1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2009 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * 82562G 10/100 Network Connection
31 * 82562G-2 10/100 Network Connection
32 * 82562GT 10/100 Network Connection
33 * 82562GT-2 10/100 Network Connection
34 * 82562V 10/100 Network Connection
35 * 82562V-2 10/100 Network Connection
36 * 82566DC-2 Gigabit Network Connection
37 * 82566DC Gigabit Network Connection
38 * 82566DM-2 Gigabit Network Connection
39 * 82566DM Gigabit Network Connection
40 * 82566MC Gigabit Network Connection
41 * 82566MM Gigabit Network Connection
42 * 82567LM Gigabit Network Connection
43 * 82567LF Gigabit Network Connection
44 * 82567V Gigabit Network Connection
45 * 82567LM-2 Gigabit Network Connection
46 * 82567LF-2 Gigabit Network Connection
47 * 82567V-2 Gigabit Network Connection
48 * 82567LF-3 Gigabit Network Connection
49 * 82567LM-3 Gigabit Network Connection
50 * 82567LM-4 Gigabit Network Connection
51 * 82577LM Gigabit Network Connection
52 * 82577LC Gigabit Network Connection
53 * 82578DM Gigabit Network Connection
54 * 82578DC Gigabit Network Connection
59 #define ICH_FLASH_GFPREG 0x0000
60 #define ICH_FLASH_HSFSTS 0x0004
61 #define ICH_FLASH_HSFCTL 0x0006
62 #define ICH_FLASH_FADDR 0x0008
63 #define ICH_FLASH_FDATA0 0x0010
64 #define ICH_FLASH_PR0 0x0074
66 #define ICH_FLASH_READ_COMMAND_TIMEOUT 500
67 #define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
68 #define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
69 #define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
70 #define ICH_FLASH_CYCLE_REPEAT_COUNT 10
72 #define ICH_CYCLE_READ 0
73 #define ICH_CYCLE_WRITE 2
74 #define ICH_CYCLE_ERASE 3
76 #define FLASH_GFPREG_BASE_MASK 0x1FFF
77 #define FLASH_SECTOR_ADDR_SHIFT 12
79 #define ICH_FLASH_SEG_SIZE_256 256
80 #define ICH_FLASH_SEG_SIZE_4K 4096
81 #define ICH_FLASH_SEG_SIZE_8K 8192
82 #define ICH_FLASH_SEG_SIZE_64K 65536
85 #define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
87 #define E1000_ICH_MNG_IAMT_MODE 0x2
89 #define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \
90 (ID_LED_DEF1_OFF2 << 8) | \
91 (ID_LED_DEF1_ON2 << 4) | \
94 #define E1000_ICH_NVM_SIG_WORD 0x13
95 #define E1000_ICH_NVM_SIG_MASK 0xC000
96 #define E1000_ICH_NVM_VALID_SIG_MASK 0xC0
97 #define E1000_ICH_NVM_SIG_VALUE 0x80
99 #define E1000_ICH8_LAN_INIT_TIMEOUT 1500
101 #define E1000_FEXTNVM_SW_CONFIG 1
102 #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
104 #define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL
106 #define E1000_ICH_RAR_ENTRIES 7
108 #define PHY_PAGE_SHIFT 5
109 #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
110 ((reg) & MAX_PHY_REG_ADDRESS))
111 #define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */
112 #define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */
114 #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002
115 #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
116 #define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200
118 #define HV_LED_CONFIG PHY_REG(768, 30) /* LED Configuration */
120 #define SW_FLAG_TIMEOUT 1000 /* SW Semaphore flag timeout in milliseconds */
122 /* SMBus Address Phy Register */
123 #define HV_SMB_ADDR PHY_REG(768, 26)
124 #define HV_SMB_ADDR_PEC_EN 0x0200
125 #define HV_SMB_ADDR_VALID 0x0080
127 /* Strapping Option Register - RO */
128 #define E1000_STRAP 0x0000C
129 #define E1000_STRAP_SMBUS_ADDRESS_MASK 0x00FE0000
130 #define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
132 /* OEM Bits Phy Register */
133 #define HV_OEM_BITS PHY_REG(768, 25)
134 #define HV_OEM_BITS_LPLU 0x0004 /* Low Power Link Up */
135 #define HV_OEM_BITS_GBE_DIS 0x0040 /* Gigabit Disable */
136 #define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
138 #define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
139 #define E1000_NVM_K1_ENABLE 0x1 /* NVM Enable K1 bit */
141 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
142 /* Offset 04h HSFSTS */
143 union ich8_hws_flash_status
{
145 u16 flcdone
:1; /* bit 0 Flash Cycle Done */
146 u16 flcerr
:1; /* bit 1 Flash Cycle Error */
147 u16 dael
:1; /* bit 2 Direct Access error Log */
148 u16 berasesz
:2; /* bit 4:3 Sector Erase Size */
149 u16 flcinprog
:1; /* bit 5 flash cycle in Progress */
150 u16 reserved1
:2; /* bit 13:6 Reserved */
151 u16 reserved2
:6; /* bit 13:6 Reserved */
152 u16 fldesvalid
:1; /* bit 14 Flash Descriptor Valid */
153 u16 flockdn
:1; /* bit 15 Flash Config Lock-Down */
158 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
159 /* Offset 06h FLCTL */
160 union ich8_hws_flash_ctrl
{
161 struct ich8_hsflctl
{
162 u16 flcgo
:1; /* 0 Flash Cycle Go */
163 u16 flcycle
:2; /* 2:1 Flash Cycle */
164 u16 reserved
:5; /* 7:3 Reserved */
165 u16 fldbcount
:2; /* 9:8 Flash Data Byte Count */
166 u16 flockdn
:6; /* 15:10 Reserved */
171 /* ICH Flash Region Access Permissions */
172 union ich8_hws_flash_regacc
{
174 u32 grra
:8; /* 0:7 GbE region Read Access */
175 u32 grwa
:8; /* 8:15 GbE region Write Access */
176 u32 gmrag
:8; /* 23:16 GbE Master Read Access Grant */
177 u32 gmwag
:8; /* 31:24 GbE Master Write Access Grant */
182 /* ICH Flash Protected Region */
183 union ich8_flash_protected_range
{
185 u32 base
:13; /* 0:12 Protected Range Base */
186 u32 reserved1
:2; /* 13:14 Reserved */
187 u32 rpe
:1; /* 15 Read Protection Enable */
188 u32 limit
:13; /* 16:28 Protected Range Limit */
189 u32 reserved2
:2; /* 29:30 Reserved */
190 u32 wpe
:1; /* 31 Write Protection Enable */
195 static s32
e1000_setup_link_ich8lan(struct e1000_hw
*hw
);
196 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw
*hw
);
197 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw
*hw
);
198 static s32
e1000_check_polarity_ife_ich8lan(struct e1000_hw
*hw
);
199 static s32
e1000_erase_flash_bank_ich8lan(struct e1000_hw
*hw
, u32 bank
);
200 static s32
e1000_retry_write_flash_byte_ich8lan(struct e1000_hw
*hw
,
201 u32 offset
, u8 byte
);
202 static s32
e1000_read_flash_byte_ich8lan(struct e1000_hw
*hw
