includecheck fix: include/linux, rfkill.h
[linux-2.6/linux-2.6-openrd.git] / kernel / futex.c
blob1c337112335c60d6831d7b5cf1ee9a26cba54a77
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/module.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
63 #include <asm/futex.h>
65 #include "rtmutex_common.h"
67 int __read_mostly futex_cmpxchg_enabled;
69 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
72 * Priority Inheritance state:
74 struct futex_pi_state {
76 * list of 'owned' pi_state instances - these have to be
77 * cleaned up in do_exit() if the task exits prematurely:
79 struct list_head list;
82 * The PI object:
84 struct rt_mutex pi_mutex;
86 struct task_struct *owner;
87 atomic_t refcount;
89 union futex_key key;
93 * We use this hashed waitqueue instead of a normal wait_queue_t, so
94 * we can wake only the relevant ones (hashed queues may be shared).
96 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
97 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
98 * The order of wakup is always to make the first condition true, then
99 * wake up q->waiter, then make the second condition true.
101 struct futex_q {
102 struct plist_node list;
103 /* Waiter reference */
104 struct task_struct *task;
106 /* Which hash list lock to use: */
107 spinlock_t *lock_ptr;
109 /* Key which the futex is hashed on: */
110 union futex_key key;
112 /* Optional priority inheritance state: */
113 struct futex_pi_state *pi_state;
115 /* rt_waiter storage for requeue_pi: */
116 struct rt_mutex_waiter *rt_waiter;
118 /* Bitset for the optional bitmasked wakeup */
119 u32 bitset;
123 * Hash buckets are shared by all the futex_keys that hash to the same
124 * location. Each key may have multiple futex_q structures, one for each task
125 * waiting on a futex.
127 struct futex_hash_bucket {
128 spinlock_t lock;
129 struct plist_head chain;
132 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
135 * We hash on the keys returned from get_futex_key (see below).
137 static struct futex_hash_bucket *hash_futex(union futex_key *key)
139 u32 hash = jhash2((u32*)&key->both.word,
140 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
141 key->both.offset);
142 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
146 * Return 1 if two futex_keys are equal, 0 otherwise.
148 static inline int match_futex(union futex_key *key1, union futex_key *key2)
150 return (key1->both.word == key2->both.word
151 && key1->both.ptr == key2->both.ptr
152 && key1->both.offset == key2->both.offset);
156 * Take a reference to the resource addressed by a key.
157 * Can be called while holding spinlocks.
160 static void get_futex_key_refs(union futex_key *key)
162 if (!key->both.ptr)
163 return;
165 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
166 case FUT_OFF_INODE:
167 atomic_inc(&key->shared.inode->i_count);
168 break;
169 case FUT_OFF_MMSHARED:
170 atomic_inc(&key->private.mm->mm_count);
171 break;
176 * Drop a reference to the resource addressed by a key.
177 * The hash bucket spinlock must not be held.
179 static void drop_futex_key_refs(union futex_key *key)
181 if (!key->both.ptr) {
182 /* If we're here then we tried to put a key we failed to get */
183 WARN_ON_ONCE(1);
184 return;
187 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
188 case FUT_OFF_INODE:
189 iput(key->shared.inode);
190 break;
191 case FUT_OFF_MMSHARED:
192 mmdrop(key->private.mm);
193 break;
198 * get_futex_key - Get parameters which are the keys for a futex.
199 * @uaddr: virtual address of the futex
200 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
201 * @key: address where result is stored.
202 * @rw: mapping needs to be read/write (values: VERIFY_READ, VERIFY_WRITE)
204 * Returns a negative error code or 0
205 * The key words are stored in *key on success.
207 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
208 * offset_within_page). For private mappings, it's (uaddr, current->mm).
209 * We can usually work out the index without swapping in the page.
211 * lock_page() might sleep, the caller should not hold a spinlock.
213 static int
214 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
216 unsigned long address = (unsigned long)uaddr;
217 struct mm_struct *mm = current->mm;
218 struct page *page;
219 int err;
222 * The futex address must be "naturally" aligned.
224 key->both.offset = address % PAGE_SIZE;
225 if (unlikely((address % sizeof(u32)) != 0))
226 return -EINVAL;
227 address -= key->both.offset;
230 * PROCESS_PRIVATE futexes are fast.
231 * As the mm cannot disappear under us and the 'key' only needs
232 * virtual address, we dont even have to find the underlying vma.
233 * Note : We do have to check 'uaddr' is a valid user address,
234 * but access_ok() should be faster than find_vma()
236 if (!fshared) {
237 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
238 return -EFAULT;
239 key->private.mm = mm;
240 key->private.address = address;
241 get_futex_key_refs(key);
242 return 0;
245 again:
246 err = get_user_pages_fast(address, 1, rw == VERIFY_WRITE, &page);
247 if (err < 0)
248 return err;
250 lock_page(page);
251 if (!page->mapping) {
252 unlock_page(page);
253 put_page(page);
254 goto again;
258 * Private mappings are handled in a simple way.
260 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
261 * it's a read-only handle, it's expected that futexes attach to
262 * the object not the particular process.
264 if (PageAnon(page)) {
265 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
266 key->private.mm = mm;
267 key->private.address = address;
268 } else {
269 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
270 key->shared.inode = page->mapping->host;
271 key->shared.pgoff = page->index;
274 get_futex_key_refs(key);
276 unlock_page(page);
277 put_page(page);
278 return 0;
281 static inline
282 void put_futex_key(int fshared, union futex_key *key)
284 drop_futex_key_refs(key);
288 * fault_in_user_writeable - fault in user address and verify RW access
289 * @uaddr: pointer to faulting user space address
291 * Slow path to fixup the fault we just took in the atomic write
292 * access to @uaddr.
294 * We have no generic implementation of a non destructive write to the
295 * user address. We know that we faulted in the atomic pagefault
296 * disabled section so we can as well avoid the #PF overhead by
297 * calling get_user_pages() right away.
299 static int fault_in_user_writeable(u32 __user *uaddr)
301 int ret = get_user_pages(current, current->mm, (unsigned long)uaddr,
302 sizeof(*uaddr), 1, 0, NULL, NULL);
303 return ret < 0 ? ret : 0;
307 * futex_top_waiter() - Return the highest priority waiter on a futex
308 * @hb: the hash bucket the futex_q's reside in
309 * @key: the futex key (to distinguish it from other futex futex_q's)
311 * Must be called with the hb lock held.
313 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
314 union futex_key *key)
316 struct futex_q *this;
318 plist_for_each_entry(this, &hb->chain, list) {
319 if (match_futex(&this->key, key))
320 return this;
322 return NULL;
325 static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
327 u32 curval;
329 pagefault_disable();
330 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
331 pagefault_enable();
333 return curval;
336 static int get_futex_value_locked(u32 *dest, u32 __user *from)
338 int ret;
340 pagefault_disable();
341 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
342 pagefault_enable();
344 return ret ? -EFAULT : 0;
349 * PI code:
351 static int refill_pi_state_cache(void)
353 struct futex_pi_state *pi_state;
355 if (likely(current->pi_state_cache))
356 return 0;
358 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
360 if (!pi_state)
361 return -ENOMEM;
363 INIT_LIST_HEAD(&pi_state->list);
364 /* pi_mutex gets initialized later */
365 pi_state->owner = NULL;
366 atomic_set(&pi_state->refcount, 1);
367 pi_state->key = FUTEX_KEY_INIT;
369 current->pi_state_cache = pi_state;
371 return 0;
374 static struct futex_pi_state * alloc_pi_state(void)
376 struct futex_pi_state *pi_state = current->pi_state_cache;
378 WARN_ON(!pi_state);
379 current->pi_state_cache = NULL;
381 return pi_state;
384 static void free_pi_state(struct futex_pi_state *pi_state)
386 if (!atomic_dec_and_test(&pi_state->refcount))
387 return;
390 * If pi_state->owner is NULL, the owner is most probably dying
391 * and has cleaned up the pi_state already
393 if (pi_state->owner) {
394 spin_lock_irq(&pi_state->owner->pi_lock);
395 list_del_init(&pi_state->list);
396 spin_unlock_irq(&pi_state->owner->pi_lock);
398 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
401 if (current->pi_state_cache)
402 kfree(pi_state);
403 else {
405 * pi_state->list is already empty.
406 * clear pi_state->owner.
407 * refcount is at 0 - put it back to 1.
409 pi_state->owner = NULL;
410 atomic_set(&pi_state->refcount, 1);
411 current->pi_state_cache = pi_state;
416 * Look up the task based on what TID userspace gave us.
417 * We dont trust it.
