477 * velocity_close - close adapter callback
2478 * @dev: network device
2480 * Callback from the network layer when the velocity is being
2481 * deactivated by the network layer
2483 static int velocity_close(struct net_device *dev)
2485 struct velocity_info *vptr = netdev_priv(dev);
2487 napi_disable(&vptr->napi);
2488 netif_stop_queue(dev);
2489 velocity_shutdown(vptr);
2491 if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED)
2492 velocity_get_ip(vptr);
2493 if (dev->irq != 0)
2494 free_irq(dev->irq, dev);
2496 /* Power down the chip */
2497 pci_set_power_state(vptr->pdev, PCI_D3hot);
2499 velocity_free_rings(vptr);
2501 vptr->flags &= (~VELOCITY_FLAGS_OPENED);
2502 return 0;
2506 * velocity_xmit - transmit packet callback
2507 * @skb: buffer to transmit
2508 * @dev: network device
2510 * Called by the networ layer to request a packet is queued to
2511 * the velocity. Returns zero on success.
2513 static netdev_tx_t velocity_xmit(struct sk_buff *skb,
2514 struct net_device *dev)
2516 struct velocity_info *vptr = netdev_priv(dev);
2517 int qnum = 0;
2518 struct tx_desc *td_ptr;
2519 struct velocity_td_info *tdinfo;
2520 unsigned long flags;
2521 int pktlen;
2522 int index, prev;
2523 int i = 0;
2525 if (skb_padto(skb, ETH_ZLEN))
2526 goto out;
2528 /* The hardware can handle at most 7 memory segments, so merge
2529 * the skb if there are more */
2530 if (skb_shinfo(skb)->nr_frags > 6 && __skb_linearize(skb)) {
2531 kfree_skb(skb);
2532 return NETDEV_TX_OK;
2535 pktlen = skb_shinfo(skb)->nr_frags == 0 ?
2536 max_t(unsigned int, skb->len, ETH_ZLEN) :
2537 skb_headlen(skb);
2539 spin_lock_irqsave(&vptr->lock, flags);
2541 index = vptr->tx.curr[qnum];
2542 td_ptr = &(vptr->tx.rings[qnum][index]);
2543 tdinfo = &(vptr->tx.infos[qnum][index]);
2545 td_ptr->tdesc1.TCR = TCR0_TIC;
2546 td_ptr->td_buf[0].size &= ~TD_QUEUE;
2549 * Map the linear network buffer into PCI space and
2550 * add it to the transmit ring.
2552 tdinfo->skb = skb;
2553 tdinfo->skb_dma[0] = pci_map_single(vptr->pdev, skb->data, pktlen, PCI_DMA_TODEVICE);
2554 td_ptr->tdesc0.len = cpu_to_le16(pktlen);
2555 td_ptr->td_buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]);
2556 td_ptr->td_buf[0].pa_high = 0;
2557 td_ptr->td_buf[0].size = cpu_to_le16(pktlen);
2559 /* Handle fragments */
2560 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2561 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2563 tdinfo->skb_dma[i + 1] = pci_map_page(vptr->pdev, frag->page,
2564 frag->page_offset, frag->size,
2565 PCI_DMA_TODEVICE);
2567 td_ptr->td_buf[i + 1].pa_low = cpu_to_le32(tdinfo->skb_dma[i + 1]);
2568 td_ptr->td_buf[i + 1].pa_high = 0;
2569 td_ptr->td_buf[i + 1].size = cpu_to_le16(frag->size);
2571 tdinfo->nskb_dma = i + 1;
2573 td_ptr->tdesc1.cmd = TCPLS_NORMAL + (tdinfo->nskb_dma + 1) * 16;
2575 if (vptr->vlgrp && vlan_tx_tag_present(skb)) {
2576 td_ptr->tdesc1.vlan = cpu_to_le16(vlan_tx_tag_get(skb));
2577 td_ptr->tdesc1.TCR |= TCR0_VETAG;
2581 * Handle hardware checksum
2583 if ((dev->features & NETIF_F_IP_CSUM) &&
2584 (skb->ip_summed == CHECKSUM_PARTIAL)) {
2585 const struct iphdr *ip = ip_hdr(skb);
2586 if (ip->protocol == IPPROTO_TCP)
2587 td_ptr->tdesc1.TCR |= TCR0_TCPCK;
2588 else if (ip->protocol == IPPROTO_UDP)
2589 td_ptr->tdesc1.TCR |= (TCR0_UDPCK);
2590 td_ptr->tdesc1.TCR |= TCR0_IPCK;
2593 prev = index - 1;
2594 if (prev < 0)
2595 prev = vptr->options.numtx - 1;
2596 td_ptr->tdesc0.len |= OWNED_BY_NIC;
2597 vptr->tx.used[qnum]++;
2598 vptr->tx.curr[qnum] = (index + 1) % vptr->options.numtx;
