Merge git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core-2.6
[linux-2.6/linux-2.6-openrd.git] / drivers / net / e1000e / 82571.c
blob02d67d047d963854c1c5d8210d14c46d4bbcdf0d
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2009 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * 82571EB Gigabit Ethernet Controller
31 * 82571EB Gigabit Ethernet Controller (Copper)
32 * 82571EB Gigabit Ethernet Controller (Fiber)
33 * 82571EB Dual Port Gigabit Mezzanine Adapter
34 * 82571EB Quad Port Gigabit Mezzanine Adapter
35 * 82571PT Gigabit PT Quad Port Server ExpressModule
36 * 82572EI Gigabit Ethernet Controller (Copper)
37 * 82572EI Gigabit Ethernet Controller (Fiber)
38 * 82572EI Gigabit Ethernet Controller
39 * 82573V Gigabit Ethernet Controller (Copper)
40 * 82573E Gigabit Ethernet Controller (Copper)
41 * 82573L Gigabit Ethernet Controller
42 * 82574L Gigabit Network Connection
43 * 82583V Gigabit Network Connection
46 #include "e1000.h"
48 #define ID_LED_RESERVED_F746 0xF746
49 #define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
50 (ID_LED_OFF1_ON2 << 8) | \
51 (ID_LED_DEF1_DEF2 << 4) | \
52 (ID_LED_DEF1_DEF2))
54 #define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
56 #define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */
58 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
59 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
60 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
61 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
62 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
63 u16 words, u16 *data);
64 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
65 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
66 static s32 e1000_setup_link_82571(struct e1000_hw *hw);
67 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
68 static void e1000_clear_vfta_82571(struct e1000_hw *hw);
69 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
70 static s32 e1000_led_on_82574(struct e1000_hw *hw);
71 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
72 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
74 /**
75 * e1000_init_phy_params_82571 - Init PHY func ptrs.
76 * @hw: pointer to the HW structure
77 **/
78 static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
80 struct e1000_phy_info *phy = &hw->phy;
81 s32 ret_val;
83 if (hw->phy.media_type != e1000_media_type_copper) {
84 phy->type = e1000_phy_none;
85 return 0;
88 phy->addr = 1;
89 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
90 phy->reset_delay_us = 100;
92 phy->ops.power_up = e1000_power_up_phy_copper;
93 phy->ops.power_down = e1000_power_down_phy_copper_82571;
95 switch (hw->mac.type) {
96 case e1000_82571:
97 case e1000_82572:
98 phy->type = e1000_phy_igp_2;
99 break;
100 case e1000_82573:
101 phy->type = e1000_phy_m88;
102 break;
103 case e1000_82574:
104 case e1000_82583:
105 phy->type = e1000_phy_bm;
106 break;
107 default:
108 return -E1000_ERR_PHY;
109 break;
112 /* This can only be done after all function pointers are setup. */
113 ret_val = e1000_get_phy_id_82571(hw);
115 /* Verify phy id */
116 switch (hw->mac.type) {
117 case e1000_82571:
118 case e1000_82572:
119 if (phy->id != IGP01E1000_I_PHY_ID)
120 return -E1000_ERR_PHY;
121 break;
122 case e1000_82573:
123 if (phy->id != M88E1111_I_PHY_ID)
124 return -E1000_ERR_PHY;
125 break;
126 case e1000_82574:
127 case e1000_82583:
128 if (phy->id != BME1000_E_PHY_ID_R2)
129 return -E1000_ERR_PHY;
130 break;
131 default:
132 return -E1000_ERR_PHY;
133 break;
136 return 0;
140 * e1000_init_nvm_params_82571 - Init NVM func ptrs.
141 * @hw: pointer to the HW structure
143 static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
145 struct e1000_nvm_info *nvm = &hw->nvm;
146 u32 eecd = er32(EECD);
147 u16 size;
149 nvm->opcode_bits = 8;
150 nvm->delay_usec = 1;
151 switch (nvm->override) {
152 case e1000_nvm_override_spi_large:
153 nvm->page_size = 32;
154 nvm->address_bits = 16;
155 break;
156 case e1000_nvm_override_spi_small:
157 nvm->page_size = 8;
158 nvm->address_bits = 8;
159 break;
160 default:
161 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
162 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
163 break;
166 switch (hw->mac.type) {
167 case e1000_82573:
168 case e1000_82574:
169 case e1000_82583:
170 if (((eecd >> 15) & 0x3) == 0x3) {
171 nvm->type = e1000_nvm_flash_hw;
172 nvm->word_size = 2048;
174 * Autonomous Flash update bit must be cleared due
175 * to Flash update issue.
177 eecd &= ~E1000_EECD_AUPDEN;
178 ew32(EECD, eecd);
179 break;
181 /* Fall Through */
182 default:
183 nvm->type = e1000_nvm_eeprom_spi;
184 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
185 E1000_EECD_SIZE_EX_SHIFT);
187 * Added to a constant, "size" becomes the left-shift value
188 * for setting word_size.
190 size += NVM_WORD_SIZE_BASE_SHIFT;
192 /* EEPROM access above 16k is unsupported */
193 if (size > 14)
194 size = 14;
195 nvm->word_size = 1 << size;
196 break;
199 return 0;
203 * e1000_init_mac_params_82571 - Init MAC func ptrs.