419 static struct task_struct * futex_find_get_task(pid_t pid)
421 struct task_struct *p;
422 const struct cred *cred = current_cred(), *pcred;
424 rcu_read_lock();
425 p = find_task_by_vpid(pid);
426 if (!p) {
427 p = ERR_PTR(-ESRCH);
428 } else {
429 pcred = __task_cred(p);
430 if (cred->euid != pcred->euid &&
431 cred->euid != pcred->uid)
432 p = ERR_PTR(-ESRCH);
433 else
434 get_task_struct(p);
437 rcu_read_unlock();
439 return p;
443 * This task is holding PI mutexes at exit time => bad.
444 * Kernel cleans up PI-state, but userspace is likely hosed.
445 * (Robust-futex cleanup is separate and might save the day for userspace.)
447 void exit_pi_state_list(struct task_struct *curr)
449 struct list_head *next, *head = &curr->pi_state_list;
450 struct futex_pi_state *pi_state;
451 struct futex_hash_bucket *hb;
452 union futex_key key = FUTEX_KEY_INIT;
454 if (!futex_cmpxchg_enabled)
455 return;
457 * We are a ZOMBIE and nobody can enqueue itself on
458 * pi_state_list anymore, but we have to be careful
459 * versus waiters unqueueing themselves:
461 spin_lock_irq(&curr->pi_lock);
462 while (!list_empty(head)) {
464 next = head->next;
465 pi_state = list_entry(next, struct futex_pi_state, list);
466 key = pi_state->key;
467 hb = hash_futex(&key);
468 spin_unlock_irq(&curr->pi_lock);
470 spin_lock(&hb->lock);
472 spin_lock_irq(&curr->pi_lock);
474 * We dropped the pi-lock, so re-check whether this
475 * task still owns the PI-state:
477 if (head->next != next) {
478 spin_unlock(&hb->lock);
479 continue;
482 WARN_ON(pi_state->owner != curr);
483 WARN_ON(list_empty(&pi_state->list));
484 list_del_init(&pi_state->list);
485 pi_state->owner = NULL;
486 spin_unlock_irq(&curr->pi_lock);
488 rt_mutex_unlock(&pi_state->pi_mutex);
490 spin_unlock(&hb->lock);
492 spin_lock_irq(&curr->pi_lock);
494 spin_unlock_irq(&curr->pi_lock);
497 static int
498 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
499 union futex_key *key, struct futex_pi_state **ps)
501 struct futex_pi_state *pi_state = NULL;
502 struct futex_q *this, *next;
503 struct plist_head *head;
504 struct task_struct *p;
505 pid_t pid = uval & FUTEX_TID_MASK;
507 head = &hb->chain;
509 plist_for_each_entry_safe(this, next, head, list) {
510 if (match_futex(&this->key, key)) {
512 * Another waiter already exists - bump up
513 * the refcount and return its pi_state:
515 pi_state = this->pi_state;
517 * Userspace might have messed up non PI and PI futexes
519 if (unlikely(!pi_state))
520 return -EINVAL;
522 WARN_ON(!atomic_read(&pi_state->refcount));
523 WARN_ON(pid && pi_state->owner &&
524 pi_state->owner->pid != pid);
526 atomic_inc(&pi_state->refcount);
527 *ps = pi_state;
529 return 0;
534 * We are the first waiter - try to look up the real owner and attach
535 * the new pi_state to it, but bail out when TID = 0
537 if (!pid)
538 return -ESRCH;
539 p = futex_find_get_task(pid);
540 if (IS_ERR(p))
541 return PTR_ERR(p);
544 * We need to look at the task state flags to figure out,
545 * whether the task is exiting. To protect against the do_exit
546 * change of the task flags, we do this protected by
547 * p->pi_lock:
549 spin_lock_irq(&p->pi_lock);
550 if (unlikely(p->flags & PF_EXITING)) {
552 * The task is on the way out. When PF_EXITPIDONE is
553 * set, we know that the task has finished the
554 * cleanup:
556 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
558 spin_unlock_irq(&p->pi_lock);
559 put_task_struct(p);
560 return ret;
563 pi_state = alloc_pi_state();
566 * Initialize the pi_mutex in locked state and make 'p'
567 * the owner of it:
569 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
571 /* Store the key for possible exit cleanups: */
572 pi_state->key = *key;
574 WARN_ON(!list_empty(&pi_state->list));
575 list_add(&pi_state->list, &p->pi_state_list);
576 pi_state->owner = p;
577 spin_unlock_irq(&p->pi_lock);
579 put_task_struct(p);
581 *ps = pi_state;
583 return 0;
587 * futex_lock_pi_atomic() - atomic work required to acquire a pi aware futex
588 * @uaddr: the pi futex user address
589 * @hb: the pi futex hash bucket
590 * @key: the futex key associated with uaddr and hb
591 * @ps: the pi_state pointer where we store the result of the
592 * lookup
593 * @task: the task to perform the atomic lock work for. This will
594 * be "current" except in the case of requeue pi.
595 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
597 * Returns:
598 * 0 - ready to wait
599 * 1 - acquired the lock
600 * <0 - error
602 * The hb->lock and futex_key refs shall be held by the caller.
604 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
605 union futex_key *key,
606 struct futex_pi_state **ps,
607 struct task_struct *task, int set_waiters)
609 int lock_taken, ret, ownerdied = 0;
610 u32 uval, newval, curval;
612 retry:
613 ret = lock_taken = 0;
616 * To avoid races, we attempt to take the lock here again
617 * (by doing a 0 -> TID atomic cmpxchg), while holding all
618 * the locks. It will most likely not succeed.
620 newval = task_pid_vnr(task);
621 if (set_waiters)
622 newval |= FUTEX_WAITERS;
624 curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
626 if (unlikely(curval == -EFAULT))
627 return -EFAULT;
630 * Detect deadlocks.
632 if ((unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(task))))
633 return -EDEADLK;
636 * Surprise - we got the lock. Just return to userspace:
638 if (unlikely(!curval))
639 return 1;
641 uval = curval;
644 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
645 * to wake at the next unlock.
647 newval = curval | FUTEX_WAITERS;
650 * There are two cases, where a futex might have no owner (the
651 * owner TID is 0): OWNER_DIED. We take over the futex in this
652 * case. We also do an unconditional take over, when the owner
653 * of the futex died.
655 * This is safe as we are protected by the hash bucket lock !
657 if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
658 /* Keep the OWNER_DIED bit */
659 newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(task);
660 ownerdied = 0;
661 lock_taken = 1;
664 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
666 if (unlikely(curval == -EFAULT))
667 return -EFAULT;
668 if (unlikely(curval != uval))
669 goto retry;
672 * We took the lock due to owner died take over.
674 if (unlikely(lock_taken))
675 return 1;
678 * We dont have the lock. Look up the PI state (or create it if
679 * we are the first waiter):
681 ret = lookup_pi_state(uval, hb, key, ps);
683 if (unlikely(ret)) {
684 switch (ret) {
685 case -ESRCH:
687 * No owner found for this futex. Check if the
688 * OWNER_DIED bit is set to figure out whether
689 * this is a robust futex or not.
691 if (get_futex_value_locked(&curval, uaddr))
692 return -EFAULT;
695 * We simply start over in case of a robust
696 * futex. The code above will take the futex
697 * and return happy.
699 if (curval & FUTEX_OWNER_DIED) {
700 ownerdied = 1;
701 goto retry;
703 default:
704 break;
708 return ret;
712 * The hash bucket lock must be held when this is called.
713 * Afterwards, the futex_q must not be accessed.
715 static void wake_futex(struct futex_q *q)
717 struct task_struct *p = q->task;
720 * We set q->lock_ptr = NULL _before_ we wake up the task. If
721 * a non futex wake up happens on another CPU then the task
722 * might exit and p would dereference a non existing task
723 * struct. Prevent this by holding a reference on p across the
724 * wake up.
726 get_task_struct(p);
728 plist_del(&q->list, &q->list.plist);
730 * The waiting task can free the futex_q as soon as
731 * q->lock_ptr = NULL is written, without taking any locks. A
732 * memory barrier is required here to prevent the following
733 * store to lock_ptr from getting ahead of the plist_del.
735 smp_wmb();
736 q->lock_ptr = NULL;
738 wake_up_state(p, TASK_NORMAL);
739 put_task_struct(p);
742 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
744 struct task_struct *new_owner;
745 struct futex_pi_state *pi_state = this->pi_state;
746 u32 curval, newval;
748 if (!pi_state)
749 return -EINVAL;
751 spin_lock(&pi_state->pi_mutex.wait_lock);
752 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
755 * This happens when we have stolen the lock and the original
756 * pending owner did not enqueue itself back on the rt_mutex.
757 * Thats not a tragedy. We know that way, that a lock waiter
758 * is on the fly. We make the futex_q waiter the pending owner.