2600 if (AVAIL_TD(vptr, qnum) < 1)
2601 netif_stop_queue(dev);
2603 td_ptr = &(vptr->tx.rings[qnum][prev]);
2604 td_ptr->td_buf[0].size |= TD_QUEUE;
2605 mac_tx_queue_wake(vptr->mac_regs, qnum);
2607 dev->trans_start = jiffies;
2608 spin_unlock_irqrestore(&vptr->lock, flags);
2609 out:
2610 return NETDEV_TX_OK;
2614 static const struct net_device_ops velocity_netdev_ops = {
2615 .ndo_open = velocity_open,
2616 .ndo_stop = velocity_close,
2617 .ndo_start_xmit = velocity_xmit,
2618 .ndo_get_stats = velocity_get_stats,
2619 .ndo_validate_addr = eth_validate_addr,
2620 .ndo_set_mac_address = eth_mac_addr,
2621 .ndo_set_multicast_list = velocity_set_multi,
2622 .ndo_change_mtu = velocity_change_mtu,
2623 .ndo_do_ioctl = velocity_ioctl,
2624 .ndo_vlan_rx_add_vid = velocity_vlan_rx_add_vid,
2625 .ndo_vlan_rx_kill_vid = velocity_vlan_rx_kill_vid,
2626 .ndo_vlan_rx_register = velocity_vlan_rx_register,
2630 * velocity_init_info - init private data
2631 * @pdev: PCI device
2632 * @vptr: Velocity info
2633 * @info: Board type
2635 * Set up the initial velocity_info struct for the device that has been
2636 * discovered.
2638 static void __devinit velocity_init_info(struct pci_dev *pdev,
2639 struct velocity_info *vptr,
2640 const struct velocity_info_tbl *info)
2642 memset(vptr, 0, sizeof(struct velocity_info));
2644 vptr->pdev = pdev;
2645 vptr->chip_id = info->chip_id;
2646 vptr->tx.numq = info->txqueue;
2647 vptr->multicast_limit = MCAM_SIZE;
2648 spin_lock_init(&vptr->lock);
2652 * velocity_get_pci_info - retrieve PCI info for device
2653 * @vptr: velocity device
2654 * @pdev: PCI device it matches
2656 * Retrieve the PCI configuration space data that interests us from
2657 * the kernel PCI layer
2659 static int __devinit velocity_get_pci_info(struct velocity_info *vptr, struct pci_dev *pdev)
2661 vptr->rev_id = pdev->revision;
2663 pci_set_master(pdev);
2665 vptr->ioaddr = pci_resource_start(pdev, 0);
2666 vptr->memaddr = pci_resource_start(pdev, 1);
2668 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_IO)) {
2669 dev_err(&pdev->dev,
2670 "region #0 is not an I/O resource, aborting.\n");
2671 return -EINVAL;
2674 if ((pci_resource_flags(pdev, 1) & IORESOURCE_IO)) {
2675 dev_err(&pdev->dev,
2676 "region #1 is an I/O resource, aborting.\n");
2677 return -EINVAL;
2680 if (pci_resource_len(pdev, 1) < VELOCITY_IO_SIZE) {
2681 dev_err(&pdev->dev, "region #1 is too small.\n");
2682 return -EINVAL;
2684 vptr->pdev = pdev;
2686 return 0;
2690 * velocity_print_info - per driver data
2691 * @vptr: velocity
2693 * Print per driver data as the kernel driver finds Velocity
2694 * hardware
2696 static void __devinit velocity_print_info(struct velocity_info *vptr)
2698 struct net_device *dev = vptr->dev;
2700 printk(KERN_INFO "%s: %s\n", dev->name, get_chip_name(vptr->chip_id));
2701 printk(KERN_INFO "%s: Ethernet Address: %2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X\n",
2702 dev->name,
2703 dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
2704 dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
2707 static u32 velocity_get_link(struct net_device *dev)
2709 struct velocity_info *vptr = netdev_priv(dev);
2710 struct mac_regs __iomem *regs = vptr->mac_regs;
2711 return BYTE_REG_BITS_IS_ON(PHYSR0_LINKGD, &regs->PHYSR0) ? 1 : 0;
2716 * velocity_found1 - set up discovered velocity card
2717 * @pdev: PCI device
2718 * @ent: PCI device table entry that matched
2720 * Configure a discovered adapter from scratch. Return a negative
2721 * errno error code on failure paths.