204 * @hw: pointer to the HW structure
206 static s32 e1000_init_mac_params_82571(struct e1000_adapter *adapter)
208 struct e1000_hw *hw = &adapter->hw;
209 struct e1000_mac_info *mac = &hw->mac;
210 struct e1000_mac_operations *func = &mac->ops;
211 u32 swsm = 0;
212 u32 swsm2 = 0;
213 bool force_clear_smbi = false;
215 /* Set media type */
216 switch (adapter->pdev->device) {
217 case E1000_DEV_ID_82571EB_FIBER:
218 case E1000_DEV_ID_82572EI_FIBER:
219 case E1000_DEV_ID_82571EB_QUAD_FIBER:
220 hw->phy.media_type = e1000_media_type_fiber;
221 break;
222 case E1000_DEV_ID_82571EB_SERDES:
223 case E1000_DEV_ID_82572EI_SERDES:
224 case E1000_DEV_ID_82571EB_SERDES_DUAL:
225 case E1000_DEV_ID_82571EB_SERDES_QUAD:
226 hw->phy.media_type = e1000_media_type_internal_serdes;
227 break;
228 default:
229 hw->phy.media_type = e1000_media_type_copper;
230 break;
233 /* Set mta register count */
234 mac->mta_reg_count = 128;
235 /* Set rar entry count */
236 mac->rar_entry_count = E1000_RAR_ENTRIES;
237 /* Set if manageability features are enabled. */
238 mac->arc_subsystem_valid = (er32(FWSM) & E1000_FWSM_MODE_MASK)
239 ? true : false;
240 /* Adaptive IFS supported */
241 mac->adaptive_ifs = true;
243 /* check for link */
244 switch (hw->phy.media_type) {
245 case e1000_media_type_copper:
246 func->setup_physical_interface = e1000_setup_copper_link_82571;
247 func->check_for_link = e1000e_check_for_copper_link;
248 func->get_link_up_info = e1000e_get_speed_and_duplex_copper;
249 break;
250 case e1000_media_type_fiber:
251 func->setup_physical_interface =
252 e1000_setup_fiber_serdes_link_82571;
253 func->check_for_link = e1000e_check_for_fiber_link;
254 func->get_link_up_info =
255 e1000e_get_speed_and_duplex_fiber_serdes;
256 break;
257 case e1000_media_type_internal_serdes:
258 func->setup_physical_interface =
259 e1000_setup_fiber_serdes_link_82571;
260 func->check_for_link = e1000_check_for_serdes_link_82571;
261 func->get_link_up_info =
262 e1000e_get_speed_and_duplex_fiber_serdes;
263 break;
264 default:
265 return -E1000_ERR_CONFIG;
266 break;
269 switch (hw->mac.type) {
270 case e1000_82574:
271 case e1000_82583:
272 func->check_mng_mode = e1000_check_mng_mode_82574;
273 func->led_on = e1000_led_on_82574;
274 break;
275 default:
276 func->check_mng_mode = e1000e_check_mng_mode_generic;
277 func->led_on = e1000e_led_on_generic;
278 break;
282 * Ensure that the inter-port SWSM.SMBI lock bit is clear before
283 * first NVM or PHY acess. This should be done for single-port
284 * devices, and for one port only on dual-port devices so that
285 * for those devices we can still use the SMBI lock to synchronize
286 * inter-port accesses to the PHY & NVM.
288 switch (hw->mac.type) {
289 case e1000_82571:
290 case e1000_82572:
291 swsm2 = er32(SWSM2);
293 if (!(swsm2 & E1000_SWSM2_LOCK)) {
294 /* Only do this for the first interface on this card */
295 ew32(SWSM2,
296 swsm2 | E1000_SWSM2_LOCK);
297 force_clear_smbi = true;
298 } else
299 force_clear_smbi = false;
300 break;
301 default:
302 force_clear_smbi = true;
303 break;
306 if (force_clear_smbi) {
307 /* Make sure SWSM.SMBI is clear */
308 swsm = er32(SWSM);
309 if (swsm & E1000_SWSM_SMBI) {
310 /* This bit should not be set on a first interface, and
311 * indicates that the bootagent or EFI code has
312 * improperly left this bit enabled
314 e_dbg("Please update your 82571 Bootagent\n");
316 ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
320 * Initialze device specific counter of SMBI acquisition
321 * timeouts.
323 hw->dev_spec.e82571.smb_counter = 0;
325 return 0;
328 static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
330 struct e1000_hw *hw = &adapter->hw;
331 static int global_quad_port_a; /* global port a indication */
332 struct pci_dev *pdev = adapter->pdev;
333 u16 eeprom_data = 0;
334 int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
335 s32 rc;
337 rc = e1000_init_mac_params_82571(adapter);
338 if (rc)
339 return rc;
341 rc = e1000_init_nvm_params_82571(hw);
342 if (rc)
343 return rc;
345 rc = e1000_init_phy_params_82571(hw);
346 if (rc)
347 return rc;
349 /* tag quad port adapters first, it's used below */
350 switch (pdev->device) {
351 case E1000_DEV_ID_82571EB_QUAD_COPPER:
352 case E1000_DEV_ID_82571EB_QUAD_FIBER:
353 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
354 case E1000_DEV_ID_82571PT_QUAD_COPPER:
355 adapter->flags |= FLAG_IS_QUAD_PORT;
356 /* mark the first port */
357 if (global_quad_port_a == 0)
358 adapter->flags |= FLAG_IS_QUAD_PORT_A;
359 /* Reset for multiple quad port adapters */
360 global_quad_port_a++;
361 if (global_quad_port_a == 4)
362 global_quad_port_a = 0;
363 break;
364 default:
365 break;
368 switch (adapter->hw.mac.type) {
369 case e1000_82571:
370 /* these dual ports don't have WoL on port B at all */
371 if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
372 (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
373 (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
374 (is_port_b))
375 adapter->flags &= ~FLAG_HAS_WOL;
376 /* quad ports only support WoL on port A */
377 if (adapter->flags & FLAG_IS_QUAD_PORT &&
378 (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
379 adapter->flags &= ~FLAG_HAS_WOL;
380 /* Does not support WoL on any port */
381 if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
382 adapter->flags &= ~FLAG_HAS_WOL;
383 break;
385 case e1000_82573:
386 if (pdev->device == E1000_DEV_ID_82573L) {
387 if (e1000_read_nvm(&adapter->hw, NVM_INIT_3GIO_3, 1,
388 &eeprom_data) < 0)
389 break;
390 if (!(eeprom_data & NVM_WORD1A_ASPM_MASK)) {
391 adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
392 adapter->max_hw_frame_size = DEFAULT_JUMBO;
395 break;
396 default:
397 break;
400 return 0;
404 * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
405 * @hw: pointer to the HW structure
407 * Reads the PHY registers and stores the PHY ID and possibly the PHY
408 * revision in the hardware structure.
410 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
412 struct e1000_phy_info *phy = &hw->phy;
413 s32 ret_val;
414 u16 phy_id = 0;
416 switch (hw->mac.type) {
417 case e1000_82571:
418 case e1000_82572:
420 * The 82571 firmware may still be configuring the PHY.
421 * In this case, we cannot access the PHY until the
422 * configuration is done. So we explicitly set the
423 * PHY ID.
425 phy->id = IGP01E1000_I_PHY_ID;
426 break;
427 case e1000_82573:
428 return e1000e_get_phy_id(hw);
429 break;
430 case e1000_82574:
431 case e1000_82583:
432 ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
433 if (ret_val)
434 return ret_val;
436 phy->id = (u32)(phy_id << 16);
437 udelay(20);
438 ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
439 if (ret_val)
440 return ret_val;
442 phy->id |= (u32)(phy_id);
443 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
444 break;
445 default:
446 return -E1000_ERR_PHY;
447 break;
450 return 0;
454 * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
455 * @hw: pointer to the HW structure
457 * Acquire the HW semaphore to access the PHY or NVM
459 static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
461 u32 swsm;
462 s32 sw_timeout = hw->nvm.word_size + 1;
463 s32 fw_timeout = hw->nvm.word_size + 1;
464 s32 i = 0;
467 * If we have timedout 3 times on trying to acquire
468 * the inter-port SMBI semaphore, there is old code
469 * operating on the other port, and it is not
470 * releasing SMBI. Modify the number of times that
471 * we try for the semaphore to interwork with this
472 * older code.