760 if (!new_owner)
761 new_owner = this->task;
764 * We pass it to the next owner. (The WAITERS bit is always
765 * kept enabled while there is PI state around. We must also
766 * preserve the owner died bit.)
768 if (!(uval & FUTEX_OWNER_DIED)) {
769 int ret = 0;
771 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
773 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
775 if (curval == -EFAULT)
776 ret = -EFAULT;
777 else if (curval != uval)
778 ret = -EINVAL;
779 if (ret) {
780 spin_unlock(&pi_state->pi_mutex.wait_lock);
781 return ret;
785 spin_lock_irq(&pi_state->owner->pi_lock);
786 WARN_ON(list_empty(&pi_state->list));
787 list_del_init(&pi_state->list);
788 spin_unlock_irq(&pi_state->owner->pi_lock);
790 spin_lock_irq(&new_owner->pi_lock);
791 WARN_ON(!list_empty(&pi_state->list));
792 list_add(&pi_state->list, &new_owner->pi_state_list);
793 pi_state->owner = new_owner;
794 spin_unlock_irq(&new_owner->pi_lock);
796 spin_unlock(&pi_state->pi_mutex.wait_lock);
797 rt_mutex_unlock(&pi_state->pi_mutex);
799 return 0;
802 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
804 u32 oldval;
807 * There is no waiter, so we unlock the futex. The owner died
808 * bit has not to be preserved here. We are the owner:
810 oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
812 if (oldval == -EFAULT)
813 return oldval;
814 if (oldval != uval)
815 return -EAGAIN;
817 return 0;
821 * Express the locking dependencies for lockdep:
823 static inline void
824 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
826 if (hb1 <= hb2) {
827 spin_lock(&hb1->lock);
828 if (hb1 < hb2)
829 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
830 } else { /* hb1 > hb2 */
831 spin_lock(&hb2->lock);
832 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
836 static inline void
837 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
839 spin_unlock(&hb1->lock);
840 if (hb1 != hb2)
841 spin_unlock(&hb2->lock);
845 * Wake up waiters matching bitset queued on this futex (uaddr).
847 static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset)
849 struct futex_hash_bucket *hb;
850 struct futex_q *this, *next;
851 struct plist_head *head;
852 union futex_key key = FUTEX_KEY_INIT;
853 int ret;
855 if (!bitset)
856 return -EINVAL;
858 ret = get_futex_key(uaddr, fshared, &key, VERIFY_READ);
859 if (unlikely(ret != 0))
860 goto out;
862 hb = hash_futex(&key);
863 spin_lock(&hb->lock);
864 head = &hb->chain;
866 plist_for_each_entry_safe(this, next, head, list) {
867 if (match_futex (&this->key, &key)) {
868 if (this->pi_state || this->rt_waiter) {
869 ret = -EINVAL;
870 break;
873 /* Check if one of the bits is set in both bitsets */
874 if (!(this->bitset & bitset))
875 continue;
877 wake_futex(this);
878 if (++ret >= nr_wake)
879 break;
883 spin_unlock(&hb->lock);
884 put_futex_key(fshared, &key);
885 out:
886 return ret;
890 * Wake up all waiters hashed on the physical page that is mapped
891 * to this virtual address:
893 static int
894 futex_wake_op(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
895 int nr_wake, int nr_wake2, int op)
897 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
898 struct futex_hash_bucket *hb1, *hb2;
899 struct plist_head *head;
900 struct futex_q *this, *next;
901 int ret, op_ret;
903 retry:
904 ret = get_futex_key(uaddr1, fshared, &key1, VERIFY_READ);
905 if (unlikely(ret != 0))
906 goto out;
907 ret = get_futex_key(uaddr2, fshared, &key2, VERIFY_WRITE);
908 if (unlikely(ret != 0))
909 goto out_put_key1;
911 hb1 = hash_futex(&key1);
912 hb2 = hash_futex(&key2);
914 double_lock_hb(hb1, hb2);
915 retry_private:
916 op_ret = futex_atomic_op_inuser(op, uaddr2);
917 if (unlikely(op_ret < 0)) {
919 double_unlock_hb(hb1, hb2);
921 #ifndef CONFIG_MMU
923 * we don't get EFAULT from MMU faults if we don't have an MMU,
924 * but we might get them from range checking
926 ret = op_ret;
927 goto out_put_keys;
928 #endif
930 if (unlikely(op_ret != -EFAULT)) {
931 ret = op_ret;
932 goto out_put_keys;
935 ret = fault_in_user_writeable(uaddr2);
936 if (ret)
937 goto out_put_keys;
939 if (!fshared)
940 goto retry_private;
942 put_futex_key(fshared, &key2);
943 put_futex_key(fshared, &key1);
944 goto retry;
947 head = &hb1->chain;
949 plist_for_each_entry_safe(this, next, head, list) {
950 if (match_futex (&this->key, &key1)) {
951 wake_futex(this);
952 if (++ret >= nr_wake)
953 break;
957 if (op_ret > 0) {
958 head = &hb2->chain;
960 op_ret = 0;
961 plist_for_each_entry_safe(this, next, head, list) {
962 if (match_futex (&this->key, &key2)) {
963 wake_futex(this);
964 if (++op_ret >= nr_wake2)
965 break;
968 ret += op_ret;
971 double_unlock_hb(hb1, hb2);
972 out_put_keys:
973 put_futex_key(fshared, &key2);
974 out_put_key1:
975 put_futex_key(fshared, &key1);
976 out:
977 return ret;
981 * requeue_futex() - Requeue a futex_q from one hb to another
982 * @q: the futex_q to requeue
983 * @hb1: the source hash_bucket
984 * @hb2: the target hash_bucket
985 * @key2: the new key for the requeued futex_q
987 static inline
988 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
989 struct futex_hash_bucket *hb2, union futex_key *key2)
993 * If key1 and key2 hash to the same bucket, no need to
994 * requeue.
996 if (likely(&hb1->chain != &hb2->chain)) {
997 plist_del(&q->list, &hb1->chain);
998 plist_add(&q->list, &hb2->chain);
999 q->lock_ptr = &hb2->lock;
1000 #ifdef CONFIG_DEBUG_PI_LIST
1001 q->list.plist.lock = &hb2->lock;
1002 #endif
1004 get_futex_key_refs(key2);
1005 q->key = *key2;
1009 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1010 * q: the futex_q
1011 * key: the key of the requeue target futex
1013 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1014 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1015 * to the requeue target futex so the waiter can detect the wakeup on the right
1016 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1017 * atomic lock acquisition. Must be called with the q->lock_ptr held.
1019 static inline
1020 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key)
1022 drop_futex_key_refs(&q->key);
1023 get_futex_key_refs(key);
1024 q->key = *key;
1026 WARN_ON(plist_node_empty(&q->list));
1027 plist_del(&q->list, &q->list.plist);
1029 WARN_ON(!q->rt_waiter);
1030 q->rt_waiter = NULL;
1032 wake_up_state(q->task, TASK_NORMAL);
1036 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1037 * @pifutex: the user address of the to futex
1038 * @hb1: the from futex hash bucket, must be locked by the caller
1039 * @hb2: the to futex hash bucket, must be locked by the caller
1040 * @key1: the from futex key
1041 * @key2: the to futex key
1042 * @ps: address to store the pi_state pointer
1043 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1045 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1046 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1047 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1048 * hb1 and hb2 must be held by the caller.
1050 * Returns:
1051 * 0 - failed to acquire the lock atomicly
1052 * 1 - acquired the lock
1053 * <0 - error
1055 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1056 struct futex_hash_bucket *hb1,
1057 struct futex_hash_bucket *hb2,
1058 union futex_key *key1, union futex_key *key2,
1059 struct futex_pi_state **ps, int set_waiters)
1061 struct futex_q *top_waiter = NULL;
1062 u32 curval;
1063 int ret;
1065 if (get_futex_value_locked(&curval, pifutex))
1066 return -EFAULT;
1069 * Find the top_waiter and determine if there are additional waiters.
1070 * If the caller intends to requeue more than 1 waiter to pifutex,
1071 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1072 * as we have means to handle the possible fault. If not, don't set
1073 * the bit unecessarily as it will force the subsequent unlock to enter
1074 * the kernel.
1076 top_waiter = futex_top_waiter(hb1, key1);
1078 /* There are no waiters, nothing for us to do. */
1079 if (!top_waiter)
1080 return 0;
1083 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1084 * the contended case or if set_waiters is 1. The pi_state is returned
1085 * in ps in contended cases.
1087 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1088 set_waiters);
1089 if (ret == 1)
1090 requeue_pi_wake_futex(top_waiter, key2);
1092 return ret;
1096 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1097 * uaddr1: source futex user address
1098 * uaddr2: target futex user address
1099 * nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1100 * nr_requeue: number of waiters to requeue (0-INT_MAX)
1101 * requeue_pi: if we are attempting to requeue from a non-pi futex to a
1102 * pi futex (pi to pi requeue is not supported)
1104 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1105 * uaddr2 atomically on behalf of the top waiter.