, u32 offset
,
204 static s32
e1000_read_flash_word_ich8lan(struct e1000_hw
*hw
, u32 offset
,
206 static s32
e1000_read_flash_data_ich8lan(struct e1000_hw
*hw
, u32 offset
,
208 static s32
e1000_setup_copper_link_ich8lan(struct e1000_hw
*hw
);
209 static s32
e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw
*hw
);
210 static s32
e1000_get_cfg_done_ich8lan(struct e1000_hw
*hw
);
211 static s32
e1000_cleanup_led_ich8lan(struct e1000_hw
*hw
);
212 static s32
e1000_led_on_ich8lan(struct e1000_hw
*hw
);
213 static s32
e1000_led_off_ich8lan(struct e1000_hw
*hw
);
214 static s32
e1000_id_led_init_pchlan(struct e1000_hw
*hw
);
215 static s32
e1000_setup_led_pchlan(struct e1000_hw
*hw
);
216 static s32
e1000_cleanup_led_pchlan(struct e1000_hw
*hw
);
217 static s32
e1000_led_on_pchlan(struct e1000_hw
*hw
);
218 static s32
e1000_led_off_pchlan(struct e1000_hw
*hw
);
219 static s32
e1000_set_lplu_state_pchlan(struct e1000_hw
*hw
, bool active
);
220 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw
*hw
);
221 static void e1000_lan_init_done_ich8lan(struct e1000_hw
*hw
);
222 static s32
e1000_k1_gig_workaround_hv(struct e1000_hw
*hw
, bool link
);
224 static inline u16
__er16flash(struct e1000_hw
*hw
, unsigned long reg
)
226 return readw(hw
->flash_address
+ reg
);
229 static inline u32
__er32flash(struct e1000_hw
*hw
, unsigned long reg
)
231 return readl(hw
->flash_address
+ reg
);
234 static inline void __ew16flash(struct e1000_hw
*hw
, unsigned long reg
, u16 val
)
236 writew(val
, hw
->flash_address
+ reg
);
239 static inline void __ew32flash(struct e1000_hw
*hw
, unsigned long reg
, u32 val
)
241 writel(val
, hw
->flash_address
+ reg
);
244 #define er16flash(reg) __er16flash(hw, (reg))
245 #define er32flash(reg) __er32flash(hw, (reg))
246 #define ew16flash(reg,val) __ew16flash(hw, (reg), (val))
247 #define ew32flash(reg,val) __ew32flash(hw, (reg), (val))
250 * e1000_init_phy_params_pchlan - Initialize PHY function pointers
251 * @hw: pointer to the HW structure
253 * Initialize family-specific PHY parameters and function pointers.
255 static s32
e1000_init_phy_params_pchlan(struct e1000_hw
*hw
)
257 struct e1000_phy_info
*phy
= &hw
->phy
;
261 phy
->reset_delay_us
= 100;
263 phy
->ops
.check_polarity
= e1000_check_polarity_ife_ich8lan
;
264 phy
->ops
.read_reg
= e1000_read_phy_reg_hv
;
265 phy
->ops
.read_reg_locked
= e1000_read_phy_reg_hv_locked
;
266 phy
->ops
.set_d0_lplu_state
= e1000_set_lplu_state_pchlan
;
267 phy
->ops
.set_d3_lplu_state
= e1000_set_lplu_state_pchlan
;
268 phy
->ops
.write_reg
= e1000_write_phy_reg_hv
;
269 phy
->ops
.write_reg_locked
= e1000_write_phy_reg_hv_locked
;
270 phy
->ops
.power_up
= e1000_power_up_phy_copper
;
271 phy
->ops
.power_down
= e1000_power_down_phy_copper_ich8lan
;
272 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
274 phy
->id
= e1000_phy_unknown
;
275 e1000e_get_phy_id(hw
);
276 phy
->type
= e1000e_get_phy_type_from_id(phy
->id
);
278 if (phy
->type
== e1000_phy_82577
) {
279 phy
->ops
.check_polarity
= e1000_check_polarity_82577
;
280 phy
->ops
.force_speed_duplex
=
281 e1000_phy_force_speed_duplex_82577
;
282 phy
->ops
.get_cable_length
= e1000_get_cable_length_82577
;
283 phy
->ops
.get_info
= e1000_get_phy_info_82577
;
284 phy
->ops
.commit
= e1000e_phy_sw_reset
;
291 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
292 * @hw: pointer to the HW structure
294 * Initialize family-specific PHY parameters and function pointers.
296 static s32
e1000_init_phy_params_ich8lan(struct e1000_hw
*hw
)
298 struct e1000_phy_info
*phy
= &hw
->phy
;
303 phy
->reset_delay_us
= 100;
305 phy
->ops
.power_up
= e1000_power_up_phy_copper
;
306 phy
->ops
.power_down
= e1000_power_down_phy_copper_ich8lan
;
309 * We may need to do this twice - once for IGP and if that fails,
310 * we'll set BM func pointers and try again
312 ret_val
= e1000e_determine_phy_address(hw
);
314 phy
->ops
.write_reg
= e1000e_write_phy_reg_bm
;
315 phy
->ops
.read_reg
= e1000e_read_phy_reg_bm
;
316 ret_val
= e1000e_determine_phy_address(hw
);
322 while ((e1000_phy_unknown
== e1000e_get_phy_type_from_id(phy
->id
)) &&
325 ret_val
= e1000e_get_phy_id(hw
);
332 case IGP03E1000_E_PHY_ID
:
333 phy
->type
= e1000_phy_igp_3
;
334 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
335 phy
->ops
.read_reg_locked
= e1000e_read_phy_reg_igp_locked
;
336 phy
->ops
.write_reg_locked
= e1000e_write_phy_reg_igp_locked
;
339 case IFE_PLUS_E_PHY_ID
:
341 phy
->type
= e1000_phy_ife
;
342 phy
->autoneg_mask
= E1000_ALL_NOT_GIG
;
344 case BME1000_E_PHY_ID
:
345 phy
->type
= e1000_phy_bm
;
346 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
347 phy
->ops
.read_reg
= e1000e_read_phy_reg_bm
;
348 phy
->ops
.write_reg
= e1000e_write_phy_reg_bm
;
349 phy
->ops
.commit
= e1000e_phy_sw_reset
;
352 return -E1000_ERR_PHY
;
356 phy
->ops
.check_polarity
= e1000_check_polarity_ife_ich8lan
;
362 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
363 * @hw: pointer to the HW structure
365 * Initialize family-specific NVM parameters and function
368 static s32
e1000_init_nvm_params_ich8lan(struct e1000_hw
*hw
)
370 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
371 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
372 u32 gfpreg
, sector_base_addr
, sector_end_addr
;
375 /* Can't read flash registers if the register set isn't mapped. */
376 if (!hw
->flash_address
) {
377 e_dbg("ERROR: Flash registers not mapped\n");
378 return -E1000_ERR_CONFIG
;
381 nvm
->type
= e1000_nvm_flash_sw
;
383 gfpreg
= er32flash(ICH_FLASH_GFPREG
);
386 * sector_X_addr is a "sector"-aligned address (4096 bytes)
387 * Add 1 to sector_end_addr since this sector is included in
390 sector_base_addr
= gfpreg
& FLASH_GFPREG_BASE_MASK
;
391 sector_end_addr
= ((gfpreg
>> 16) & FLASH_GFPREG_BASE_MASK
) + 1;
393 /* flash_base_addr is byte-aligned */
394 nvm
->flash_base_addr
= sector_base_addr
<< FLASH_SECTOR_ADDR_SHIFT
;
397 * find total size of the NVM, then cut in half since the total
398 * size represents two separate NVM banks.