474 if (hw->dev_spec.e82571.smb_counter > 2)
475 sw_timeout = 1;
477 /* Get the SW semaphore */
478 while (i < sw_timeout) {
479 swsm = er32(SWSM);
480 if (!(swsm & E1000_SWSM_SMBI))
481 break;
483 udelay(50);
484 i++;
487 if (i == sw_timeout) {
488 e_dbg("Driver can't access device - SMBI bit is set.\n");
489 hw->dev_spec.e82571.smb_counter++;
491 /* Get the FW semaphore. */
492 for (i = 0; i < fw_timeout; i++) {
493 swsm = er32(SWSM);
494 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
496 /* Semaphore acquired if bit latched */
497 if (er32(SWSM) & E1000_SWSM_SWESMBI)
498 break;
500 udelay(50);
503 if (i == fw_timeout) {
504 /* Release semaphores */
505 e1000_put_hw_semaphore_82571(hw);
506 e_dbg("Driver can't access the NVM\n");
507 return -E1000_ERR_NVM;
510 return 0;
514 * e1000_put_hw_semaphore_82571 - Release hardware semaphore
515 * @hw: pointer to the HW structure
517 * Release hardware semaphore used to access the PHY or NVM
519 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
521 u32 swsm;
523 swsm = er32(SWSM);
524 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
525 ew32(SWSM, swsm);
529 * e1000_acquire_nvm_82571 - Request for access to the EEPROM
530 * @hw: pointer to the HW structure
532 * To gain access to the EEPROM, first we must obtain a hardware semaphore.
533 * Then for non-82573 hardware, set the EEPROM access request bit and wait
534 * for EEPROM access grant bit. If the access grant bit is not set, release
535 * hardware semaphore.
537 static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
539 s32 ret_val;
541 ret_val = e1000_get_hw_semaphore_82571(hw);
542 if (ret_val)
543 return ret_val;
545 switch (hw->mac.type) {
546 case e1000_82573:
547 case e1000_82574:
548 case e1000_82583:
549 break;
550 default:
551 ret_val = e1000e_acquire_nvm(hw);
552 break;
555 if (ret_val)
556 e1000_put_hw_semaphore_82571(hw);
558 return ret_val;
562 * e1000_release_nvm_82571 - Release exclusive access to EEPROM
563 * @hw: pointer to the HW structure
565 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
567 static void e1000_release_nvm_82571(struct e1000_hw *hw)
569 e1000e_release_nvm(hw);
570 e1000_put_hw_semaphore_82571(hw);
574 * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
575 * @hw: pointer to the HW structure
576 * @offset: offset within the EEPROM to be written to
577 * @words: number of words to write
578 * @data: 16 bit word(s) to be written to the EEPROM
580 * For non-82573 silicon, write data to EEPROM at offset using SPI interface.
582 * If e1000e_update_nvm_checksum is not called after this function, the
583 * EEPROM will most likely contain an invalid checksum.
585 static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
586 u16 *data)
588 s32 ret_val;
590 switch (hw->mac.type) {
591 case e1000_82573:
592 case e1000_82574:
593 case e1000_82583:
594 ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
595 break;
596 case e1000_82571:
597 case e1000_82572:
598 ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
599 break;
600 default:
601 ret_val = -E1000_ERR_NVM;
602 break;
605 return ret_val;
609 * e1000_update_nvm_checksum_82571 - Update EEPROM checksum
610 * @hw: pointer to the HW structure
612 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
613 * up to the checksum. Then calculates the EEPROM checksum and writes the
614 * value to the EEPROM.
616 static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
618 u32 eecd;
619 s32 ret_val;
620 u16 i;
622 ret_val = e1000e_update_nvm_checksum_generic(hw);
623 if (ret_val)
624 return ret_val;
627 * If our nvm is an EEPROM, then we're done
628 * otherwise, commit the checksum to the flash NVM.
630 if (hw->nvm.type != e1000_nvm_flash_hw)
631 return ret_val;
633 /* Check for pending operations. */
634 for (i = 0; i < E1000_FLASH_UPDATES; i++) {
635 msleep(1);
636 if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
637 break;
640 if (i == E1000_FLASH_UPDATES)
641 return -E1000_ERR_NVM;
643 /* Reset the firmware if using STM opcode. */
644 if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
646 * The enabling of and the actual reset must be done
647 * in two write cycles.
649 ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
650 e1e_flush();
651 ew32(HICR, E1000_HICR_FW_RESET);
654 /* Commit the write to flash */
655 eecd = er32(EECD) | E1000_EECD_FLUPD;
656 ew32(EECD, eecd);
658 for (i = 0; i < E1000_FLASH_UPDATES; i++) {
659 msleep(1);
660 if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
661 break;
664 if (i == E1000_FLASH_UPDATES)
665 return -E1000_ERR_NVM;
667 return 0;
671 * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
672 * @hw: pointer to the HW structure
674 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
675 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
677 static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
679 if (hw->nvm.type == e1000_nvm_flash_hw)
680 e1000_fix_nvm_checksum_82571(hw);
682 return e1000e_validate_nvm_checksum_generic(hw);
686 * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
687 * @hw: pointer to the HW structure
688 * @offset: offset within the EEPROM to be written to
689 * @words: number of words to write
690 * @data: 16 bit word(s) to be written to the EEPROM
692 * After checking for invalid values, poll the EEPROM to ensure the previous
693 * command has completed before trying to write the next word. After write
694 * poll for completion.
696 * If e1000e_update_nvm_checksum is not called after this function, the
697 * EEPROM will most likely contain an invalid checksum.
699 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
700 u16 words, u16 *data)
702 struct e1000_nvm_info *nvm = &hw->nvm;
703 u32 i, eewr = 0;
704 s32 ret_val = 0;
707 * A check for invalid values: offset too large, too many words,
708 * and not enough words.
710 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
711 (words == 0)) {
712 e_dbg("nvm parameter(s) out of bounds\n");
713 return -E1000_ERR_NVM;
716 for (i = 0; i < words; i++) {
717 eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
718 ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
719 E1000_NVM_RW_REG_START;
721 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
722 if (ret_val)
723 break;
725 ew32(EEWR, eewr);
727 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
728 if (ret_val)
729 break;
732 return ret_val;
736 * e1000_get_cfg_done_82571 - Poll for configuration done
737 * @hw: pointer to the HW structure
739 * Reads the management control register for the config done bit to be set.
741 static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
743 s32 timeout = PHY_CFG_TIMEOUT;
745 while (timeout) {
746 if (er32(EEMNGCTL) &
747 E1000_NVM_CFG_DONE_PORT_0)
748 break;
749 msleep(1);
750 timeout--;
752 if (!timeout) {
753 e_dbg("MNG configuration cycle has not completed.\n");
754 return -E1000_ERR_RESET;
757 return 0;
761 * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
762 * @hw: pointer to the HW structure
763 * @active: true to enable LPLU, false to disable
765 * Sets the LPLU D0 state according to the active flag. When activating LPLU
766 * this function also disables smart speed and vice versa. LPLU will not be
767 * activated unless the device autonegotiation advertisement meets standards
768 * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function
769 * pointer entry point only called by PHY setup routines.