1107 * Returns:
1108 * >=0 - on success, the number of tasks requeued or woken
1109 * <0 - on error
1111 static int futex_requeue(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
1112 int nr_wake, int nr_requeue, u32 *cmpval,
1113 int requeue_pi)
1115 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1116 int drop_count = 0, task_count = 0, ret;
1117 struct futex_pi_state *pi_state = NULL;
1118 struct futex_hash_bucket *hb1, *hb2;
1119 struct plist_head *head1;
1120 struct futex_q *this, *next;
1121 u32 curval2;
1123 if (requeue_pi) {
1125 * requeue_pi requires a pi_state, try to allocate it now
1126 * without any locks in case it fails.
1128 if (refill_pi_state_cache())
1129 return -ENOMEM;
1131 * requeue_pi must wake as many tasks as it can, up to nr_wake
1132 * + nr_requeue, since it acquires the rt_mutex prior to
1133 * returning to userspace, so as to not leave the rt_mutex with
1134 * waiters and no owner. However, second and third wake-ups
1135 * cannot be predicted as they involve race conditions with the
1136 * first wake and a fault while looking up the pi_state. Both
1137 * pthread_cond_signal() and pthread_cond_broadcast() should
1138 * use nr_wake=1.
1140 if (nr_wake != 1)
1141 return -EINVAL;
1144 retry:
1145 if (pi_state != NULL) {
1147 * We will have to lookup the pi_state again, so free this one
1148 * to keep the accounting correct.
1150 free_pi_state(pi_state);
1151 pi_state = NULL;
1154 ret = get_futex_key(uaddr1, fshared, &key1, VERIFY_READ);
1155 if (unlikely(ret != 0))
1156 goto out;
1157 ret = get_futex_key(uaddr2, fshared, &key2,
1158 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1159 if (unlikely(ret != 0))
1160 goto out_put_key1;
1162 hb1 = hash_futex(&key1);
1163 hb2 = hash_futex(&key2);
1165 retry_private:
1166 double_lock_hb(hb1, hb2);
1168 if (likely(cmpval != NULL)) {
1169 u32 curval;
1171 ret = get_futex_value_locked(&curval, uaddr1);
1173 if (unlikely(ret)) {
1174 double_unlock_hb(hb1, hb2);
1176 ret = get_user(curval, uaddr1);
1177 if (ret)
1178 goto out_put_keys;
1180 if (!fshared)
1181 goto retry_private;
1183 put_futex_key(fshared, &key2);
1184 put_futex_key(fshared, &key1);
1185 goto retry;
1187 if (curval != *cmpval) {
1188 ret = -EAGAIN;
1189 goto out_unlock;
1193 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1195 * Attempt to acquire uaddr2 and wake the top waiter. If we
1196 * intend to requeue waiters, force setting the FUTEX_WAITERS
1197 * bit. We force this here where we are able to easily handle
1198 * faults rather in the requeue loop below.
1200 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1201 &key2, &pi_state, nr_requeue);
1204 * At this point the top_waiter has either taken uaddr2 or is
1205 * waiting on it. If the former, then the pi_state will not
1206 * exist yet, look it up one more time to ensure we have a
1207 * reference to it.
1209 if (ret == 1) {
1210 WARN_ON(pi_state);
1211 task_count++;
1212 ret = get_futex_value_locked(&curval2, uaddr2);
1213 if (!ret)
1214 ret = lookup_pi_state(curval2, hb2, &key2,
1215 &pi_state);
1218 switch (ret) {
1219 case 0:
1220 break;
1221 case -EFAULT:
1222 double_unlock_hb(hb1, hb2);
1223 put_futex_key(fshared, &key2);
1224 put_futex_key(fshared, &key1);
1225 ret = fault_in_user_writeable(uaddr2);
1226 if (!ret)
1227 goto retry;
1228 goto out;
1229 case -EAGAIN:
1230 /* The owner was exiting, try again. */
1231 double_unlock_hb(hb1, hb2);
1232 put_futex_key(fshared, &key2);
1233 put_futex_key(fshared, &key1);
1234 cond_resched();
1235 goto retry;
1236 default:
1237 goto out_unlock;
1241 head1 = &hb1->chain;
1242 plist_for_each_entry_safe(this, next, head1, list) {
1243 if (task_count - nr_wake >= nr_requeue)
1244 break;
1246 if (!match_futex(&this->key, &key1))
1247 continue;
1249 WARN_ON(!requeue_pi && this->rt_waiter);
1250 WARN_ON(requeue_pi && !this->rt_waiter);
1253 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1254 * lock, we already woke the top_waiter. If not, it will be
1255 * woken by futex_unlock_pi().
1257 if (++task_count <= nr_wake && !requeue_pi) {
1258 wake_futex(this);
1259 continue;
1263 * Requeue nr_requeue waiters and possibly one more in the case
1264 * of requeue_pi if we couldn't acquire the lock atomically.
1266 if (requeue_pi) {
1267 /* Prepare the waiter to take the rt_mutex. */
1268 atomic_inc(&pi_state->refcount);
1269 this->pi_state = pi_state;
1270 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1271 this->rt_waiter,
1272 this->task, 1);
1273 if (ret == 1) {
1274 /* We got the lock. */
1275 requeue_pi_wake_futex(this, &key2);
1276 continue;
1277 } else if (ret) {
1278 /* -EDEADLK */
1279 this->pi_state = NULL;
1280 free_pi_state(pi_state);
1281 goto out_unlock;
1284 requeue_futex(this, hb1, hb2, &key2);
1285 drop_count++;
1288 out_unlock:
1289 double_unlock_hb(hb1, hb2);
1292 * drop_futex_key_refs() must be called outside the spinlocks. During
1293 * the requeue we moved futex_q's from the hash bucket at key1 to the
1294 * one at key2 and updated their key pointer. We no longer need to
1295 * hold the references to key1.
1297 while (--drop_count >= 0)
1298 drop_futex_key_refs(&key1);
1300 out_put_keys:
1301 put_futex_key(fshared, &key2);
1302 out_put_key1:
1303 put_futex_key(fshared, &key1);
1304 out:
1305 if (pi_state != NULL)
1306 free_pi_state(pi_state);
1307 return ret ? ret : task_count;
1310 /* The key must be already stored in q->key. */
1311 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1313 struct futex_hash_bucket *hb;
1315 get_futex_key_refs(&q->key);
1316 hb = hash_futex(&q->key);
1317 q->lock_ptr = &hb->lock;
1319 spin_lock(&hb->lock);
1320 return hb;
1323 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1325 int prio;
1328 * The priority used to register this element is
1329 * - either the real thread-priority for the real-time threads
1330 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1331 * - or MAX_RT_PRIO for non-RT threads.
1332 * Thus, all RT-threads are woken first in priority order, and
1333 * the others are woken last, in FIFO order.
1335 prio = min(current->normal_prio, MAX_RT_PRIO);
1337 plist_node_init(&q->list, prio);
1338 #ifdef CONFIG_DEBUG_PI_LIST
1339 q->list.plist.lock = &hb->lock;
1340 #endif
1341 plist_add(&q->list, &hb->chain);
1342 q->task = current;
1343 spin_unlock(&hb->lock);
1346 static inline void
1347 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1349 spin_unlock(&hb->lock);
1350 drop_futex_key_refs(&q->key);
1354 * queue_me and unqueue_me must be called as a pair, each
1355 * exactly once. They are called with the hashed spinlock held.
1358 /* Return 1 if we were still queued (ie. 0 means we were woken) */
1359 static int unqueue_me(struct futex_q *q)
1361 spinlock_t *lock_ptr;
1362 int ret = 0;
1364 /* In the common case we don't take the spinlock, which is nice. */
1365 retry:
1366 lock_ptr = q->lock_ptr;
1367 barrier();
1368 if (lock_ptr != NULL) {
1369 spin_lock(lock_ptr);
1371 * q->lock_ptr can change between reading it and
1372 * spin_lock(), causing us to take the wrong lock. This
1373 * corrects the race condition.
1375 * Reasoning goes like this: if we have the wrong lock,
1376 * q->lock_ptr must have changed (maybe several times)
1377 * between reading it and the spin_lock(). It can
1378 * change again after the spin_lock() but only if it was
1379 * already changed before the spin_lock(). It cannot,
1380 * however, change back to the original value. Therefore
1381 * we can detect whether we acquired the correct lock.