400 nvm
->flash_bank_size
= (sector_end_addr
- sector_base_addr
)
401 << FLASH_SECTOR_ADDR_SHIFT
;
402 nvm
->flash_bank_size
/= 2;
403 /* Adjust to word count */
404 nvm
->flash_bank_size
/= sizeof(u16
);
406 nvm
->word_size
= E1000_ICH8_SHADOW_RAM_WORDS
;
408 /* Clear shadow ram */
409 for (i
= 0; i
< nvm
->word_size
; i
++) {
410 dev_spec
->shadow_ram
[i
].modified
= false;
411 dev_spec
->shadow_ram
[i
].value
= 0xFFFF;
418 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
419 * @hw: pointer to the HW structure
421 * Initialize family-specific MAC parameters and function
424 static s32
e1000_init_mac_params_ich8lan(struct e1000_adapter
*adapter
)
426 struct e1000_hw
*hw
= &adapter
->hw
;
427 struct e1000_mac_info
*mac
= &hw
->mac
;
429 /* Set media type function pointer */
430 hw
->phy
.media_type
= e1000_media_type_copper
;
432 /* Set mta register count */
433 mac
->mta_reg_count
= 32;
434 /* Set rar entry count */
435 mac
->rar_entry_count
= E1000_ICH_RAR_ENTRIES
;
436 if (mac
->type
== e1000_ich8lan
)
437 mac
->rar_entry_count
--;
438 /* Set if manageability features are enabled. */
439 mac
->arc_subsystem_valid
= true;
447 mac
->ops
.id_led_init
= e1000e_id_led_init
;
449 mac
->ops
.setup_led
= e1000e_setup_led_generic
;
451 mac
->ops
.cleanup_led
= e1000_cleanup_led_ich8lan
;
452 /* turn on/off LED */
453 mac
->ops
.led_on
= e1000_led_on_ich8lan
;
454 mac
->ops
.led_off
= e1000_led_off_ich8lan
;
458 mac
->ops
.id_led_init
= e1000_id_led_init_pchlan
;
460 mac
->ops
.setup_led
= e1000_setup_led_pchlan
;
462 mac
->ops
.cleanup_led
= e1000_cleanup_led_pchlan
;
463 /* turn on/off LED */
464 mac
->ops
.led_on
= e1000_led_on_pchlan
;
465 mac
->ops
.led_off
= e1000_led_off_pchlan
;
471 /* Enable PCS Lock-loss workaround for ICH8 */
472 if (mac
->type
== e1000_ich8lan
)
473 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw
, true);
479 * e1000_check_for_copper_link_ich8lan - Check for link (Copper)
480 * @hw: pointer to the HW structure
482 * Checks to see of the link status of the hardware has changed. If a
483 * change in link status has been detected, then we read the PHY registers
484 * to get the current speed/duplex if link exists.
486 static s32
e1000_check_for_copper_link_ich8lan(struct e1000_hw
*hw
)
488 struct e1000_mac_info
*mac
= &hw
->mac
;
493 * We only want to go out to the PHY registers to see if Auto-Neg
494 * has completed and/or if our link status has changed. The
495 * get_link_status flag is set upon receiving a Link Status
496 * Change or Rx Sequence Error interrupt.
498 if (!mac
->get_link_status
) {
504 * First we want to see if the MII Status Register reports
505 * link. If so, then we want to get the current speed/duplex
508 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
512 if (hw
->mac
.type
== e1000_pchlan
) {
513 ret_val
= e1000_k1_gig_workaround_hv(hw
, link
);
519 goto out
; /* No link detected */
521 mac
->get_link_status
= false;
523 if (hw
->phy
.type
== e1000_phy_82578
) {
524 ret_val
= e1000_link_stall_workaround_hv(hw
);
530 * Check if there was DownShift, must be checked
531 * immediately after link-up
533 e1000e_check_downshift(hw
);
536 * If we are forcing speed/duplex, then we simply return since
537 * we have already determined whether we have link or not.
540 ret_val
= -E1000_ERR_CONFIG
;
545 * Auto-Neg is enabled. Auto Speed Detection takes care
546 * of MAC speed/duplex configuration. So we only need to
547 * configure Collision Distance in the MAC.
549 e1000e_config_collision_dist(hw
);
552 * Configure Flow Control now that Auto-Neg has completed.
553 * First, we need to restore the desired flow control
554 * settings because we may have had to re-autoneg with a
555 * different link partner.
557 ret_val
= e1000e_config_fc_after_link_up(hw
);
559 e_dbg("Error configuring flow control\n");
565 static s32
e1000_get_variants_ich8lan(struct e1000_adapter
*adapter
)
567 struct e1000_hw
*hw
= &adapter
->hw
;
570 rc
= e1000_init_mac_params_ich8lan(adapter
);
574 rc
= e1000_init_nvm_params_ich8lan(hw
);
578 if (hw
->mac
.type
== e1000_pchlan
)
579 rc
= e1000_init_phy_params_pchlan(hw
);
581 rc
= e1000_init_phy_params_ich8lan(hw
);
585 if (adapter
->hw
.phy
.type
== e1000_phy_ife
) {
586 adapter
->flags
&= ~FLAG_HAS_JUMBO_FRAMES
;
587 adapter
->max_hw_frame_size
= ETH_FRAME_LEN
+ ETH_FCS_LEN
;
590 if ((adapter
->hw
.mac
.type
== e1000_ich8lan
) &&
591 (adapter
->hw
.phy
.type
== e1000_phy_igp_3
))
592 adapter
->flags
|= FLAG_LSC_GIG_SPEED_DROP
;
597 static DEFINE_MUTEX(nvm_mutex
);
600 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex
601 * @hw: pointer to the HW structure
603 * Acquires the mutex for performing NVM operations.
605 static s32
e1000_acquire_nvm_ich8lan(struct e1000_hw
*hw
)
607 mutex_lock(&nvm_mutex
);
613 * e1000_release_nvm_ich8lan - Release NVM mutex
614 * @hw: pointer to the HW structure
616 * Releases the mutex used while performing NVM operations.