771 static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
773 struct e1000_phy_info *phy = &hw->phy;
774 s32 ret_val;
775 u16 data;
777 ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
778 if (ret_val)
779 return ret_val;
781 if (active) {
782 data |= IGP02E1000_PM_D0_LPLU;
783 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
784 if (ret_val)
785 return ret_val;
787 /* When LPLU is enabled, we should disable SmartSpeed */
788 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
789 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
790 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
791 if (ret_val)
792 return ret_val;
793 } else {
794 data &= ~IGP02E1000_PM_D0_LPLU;
795 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
797 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
798 * during Dx states where the power conservation is most
799 * important. During driver activity we should enable
800 * SmartSpeed, so performance is maintained.
802 if (phy->smart_speed == e1000_smart_speed_on) {
803 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
804 &data);
805 if (ret_val)
806 return ret_val;
808 data |= IGP01E1000_PSCFR_SMART_SPEED;
809 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
810 data);
811 if (ret_val)
812 return ret_val;
813 } else if (phy->smart_speed == e1000_smart_speed_off) {
814 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
815 &data);
816 if (ret_val)
817 return ret_val;
819 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
820 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
821 data);
822 if (ret_val)
823 return ret_val;
827 return 0;
831 * e1000_reset_hw_82571 - Reset hardware
832 * @hw: pointer to the HW structure
834 * This resets the hardware into a known state.
836 static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
838 u32 ctrl, extcnf_ctrl, ctrl_ext, icr;
839 s32 ret_val;
840 u16 i = 0;
843 * Prevent the PCI-E bus from sticking if there is no TLP connection
844 * on the last TLP read/write transaction when MAC is reset.
846 ret_val = e1000e_disable_pcie_master(hw);
847 if (ret_val)
848 e_dbg("PCI-E Master disable polling has failed.\n");
850 e_dbg("Masking off all interrupts\n");
851 ew32(IMC, 0xffffffff);
853 ew32(RCTL, 0);
854 ew32(TCTL, E1000_TCTL_PSP);
855 e1e_flush();
857 msleep(10);
860 * Must acquire the MDIO ownership before MAC reset.
861 * Ownership defaults to firmware after a reset.
863 switch (hw->mac.type) {
864 case e1000_82573:
865 case e1000_82574:
866 case e1000_82583:
867 extcnf_ctrl = er32(EXTCNF_CTRL);
868 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
870 do {
871 ew32(EXTCNF_CTRL, extcnf_ctrl);
872 extcnf_ctrl = er32(EXTCNF_CTRL);
874 if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
875 break;
877 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
879 msleep(2);
880 i++;
881 } while (i < MDIO_OWNERSHIP_TIMEOUT);
882 break;
883 default:
884 break;
887 ctrl = er32(CTRL);
889 e_dbg("Issuing a global reset to MAC\n");
890 ew32(CTRL, ctrl | E1000_CTRL_RST);
892 if (hw->nvm.type == e1000_nvm_flash_hw) {
893 udelay(10);
894 ctrl_ext = er32(CTRL_EXT);
895 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
896 ew32(CTRL_EXT, ctrl_ext);
897 e1e_flush();
900 ret_val = e1000e_get_auto_rd_done(hw);
901 if (ret_val)
902 /* We don't want to continue accessing MAC registers. */
903 return ret_val;
906 * Phy configuration from NVM just starts after EECD_AUTO_RD is set.
907 * Need to wait for Phy configuration completion before accessing
908 * NVM and Phy.
911 switch (hw->mac.type) {
912 case e1000_82573:
913 case e1000_82574:
914 case e1000_82583:
915 msleep(25);
916 break;
917 default:
918 break;
921 /* Clear any pending interrupt events. */
922 ew32(IMC, 0xffffffff);
923 icr = er32(ICR);
925 if (hw->mac.type == e1000_82571 &&
926 hw->dev_spec.e82571.alt_mac_addr_is_present)
927 e1000e_set_laa_state_82571(hw, true);
929 /* Reinitialize the 82571 serdes link state machine */
930 if (hw->phy.media_type == e1000_media_type_internal_serdes)
931 hw->mac.serdes_link_state = e1000_serdes_link_down;
933 return 0;
937 * e1000_init_hw_82571 - Initialize hardware
938 * @hw: pointer to the HW structure
940 * This inits the hardware readying it for operation.
942 static s32 e1000_init_hw_82571(struct e1000_hw *hw)
944 struct e1000_mac_info *mac = &hw->mac;
945 u32 reg_data;
946 s32 ret_val;
947 u16 i, rar_count = mac->rar_entry_count;
949 e1000_initialize_hw_bits_82571(hw);
951 /* Initialize identification LED */
952 ret_val = e1000e_id_led_init(hw);
953 if (ret_val)
954 e_dbg("Error initializing identification LED\n");
955 /* This is not fatal and we should not stop init due to this */
957 /* Disabling VLAN filtering */
958 e_dbg("Initializing the IEEE VLAN\n");
959 mac->ops.clear_vfta(hw);
961 /* Setup the receive address. */
963 * If, however, a locally administered address was assigned to the
964 * 82571, we must reserve a RAR for it to work around an issue where
965 * resetting one port will reload the MAC on the other port.
967 if (e1000e_get_laa_state_82571(hw))
968 rar_count--;
969 e1000e_init_rx_addrs(hw, rar_count);
971 /* Zero out the Multicast HASH table */
972 e_dbg("Zeroing the MTA\n");
973 for (i = 0; i < mac->mta_reg_count; i++)
974 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
976 /* Setup link and flow control */
977 ret_val = e1000_setup_link_82571(hw);
979 /* Set the transmit descriptor write-back policy */
980 reg_data = er32(TXDCTL(0));
981 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
982 E1000_TXDCTL_FULL_TX_DESC_WB |
983 E1000_TXDCTL_COUNT_DESC;
984 ew32(TXDCTL(0), reg_data);
986 /* ...for both queues. */
987 switch (mac->type) {
988 case e1000_82573:
989 case e1000_82574:
990 case e1000_82583:
991 e1000e_enable_tx_pkt_filtering(hw);
992 reg_data = er32(GCR);
993 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
994 ew32(GCR, reg_data);
995 break;
996 default:
997 reg_data = er32(TXDCTL(1));
998 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
999 E1000_TXDCTL_FULL_TX_DESC_WB |
1000 E1000_TXDCTL_COUNT_DESC;
1001 ew32(TXDCTL(1), reg_data);
1002 break;
1006 * Clear all of the statistics registers (clear on read). It is
1007 * important that we do this after we have tried to establish link
1008 * because the symbol error count will increment wildly if there
1009 * is no link.
1011 e1000_clear_hw_cntrs_82571(hw);
1013 return ret_val;
1017 * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
1018 * @hw: pointer to the HW structure
1020 * Initializes required hardware-dependent bits needed for normal operation.