2723 static int __devinit velocity_found1(struct pci_dev *pdev, const struct pci_device_id *ent)
2725 static int first = 1;
2726 struct net_device *dev;
2727 int i;
2728 const char *drv_string;
2729 const struct velocity_info_tbl *info = &chip_info_table[ent->driver_data];
2730 struct velocity_info *vptr;
2731 struct mac_regs __iomem *regs;
2732 int ret = -ENOMEM;
2734 /* FIXME: this driver, like almost all other ethernet drivers,
2735 * can support more than MAX_UNITS.
2737 if (velocity_nics >= MAX_UNITS) {
2738 dev_notice(&pdev->dev, "already found %d NICs.\n",
2739 velocity_nics);
2740 return -ENODEV;
2743 dev = alloc_etherdev(sizeof(struct velocity_info));
2744 if (!dev) {
2745 dev_err(&pdev->dev, "allocate net device failed.\n");
2746 goto out;
2749 /* Chain it all together */
2751 SET_NETDEV_DEV(dev, &pdev->dev);
2752 vptr = netdev_priv(dev);
2755 if (first) {
2756 printk(KERN_INFO "%s Ver. %s\n",
2757 VELOCITY_FULL_DRV_NAM, VELOCITY_VERSION);
2758 printk(KERN_INFO "Copyright (c) 2002, 2003 VIA Networking Technologies, Inc.\n");
2759 printk(KERN_INFO "Copyright (c) 2004 Red Hat Inc.\n");
2760 first = 0;
2763 velocity_init_info(pdev, vptr, info);
2765 vptr->dev = dev;
2767 dev->irq = pdev->irq;
2769 ret = pci_enable_device(pdev);
2770 if (ret < 0)
2771 goto err_free_dev;
2773 ret = velocity_get_pci_info(vptr, pdev);
2774 if (ret < 0) {
2775 /* error message already printed */
2776 goto err_disable;
2779 ret = pci_request_regions(pdev, VELOCITY_NAME);
2780 if (ret < 0) {
2781 dev_err(&pdev->dev, "No PCI resources.\n");
2782 goto err_disable;
2785 regs = ioremap(vptr->memaddr, VELOCITY_IO_SIZE);
2786 if (regs == NULL) {
2787 ret = -EIO;
2788 goto err_release_res;
2791 vptr->mac_regs = regs;
2793 mac_wol_reset(regs);
2795 dev->base_addr = vptr->ioaddr;
2797 for (i = 0; i < 6; i++)
2798 dev->dev_addr[i] = readb(&regs->PAR[i]);
2801 drv_string = dev_driver_string(&pdev->dev);
2803 velocity_get_options(&vptr->options, velocity_nics, drv_string);
2806 * Mask out the options cannot be set to the chip
2809 vptr->options.flags &= info->flags;
2812 * Enable the chip specified capbilities
2815 vptr->flags = vptr->options.flags | (info->flags & 0xFF000000UL);
2817 vptr->wol_opts = vptr->options.wol_opts;
2818 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
2820 vptr->phy_id = MII_GET_PHY_ID(vptr->mac_regs);
2822 dev->irq = pdev->irq;
2823 dev->netdev_ops = &velocity_netdev_ops;
2824 dev->ethtool_ops = &velocity_ethtool_ops;
2825 netif_napi_add(dev, &vptr->napi, velocity_poll, VELOCITY_NAPI_WEIGHT);
2827 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_FILTER |
2828 NETIF_F_HW_VLAN_RX | NETIF_F_IP_CSUM;
2830 ret = register_netdev(dev);
2831 if (ret < 0)
2832 goto err_iounmap;
2834 if (!velocity_get_link(dev)) {
2835 netif_carrier_off(dev);
2836 vptr->mii_status |= VELOCITY_LINK_FAIL;
2839 velocity_print_info(vptr);
2840 pci_set_drvdata(pdev, dev);
2842 /* and leave the chip powered down */
2844 pci_set_power_state(pdev, PCI_D3hot);
2845 velocity_nics++;
2846 out:
2847 return ret;
2849 err_iounmap:
2850 iounmap(regs);
2851 err_release_res:
2852 pci_release_regions(pdev);
2853 err_disable:
2854 pci_disable_device(pdev);
2855 err_free_dev:
2856 free_netdev(dev);
2857 goto out;
2861 #ifdef CONFIG_PM
2863 * wol_calc_crc - WOL CRC
2864 * @pattern: data pattern
2865 * @mask_pattern: mask
2867 * Compute the wake on lan crc hashes for the packet header
2868 * we are interested in.