1383 if (unlikely(lock_ptr != q->lock_ptr)) {
1384 spin_unlock(lock_ptr);
1385 goto retry;
1387 WARN_ON(plist_node_empty(&q->list));
1388 plist_del(&q->list, &q->list.plist);
1390 BUG_ON(q->pi_state);
1392 spin_unlock(lock_ptr);
1393 ret = 1;
1396 drop_futex_key_refs(&q->key);
1397 return ret;
1401 * PI futexes can not be requeued and must remove themself from the
1402 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1403 * and dropped here.
1405 static void unqueue_me_pi(struct futex_q *q)
1407 WARN_ON(plist_node_empty(&q->list));
1408 plist_del(&q->list, &q->list.plist);
1410 BUG_ON(!q->pi_state);
1411 free_pi_state(q->pi_state);
1412 q->pi_state = NULL;
1414 spin_unlock(q->lock_ptr);
1416 drop_futex_key_refs(&q->key);
1420 * Fixup the pi_state owner with the new owner.
1422 * Must be called with hash bucket lock held and mm->sem held for non
1423 * private futexes.
1425 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1426 struct task_struct *newowner, int fshared)
1428 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1429 struct futex_pi_state *pi_state = q->pi_state;
1430 struct task_struct *oldowner = pi_state->owner;
1431 u32 uval, curval, newval;
1432 int ret;
1434 /* Owner died? */
1435 if (!pi_state->owner)
1436 newtid |= FUTEX_OWNER_DIED;
1439 * We are here either because we stole the rtmutex from the
1440 * pending owner or we are the pending owner which failed to
1441 * get the rtmutex. We have to replace the pending owner TID
1442 * in the user space variable. This must be atomic as we have
1443 * to preserve the owner died bit here.
1445 * Note: We write the user space value _before_ changing the pi_state
1446 * because we can fault here. Imagine swapped out pages or a fork
1447 * that marked all the anonymous memory readonly for cow.
1449 * Modifying pi_state _before_ the user space value would
1450 * leave the pi_state in an inconsistent state when we fault
1451 * here, because we need to drop the hash bucket lock to
1452 * handle the fault. This might be observed in the PID check
1453 * in lookup_pi_state.
1455 retry:
1456 if (get_futex_value_locked(&uval, uaddr))
1457 goto handle_fault;
1459 while (1) {
1460 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1462 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1464 if (curval == -EFAULT)
1465 goto handle_fault;
1466 if (curval == uval)
1467 break;
1468 uval = curval;
1472 * We fixed up user space. Now we need to fix the pi_state
1473 * itself.
1475 if (pi_state->owner != NULL) {
1476 spin_lock_irq(&pi_state->owner->pi_lock);
1477 WARN_ON(list_empty(&pi_state->list));
1478 list_del_init(&pi_state->list);
1479 spin_unlock_irq(&pi_state->owner->pi_lock);
1482 pi_state->owner = newowner;
1484 spin_lock_irq(&newowner->pi_lock);
1485 WARN_ON(!list_empty(&pi_state->list));
1486 list_add(&pi_state->list, &newowner->pi_state_list);
1487 spin_unlock_irq(&newowner->pi_lock);
1488 return 0;
1491 * To handle the page fault we need to drop the hash bucket
1492 * lock here. That gives the other task (either the pending
1493 * owner itself or the task which stole the rtmutex) the
1494 * chance to try the fixup of the pi_state. So once we are
1495 * back from handling the fault we need to check the pi_state
1496 * after reacquiring the hash bucket lock and before trying to
1497 * do another fixup. When the fixup has been done already we
1498 * simply return.
1500 handle_fault:
1501 spin_unlock(q->lock_ptr);
1503 ret = fault_in_user_writeable(uaddr);
1505 spin_lock(q->lock_ptr);
1508 * Check if someone else fixed it for us:
1510 if (pi_state->owner != oldowner)
1511 return 0;
1513 if (ret)
1514 return ret;
1516 goto retry;
1520 * In case we must use restart_block to restart a futex_wait,
1521 * we encode in the 'flags' shared capability
1523 #define FLAGS_SHARED 0x01
1524 #define FLAGS_CLOCKRT 0x02
1525 #define FLAGS_HAS_TIMEOUT 0x04
1527 static long futex_wait_restart(struct restart_block *restart);
1530 * fixup_owner() - Post lock pi_state and corner case management
1531 * @uaddr: user address of the futex
1532 * @fshared: whether the futex is shared (1) or not (0)
1533 * @q: futex_q (contains pi_state and access to the rt_mutex)
1534 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
1536 * After attempting to lock an rt_mutex, this function is called to cleanup
1537 * the pi_state owner as well as handle race conditions that may allow us to
1538 * acquire the lock. Must be called with the hb lock held.
1540 * Returns:
1541 * 1 - success, lock taken
1542 * 0 - success, lock not taken
1543 * <0 - on error (-EFAULT)
1545 static int fixup_owner(u32 __user *uaddr, int fshared, struct futex_q *q,
1546 int locked)
1548 struct task_struct *owner;
1549 int ret = 0;
1551 if (locked) {
1553 * Got the lock. We might not be the anticipated owner if we
1554 * did a lock-steal - fix up the PI-state in that case:
1556 if (q->pi_state->owner != current)
1557 ret = fixup_pi_state_owner(uaddr, q, current, fshared);
1558 goto out;
1562 * Catch the rare case, where the lock was released when we were on the
1563 * way back before we locked the hash bucket.
1565 if (q->pi_state->owner == current) {
1567 * Try to get the rt_mutex now. This might fail as some other
1568 * task acquired the rt_mutex after we removed ourself from the
1569 * rt_mutex waiters list.
1571 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1572 locked = 1;
1573 goto out;
1577 * pi_state is incorrect, some other task did a lock steal and
1578 * we returned due to timeout or signal without taking the
1579 * rt_mutex. Too late. We can access the rt_mutex_owner without
1580 * locking, as the other task is now blocked on the hash bucket
1581 * lock. Fix the state up.
1583 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1584 ret = fixup_pi_state_owner(uaddr, q, owner, fshared);
1585 goto out;
1589 * Paranoia check. If we did not take the lock, then we should not be
1590 * the owner, nor the pending owner, of the rt_mutex.
1592 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1593 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1594 "pi-state %p\n", ret,
1595 q->pi_state->pi_mutex.owner,
1596 q->pi_state->owner);
1598 out:
1599 return ret ? ret : locked;
1603 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1604 * @hb: the futex hash bucket, must be locked by the caller
1605 * @q: the futex_q to queue up on
1606 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
1608 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1609 struct hrtimer_sleeper *timeout)
1611 queue_me(q, hb);
1614 * There might have been scheduling since the queue_me(), as we
1615 * cannot hold a spinlock across the get_user() in case it
1616 * faults, and we cannot just set TASK_INTERRUPTIBLE state when
1617 * queueing ourselves into the futex hash. This code thus has to
1618 * rely on the futex_wake() code removing us from hash when it
1619 * wakes us up.
1621 set_current_state(TASK_INTERRUPTIBLE);
1623 /* Arm the timer */
1624 if (timeout) {
1625 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1626 if (!hrtimer_active(&timeout->timer))
1627 timeout->task = NULL;
1631 * !plist_node_empty() is safe here without any lock.
1632 * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
1634 if (likely(!plist_node_empty(&q->list))) {
1636 * If the timer has already expired, current will already be
1637 * flagged for rescheduling. Only call schedule if there
1638 * is no timeout, or if it has yet to expire.
1640 if (!timeout || timeout->task)
1641 schedule();
1643 __set_current_state(TASK_RUNNING);
1647 * futex_wait_setup() - Prepare to wait on a futex
1648 * @uaddr: the futex userspace address
1649 * @val: the expected value
1650 * @fshared: whether the futex is shared (1) or not (0)
1651 * @q: the associated futex_q
1652 * @hb: storage for hash_bucket pointer to be returned to caller
1654 * Setup the futex_q and locate the hash_bucket. Get the futex value and
1655 * compare it with the expected value. Handle atomic faults internally.
1656 * Return with the hb lock held and a q.key reference on success, and unlocked
1657 * with no q.key reference on failure.
1659 * Returns:
1660 * 0 - uaddr contains val and hb has been locked
1661 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlcoked
1663 static int futex_wait_setup(u32 __user *uaddr, u32 val, int fshared,
1664 struct futex_q *q, struct futex_hash_bucket **hb)
1666 u32 uval;
1667 int ret;
1670 * Access the page AFTER the hash-bucket is locked.
1671 * Order is important:
1673 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1674 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1676 * The basic logical guarantee of a futex is that it blocks ONLY
1677 * if cond(var) is known to be true at the time of blocking, for
1678 * any cond. If we queued after testing *uaddr, that would open
1679 * a race condition where we could block indefinitely with
1680 * cond(var) false, which would violate the guarantee.