1022 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
1024 u32 reg;
1026 /* Transmit Descriptor Control 0 */
1027 reg = er32(TXDCTL(0));
1028 reg |= (1 << 22);
1029 ew32(TXDCTL(0), reg);
1031 /* Transmit Descriptor Control 1 */
1032 reg = er32(TXDCTL(1));
1033 reg |= (1 << 22);
1034 ew32(TXDCTL(1), reg);
1036 /* Transmit Arbitration Control 0 */
1037 reg = er32(TARC(0));
1038 reg &= ~(0xF << 27); /* 30:27 */
1039 switch (hw->mac.type) {
1040 case e1000_82571:
1041 case e1000_82572:
1042 reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
1043 break;
1044 default:
1045 break;
1047 ew32(TARC(0), reg);
1049 /* Transmit Arbitration Control 1 */
1050 reg = er32(TARC(1));
1051 switch (hw->mac.type) {
1052 case e1000_82571:
1053 case e1000_82572:
1054 reg &= ~((1 << 29) | (1 << 30));
1055 reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
1056 if (er32(TCTL) & E1000_TCTL_MULR)
1057 reg &= ~(1 << 28);
1058 else
1059 reg |= (1 << 28);
1060 ew32(TARC(1), reg);
1061 break;
1062 default:
1063 break;
1066 /* Device Control */
1067 switch (hw->mac.type) {
1068 case e1000_82573:
1069 case e1000_82574:
1070 case e1000_82583:
1071 reg = er32(CTRL);
1072 reg &= ~(1 << 29);
1073 ew32(CTRL, reg);
1074 break;
1075 default:
1076 break;
1079 /* Extended Device Control */
1080 switch (hw->mac.type) {
1081 case e1000_82573:
1082 case e1000_82574:
1083 case e1000_82583:
1084 reg = er32(CTRL_EXT);
1085 reg &= ~(1 << 23);
1086 reg |= (1 << 22);
1087 ew32(CTRL_EXT, reg);
1088 break;
1089 default:
1090 break;
1093 if (hw->mac.type == e1000_82571) {
1094 reg = er32(PBA_ECC);
1095 reg |= E1000_PBA_ECC_CORR_EN;
1096 ew32(PBA_ECC, reg);
1099 * Workaround for hardware errata.
1100 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
1103 if ((hw->mac.type == e1000_82571) ||
1104 (hw->mac.type == e1000_82572)) {
1105 reg = er32(CTRL_EXT);
1106 reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
1107 ew32(CTRL_EXT, reg);
1111 /* PCI-Ex Control Registers */
1112 switch (hw->mac.type) {
1113 case e1000_82574:
1114 case e1000_82583:
1115 reg = er32(GCR);
1116 reg |= (1 << 22);
1117 ew32(GCR, reg);
1120 * Workaround for hardware errata.
1121 * apply workaround for hardware errata documented in errata
1122 * docs Fixes issue where some error prone or unreliable PCIe
1123 * completions are occurring, particularly with ASPM enabled.
1124 * Without fix, issue can cause tx timeouts.
1126 reg = er32(GCR2);
1127 reg |= 1;
1128 ew32(GCR2, reg);
1129 break;
1130 default:
1131 break;
1134 return;
1138 * e1000_clear_vfta_82571 - Clear VLAN filter table
1139 * @hw: pointer to the HW structure
1141 * Clears the register array which contains the VLAN filter table by
1142 * setting all the values to 0.
1144 static void e1000_clear_vfta_82571(struct e1000_hw *hw)
1146 u32 offset;
1147 u32 vfta_value = 0;
1148 u32 vfta_offset = 0;
1149 u32 vfta_bit_in_reg = 0;
1151 switch (hw->mac.type) {
1152 case e1000_82573:
1153 case e1000_82574:
1154 case e1000_82583:
1155 if (hw->mng_cookie.vlan_id != 0) {
1157 * The VFTA is a 4096b bit-field, each identifying
1158 * a single VLAN ID. The following operations
1159 * determine which 32b entry (i.e. offset) into the
1160 * array we want to set the VLAN ID (i.e. bit) of
1161 * the manageability unit.
1163 vfta_offset = (hw->mng_cookie.vlan_id >>
1164 E1000_VFTA_ENTRY_SHIFT) &
1165 E1000_VFTA_ENTRY_MASK;
1166 vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
1167 E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
1169 break;
1170 default:
1171 break;
1173 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
1175 * If the offset we want to clear is the same offset of the
1176 * manageability VLAN ID, then clear all bits except that of
1177 * the manageability unit.
1179 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
1180 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
1181 e1e_flush();
1186 * e1000_check_mng_mode_82574 - Check manageability is enabled
1187 * @hw: pointer to the HW structure
1189 * Reads the NVM Initialization Control Word 2 and returns true
1190 * (>0) if any manageability is enabled, else false (0).
1192 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
1194 u16 data;
1196 e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1197 return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
1201 * e1000_led_on_82574 - Turn LED on
1202 * @hw: pointer to the HW structure
1204 * Turn LED on.
1206 static s32 e1000_led_on_82574(struct e1000_hw *hw)
1208 u32 ctrl;
1209 u32 i;
1211 ctrl = hw->mac.ledctl_mode2;
1212 if (!(E1000_STATUS_LU & er32(STATUS))) {
1214 * If no link, then turn LED on by setting the invert bit
1215 * for each LED that's "on" (0x0E) in ledctl_mode2.
1217 for (i = 0; i < 4; i++)
1218 if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1219 E1000_LEDCTL_MODE_LED_ON)
1220 ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
1222 ew32(LEDCTL, ctrl);
1224 return 0;
1228 * e1000_update_mc_addr_list_82571 - Update Multicast addresses
1229 * @hw: pointer to the HW structure
1230 * @mc_addr_list: array of multicast addresses to program
1231 * @mc_addr_count: number of multicast addresses to program
1232 * @rar_used_count: the first RAR register free to program
1233 * @rar_count: total number of supported Receive Address Registers
1235 * Updates the Receive Address Registers and Multicast Table Array.
1236 * The caller must have a packed mc_addr_list of multicast addresses.
1237 * The parameter rar_count will usually be hw->mac.rar_entry_count
1238 * unless there are workarounds that change this.
1240 static void e1000_update_mc_addr_list_82571(struct e1000_hw *hw,
1241 u8 *mc_addr_list,
1242 u32 mc_addr_count,
1243 u32 rar_used_count,
1244 u32 rar_count)
1246 if (e1000e_get_laa_state_82571(hw))
1247 rar_count--;
1249 e1000e_update_mc_addr_list_generic(hw, mc_addr_list, mc_addr_count,
1250 rar_used_count, rar_count);
1254 * e1000_setup_link_82571 - Setup flow control and link settings
1255 * @hw: pointer to the HW structure
1257 * Determines which flow control settings to use, then configures flow
1258 * control. Calls the appropriate media-specific link configuration
1259 * function. Assuming the adapter has a valid link partner, a valid link
1260 * should be established. Assumes the hardware has previously been reset
1261 * and the transmitter and receiver are not enabled.