2870 static u16 wol_calc_crc(int size, u8 *pattern, u8 *mask_pattern)
2872 u16 crc = 0xFFFF;
2873 u8 mask;
2874 int i, j;
2876 for (i = 0; i < size; i++) {
2877 mask = mask_pattern[i];
2879 /* Skip this loop if the mask equals to zero */
2880 if (mask == 0x00)
2881 continue;
2883 for (j = 0; j < 8; j++) {
2884 if ((mask & 0x01) == 0) {
2885 mask >>= 1;
2886 continue;
2888 mask >>= 1;
2889 crc = crc_ccitt(crc, &(pattern[i * 8 + j]), 1);
2892 /* Finally, invert the result once to get the correct data */
2893 crc = ~crc;
2894 return bitrev32(crc) >> 16;
2898 * velocity_set_wol - set up for wake on lan
2899 * @vptr: velocity to set WOL status on
2901 * Set a card up for wake on lan either by unicast or by
2902 * ARP packet.
2904 * FIXME: check static buffer is safe here
2906 static int velocity_set_wol(struct velocity_info *vptr)
2908 struct mac_regs __iomem *regs = vptr->mac_regs;
2909 static u8 buf[256];
2910 int i;
2912 static u32 mask_pattern[2][4] = {
2913 {0x00203000, 0x000003C0, 0x00000000, 0x0000000}, /* ARP */
2914 {0xfffff000, 0xffffffff, 0xffffffff, 0x000ffff} /* Magic Packet */
2917 writew(0xFFFF, &regs->WOLCRClr);
2918 writeb(WOLCFG_SAB | WOLCFG_SAM, &regs->WOLCFGSet);
2919 writew(WOLCR_MAGIC_EN, &regs->WOLCRSet);
2922 if (vptr->wol_opts & VELOCITY_WOL_PHY)
2923 writew((WOLCR_LINKON_EN|WOLCR_LINKOFF_EN), &regs->WOLCRSet);
2926 if (vptr->wol_opts & VELOCITY_WOL_UCAST)
2927 writew(WOLCR_UNICAST_EN, &regs->WOLCRSet);
2929 if (vptr->wol_opts & VELOCITY_WOL_ARP) {
2930 struct arp_packet *arp = (struct arp_packet *) buf;
2931 u16 crc;
2932 memset(buf, 0, sizeof(struct arp_packet) + 7);
2934 for (i = 0; i < 4; i++)
2935 writel(mask_pattern[0][i], &regs->ByteMask[0][i]);
2937 arp->type = htons(ETH_P_ARP);
2938 arp->ar_op = htons(1);
2940 memcpy(arp->ar_tip, vptr->ip_addr, 4);
2942 crc = wol_calc_crc((sizeof(struct arp_packet) + 7) / 8, buf,
2943 (u8 *) & mask_pattern[0][0]);
2945 writew(crc, &regs->PatternCRC[0]);
2946 writew(WOLCR_ARP_EN, &regs->WOLCRSet);
2949 BYTE_REG_BITS_ON(PWCFG_WOLTYPE, &regs->PWCFGSet);
2950 BYTE_REG_BITS_ON(PWCFG_LEGACY_WOLEN, &regs->PWCFGSet);
2952 writew(0x0FFF, &regs->WOLSRClr);
2954 if (vptr->mii_status & VELOCITY_AUTONEG_ENABLE) {
2955 if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201)
2956 MII_REG_BITS_ON(AUXCR_MDPPS, MII_REG_AUXCR, vptr->mac_regs);
2958 MII_REG_BITS_OFF(G1000CR_1000FD | G1000CR_1000, MII_REG_G1000CR, vptr->mac_regs);
2961 if (vptr->mii_status & VELOCITY_SPEED_1000)
2962 MII_REG_BITS_ON(BMCR_REAUTO, MII_REG_BMCR, vptr->mac_regs);
2964 BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
2967 u8 GCR;
2968 GCR = readb(&regs->CHIPGCR);
2969 GCR = (GCR & ~CHIPGCR_FCGMII) | CHIPGCR_FCFDX;
2970 writeb(GCR, &regs->CHIPGCR);
2973 BYTE_REG_BITS_OFF(ISR_PWEI, &regs->ISR);
2974 /* Turn on SWPTAG just before entering power mode */
2975 BYTE_REG_BITS_ON(STICKHW_SWPTAG, &regs->STICKHW);
2976 /* Go to bed ..... */
2977 BYTE_REG_BITS_ON((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
2979 return 0;
2983 * velocity_save_context - save registers
2984 * @vptr: velocity
2985 * @context: buffer for stored context
2987 * Retrieve the current configuration from the velocity hardware
2988 * and stash it in the context structure, for use by the context
2989 * restore functions. This allows us to save things we need across
2990 * power down states