1682 * A consequence is that futex_wait() can return zero and absorb
1683 * a wakeup when *uaddr != val on entry to the syscall. This is
1684 * rare, but normal.
1686 retry:
1687 q->key = FUTEX_KEY_INIT;
1688 ret = get_futex_key(uaddr, fshared, &q->key, VERIFY_READ);
1689 if (unlikely(ret != 0))
1690 return ret;
1692 retry_private:
1693 *hb = queue_lock(q);
1695 ret = get_futex_value_locked(&uval, uaddr);
1697 if (ret) {
1698 queue_unlock(q, *hb);
1700 ret = get_user(uval, uaddr);
1701 if (ret)
1702 goto out;
1704 if (!fshared)
1705 goto retry_private;
1707 put_futex_key(fshared, &q->key);
1708 goto retry;
1711 if (uval != val) {
1712 queue_unlock(q, *hb);
1713 ret = -EWOULDBLOCK;
1716 out:
1717 if (ret)
1718 put_futex_key(fshared, &q->key);
1719 return ret;
1722 static int futex_wait(u32 __user *uaddr, int fshared,
1723 u32 val, ktime_t *abs_time, u32 bitset, int clockrt)
1725 struct hrtimer_sleeper timeout, *to = NULL;
1726 struct restart_block *restart;
1727 struct futex_hash_bucket *hb;
1728 struct futex_q q;
1729 int ret;
1731 if (!bitset)
1732 return -EINVAL;
1734 q.pi_state = NULL;
1735 q.bitset = bitset;
1736 q.rt_waiter = NULL;
1738 if (abs_time) {
1739 to = &timeout;
1741 hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
1742 CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1743 hrtimer_init_sleeper(to, current);
1744 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
1745 current->timer_slack_ns);
1748 /* Prepare to wait on uaddr. */
1749 ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
1750 if (ret)
1751 goto out;
1753 /* queue_me and wait for wakeup, timeout, or a signal. */
1754 futex_wait_queue_me(hb, &q, to);
1756 /* If we were woken (and unqueued), we succeeded, whatever. */
1757 ret = 0;
1758 if (!unqueue_me(&q))
1759 goto out_put_key;
1760 ret = -ETIMEDOUT;
1761 if (to && !to->task)
1762 goto out_put_key;
1765 * We expect signal_pending(current), but another thread may
1766 * have handled it for us already.
1768 ret = -ERESTARTSYS;
1769 if (!abs_time)
1770 goto out_put_key;
1772 restart = &current_thread_info()->restart_block;
1773 restart->fn = futex_wait_restart;
1774 restart->futex.uaddr = (u32 *)uaddr;
1775 restart->futex.val = val;
1776 restart->futex.time = abs_time->tv64;
1777 restart->futex.bitset = bitset;
1778 restart->futex.flags = FLAGS_HAS_TIMEOUT;
1780 if (fshared)
1781 restart->futex.flags |= FLAGS_SHARED;
1782 if (clockrt)
1783 restart->futex.flags |= FLAGS_CLOCKRT;
1785 ret = -ERESTART_RESTARTBLOCK;
1787 out_put_key:
1788 put_futex_key(fshared, &q.key);
1789 out:
1790 if (to) {
1791 hrtimer_cancel(&to->timer);
1792 destroy_hrtimer_on_stack(&to->timer);
1794 return ret;
1798 static long futex_wait_restart(struct restart_block *restart)
1800 u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
1801 int fshared = 0;
1802 ktime_t t, *tp = NULL;
1804 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
1805 t.tv64 = restart->futex.time;
1806 tp = &t;
1808 restart->fn = do_no_restart_syscall;
1809 if (restart->futex.flags & FLAGS_SHARED)
1810 fshared = 1;
1811 return (long)futex_wait(uaddr, fshared, restart->futex.val, tp,
1812 restart->futex.bitset,
1813 restart->futex.flags & FLAGS_CLOCKRT);
1818 * Userspace tried a 0 -> TID atomic transition of the futex value
1819 * and failed. The kernel side here does the whole locking operation:
1820 * if there are waiters then it will block, it does PI, etc. (Due to
1821 * races the kernel might see a 0 value of the futex too.)
1823 static int futex_lock_pi(u32 __user *uaddr, int fshared,
1824 int detect, ktime_t *time, int trylock)
1826 struct hrtimer_sleeper timeout, *to = NULL;
1827 struct futex_hash_bucket *hb;
1828 struct futex_q q;
1829 int res, ret;
1831 if (refill_pi_state_cache())
1832 return -ENOMEM;
1834 if (time) {
1835 to = &timeout;
1836 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1837 HRTIMER_MODE_ABS);
1838 hrtimer_init_sleeper(to, current);
1839 hrtimer_set_expires(&to->timer, *time);
1842 q.pi_state = NULL;
1843 q.rt_waiter = NULL;
1844 retry:
1845 q.key = FUTEX_KEY_INIT;
1846 ret = get_futex_key(uaddr, fshared, &q.key, VERIFY_WRITE);
1847 if (unlikely(ret != 0))
1848 goto out;
1850 retry_private:
1851 hb = queue_lock(&q);
1853 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
1854 if (unlikely(ret)) {
1855 switch (ret) {
1856 case 1:
1857 /* We got the lock. */
1858 ret = 0;
1859 goto out_unlock_put_key;
1860 case -EFAULT:
1861 goto uaddr_faulted;
1862 case -EAGAIN:
1864 * Task is exiting and we just wait for the
1865 * exit to complete.
1867 queue_unlock(&q, hb);
1868 put_futex_key(fshared, &q.key);
1869 cond_resched();
1870 goto retry;
1871 default:
1872 goto out_unlock_put_key;
1877 * Only actually queue now that the atomic ops are done:
1879 queue_me(&q, hb);
1881 WARN_ON(!q.pi_state);
1883 * Block on the PI mutex:
1885 if (!trylock)
1886 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1887 else {
1888 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1889 /* Fixup the trylock return value: */
1890 ret = ret ? 0 : -EWOULDBLOCK;
1893 spin_lock(q.lock_ptr);
1895 * Fixup the pi_state owner and possibly acquire the lock if we
1896 * haven't already.
1898 res = fixup_owner(uaddr, fshared, &q, !ret);
1900 * If fixup_owner() returned an error, proprogate that. If it acquired
1901 * the lock, clear our -ETIMEDOUT or -EINTR.
1903 if (res)
1904 ret = (res < 0) ? res : 0;
1907 * If fixup_owner() faulted and was unable to handle the fault, unlock
1908 * it and return the fault to userspace.
1910 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
1911 rt_mutex_unlock(&q.pi_state->pi_mutex);
1913 /* Unqueue and drop the lock */
1914 unqueue_me_pi(&q);
1916 goto out;
1918 out_unlock_put_key:
1919 queue_unlock(&q, hb);
1921 out_put_key:
1922 put_futex_key(fshared, &q.key);
1923 out:
1924 if (to)
1925 destroy_hrtimer_on_stack(&to->timer);
1926 return ret != -EINTR ? ret : -ERESTARTNOINTR;
1928 uaddr_faulted:
1929 queue_unlock(&q, hb);
1931 ret = fault_in_user_writeable(uaddr);
1932 if (ret)
1933 goto out_put_key;
1935 if (!fshared)
1936 goto retry_private;
1938 put_futex_key(fshared, &q.key);
1939 goto retry;
1943 * Userspace attempted a TID -> 0 atomic transition, and failed.
1944 * This is the in-kernel slowpath: we look up the PI state (if any),
1945 * and do the rt-mutex unlock.