1263 static s32 e1000_setup_link_82571(struct e1000_hw *hw)
1266 * 82573 does not have a word in the NVM to determine
1267 * the default flow control setting, so we explicitly
1268 * set it to full.
1270 switch (hw->mac.type) {
1271 case e1000_82573:
1272 case e1000_82574:
1273 case e1000_82583:
1274 if (hw->fc.requested_mode == e1000_fc_default)
1275 hw->fc.requested_mode = e1000_fc_full;
1276 break;
1277 default:
1278 break;
1281 return e1000e_setup_link(hw);
1285 * e1000_setup_copper_link_82571 - Configure copper link settings
1286 * @hw: pointer to the HW structure
1288 * Configures the link for auto-neg or forced speed and duplex. Then we check
1289 * for link, once link is established calls to configure collision distance
1290 * and flow control are called.
1292 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
1294 u32 ctrl;
1295 s32 ret_val;
1297 ctrl = er32(CTRL);
1298 ctrl |= E1000_CTRL_SLU;
1299 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1300 ew32(CTRL, ctrl);
1302 switch (hw->phy.type) {
1303 case e1000_phy_m88:
1304 case e1000_phy_bm:
1305 ret_val = e1000e_copper_link_setup_m88(hw);
1306 break;
1307 case e1000_phy_igp_2:
1308 ret_val = e1000e_copper_link_setup_igp(hw);
1309 break;
1310 default:
1311 return -E1000_ERR_PHY;
1312 break;
1315 if (ret_val)
1316 return ret_val;
1318 ret_val = e1000e_setup_copper_link(hw);
1320 return ret_val;
1324 * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1325 * @hw: pointer to the HW structure
1327 * Configures collision distance and flow control for fiber and serdes links.
1328 * Upon successful setup, poll for link.
1330 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
1332 switch (hw->mac.type) {
1333 case e1000_82571:
1334 case e1000_82572:
1336 * If SerDes loopback mode is entered, there is no form
1337 * of reset to take the adapter out of that mode. So we
1338 * have to explicitly take the adapter out of loopback
1339 * mode. This prevents drivers from twiddling their thumbs
1340 * if another tool failed to take it out of loopback mode.
1342 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1343 break;
1344 default:
1345 break;
1348 return e1000e_setup_fiber_serdes_link(hw);
1352 * e1000_check_for_serdes_link_82571 - Check for link (Serdes)
1353 * @hw: pointer to the HW structure
1355 * Reports the link state as up or down.
1357 * If autonegotiation is supported by the link partner, the link state is
1358 * determined by the result of autonegotiation. This is the most likely case.
1359 * If autonegotiation is not supported by the link partner, and the link
1360 * has a valid signal, force the link up.
1362 * The link state is represented internally here by 4 states:
1364 * 1) down
1365 * 2) autoneg_progress
1366 * 3) autoneg_complete (the link sucessfully autonegotiated)
1367 * 4) forced_up (the link has been forced up, it did not autonegotiate)
1370 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
1372 struct e1000_mac_info *mac = &hw->mac;
1373 u32 rxcw;
1374 u32 ctrl;
1375 u32 status;
1376 s32 ret_val = 0;
1378 ctrl = er32(CTRL);
1379 status = er32(STATUS);
1380 rxcw = er32(RXCW);
1382 if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
1384 /* Receiver is synchronized with no invalid bits. */
1385 switch (mac->serdes_link_state) {
1386 case e1000_serdes_link_autoneg_complete:
1387 if (!(status & E1000_STATUS_LU)) {
1389 * We have lost link, retry autoneg before
1390 * reporting link failure
1392 mac->serdes_link_state =
1393 e1000_serdes_link_autoneg_progress;
1394 mac->serdes_has_link = false;
1395 e_dbg("AN_UP -> AN_PROG\n");
1397 break;
1399 case e1000_serdes_link_forced_up:
1401 * If we are receiving /C/ ordered sets, re-enable
1402 * auto-negotiation in the TXCW register and disable
1403 * forced link in the Device Control register in an
1404 * attempt to auto-negotiate with our link partner.
1406 if (rxcw & E1000_RXCW_C) {
1407 /* Enable autoneg, and unforce link up */
1408 ew32(TXCW, mac->txcw);
1409 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1410 mac->serdes_link_state =
1411 e1000_serdes_link_autoneg_progress;
1412 mac->serdes_has_link = false;
1413 e_dbg("FORCED_UP -> AN_PROG\n");
1415 break;
1417 case e1000_serdes_link_autoneg_progress:
1418 if (rxcw & E1000_RXCW_C) {
1420 * We received /C/ ordered sets, meaning the
1421 * link partner has autonegotiated, and we can
1422 * trust the Link Up (LU) status bit.
1424 if (status & E1000_STATUS_LU) {
1425 mac->serdes_link_state =
1426 e1000_serdes_link_autoneg_complete;
1427 e_dbg("AN_PROG -> AN_UP\n");
1428 mac->serdes_has_link = true;
1429 } else {
1430 /* Autoneg completed, but failed. */
1431 mac->serdes_link_state =
1432 e1000_serdes_link_down;
1433 e_dbg("AN_PROG -> DOWN\n");
1435 } else {
1437 * The link partner did not autoneg.
1438 * Force link up and full duplex, and change
1439 * state to forced.
1441 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
1442 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1443 ew32(CTRL, ctrl);
1445 /* Configure Flow Control after link up. */
1446 ret_val = e1000e_config_fc_after_link_up(hw);
1447 if (ret_val) {
1448 e_dbg("Error config flow control\n");
1449 break;
1451 mac->serdes_link_state =
1452 e1000_serdes_link_forced_up;
1453 mac->serdes_has_link = true;
1454 e_dbg("AN_PROG -> FORCED_UP\n");
1456 break;
1458 case e1000_serdes_link_down:
1459 default:
1461 * The link was down but the receiver has now gained
1462 * valid sync, so lets see if we can bring the link
1463 * up.
1465 ew32(TXCW, mac->txcw);
1466 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1467 mac->serdes_link_state =
1468 e1000_serdes_link_autoneg_progress;
1469 e_dbg("DOWN -> AN_PROG\n");
1470 break;
1472 } else {
1473 if (!(rxcw & E1000_RXCW_SYNCH)) {
1474 mac->serdes_has_link = false;
1475 mac->serdes_link_state = e1000_serdes_link_down;
1476 e_dbg("ANYSTATE -> DOWN\n");
1477 } else {
1479 * We have sync, and can tolerate one invalid (IV)
1480 * codeword before declaring link down, so reread
1481 * to look again.