618 static void e1000_release_nvm_ich8lan(struct e1000_hw
*hw
)
620 mutex_unlock(&nvm_mutex
);
625 static DEFINE_MUTEX(swflag_mutex
);
628 * e1000_acquire_swflag_ich8lan - Acquire software control flag
629 * @hw: pointer to the HW structure
631 * Acquires the software control flag for performing PHY and select
634 static s32
e1000_acquire_swflag_ich8lan(struct e1000_hw
*hw
)
636 u32 extcnf_ctrl
, timeout
= PHY_CFG_TIMEOUT
;
639 mutex_lock(&swflag_mutex
);
642 extcnf_ctrl
= er32(EXTCNF_CTRL
);
643 if (!(extcnf_ctrl
& E1000_EXTCNF_CTRL_SWFLAG
))
651 e_dbg("SW/FW/HW has locked the resource for too long.\n");
652 ret_val
= -E1000_ERR_CONFIG
;
656 timeout
= SW_FLAG_TIMEOUT
;
658 extcnf_ctrl
|= E1000_EXTCNF_CTRL_SWFLAG
;
659 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
662 extcnf_ctrl
= er32(EXTCNF_CTRL
);
663 if (extcnf_ctrl
& E1000_EXTCNF_CTRL_SWFLAG
)
671 e_dbg("Failed to acquire the semaphore.\n");
672 extcnf_ctrl
&= ~E1000_EXTCNF_CTRL_SWFLAG
;
673 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
674 ret_val
= -E1000_ERR_CONFIG
;
680 mutex_unlock(&swflag_mutex
);
686 * e1000_release_swflag_ich8lan - Release software control flag
687 * @hw: pointer to the HW structure
689 * Releases the software control flag for performing PHY and select
692 static void e1000_release_swflag_ich8lan(struct e1000_hw
*hw
)
696 extcnf_ctrl
= er32(EXTCNF_CTRL
);
697 extcnf_ctrl
&= ~E1000_EXTCNF_CTRL_SWFLAG
;
698 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
700 mutex_unlock(&swflag_mutex
);
706 * e1000_check_mng_mode_ich8lan - Checks management mode
707 * @hw: pointer to the HW structure
709 * This checks if the adapter has manageability enabled.
710 * This is a function pointer entry point only called by read/write
711 * routines for the PHY and NVM parts.
713 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw
*hw
)
719 return (fwsm
& E1000_FWSM_MODE_MASK
) ==
720 (E1000_ICH_MNG_IAMT_MODE
<< E1000_FWSM_MODE_SHIFT
);
724 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
725 * @hw: pointer to the HW structure
727 * Checks if firmware is blocking the reset of the PHY.
728 * This is a function pointer entry point only called by
731 static s32
e1000_check_reset_block_ich8lan(struct e1000_hw
*hw
)
737 return (fwsm
& E1000_ICH_FWSM_RSPCIPHY
) ? 0 : E1000_BLK_PHY_RESET
;
741 * e1000_phy_force_speed_duplex_ich8lan - Force PHY speed & duplex
742 * @hw: pointer to the HW structure
744 * Forces the speed and duplex settings of the PHY.
745 * This is a function pointer entry point only called by
746 * PHY setup routines.
748 static s32
e1000_phy_force_speed_duplex_ich8lan(struct e1000_hw
*hw
)
750 struct e1000_phy_info
*phy
= &hw
->phy
;
755 if (phy
->type
!= e1000_phy_ife
) {
756 ret_val
= e1000e_phy_force_speed_duplex_igp(hw
);
760 ret_val
= e1e_rphy(hw
, PHY_CONTROL
, &data
);
764 e1000e_phy_force_speed_duplex_setup(hw
, &data
);
766 ret_val
= e1e_wphy(hw
, PHY_CONTROL
, data
);
770 /* Disable MDI-X support for 10/100 */
771 ret_val
= e1e_rphy(hw
, IFE_PHY_MDIX_CONTROL
, &data
);
775 data
&= ~IFE_PMC_AUTO_MDIX
;
776 data
&= ~IFE_PMC_FORCE_MDIX
;
778 ret_val
= e1e_wphy(hw
, IFE_PHY_MDIX_CONTROL
, data
);
782 e_dbg("IFE PMC: %X\n", data
);
786 if (phy
->autoneg_wait_to_complete
) {
787 e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
789 ret_val
= e1000e_phy_has_link_generic(hw
,
797 e_dbg("Link taking longer than expected.\n");
800 ret_val
= e1000e_phy_has_link_generic(hw
,
812 * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
813 * @hw: pointer to the HW structure
815 * SW should configure the LCD from the NVM extended configuration region
816 * as a workaround for certain parts.
818 static s32
e1000_sw_lcd_config_ich8lan(struct e1000_hw
*hw
)
820 struct e1000_phy_info
*phy
= &hw
->phy
;
821 u32 i
, data
, cnf_size
, cnf_base_addr
, sw_cfg_mask
;
823 u16 word_addr
, reg_data
, reg_addr
, phy_page
= 0;
825 ret_val
= hw
->phy
.ops
.acquire(hw
);
830 * Initialize the PHY from the NVM on ICH platforms. This
831 * is needed due to an issue where the NVM configuration is
832 * not properly autoloaded after power transitions.
833 * Therefore, after each PHY reset, we will load the
834 * configuration data out of the NVM manually.
836 if ((hw
->mac
.type
== e1000_ich8lan
&& phy
->type
== e1000_phy_igp_3
) ||
837 (hw
->mac
.type
== e1000_pchlan
)) {
838 struct e1000_adapter
*adapter
= hw
->adapter
;
840 /* Check if SW needs to configure the PHY */
841 if ((adapter
->pdev
->device
== E1000_DEV_ID_ICH8_IGP_M_AMT
) ||
842 (adapter
->pdev
->device
== E1000_DEV_ID_ICH8_IGP_M
) ||
843 (hw
->mac
.type
== e1000_pchlan
))
844 sw_cfg_mask
= E1000_FEXTNVM_SW_CONFIG_ICH8M
;
846 sw_cfg_mask
= E1000_FEXTNVM_SW_CONFIG
;
848 data
= er32(FEXTNVM
);
849 if (!(data
& sw_cfg_mask
))
852 /* Wait for basic configuration completes before proceeding */
853 e1000_lan_init_done_ich8lan(hw
);
856 * Make sure HW does not configure LCD from PHY
857 * extended configuration before SW configuration
859 data
= er32(EXTCNF_CTRL
);
860 if (data
& E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE
)
863 cnf_size
= er32(EXTCNF_SIZE
);
864 cnf_size
&= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK
;
865 cnf_size
>>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT
;
869 cnf_base_addr
= data
& E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK
;
870 cnf_base_addr
>>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT
;
872 if (!(data
& E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE
) &&
873 (hw
->mac
.type
== e1000_pchlan
)) {
875 * HW configures the SMBus address and LEDs when the
876 * OEM and LCD Write Enable bits are set in the NVM.