2992 static void velocity_save_context(struct velocity_info *vptr, struct velocity_context *context)
2994 struct mac_regs __iomem *regs = vptr->mac_regs;
2995 u16 i;
2996 u8 __iomem *ptr = (u8 __iomem *)regs;
2998 for (i = MAC_REG_PAR; i < MAC_REG_CR0_CLR; i += 4)
2999 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3001 for (i = MAC_REG_MAR; i < MAC_REG_TDCSR_CLR; i += 4)
3002 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3004 for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4)
3005 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3009 static int velocity_suspend(struct pci_dev *pdev, pm_message_t state)
3011 struct net_device *dev = pci_get_drvdata(pdev);
3012 struct velocity_info *vptr = netdev_priv(dev);
3013 unsigned long flags;
3015 if (!netif_running(vptr->dev))
3016 return 0;
3018 netif_device_detach(vptr->dev);
3020 spin_lock_irqsave(&vptr->lock, flags);
3021 pci_save_state(pdev);
3022 #ifdef ETHTOOL_GWOL
3023 if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED) {
3024 velocity_get_ip(vptr);
3025 velocity_save_context(vptr, &vptr->context);
3026 velocity_shutdown(vptr);
3027 velocity_set_wol(vptr);
3028 pci_enable_wake(pdev, PCI_D3hot, 1);
3029 pci_set_power_state(pdev, PCI_D3hot);
3030 } else {
3031 velocity_save_context(vptr, &vptr->context);
3032 velocity_shutdown(vptr);
3033 pci_disable_device(pdev);
3034 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3036 #else
3037 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3038 #endif
3039 spin_unlock_irqrestore(&vptr->lock, flags);
3040 return 0;
3044 * velocity_restore_context - restore registers
3045 * @vptr: velocity
3046 * @context: buffer for stored context
3048 * Reload the register configuration from the velocity context
3049 * created by velocity_save_context.
3051 static void velocity_restore_context(struct velocity_info *vptr, struct velocity_context *context)
3053 struct mac_regs __iomem *regs = vptr->mac_regs;
3054 int i;
3055 u8 __iomem *ptr = (u8 __iomem *)regs;
3057 for (i = MAC_REG_PAR; i < MAC_REG_CR0_SET; i += 4)
3058 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3060 /* Just skip cr0 */
3061 for (i = MAC_REG_CR1_SET; i < MAC_REG_CR0_CLR; i++) {
3062 /* Clear */
3063 writeb(~(*((u8 *) (context->mac_reg + i))), ptr + i + 4);
3064 /* Set */
3065 writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3068 for (i = MAC_REG_MAR; i < MAC_REG_IMR; i += 4)
3069 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3071 for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4)
3072 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3074 for (i = MAC_REG_TDCSR_SET; i <= MAC_REG_RDCSR_SET; i++)
3075 writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3078 static int velocity_resume(struct pci_dev *pdev)
3080 struct net_device *dev = pci_get_drvdata(pdev);
3081 struct velocity_info *vptr = netdev_priv(dev);
3082 unsigned long flags;
3083 int i;
3085 if (!netif_running(vptr->dev))
3086 return 0;
3088 pci_set_power_state(pdev, PCI_D0);
3089 pci_enable_wake(pdev, 0, 0);
3090 pci_restore_state(pdev);
3092 mac_wol_reset(vptr->mac_regs);
3094 spin_lock_irqsave(&vptr->lock, flags);
3095 velocity_restore_context(vptr, &vptr->context);
3096 velocity_init_registers(vptr, VELOCITY_INIT_WOL);
3097 mac_disable_int(vptr->mac_regs);
3099 velocity_tx_srv(vptr);
3101 for (i = 0; i < vptr->tx.numq; i++) {
3102 if (vptr->tx.used[i])