1483 udelay(10);
1484 rxcw = er32(RXCW);
1485 if (rxcw & E1000_RXCW_IV) {
1486 mac->serdes_link_state = e1000_serdes_link_down;
1487 mac->serdes_has_link = false;
1488 e_dbg("ANYSTATE -> DOWN\n");
1493 return ret_val;
1497 * e1000_valid_led_default_82571 - Verify a valid default LED config
1498 * @hw: pointer to the HW structure
1499 * @data: pointer to the NVM (EEPROM)
1501 * Read the EEPROM for the current default LED configuration. If the
1502 * LED configuration is not valid, set to a valid LED configuration.
1504 static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
1506 s32 ret_val;
1508 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1509 if (ret_val) {
1510 e_dbg("NVM Read Error\n");
1511 return ret_val;
1514 switch (hw->mac.type) {
1515 case e1000_82573:
1516 case e1000_82574:
1517 case e1000_82583:
1518 if (*data == ID_LED_RESERVED_F746)
1519 *data = ID_LED_DEFAULT_82573;
1520 break;
1521 default:
1522 if (*data == ID_LED_RESERVED_0000 ||
1523 *data == ID_LED_RESERVED_FFFF)
1524 *data = ID_LED_DEFAULT;
1525 break;
1528 return 0;
1532 * e1000e_get_laa_state_82571 - Get locally administered address state
1533 * @hw: pointer to the HW structure
1535 * Retrieve and return the current locally administered address state.
1537 bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
1539 if (hw->mac.type != e1000_82571)
1540 return false;
1542 return hw->dev_spec.e82571.laa_is_present;
1546 * e1000e_set_laa_state_82571 - Set locally administered address state
1547 * @hw: pointer to the HW structure
1548 * @state: enable/disable locally administered address
1550 * Enable/Disable the current locally administered address state.
1552 void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
1554 if (hw->mac.type != e1000_82571)
1555 return;
1557 hw->dev_spec.e82571.laa_is_present = state;
1559 /* If workaround is activated... */
1560 if (state)
1562 * Hold a copy of the LAA in RAR[14] This is done so that
1563 * between the time RAR[0] gets clobbered and the time it
1564 * gets fixed, the actual LAA is in one of the RARs and no
1565 * incoming packets directed to this port are dropped.
1566 * Eventually the LAA will be in RAR[0] and RAR[14].
1568 e1000e_rar_set(hw, hw->mac.addr, hw->mac.rar_entry_count - 1);
1572 * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1573 * @hw: pointer to the HW structure
1575 * Verifies that the EEPROM has completed the update. After updating the
1576 * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If
1577 * the checksum fix is not implemented, we need to set the bit and update
1578 * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect,
1579 * we need to return bad checksum.
1581 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
1583 struct e1000_nvm_info *nvm = &hw->nvm;
1584 s32 ret_val;
1585 u16 data;
1587 if (nvm->type != e1000_nvm_flash_hw)
1588 return 0;
1591 * Check bit 4 of word 10h. If it is 0, firmware is done updating
1592 * 10h-12h. Checksum may need to be fixed.
1594 ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
1595 if (ret_val)
1596 return ret_val;
1598 if (!(data & 0x10)) {
1600 * Read 0x23 and check bit 15. This bit is a 1
1601 * when the checksum has already been fixed. If
1602 * the checksum is still wrong and this bit is a
1603 * 1, we need to return bad checksum. Otherwise,
1604 * we need to set this bit to a 1 and update the
1605 * checksum.
1607 ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
1608 if (ret_val)
1609 return ret_val;
1611 if (!(data & 0x8000)) {
1612 data |= 0x8000;
1613 ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
1614 if (ret_val)
1615 return ret_val;
1616 ret_val = e1000e_update_nvm_checksum(hw);
1620 return 0;
1624 * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
1625 * @hw: pointer to the HW structure
1627 * In the case of a PHY power down to save power, or to turn off link during a
1628 * driver unload, or wake on lan is not enabled, remove the link.
1630 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
1632 struct e1000_phy_info *phy = &hw->phy;
1633 struct e1000_mac_info *mac = &hw->mac;
1635 if (!(phy->ops.check_reset_block))
1636 return;
1638 /* If the management interface is not enabled, then power down */
1639 if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
1640 e1000_power_down_phy_copper(hw);
1642 return;
1646 * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1647 * @hw: pointer to the HW structure
1649 * Clears the hardware counters by reading the counter registers.
1651 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
1653 e1000e_clear_hw_cntrs_base(hw);
1655 er32(PRC64);
1656 er32(PRC127);
1657 er32(PRC255);
1658 er32(PRC511);
1659 er32(PRC1023);
1660 er32(PRC1522);
1661 er32(PTC64);
1662 er32(PTC127);
1663 er32(PTC255);
1664 er32(PTC511);
1665 er32(PTC1023);
1666 er32(PTC1522);
1668 er32(ALGNERRC);
1669 er32(RXERRC);
1670 er32(TNCRS);
1671 er32(CEXTERR);
1672 er32(TSCTC);
1673 er32(TSCTFC);
1675 er32(MGTPRC);
1676 er32(MGTPDC);
1677 er32(MGTPTC);
1679 er32(IAC);
1680 er32(ICRXOC);
1682 er32(ICRXPTC);
1683 er32(ICRXATC);
1684 er32(ICTXPTC);
1685 er32(ICTXATC);
1686 er32(ICTXQEC);
1687 er32(ICTXQMTC);
1688 er32(ICRXDMTC);
1691 static struct e1000_mac_operations e82571_mac_ops = {
1692 /* .check_mng_mode: mac type dependent */
1693 /* .check_for_link: media type dependent */
1694 .id_led_init = e1000e_id_led_init,
1695 .cleanup_led = e1000e_cleanup_led_generic,
1696 .clear_hw_cntrs = e1000_clear_hw_cntrs_82571,
1697 .get_bus_info = e1000e_get_bus_info_pcie,
1698 /* .get_link_up_info: media type dependent */
1699 /* .led_on: mac type dependent */
1700 .led_off = e1000e_led_off_generic,