877 * When both NVM bits are cleared, SW will configure
881 data
&= E1000_STRAP_SMBUS_ADDRESS_MASK
;
882 reg_data
= data
>> E1000_STRAP_SMBUS_ADDRESS_SHIFT
;
883 reg_data
|= HV_SMB_ADDR_PEC_EN
| HV_SMB_ADDR_VALID
;
884 ret_val
= e1000_write_phy_reg_hv_locked(hw
, HV_SMB_ADDR
,
890 ret_val
= e1000_write_phy_reg_hv_locked(hw
,
896 /* Configure LCD from extended configuration region. */
898 /* cnf_base_addr is in DWORD */
899 word_addr
= (u16
)(cnf_base_addr
<< 1);
901 for (i
= 0; i
< cnf_size
; i
++) {
902 ret_val
= e1000_read_nvm(hw
, (word_addr
+ i
* 2), 1,
907 ret_val
= e1000_read_nvm(hw
, (word_addr
+ i
* 2 + 1),
912 /* Save off the PHY page for future writes. */
913 if (reg_addr
== IGP01E1000_PHY_PAGE_SELECT
) {
918 reg_addr
&= PHY_REG_MASK
;
919 reg_addr
|= phy_page
;
921 ret_val
= phy
->ops
.write_reg_locked(hw
,
930 hw
->phy
.ops
.release(hw
);
935 * e1000_k1_gig_workaround_hv - K1 Si workaround
936 * @hw: pointer to the HW structure
937 * @link: link up bool flag
939 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning
940 * from a lower speed. This workaround disables K1 whenever link is at 1Gig
941 * If link is down, the function will restore the default K1 setting located
944 static s32
e1000_k1_gig_workaround_hv(struct e1000_hw
*hw
, bool link
)
948 bool k1_enable
= hw
->dev_spec
.ich8lan
.nvm_k1_enabled
;
950 if (hw
->mac
.type
!= e1000_pchlan
)
953 /* Wrap the whole flow with the sw flag */
954 ret_val
= hw
->phy
.ops
.acquire(hw
);
958 /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
960 if (hw
->phy
.type
== e1000_phy_82578
) {
961 ret_val
= hw
->phy
.ops
.read_reg_locked(hw
, BM_CS_STATUS
,
966 status_reg
&= BM_CS_STATUS_LINK_UP
|
967 BM_CS_STATUS_RESOLVED
|
968 BM_CS_STATUS_SPEED_MASK
;
970 if (status_reg
== (BM_CS_STATUS_LINK_UP
|
971 BM_CS_STATUS_RESOLVED
|
972 BM_CS_STATUS_SPEED_1000
))
976 if (hw
->phy
.type
== e1000_phy_82577
) {
977 ret_val
= hw
->phy
.ops
.read_reg_locked(hw
, HV_M_STATUS
,
982 status_reg
&= HV_M_STATUS_LINK_UP
|
983 HV_M_STATUS_AUTONEG_COMPLETE
|
984 HV_M_STATUS_SPEED_MASK
;
986 if (status_reg
== (HV_M_STATUS_LINK_UP
|
987 HV_M_STATUS_AUTONEG_COMPLETE
|
988 HV_M_STATUS_SPEED_1000
))
992 /* Link stall fix for link up */
993 ret_val
= hw
->phy
.ops
.write_reg_locked(hw
, PHY_REG(770, 19),
999 /* Link stall fix for link down */
1000 ret_val
= hw
->phy
.ops
.write_reg_locked(hw
, PHY_REG(770, 19),
1006 ret_val
= e1000_configure_k1_ich8lan(hw
, k1_enable
);
1009 hw
->phy
.ops
.release(hw
);
1015 * e1000_configure_k1_ich8lan - Configure K1 power state
1016 * @hw: pointer to the HW structure
1017 * @enable: K1 state to configure
1019 * Configure the K1 power state based on the provided parameter.
1020 * Assumes semaphore already acquired.
1022 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1024 s32
e1000_configure_k1_ich8lan(struct e1000_hw
*hw
, bool k1_enable
)
1032 ret_val
= e1000e_read_kmrn_reg_locked(hw
,
1033 E1000_KMRNCTRLSTA_K1_CONFIG
,
1039 kmrn_reg
|= E1000_KMRNCTRLSTA_K1_ENABLE
;
1041 kmrn_reg
&= ~E1000_KMRNCTRLSTA_K1_ENABLE
;
1043 ret_val
= e1000e_write_kmrn_reg_locked(hw
,
1044 E1000_KMRNCTRLSTA_K1_CONFIG
,
1050 ctrl_ext
= er32(CTRL_EXT
);
1051 ctrl_reg
= er32(CTRL
);
1053 reg
= ctrl_reg
& ~(E1000_CTRL_SPD_1000
| E1000_CTRL_SPD_100
);
1054 reg
|= E1000_CTRL_FRCSPD
;
1057 ew32(CTRL_EXT
, ctrl_ext
| E1000_CTRL_EXT_SPD_BYPS
);
1059 ew32(CTRL
, ctrl_reg
);
1060 ew32(CTRL_EXT
, ctrl_ext
);
1068 * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
1069 * @hw: pointer to the HW structure
1070 * @d0_state: boolean if entering d0 or d3 device state
1072 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
1073 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit
1074 * in NVM determines whether HW should configure LPLU and Gbe Disable.
1076 static s32
e1000_oem_bits_config_ich8lan(struct e1000_hw
*hw
, bool d0_state
)
1082 if (hw
->mac
.type
!= e1000_pchlan
)
1085 ret_val
= hw
->phy
.ops
.acquire(hw
);
1089 mac_reg
= er32(EXTCNF_CTRL
);
1090 if (mac_reg
& E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE
)
1093 mac_reg
= er32(FEXTNVM
);
1094 if (!(mac_reg
& E1000_FEXTNVM_SW_CONFIG_ICH8M
))
1097 mac_reg
= er32(PHY_CTRL
);
1099 ret_val
= hw
->phy
.ops
.read_reg_locked(hw
, HV_OEM_BITS
, &oem_reg
);
1103 oem_reg
&= ~(HV_OEM_BITS_GBE_DIS
| HV_OEM_BITS_LPLU
);
1106 if (mac_reg
& E1000_PHY_CTRL_GBE_DISABLE
)
1107 oem_reg
|= HV_OEM_BITS_GBE_DIS
;
1109 if (mac_reg
& E1000_PHY_CTRL_D0A_LPLU
)
1110 oem_reg
|= HV_OEM_BITS_LPLU
;
1112 if (mac_reg
& E1000_PHY_CTRL_NOND0A_GBE_DISABLE
)
1113 oem_reg
|= HV_OEM_BITS_GBE_DIS
;
1115 if (mac_reg
& E1000_PHY_CTRL_NOND0A_LPLU
)
1116 oem_reg
|= HV_OEM_BITS_LPLU
;
1118 /* Restart auto-neg to activate the bits */
1119 if (!e1000_check_reset_block(hw
))
1120 oem_reg
|= HV_OEM_BITS_RESTART_AN
;
1121 ret_val
= hw
->phy
.ops
.write_reg_locked(hw
, HV_OEM_BITS
, oem_reg
);
1124 hw
->phy
.ops
.release(hw
);
1131 * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1132 * done after every PHY reset.
1134 static s32
e1000_hv_phy_workarounds_ich8lan(struct e1000_hw
*hw
)
1138 if (hw
->mac
.type
!= e1000_pchlan
)
1141 if (((hw
->phy
.type
== e1000_phy_82577
) &&
1142 ((hw
->phy
.revision
== 1) || (hw
->phy
.revision
== 2))) ||
1143 ((hw
->phy
.type
== e1000_phy_82578
) && (hw
->phy
.revision
== 1))) {
1144 /* Disable generation of early preamble */
1145 ret_val
= e1e_wphy(hw
, PHY_REG(769, 25), 0x4431);
1149 /* Preamble tuning for SSC */
1150 ret_val
= e1e_wphy(hw
, PHY_REG(770, 16), 0xA204);
1155 if (hw
->phy
.type
== e1000_phy_82578
) {
1157 * Return registers to default by doing a soft reset then
1158 * writing 0x3140 to the control register.
1160 if (hw
->phy
.revision
< 2) {
1161 e1000e_phy_sw_reset(hw
);
1162 ret_val
= e1e_wphy(hw
, PHY_CONTROL
, 0x3140);
1167 ret_val
= hw
->phy
.ops
.acquire(hw
);
1172 ret_val
= e1000e_write_phy_reg_mdic(hw
, IGP01E1000_PHY_PAGE_SELECT
, 0);
1175 hw
->phy
.ops
.release(hw
);
1178 * Configure the K1 Si workaround during phy reset assuming there is
1179 * link so that it disables K1 if link is in 1Gbps.