3103 mac_tx_queue_wake(vptr->mac_regs, i);
3106 mac_enable_int(vptr->mac_regs);
3107 spin_unlock_irqrestore(&vptr->lock, flags);
3108 netif_device_attach(vptr->dev);
3110 return 0;
3112 #endif
3115 * Definition for our device driver. The PCI layer interface
3116 * uses this to handle all our card discover and plugging
3118 static struct pci_driver velocity_driver = {
3119 .name = VELOCITY_NAME,
3120 .id_table = velocity_id_table,
3121 .probe = velocity_found1,
3122 .remove = __devexit_p(velocity_remove1),
3123 #ifdef CONFIG_PM
3124 .suspend = velocity_suspend,
3125 .resume = velocity_resume,
3126 #endif
3131 * velocity_ethtool_up - pre hook for ethtool
3132 * @dev: network device
3134 * Called before an ethtool operation. We need to make sure the
3135 * chip is out of D3 state before we poke at it.
3137 static int velocity_ethtool_up(struct net_device *dev)
3139 struct velocity_info *vptr = netdev_priv(dev);
3140 if (!netif_running(dev))
3141 pci_set_power_state(vptr->pdev, PCI_D0);
3142 return 0;
3146 * velocity_ethtool_down - post hook for ethtool
3147 * @dev: network device
3149 * Called after an ethtool operation. Restore the chip back to D3
3150 * state if it isn't running.
3152 static void velocity_ethtool_down(struct net_device *dev)
3154 struct velocity_info *vptr = netdev_priv(dev);
3155 if (!netif_running(dev))
3156 pci_set_power_state(vptr->pdev, PCI_D3hot);
3159 static int velocity_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
3161 struct velocity_info *vptr = netdev_priv(dev);
3162 struct mac_regs __iomem *regs = vptr->mac_regs;
3163 u32 status;
3164 status = check_connection_type(vptr->mac_regs);
3166 cmd->supported = SUPPORTED_TP |
3167 SUPPORTED_Autoneg |
3168 SUPPORTED_10baseT_Half |
3169 SUPPORTED_10baseT_Full |
3170 SUPPORTED_100baseT_Half |
3171 SUPPORTED_100baseT_Full |
3172 SUPPORTED_1000baseT_Half |
3173 SUPPORTED_1000baseT_Full;
3174 if (status & VELOCITY_SPEED_1000)
3175 cmd->speed = SPEED_1000;
3176 else if (status & VELOCITY_SPEED_100)
3177 cmd->speed = SPEED_100;
3178 else
3179 cmd->speed = SPEED_10;
3180 cmd->autoneg = (status & VELOCITY_AUTONEG_ENABLE) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
3181 cmd->port = PORT_TP;
3182 cmd->transceiver = XCVR_INTERNAL;
3183 cmd->phy_address = readb(&regs->MIIADR) & 0x1F;
3185 if (status & VELOCITY_DUPLEX_FULL)
3186 cmd->duplex = DUPLEX_FULL;
3187 else
3188 cmd->duplex = DUPLEX_HALF;
3190 return 0;
3193 static int velocity_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
3195 struct velocity_info *vptr = netdev_priv(dev);
3196 u32 curr_status;
3197 u32 new_status = 0;
3198 int ret = 0;
3200 curr_status = check_connection_type(vptr->mac_regs);
3201 curr_status &= (~VELOCITY_LINK_FAIL);
3203 new_status |= ((cmd->autoneg) ? VELOCITY_AUTONEG_ENABLE : 0);
3204 new_status |= ((cmd->speed == SPEED_100) ? VELOCITY_SPEED_100 : 0);
3205 new_status |= ((cmd->speed == SPEED_10) ? VELOCITY_SPEED_10 : 0);
3206 new_status |= ((cmd->duplex == DUPLEX_FULL) ? VELOCITY_DUPLEX_FULL : 0);
3208 if ((new_status & VELOCITY_AUTONEG_ENABLE) && (new_status != (curr_status | VELOCITY_AUTONEG_ENABLE)))
3209 ret = -EINVAL;
3210 else
3211 velocity_set_media_mode(vptr, new_status);
3213 return ret;
3216 static void velocity_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
3218 struct velocity_info *vptr = netdev_priv(dev);
3219 strcpy(info->driver, VELOCITY_NAME);