1947 static int futex_unlock_pi(u32 __user *uaddr, int fshared)
1949 struct futex_hash_bucket *hb;
1950 struct futex_q *this, *next;
1951 u32 uval;
1952 struct plist_head *head;
1953 union futex_key key = FUTEX_KEY_INIT;
1954 int ret;
1956 retry:
1957 if (get_user(uval, uaddr))
1958 return -EFAULT;
1960 * We release only a lock we actually own:
1962 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
1963 return -EPERM;
1965 ret = get_futex_key(uaddr, fshared, &key, VERIFY_WRITE);
1966 if (unlikely(ret != 0))
1967 goto out;
1969 hb = hash_futex(&key);
1970 spin_lock(&hb->lock);
1973 * To avoid races, try to do the TID -> 0 atomic transition
1974 * again. If it succeeds then we can return without waking
1975 * anyone else up:
1977 if (!(uval & FUTEX_OWNER_DIED))
1978 uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
1981 if (unlikely(uval == -EFAULT))
1982 goto pi_faulted;
1984 * Rare case: we managed to release the lock atomically,
1985 * no need to wake anyone else up:
1987 if (unlikely(uval == task_pid_vnr(current)))
1988 goto out_unlock;
1991 * Ok, other tasks may need to be woken up - check waiters
1992 * and do the wakeup if necessary:
1994 head = &hb->chain;
1996 plist_for_each_entry_safe(this, next, head, list) {
1997 if (!match_futex (&this->key, &key))
1998 continue;
1999 ret = wake_futex_pi(uaddr, uval, this);
2001 * The atomic access to the futex value
2002 * generated a pagefault, so retry the
2003 * user-access and the wakeup:
2005 if (ret == -EFAULT)
2006 goto pi_faulted;
2007 goto out_unlock;
2010 * No waiters - kernel unlocks the futex:
2012 if (!(uval & FUTEX_OWNER_DIED)) {
2013 ret = unlock_futex_pi(uaddr, uval);
2014 if (ret == -EFAULT)
2015 goto pi_faulted;
2018 out_unlock:
2019 spin_unlock(&hb->lock);
2020 put_futex_key(fshared, &key);
2022 out:
2023 return ret;
2025 pi_faulted:
2026 spin_unlock(&hb->lock);
2027 put_futex_key(fshared, &key);
2029 ret = fault_in_user_writeable(uaddr);
2030 if (!ret)
2031 goto retry;
2033 return ret;
2037 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2038 * @hb: the hash_bucket futex_q was original enqueued on
2039 * @q: the futex_q woken while waiting to be requeued
2040 * @key2: the futex_key of the requeue target futex
2041 * @timeout: the timeout associated with the wait (NULL if none)
2043 * Detect if the task was woken on the initial futex as opposed to the requeue
2044 * target futex. If so, determine if it was a timeout or a signal that caused
2045 * the wakeup and return the appropriate error code to the caller. Must be
2046 * called with the hb lock held.
2048 * Returns
2049 * 0 - no early wakeup detected
2050 * <0 - -ETIMEDOUT or -ERESTARTNOINTR
2052 static inline
2053 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2054 struct futex_q *q, union futex_key *key2,
2055 struct hrtimer_sleeper *timeout)
2057 int ret = 0;
2060 * With the hb lock held, we avoid races while we process the wakeup.
2061 * We only need to hold hb (and not hb2) to ensure atomicity as the
2062 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2063 * It can't be requeued from uaddr2 to something else since we don't
2064 * support a PI aware source futex for requeue.
2066 if (!match_futex(&q->key, key2)) {
2067 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2069 * We were woken prior to requeue by a timeout or a signal.
2070 * Unqueue the futex_q and determine which it was.
2072 plist_del(&q->list, &q->list.plist);
2073 drop_futex_key_refs(&q->key);
2075 if (timeout && !timeout->task)
2076 ret = -ETIMEDOUT;
2077 else
2078 ret = -ERESTARTNOINTR;
2080 return ret;
2084 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2085 * @uaddr: the futex we initialyl wait on (non-pi)
2086 * @fshared: whether the futexes are shared (1) or not (0). They must be
2087 * the same type, no requeueing from private to shared, etc.
2088 * @val: the expected value of uaddr
2089 * @abs_time: absolute timeout
2090 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all.
2091 * @clockrt: whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
2092 * @uaddr2: the pi futex we will take prior to returning to user-space
2094 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2095 * uaddr2 which must be PI aware. Normal wakeup will wake on uaddr2 and
2096 * complete the acquisition of the rt_mutex prior to returning to userspace.
2097 * This ensures the rt_mutex maintains an owner when it has waiters; without
2098 * one, the pi logic wouldn't know which task to boost/deboost, if there was a
2099 * need to.
2101 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2102 * via the following:
2103 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2104 * 2) wakeup on uaddr2 after a requeue and subsequent unlock
2105 * 3) signal (before or after requeue)
2106 * 4) timeout (before or after requeue)
2108 * If 3, we setup a restart_block with futex_wait_requeue_pi() as the function.
2110 * If 2, we may then block on trying to take the rt_mutex and return via:
2111 * 5) successful lock
2112 * 6) signal
2113 * 7) timeout
2114 * 8) other lock acquisition failure
2116 * If 6, we setup a restart_block with futex_lock_pi() as the function.
2118 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2120 * Returns:
2121 * 0 - On success
2122 * <0 - On error
2124 static int futex_wait_requeue_pi(u32 __user *uaddr, int fshared,
2125 u32 val, ktime_t *abs_time, u32 bitset,
2126 int clockrt, u32 __user *uaddr2)
2128 struct hrtimer_sleeper timeout, *to = NULL;
2129 struct rt_mutex_waiter rt_waiter;
2130 struct rt_mutex *pi_mutex = NULL;
2131 struct futex_hash_bucket *hb;
2132 union futex_key key2;
2133 struct futex_q q;
2134 int res, ret;
2136 if (!bitset)
2137 return -EINVAL;
2139 if (abs_time) {
2140 to = &timeout;
2141 hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
2142 CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2143 hrtimer_init_sleeper(to, current);
2144 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2145 current->timer_slack_ns);
2149 * The waiter is allocated on our stack, manipulated by the requeue
2150 * code while we sleep on uaddr.
2152 debug_rt_mutex_init_waiter(&rt_waiter);
2153 rt_waiter.task = NULL;
2155 q.pi_state = NULL;
2156 q.bitset = bitset;
2157 q.rt_waiter = &rt_waiter;
2159 key2 = FUTEX_KEY_INIT;
2160 ret = get_futex_key(uaddr2, fshared, &key2, VERIFY_WRITE);
2161 if (unlikely(ret != 0))
2162 goto out;
2164 /* Prepare to wait on uaddr. */
2165 ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
2166 if (ret)
2167 goto out_key2;
2169 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2170 futex_wait_queue_me(hb, &q, to);
2172 spin_lock(&hb->lock);
2173 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2174 spin_unlock(&hb->lock);
2175 if (ret)
2176 goto out_put_keys;
2179 * In order for us to be here, we know our q.key == key2, and since
2180 * we took the hb->lock above, we also know that futex_requeue() has
2181 * completed and we no longer have to concern ourselves with a wakeup
2182 * race with the atomic proxy lock acquition by the requeue code.
2185 /* Check if the requeue code acquired the second futex for us. */
2186 if (!q.rt_waiter) {
2188 * Got the lock. We might not be the anticipated owner if we
2189 * did a lock-steal - fix up the PI-state in that case.
2191 if (q.pi_state && (q.pi_state->owner != current)) {
2192 spin_lock(q.lock_ptr);
2193 ret = fixup_pi_state_owner(uaddr2, &q, current,
2194 fshared);
2195 spin_unlock(q.lock_ptr);
2197 } else {
2199 * We have been woken up by futex_unlock_pi(), a timeout, or a
2200 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2201 * the pi_state.
2203 WARN_ON(!&q.pi_state);
2204 pi_mutex = &q.pi_state->pi_mutex;
2205 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2206 debug_rt_mutex_free_waiter(&rt_waiter);
2208 spin_lock(q.lock_ptr);
2210 * Fixup the pi_state owner and possibly acquire the lock if we
2211 * haven't already.
2213 res = fixup_owner(uaddr2, fshared, &q, !ret);
2215 * If fixup_owner() returned an error, proprogate that. If it
2216 * acquired the lock, clear our -ETIMEDOUT or -EINTR.
2218 if (res)
2219 ret = (res < 0) ? res : 0;
2221 /* Unqueue and drop the lock. */
2222 unqueue_me_pi(&q);
2226 * If fixup_pi_state_owner() faulted and was unable to handle the
2227 * fault, unlock the rt_mutex and return the fault to userspace.
2229 if (ret == -EFAULT) {
2230 if (rt_mutex_owner(pi_mutex) == current)
2231 rt_mutex_unlock(pi_mutex);
2232 } else if (ret == -EINTR) {
2234 * We've already been requeued, but we have no way to
2235 * restart by calling futex_lock_pi() directly. We
2236 * could restart the syscall, but that will look at
2237 * the user space value and return right away. So we
2238 * drop back with EWOULDBLOCK to tell user space that
2239 * "val" has been changed. That's the same what the
2240 * restart of the syscall would do in
2241 * futex_wait_setup().
2243 ret = -EWOULDBLOCK;
2246 out_put_keys:
2247 put_futex_key(fshared, &q.key);
2248 out_key2:
2249 put_futex_key(fshared, &key2);
2251 out:
2252 if (to) {
2253 hrtimer_cancel(&to->timer);
2254 destroy_hrtimer_on_stack(&to->timer);
2256 return ret;
2260 * Support for robust futexes: the kernel cleans up held futexes at
2261 * thread exit time.
2263 * Implementation: user-space maintains a per-thread list of locks it
2264 * is holding. Upon do_exit(), the kernel carefully walks this list,
2265 * and marks all locks that are owned by this thread with the
2266 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2267 * always manipulated with the lock held, so the list is private and
2268 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2269 * field, to allow the kernel to clean up if the thread dies after
2270 * acquiring the lock, but just before it could have added itself to
2271 * the list. There can only be one such pending lock.