1181 ret_val
= e1000_k1_gig_workaround_hv(hw
, true);
1188 * e1000_lan_init_done_ich8lan - Check for PHY config completion
1189 * @hw: pointer to the HW structure
1191 * Check the appropriate indication the MAC has finished configuring the
1192 * PHY after a software reset.
1194 static void e1000_lan_init_done_ich8lan(struct e1000_hw
*hw
)
1196 u32 data
, loop
= E1000_ICH8_LAN_INIT_TIMEOUT
;
1198 /* Wait for basic configuration completes before proceeding */
1200 data
= er32(STATUS
);
1201 data
&= E1000_STATUS_LAN_INIT_DONE
;
1203 } while ((!data
) && --loop
);
1206 * If basic configuration is incomplete before the above loop
1207 * count reaches 0, loading the configuration from NVM will
1208 * leave the PHY in a bad state possibly resulting in no link.
1211 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
1213 /* Clear the Init Done bit for the next init event */
1214 data
= er32(STATUS
);
1215 data
&= ~E1000_STATUS_LAN_INIT_DONE
;
1220 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
1221 * @hw: pointer to the HW structure
1224 * This is a function pointer entry point called by drivers
1225 * or other shared routines.
1227 static s32
e1000_phy_hw_reset_ich8lan(struct e1000_hw
*hw
)
1232 ret_val
= e1000e_phy_hw_reset_generic(hw
);
1236 /* Allow time for h/w to get to a quiescent state after reset */
1239 if (hw
->mac
.type
== e1000_pchlan
) {
1240 ret_val
= e1000_hv_phy_workarounds_ich8lan(hw
);
1245 /* Dummy read to clear the phy wakeup bit after lcd reset */
1246 if (hw
->mac
.type
== e1000_pchlan
)
1247 e1e_rphy(hw
, BM_WUC
, ®
);
1249 /* Configure the LCD with the extended configuration region in NVM */
1250 ret_val
= e1000_sw_lcd_config_ich8lan(hw
);
1254 /* Configure the LCD with the OEM bits in NVM */
1255 if (hw
->mac
.type
== e1000_pchlan
)
1256 ret_val
= e1000_oem_bits_config_ich8lan(hw
, true);
1263 * e1000_get_phy_info_ife_ich8lan - Retrieves various IFE PHY states
1264 * @hw: pointer to the HW structure
1266 * Populates "phy" structure with various feature states.
1267 * This function is only called by other family-specific
1270 static s32
e1000_get_phy_info_ife_ich8lan(struct e1000_hw
*hw
)
1272 struct e1000_phy_info
*phy
= &hw
->phy
;
1277 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
1282 e_dbg("Phy info is only valid if link is up\n");
1283 return -E1000_ERR_CONFIG
;
1286 ret_val
= e1e_rphy(hw
, IFE_PHY_SPECIAL_CONTROL
, &data
);
1289 phy
->polarity_correction
= (!(data
& IFE_PSC_AUTO_POLARITY_DISABLE
));
1291 if (phy
->polarity_correction
) {
1292 ret_val
= phy
->ops
.check_polarity(hw
);
1296 /* Polarity is forced */
1297 phy
->cable_polarity
= (data
& IFE_PSC_FORCE_POLARITY
)
1298 ? e1000_rev_polarity_reversed
1299 : e1000_rev_polarity_normal
;
1302 ret_val
= e1e_rphy(hw
, IFE_PHY_MDIX_CONTROL
, &data
);
1306 phy
->is_mdix
= (data
& IFE_PMC_MDIX_STATUS
);
1308 /* The following parameters are undefined for 10/100 operation. */
1309 phy
->cable_length
= E1000_CABLE_LENGTH_UNDEFINED
;
1310 phy
->local_rx
= e1000_1000t_rx_status_undefined
;
1311 phy
->remote_rx
= e1000_1000t_rx_status_undefined
;
1317 * e1000_get_phy_info_ich8lan - Calls appropriate PHY type get_phy_info
1318 * @hw: pointer to the HW structure
1320 * Wrapper for calling the get_phy_info routines for the appropriate phy type.
1321 * This is a function pointer entry point called by drivers
1322 * or other shared routines.
1324 static s32
e1000_get_phy_info_ich8lan(struct e1000_hw
*hw
)
1326 switch (hw
->phy
.type
) {
1328 return e1000_get_phy_info_ife_ich8lan(hw
);
1330 case e1000_phy_igp_3
:
1332 case e1000_phy_82578
:
1333 case e1000_phy_82577
:
1334 return e1000e_get_phy_info_igp(hw
);
1340 return -E1000_ERR_PHY_TYPE
;
1344 * e1000_check_polarity_ife_ich8lan - Check cable polarity for IFE PHY
1345 * @hw: pointer to the HW structure
1347 * Polarity is determined on the polarity reversal feature being enabled.
1348 * This function is only called by other family-specific
1351 static s32
e1000_check_polarity_ife_ich8lan(struct e1000_hw
*hw
)
1353 struct e1000_phy_info
*phy
= &hw
->phy
;
1355 u16 phy_data
, offset
, mask
;
1358 * Polarity is determined based on the reversal feature being enabled.
1360 if (phy
->polarity_correction
) {
1361 offset
= IFE_PHY_EXTENDED_STATUS_CONTROL
;
1362 mask
= IFE_PESC_POLARITY_REVERSED
;
1364 offset
= IFE_PHY_SPECIAL_CONTROL
;
1365 mask
= IFE_PSC_FORCE_POLARITY
;
1368 ret_val
= e1e_rphy(hw
, offset
, &phy_data
);
1371 phy
->cable_polarity
= (phy_data
& mask
)
1372 ? e1000_rev_polarity_reversed
1373 : e1000_rev_polarity_normal
;
1379 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state
1380 * @hw: pointer to the HW structure
1381 * @active: true to enable LPLU, false to disable
1383 * Sets the LPLU state according to the active flag. For PCH, if OEM write
1384 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
1385 * the phy speed. This function will manually set the LPLU bit and restart
1386 * auto-neg as hw would do. D3 and D0 LPLU will call the same function
1387 * since it configures the same bit.
1389 static s32
e1000_set_lplu_state_pchlan(struct e1000_hw
*hw
, bool active
)
1394 ret_val
= e1e_rphy(hw
, HV_OEM_BITS
, &oem_reg
);
1399 oem_reg
|= HV_OEM_BITS_LPLU
;
1401 oem_reg
&= ~HV_OEM_BITS_LPLU
;
1403 oem_reg
|= HV_OEM_BITS_RESTART_AN
;
1404 ret_val
= e1e_wphy(hw
, HV_OEM_BITS
, oem_reg
);
1411 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
1412 * @hw: pointer to the HW structure
1413 * @active: true to enable LPLU, false to disable
1415 * Sets the LPLU D0 state according to the active flag. When
1416 * activating LPLU this function also disables smart speed
1417 * and vice versa. LPLU will not be activated unless the
1418 * device autonegotiation advertisement meets standards of
1419 * either 10 or 10/100 or 10/100/1000 at all duplexes.
1420 * This is a function pointer entry point only called by
1421 * PHY setup routines.