3220 strcpy(info->version, VELOCITY_VERSION);
3221 strcpy(info->bus_info, pci_name(vptr->pdev));
3224 static void velocity_ethtool_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3226 struct velocity_info *vptr = netdev_priv(dev);
3227 wol->supported = WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP;
3228 wol->wolopts |= WAKE_MAGIC;
3230 if (vptr->wol_opts & VELOCITY_WOL_PHY)
3231 wol.wolopts|=WAKE_PHY;
3233 if (vptr->wol_opts & VELOCITY_WOL_UCAST)
3234 wol->wolopts |= WAKE_UCAST;
3235 if (vptr->wol_opts & VELOCITY_WOL_ARP)
3236 wol->wolopts |= WAKE_ARP;
3237 memcpy(&wol->sopass, vptr->wol_passwd, 6);
3240 static int velocity_ethtool_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3242 struct velocity_info *vptr = netdev_priv(dev);
3244 if (!(wol->wolopts & (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP)))
3245 return -EFAULT;
3246 vptr->wol_opts = VELOCITY_WOL_MAGIC;
3249 if (wol.wolopts & WAKE_PHY) {
3250 vptr->wol_opts|=VELOCITY_WOL_PHY;
3251 vptr->flags |=VELOCITY_FLAGS_WOL_ENABLED;
3255 if (wol->wolopts & WAKE_MAGIC) {
3256 vptr->wol_opts |= VELOCITY_WOL_MAGIC;
3257 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3259 if (wol->wolopts & WAKE_UCAST) {
3260 vptr->wol_opts |= VELOCITY_WOL_UCAST;
3261 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3263 if (wol->wolopts & WAKE_ARP) {
3264 vptr->wol_opts |= VELOCITY_WOL_ARP;
3265 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3267 memcpy(vptr->wol_passwd, wol->sopass, 6);
3268 return 0;
3271 static u32 velocity_get_msglevel(struct net_device *dev)
3273 return msglevel;
3276 static void velocity_set_msglevel(struct net_device *dev, u32 value)
3278 msglevel = value;
3281 static int get_pending_timer_val(int val)
3283 int mult_bits = val >> 6;
3284 int mult = 1;
3286 switch (mult_bits)
3288 case 1:
3289 mult = 4; break;
3290 case 2:
3291 mult = 16; break;
3292 case 3:
3293 mult = 64; break;
3294 case 0:
3295 default:
3296 break;
3299 return (val & 0x3f) * mult;
3302 static void set_pending_timer_val(int *val, u32 us)
3304 u8 mult = 0;
3305 u8 shift = 0;
3307 if (us >= 0x3f) {
3308 mult = 1; /* mult with 4 */
3309 shift = 2;
3311 if (us >= 0x3f * 4) {
3312 mult = 2; /* mult with 16 */
3313 shift = 4;
3315 if (us >= 0x3f * 16) {
3316 mult = 3; /* mult with 64 */
3317 shift = 6;
3320 *val = (mult << 6) | ((us >> shift) & 0x3f);
3324 static int velocity_get_coalesce(struct net_device *dev,
3325 struct ethtool_coalesce *ecmd)
3327 struct velocity_info *vptr = netdev_priv(dev);
3329 ecmd->tx_max_coalesced_frames = vptr->options.tx_intsup;
3330 ecmd->rx_max_coalesced_frames = vptr->options.rx_intsup;
3332 ecmd->rx_coalesce_usecs = get_pending_timer_val(vptr->options.rxqueue_timer);
3333 ecmd->tx_coalesce_usecs = get_pending_timer_val(vptr->options.txqueue_timer);
3335 return 0;
3338 static int velocity_set_coalesce(struct net_device *dev,
3339 struct ethtool_coalesce *ecmd)
3341 struct velocity_info *vptr = netdev_priv(dev);
3342 int max_us = 0x3f * 64;
3343 unsigned long flags;
3345 /* 6 bits of */
3346 if (ecmd->tx_coalesce_usecs > max_us)
3347 return -EINVAL;
3348 if (ecmd->rx_coalesce_usecs > max_us)
3349 return -EINVAL;
3351 if (ecmd->tx_max_coalesced_frames > 0xff)
3352 return -EINVAL;
3353 if (ecmd->rx_max_coalesced_frames > 0xff)
3354 return -EINVAL;
3356 vptr->options.rx_intsup = ecmd->rx_max_coalesced_frames;