2275 * sys_set_robust_list - set the robust-futex list head of a task
2276 * @head: pointer to the list-head
2277 * @len: length of the list-head, as userspace expects
2279 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2280 size_t, len)
2282 if (!futex_cmpxchg_enabled)
2283 return -ENOSYS;
2285 * The kernel knows only one size for now:
2287 if (unlikely(len != sizeof(*head)))
2288 return -EINVAL;
2290 current->robust_list = head;
2292 return 0;
2296 * sys_get_robust_list - get the robust-futex list head of a task
2297 * @pid: pid of the process [zero for current task]
2298 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2299 * @len_ptr: pointer to a length field, the kernel fills in the header size
2301 SYSCALL_DEFINE3(get_robust_list, int, pid,
2302 struct robust_list_head __user * __user *, head_ptr,
2303 size_t __user *, len_ptr)
2305 struct robust_list_head __user *head;
2306 unsigned long ret;
2307 const struct cred *cred = current_cred(), *pcred;
2309 if (!futex_cmpxchg_enabled)
2310 return -ENOSYS;
2312 if (!pid)
2313 head = current->robust_list;
2314 else {
2315 struct task_struct *p;
2317 ret = -ESRCH;
2318 rcu_read_lock();
2319 p = find_task_by_vpid(pid);
2320 if (!p)
2321 goto err_unlock;
2322 ret = -EPERM;
2323 pcred = __task_cred(p);
2324 if (cred->euid != pcred->euid &&
2325 cred->euid != pcred->uid &&
2326 !capable(CAP_SYS_PTRACE))
2327 goto err_unlock;
2328 head = p->robust_list;
2329 rcu_read_unlock();
2332 if (put_user(sizeof(*head), len_ptr))
2333 return -EFAULT;
2334 return put_user(head, head_ptr);
2336 err_unlock:
2337 rcu_read_unlock();
2339 return ret;
2343 * Process a futex-list entry, check whether it's owned by the
2344 * dying task, and do notification if so:
2346 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2348 u32 uval, nval, mval;
2350 retry:
2351 if (get_user(uval, uaddr))
2352 return -1;
2354 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2356 * Ok, this dying thread is truly holding a futex
2357 * of interest. Set the OWNER_DIED bit atomically
2358 * via cmpxchg, and if the value had FUTEX_WAITERS
2359 * set, wake up a waiter (if any). (We have to do a
2360 * futex_wake() even if OWNER_DIED is already set -
2361 * to handle the rare but possible case of recursive
2362 * thread-death.) The rest of the cleanup is done in
2363 * userspace.
2365 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2366 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
2368 if (nval == -EFAULT)
2369 return -1;
2371 if (nval != uval)
2372 goto retry;
2375 * Wake robust non-PI futexes here. The wakeup of
2376 * PI futexes happens in exit_pi_state():
2378 if (!pi && (uval & FUTEX_WAITERS))
2379 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2381 return 0;
2385 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2387 static inline int fetch_robust_entry(struct robust_list __user **entry,
2388 struct robust_list __user * __user *head,
2389 int *pi)
2391 unsigned long uentry;
2393 if (get_user(uentry, (unsigned long __user *)head))
2394 return -EFAULT;
2396 *entry = (void __user *)(uentry & ~1UL);
2397 *pi = uentry & 1;
2399 return 0;
2403 * Walk curr->robust_list (very carefully, it's a userspace list!)
2404 * and mark any locks found there dead, and notify any waiters.
2406 * We silently return on any sign of list-walking problem.
2408 void exit_robust_list(struct task_struct *curr)
2410 struct robust_list_head __user *head = curr->robust_list;
2411 struct robust_list __user *entry, *next_entry, *pending;
2412 unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
2413 unsigned long futex_offset;
2414 int rc;
2416 if (!futex_cmpxchg_enabled)
2417 return;
2420 * Fetch the list head (which was registered earlier, via
2421 * sys_set_robust_list()):
2423 if (fetch_robust_entry(&entry, &head->list.next, &pi))
2424 return;
2426 * Fetch the relative futex offset:
2428 if (get_user(futex_offset, &head->futex_offset))
2429 return;
2431 * Fetch any possibly pending lock-add first, and handle it
2432 * if it exists:
2434 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2435 return;
2437 next_entry = NULL; /* avoid warning with gcc */
2438 while (entry != &head->list) {
2440 * Fetch the next entry in the list before calling
2441 * handle_futex_death:
2443 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2445 * A pending lock might already be on the list, so
2446 * don't process it twice:
2448 if (entry != pending)
2449 if (handle_futex_death((void __user *)entry + futex_offset,
2450 curr, pi))
2451 return;
2452 if (rc)
2453 return;
2454 entry = next_entry;
2455 pi = next_pi;
2457 * Avoid excessively long or circular lists:
2459 if (!--limit)
2460 break;
2462 cond_resched();
2465 if (pending)
2466 handle_futex_death((void __user *)pending + futex_offset,
2467 curr, pip);
2470 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2471 u32 __user *uaddr2, u32 val2, u32 val3)
2473 int clockrt, ret = -ENOSYS;
2474 int cmd = op & FUTEX_CMD_MASK;
2475 int fshared = 0;
2477 if (!(op & FUTEX_PRIVATE_FLAG))
2478 fshared = 1;
2480 clockrt = op & FUTEX_CLOCK_REALTIME;
2481 if (clockrt && cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2482 return -ENOSYS;
2484 switch (cmd) {
2485 case FUTEX_WAIT:
2486 val3 = FUTEX_BITSET_MATCH_ANY;
2487 case FUTEX_WAIT_BITSET:
2488 ret = futex_wait(uaddr, fshared, val, timeout, val3, clockrt);
2489 break;
2490 case FUTEX_WAKE:
2491 val3 = FUTEX_BITSET_MATCH_ANY;
2492 case FUTEX_WAKE_BITSET:
2493 ret = futex_wake(uaddr, fshared, val, val3);
2494 break;
2495 case FUTEX_REQUEUE:
2496 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL, 0);
2497 break;
2498 case FUTEX_CMP_REQUEUE:
2499 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
2501 break;
2502 case FUTEX_WAKE_OP:
2503 ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
2504 break;
2505 case FUTEX_LOCK_PI:
2506 if (futex_cmpxchg_enabled)
2507 ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
2508 break;
2509 case FUTEX_UNLOCK_PI:
2510 if (futex_cmpxchg_enabled)
2511 ret = futex_unlock_pi(uaddr, fshared);
2512 break;
2513 case FUTEX_TRYLOCK_PI:
2514 if (futex_cmpxchg_enabled)
2515 ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
2516 break;
2517 case FUTEX_WAIT_REQUEUE_PI:
2518 val3 = FUTEX_BITSET_MATCH_ANY;
2519 ret = futex_wait_requeue_pi(uaddr, fshared, val, timeout, val3,
2520 clockrt, uaddr2);
2521 break;
2522 case FUTEX_CMP_REQUEUE_PI:
2523 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
2525 break;
2526 default:
2527 ret = -ENOSYS;
2529 return ret;
2533 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2534 struct timespec __user *, utime, u32 __user *, uaddr2,
2535 u32, val3)
2537 struct timespec ts;
2538 ktime_t t, *tp = NULL;
2539 u32 val2 = 0;
2540 int cmd = op & FUTEX_CMD_MASK;
2542 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2543 cmd == FUTEX_WAIT_BITSET ||
2544 cmd == FUTEX_WAIT_REQUEUE_PI)) {
2545 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2546 return -EFAULT;
2547 if (!timespec_valid(&ts))
2548 return -EINVAL;
2550 t = timespec_to_ktime(ts);
2551 if (cmd == FUTEX_WAIT)
2552 t = ktime_add_safe(ktime_get(), t);
2553 tp = &t;
2556 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2557 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2559 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2560 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2561 val2 = (u32) (unsigned long) utime;
2563 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2566 static int __init futex_init(void)
2568 u32 curval;
2569 int i;
2572 * This will fail and we want it. Some arch implementations do
2573 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2574 * functionality. We want to know that before we call in any
2575 * of the complex code paths. Also we want to prevent
2576 * registration of robust lists in that case. NULL is
2577 * guaranteed to fault and we get -EFAULT on functional
2578 * implementation, the non functional ones will return
2579 * -ENOSYS.
2581 curval = cmpxchg_futex_value_locked(NULL, 0, 0);
2582 if (curval == -EFAULT)
2583 futex_cmpxchg_enabled = 1;
2585 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2586 plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
2587 spin_lock_init(&futex_queues[i].lock);
2590 return 0;
2592 __initcall(futex_init);