1423 static s32
e1000_set_d0_lplu_state_ich8lan(struct e1000_hw
*hw
, bool active
)
1425 struct e1000_phy_info
*phy
= &hw
->phy
;
1430 if (phy
->type
== e1000_phy_ife
)
1433 phy_ctrl
= er32(PHY_CTRL
);
1436 phy_ctrl
|= E1000_PHY_CTRL_D0A_LPLU
;
1437 ew32(PHY_CTRL
, phy_ctrl
);
1439 if (phy
->type
!= e1000_phy_igp_3
)
1443 * Call gig speed drop workaround on LPLU before accessing
1446 if (hw
->mac
.type
== e1000_ich8lan
)
1447 e1000e_gig_downshift_workaround_ich8lan(hw
);
1449 /* When LPLU is enabled, we should disable SmartSpeed */
1450 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, &data
);
1451 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1452 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, data
);
1456 phy_ctrl
&= ~E1000_PHY_CTRL_D0A_LPLU
;
1457 ew32(PHY_CTRL
, phy_ctrl
);
1459 if (phy
->type
!= e1000_phy_igp_3
)
1463 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
1464 * during Dx states where the power conservation is most
1465 * important. During driver activity we should enable
1466 * SmartSpeed, so performance is maintained.
1468 if (phy
->smart_speed
== e1000_smart_speed_on
) {
1469 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1474 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
1475 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1479 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
1480 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1485 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1486 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1497 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
1498 * @hw: pointer to the HW structure
1499 * @active: true to enable LPLU, false to disable
1501 * Sets the LPLU D3 state according to the active flag. When
1502 * activating LPLU this function also disables smart speed
1503 * and vice versa. LPLU will not be activated unless the
1504 * device autonegotiation advertisement meets standards of
1505 * either 10 or 10/100 or 10/100/1000 at all duplexes.
1506 * This is a function pointer entry point only called by
1507 * PHY setup routines.
1509 static s32
e1000_set_d3_lplu_state_ich8lan(struct e1000_hw
*hw
, bool active
)
1511 struct e1000_phy_info
*phy
= &hw
->phy
;
1516 phy_ctrl
= er32(PHY_CTRL
);
1519 phy_ctrl
&= ~E1000_PHY_CTRL_NOND0A_LPLU
;
1520 ew32(PHY_CTRL
, phy_ctrl
);
1522 if (phy
->type
!= e1000_phy_igp_3
)
1526 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
1527 * during Dx states where the power conservation is most
1528 * important. During driver activity we should enable
1529 * SmartSpeed, so performance is maintained.
1531 if (phy
->smart_speed
== e1000_smart_speed_on
) {
1532 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1537 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
1538 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1542 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
1543 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1548 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1549 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1554 } else if ((phy
->autoneg_advertised
== E1000_ALL_SPEED_DUPLEX
) ||
1555 (phy
->autoneg_advertised
== E1000_ALL_NOT_GIG
) ||
1556 (phy
->autoneg_advertised
== E1000_ALL_10_SPEED
)) {
1557 phy_ctrl
|= E1000_PHY_CTRL_NOND0A_LPLU
;
1558 ew32(PHY_CTRL
, phy_ctrl
);
1560 if (phy
->type
!= e1000_phy_igp_3
)
1564 * Call gig speed drop workaround on LPLU before accessing
1567 if (hw
->mac
.type
== e1000_ich8lan
)
1568 e1000e_gig_downshift_workaround_ich8lan(hw
);
1570 /* When LPLU is enabled, we should disable SmartSpeed */
1571 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, &data
);
1575 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1576 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, data
);
1583 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
1584 * @hw: pointer to the HW structure
1585 * @bank: pointer to the variable that returns the active bank
1587 * Reads signature byte from the NVM using the flash access registers.
1588 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
1590 static s32
e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw
*hw
, u32
*bank
)
1593 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
1594 u32 bank1_offset
= nvm
->flash_bank_size
* sizeof(u16
);
1595 u32 act_offset
= E1000_ICH_NVM_SIG_WORD
* 2 + 1;
1599 switch (hw
->mac
.type
) {
1603 if ((eecd
& E1000_EECD_SEC1VAL_VALID_MASK
) ==
1604 E1000_EECD_SEC1VAL_VALID_MASK
) {
1605 if (eecd
& E1000_EECD_SEC1VAL
)
1612 e_dbg("Unable to determine valid NVM bank via EEC - "
1613 "reading flash signature\n");
1616 /* set bank to 0 in case flash read fails */
1620 ret_val
= e1000_read_flash_byte_ich8lan(hw
, act_offset
,
1624 if ((sig_byte
& E1000_ICH_NVM_VALID_SIG_MASK
) ==
1625 E1000_ICH_NVM_SIG_VALUE
) {
1631 ret_val
= e1000_read_flash_byte_ich8lan(hw
, act_offset
+
1636 if ((sig_byte
& E1000_ICH_NVM_VALID_SIG_MASK
) ==
1637 E1000_ICH_NVM_SIG_VALUE
) {
1642 e_dbg("ERROR: No valid NVM bank present\n");
1643 return -E1000_ERR_NVM
;
1650 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
1651 * @hw: pointer to the HW structure
1652 * @offset: The offset (in bytes) of the word(s) to read.
1653 * @words: Size of data to read in words
1654 * @data: Pointer to the word(s) to read at offset.
1656 * Reads a word(s) from the NVM using the flash access registers.
1658 static s32
e1000_read_nvm_ich8lan(struct e1000_hw
*hw
, u16 offset
, u16 words
,
1661 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
1662 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
1668 if ((offset
>= nvm
->word_size
) || (words
> nvm
->word_size
- offset
) ||
1670 e_dbg("nvm parameter(s) out of bounds\n");
1671 ret_val
= -E1000_ERR_NVM
;
1675 nvm
->ops
.acquire(hw
);
1677 ret_val
= e1000_valid_nvm_bank_detect_ich8lan(hw
, &bank
);
1679 e_dbg("Could not detect valid bank, assuming bank 0\n");
1683 act_offset
= (bank
) ? nvm
->flash_bank_size
: 0;
1684 act_offset
+= offset
;
1687 for (i
= 0; i
< words
; i
++) {
1688 if ((dev_spec
->shadow_ram
) &&
1689 (dev_spec
->shadow_ram
[offset
+i
].modified
)) {
1690 data
[i
] = dev_spec
->shadow_ram
[offset
+i
].value
;
1692 ret_val
= e1000_read_flash_word_ich8lan(hw
,
1701 nvm
->ops
.release(hw
);
1705 e_dbg("NVM read error: %d\n", ret_val
);
1711 * e1000_flash_cycle_init_ich8lan - Initialize flash
1712 * @hw: pointer to the HW structure
1714 * This function does initial flash setup so that a new read/write/erase cycle
1717 static s32
e1000_flash_cycle_init_ich8lan(struct e1000_hw
*hw
)
1719 union ich8_hws_flash_status hsfsts
;
1720 s32 ret_val
= -E1000_ERR_NVM
;
1723 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
1725 /* Check if the flash descriptor is valid */
1726 if (hsfsts
.hsf_status
.fldesvalid
== 0) {
1727 e_dbg("Flash descriptor invalid. "
1728 "SW Sequencing must be used.");
1729 return -E1000_ERR_NVM
;
1732 /* Clear FCERR and DAEL in hw status by writing 1 */
1733 hsfsts
.hsf_status
.flcerr
= 1;
1734 hsfsts
.hsf_status
.dael
= 1;
1736 ew16flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
);
1739 * Either we should have a hardware SPI cycle in progress
1740 * bit to check against, in order to start a new cycle or
1741 * FDONE bit should be changed in the hardware so that it
1742 * is 1 after hardware reset, which can then be used as an
1743 * indication whether a cycle is in progress or has been
1747 if (hsfsts
.hsf_status
.flcinprog
== 0) {
1749 * There is no cycle running at present,
1750 * so we can start a cycle
1751 * Begin by setting Flash Cycle Done.