1701 .update_mc_addr_list = e1000_update_mc_addr_list_82571,
1702 .write_vfta = e1000_write_vfta_generic,
1703 .clear_vfta = e1000_clear_vfta_82571,
1704 .reset_hw = e1000_reset_hw_82571,
1705 .init_hw = e1000_init_hw_82571,
1706 .setup_link = e1000_setup_link_82571,
1707 /* .setup_physical_interface: media type dependent */
1708 .setup_led = e1000e_setup_led_generic,
1711 static struct e1000_phy_operations e82_phy_ops_igp = {
1712 .acquire = e1000_get_hw_semaphore_82571,
1713 .check_polarity = e1000_check_polarity_igp,
1714 .check_reset_block = e1000e_check_reset_block_generic,
1715 .commit = NULL,
1716 .force_speed_duplex = e1000e_phy_force_speed_duplex_igp,
1717 .get_cfg_done = e1000_get_cfg_done_82571,
1718 .get_cable_length = e1000e_get_cable_length_igp_2,
1719 .get_info = e1000e_get_phy_info_igp,
1720 .read_reg = e1000e_read_phy_reg_igp,
1721 .release = e1000_put_hw_semaphore_82571,
1722 .reset = e1000e_phy_hw_reset_generic,
1723 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1724 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
1725 .write_reg = e1000e_write_phy_reg_igp,
1726 .cfg_on_link_up = NULL,
1729 static struct e1000_phy_operations e82_phy_ops_m88 = {
1730 .acquire = e1000_get_hw_semaphore_82571,
1731 .check_polarity = e1000_check_polarity_m88,
1732 .check_reset_block = e1000e_check_reset_block_generic,
1733 .commit = e1000e_phy_sw_reset,
1734 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
1735 .get_cfg_done = e1000e_get_cfg_done,
1736 .get_cable_length = e1000e_get_cable_length_m88,
1737 .get_info = e1000e_get_phy_info_m88,
1738 .read_reg = e1000e_read_phy_reg_m88,
1739 .release = e1000_put_hw_semaphore_82571,
1740 .reset = e1000e_phy_hw_reset_generic,
1741 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1742 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
1743 .write_reg = e1000e_write_phy_reg_m88,
1744 .cfg_on_link_up = NULL,
1747 static struct e1000_phy_operations e82_phy_ops_bm = {
1748 .acquire = e1000_get_hw_semaphore_82571,
1749 .check_polarity = e1000_check_polarity_m88,
1750 .check_reset_block = e1000e_check_reset_block_generic,
1751 .commit = e1000e_phy_sw_reset,
1752 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
1753 .get_cfg_done = e1000e_get_cfg_done,
1754 .get_cable_length = e1000e_get_cable_length_m88,
1755 .get_info = e1000e_get_phy_info_m88,
1756 .read_reg = e1000e_read_phy_reg_bm2,
1757 .release = e1000_put_hw_semaphore_82571,
1758 .reset = e1000e_phy_hw_reset_generic,
1759 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1760 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
1761 .write_reg = e1000e_write_phy_reg_bm2,
1762 .cfg_on_link_up = NULL,
1765 static struct e1000_nvm_operations e82571_nvm_ops = {
1766 .acquire = e1000_acquire_nvm_82571,
1767 .read = e1000e_read_nvm_eerd,
1768 .release = e1000_release_nvm_82571,
1769 .update = e1000_update_nvm_checksum_82571,
1770 .valid_led_default = e1000_valid_led_default_82571,
1771 .validate = e1000_validate_nvm_checksum_82571,
1772 .write = e1000_write_nvm_82571,
1775 struct e1000_info e1000_82571_info = {
1776 .mac = e1000_82571,
1777 .flags = FLAG_HAS_HW_VLAN_FILTER
1778 | FLAG_HAS_JUMBO_FRAMES
1779 | FLAG_HAS_WOL
1780 | FLAG_APME_IN_CTRL3
1781 | FLAG_RX_CSUM_ENABLED
1782 | FLAG_HAS_CTRLEXT_ON_LOAD
1783 | FLAG_HAS_SMART_POWER_DOWN
1784 | FLAG_RESET_OVERWRITES_LAA /* errata */
1785 | FLAG_TARC_SPEED_MODE_BIT /* errata */
1786 | FLAG_APME_CHECK_PORT_B,
1787 .pba = 38,
1788 .max_hw_frame_size = DEFAULT_JUMBO,
1789 .get_variants = e1000_get_variants_82571,
1790 .mac_ops = &e82571_mac_ops,
1791 .phy_ops = &e82_phy_ops_igp,
1792 .nvm_ops = &e82571_nvm_ops,
1795 struct e1000_info e1000_82572_info = {
1796 .mac = e1000_82572,
1797 .flags = FLAG_HAS_HW_VLAN_FILTER
1798 | FLAG_HAS_JUMBO_FRAMES
1799 | FLAG_HAS_WOL
1800 | FLAG_APME_IN_CTRL3
1801 | FLAG_RX_CSUM_ENABLED
1802 | FLAG_HAS_CTRLEXT_ON_LOAD
1803 | FLAG_TARC_SPEED_MODE_BIT, /* errata */
1804 .pba = 38,
1805 .max_hw_frame_size = DEFAULT_JUMBO,
1806 .get_variants = e1000_get_variants_82571,
1807 .mac_ops = &e82571_mac_ops,
1808 .phy_ops = &e82_phy_ops_igp,
1809 .nvm_ops = &e82571_nvm_ops,
1812 struct e1000_info e1000_82573_info = {
1813 .mac = e1000_82573,
1814 .flags = FLAG_HAS_HW_VLAN_FILTER
1815 | FLAG_HAS_JUMBO_FRAMES
1816 | FLAG_HAS_WOL
1817 | FLAG_APME_IN_CTRL3
1818 | FLAG_RX_CSUM_ENABLED
1819 | FLAG_HAS_SMART_POWER_DOWN
1820 | FLAG_HAS_AMT
1821 | FLAG_HAS_ERT
1822 | FLAG_HAS_SWSM_ON_LOAD,
1823 .pba = 20,
1824 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
1825 .get_variants = e1000_get_variants_82571,
1826 .mac_ops = &e82571_mac_ops,
1827 .phy_ops = &e82_phy_ops_m88,
1828 .nvm_ops = &e82571_nvm_ops,
1831 struct e1000_info e1000_82574_info = {
1832 .mac = e1000_82574,
1833 .flags = FLAG_HAS_HW_VLAN_FILTER
1834 | FLAG_HAS_MSIX
1835 | FLAG_HAS_JUMBO_FRAMES
1836 | FLAG_HAS_WOL
1837 | FLAG_APME_IN_CTRL3
1838 | FLAG_RX_CSUM_ENABLED
1839 | FLAG_HAS_SMART_POWER_DOWN
1840 | FLAG_HAS_AMT
1841 | FLAG_HAS_CTRLEXT_ON_LOAD,
1842 .pba = 20,
1843 .max_hw_frame_size = DEFAULT_JUMBO,
1844 .get_variants = e1000_get_variants_82571,
1845 .mac_ops = &e82571_mac_ops,
1846 .phy_ops = &e82_phy_ops_bm,
1847 .nvm_ops = &e82571_nvm_ops,
1850 struct e1000_info e1000_82583_info = {
1851 .mac = e1000_82583,
1852 .flags = FLAG_HAS_HW_VLAN_FILTER
1853 | FLAG_HAS_WOL
1854 | FLAG_APME_IN_CTRL3
1855 | FLAG_RX_CSUM_ENABLED
1856 | FLAG_HAS_SMART_POWER_DOWN
1857 | FLAG_HAS_AMT
1858 | FLAG_HAS_CTRLEXT_ON_LOAD,
1859 .pba = 20,
1860 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
1861 .get_variants = e1000_get_variants_82571,
1862 .mac_ops = &e82571_mac_ops,
1863 .phy_ops = &e82_phy_ops_bm,
1864 .nvm_ops = &e82571_nvm_ops,