3357 vptr->options.tx_intsup = ecmd->tx_max_coalesced_frames;
3359 set_pending_timer_val(&vptr->options.rxqueue_timer,
3360 ecmd->rx_coalesce_usecs);
3361 set_pending_timer_val(&vptr->options.txqueue_timer,
3362 ecmd->tx_coalesce_usecs);
3364 /* Setup the interrupt suppression and queue timers */
3365 spin_lock_irqsave(&vptr->lock, flags);
3366 mac_disable_int(vptr->mac_regs);
3367 setup_adaptive_interrupts(vptr);
3368 setup_queue_timers(vptr);
3370 mac_write_int_mask(vptr->int_mask, vptr->mac_regs);
3371 mac_clear_isr(vptr->mac_regs);
3372 mac_enable_int(vptr->mac_regs);
3373 spin_unlock_irqrestore(&vptr->lock, flags);
3375 return 0;
3378 static const struct ethtool_ops velocity_ethtool_ops = {
3379 .get_settings = velocity_get_settings,
3380 .set_settings = velocity_set_settings,
3381 .get_drvinfo = velocity_get_drvinfo,
3382 .set_tx_csum = ethtool_op_set_tx_csum,
3383 .get_tx_csum = ethtool_op_get_tx_csum,
3384 .get_wol = velocity_ethtool_get_wol,
3385 .set_wol = velocity_ethtool_set_wol,
3386 .get_msglevel = velocity_get_msglevel,
3387 .set_msglevel = velocity_set_msglevel,
3388 .set_sg = ethtool_op_set_sg,
3389 .get_link = velocity_get_link,
3390 .get_coalesce = velocity_get_coalesce,
3391 .set_coalesce = velocity_set_coalesce,
3392 .begin = velocity_ethtool_up,
3393 .complete = velocity_ethtool_down
3396 #ifdef CONFIG_PM
3397 #ifdef CONFIG_INET
3398 static int velocity_netdev_event(struct notifier_block *nb, unsigned long notification, void *ptr)
3400 struct in_ifaddr *ifa = (struct in_ifaddr *) ptr;
3401 struct net_device *dev = ifa->ifa_dev->dev;
3403 if (dev_net(dev) == &init_net &&
3404 dev->netdev_ops == &velocity_netdev_ops)
3405 velocity_get_ip(netdev_priv(dev));
3407 return NOTIFY_DONE;
3409 #endif /* CONFIG_INET */
3410 #endif /* CONFIG_PM */
3412 #if defined(CONFIG_PM) && defined(CONFIG_INET)
3413 static struct notifier_block velocity_inetaddr_notifier = {
3414 .notifier_call = velocity_netdev_event,
3417 static void velocity_register_notifier(void)
3419 register_inetaddr_notifier(&velocity_inetaddr_notifier);
3422 static void velocity_unregister_notifier(void)
3424 unregister_inetaddr_notifier(&velocity_inetaddr_notifier);
3427 #else
3429 #define velocity_register_notifier() do {} while (0)
3430 #define velocity_unregister_notifier() do {} while (0)
3432 #endif /* defined(CONFIG_PM) && defined(CONFIG_INET) */
3435 * velocity_init_module - load time function
3437 * Called when the velocity module is loaded. The PCI driver
3438 * is registered with the PCI layer, and in turn will call
3439 * the probe functions for each velocity adapter installed
3440 * in the system.
3442 static int __init velocity_init_module(void)
3444 int ret;
3446 velocity_register_notifier();
3447 ret = pci_register_driver(&velocity_driver);
3448 if (ret < 0)
3449 velocity_unregister_notifier();
3450 return ret;
3454 * velocity_cleanup - module unload
3456 * When the velocity hardware is unloaded this function is called.
3457 * It will clean up the notifiers and the unregister the PCI
3458 * driver interface for this hardware. This in turn cleans up
3459 * all discovered interfaces before returning from the function
3461 static void __exit velocity_cleanup_module(void)
3463 velocity_unregister_notifier();
3464 pci_unregister_driver(&velocity_driver);
3467 module_init(velocity_init_module);
3468 module_exit(velocity_cleanup_module);