1753 hsfsts
.hsf_status
.flcdone
= 1;
1754 ew16flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
);
1758 * otherwise poll for sometime so the current
1759 * cycle has a chance to end before giving up.
1761 for (i
= 0; i
< ICH_FLASH_READ_COMMAND_TIMEOUT
; i
++) {
1762 hsfsts
.regval
= __er16flash(hw
, ICH_FLASH_HSFSTS
);
1763 if (hsfsts
.hsf_status
.flcinprog
== 0) {
1771 * Successful in waiting for previous cycle to timeout,
1772 * now set the Flash Cycle Done.
1774 hsfsts
.hsf_status
.flcdone
= 1;
1775 ew16flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
);
1777 e_dbg("Flash controller busy, cannot get access");
1785 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
1786 * @hw: pointer to the HW structure
1787 * @timeout: maximum time to wait for completion
1789 * This function starts a flash cycle and waits for its completion.
1791 static s32
e1000_flash_cycle_ich8lan(struct e1000_hw
*hw
, u32 timeout
)
1793 union ich8_hws_flash_ctrl hsflctl
;
1794 union ich8_hws_flash_status hsfsts
;
1795 s32 ret_val
= -E1000_ERR_NVM
;
1798 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
1799 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
1800 hsflctl
.hsf_ctrl
.flcgo
= 1;
1801 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
1803 /* wait till FDONE bit is set to 1 */
1805 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
1806 if (hsfsts
.hsf_status
.flcdone
== 1)
1809 } while (i
++ < timeout
);
1811 if (hsfsts
.hsf_status
.flcdone
== 1 && hsfsts
.hsf_status
.flcerr
== 0)
1818 * e1000_read_flash_word_ich8lan - Read word from flash
1819 * @hw: pointer to the HW structure
1820 * @offset: offset to data location
1821 * @data: pointer to the location for storing the data
1823 * Reads the flash word at offset into data. Offset is converted
1824 * to bytes before read.
1826 static s32
e1000_read_flash_word_ich8lan(struct e1000_hw
*hw
, u32 offset
,
1829 /* Must convert offset into bytes. */
1832 return e1000_read_flash_data_ich8lan(hw
, offset
, 2, data
);
1836 * e1000_read_flash_byte_ich8lan - Read byte from flash
1837 * @hw: pointer to the HW structure
1838 * @offset: The offset of the byte to read.
1839 * @data: Pointer to a byte to store the value read.
1841 * Reads a single byte from the NVM using the flash access registers.
1843 static s32
e1000_read_flash_byte_ich8lan(struct e1000_hw
*hw
, u32 offset
,
1849 ret_val
= e1000_read_flash_data_ich8lan(hw
, offset
, 1, &word
);
1859 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
1860 * @hw: pointer to the HW structure
1861 * @offset: The offset (in bytes) of the byte or word to read.
1862 * @size: Size of data to read, 1=byte 2=word
1863 * @data: Pointer to the word to store the value read.
1865 * Reads a byte or word from the NVM using the flash access registers.
1867 static s32
e1000_read_flash_data_ich8lan(struct e1000_hw
*hw
, u32 offset
,
1870 union ich8_hws_flash_status hsfsts
;
1871 union ich8_hws_flash_ctrl hsflctl
;
1872 u32 flash_linear_addr
;
1874 s32 ret_val
= -E1000_ERR_NVM
;
1877 if (size
< 1 || size
> 2 || offset
> ICH_FLASH_LINEAR_ADDR_MASK
)
1878 return -E1000_ERR_NVM
;
1880 flash_linear_addr
= (ICH_FLASH_LINEAR_ADDR_MASK
& offset
) +
1881 hw
->nvm
.flash_base_addr
;
1886 ret_val
= e1000_flash_cycle_init_ich8lan(hw
);
1890 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
1891 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1892 hsflctl
.hsf_ctrl
.fldbcount
= size
- 1;
1893 hsflctl
.hsf_ctrl
.flcycle
= ICH_CYCLE_READ
;
1894 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
1896 ew32flash(ICH_FLASH_FADDR
, flash_linear_addr
);
1898 ret_val
= e1000_flash_cycle_ich8lan(hw
,
1899 ICH_FLASH_READ_COMMAND_TIMEOUT
);
1902 * Check if FCERR is set to 1, if set to 1, clear it
1903 * and try the whole sequence a few more times, else
1904 * read in (shift in) the Flash Data0, the order is
1905 * least significant byte first msb to lsb
1908 flash_data
= er32flash(ICH_FLASH_FDATA0
);
1910 *data
= (u8
)(flash_data
& 0x000000FF);
1911 } else if (size
== 2) {
1912 *data
= (u16
)(flash_data
& 0x0000FFFF);
1917 * If we've gotten here, then things are probably
1918 * completely hosed, but if the error condition is
1919 * detected, it won't hurt to give it another try...
1920 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
1922 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
1923 if (hsfsts
.hsf_status
.flcerr
== 1) {
1924 /* Repeat for some time before giving up. */
1926 } else if (hsfsts
.hsf_status
.flcdone
== 0) {
1927 e_dbg("Timeout error - flash cycle "
1928 "did not complete.");
1932 } while (count
++ < ICH_FLASH_CYCLE_REPEAT_COUNT
);
1938 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
1939 * @hw: pointer to the HW structure
1940 * @offset: The offset (in bytes) of the word(s) to write.
1941 * @words: Size of data to write in words
1942 * @data: Pointer to the word(s) to write at offset.
1944 * Writes a byte or word to the NVM using the flash access registers.
1946 static s32
e1000_write_nvm_ich8lan(struct e1000_hw
*hw
, u16 offset
, u16 words
,
1949 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
1950 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
1953 if ((offset
>= nvm
->word_size
) || (words
> nvm
->word_size
- offset
) ||
1955 e_dbg("nvm parameter(s) out of bounds\n");
1956 return -E1000_ERR_NVM
;
1959 nvm
->ops
.acquire(hw
);
1961 for (i
= 0; i
< words
; i
++) {
1962 dev_spec
->shadow_ram
[offset
+i
].modified
= true;
1963 dev_spec
->shadow_ram
[offset
+i
].value
= data
[i
];
1966 nvm
->ops
.release(hw
);
1972 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
1973 * @hw: pointer to the HW structure
1975 * The NVM checksum is updated by calling the generic update_nvm_checksum,
1976 * which writes the checksum to the shadow ram. The changes in the shadow
1977 * ram are then committed to the EEPROM by processing each bank at a time
1978 * checking for the modified bit and writing only the pending changes.
1979 * After a successful commit, the shadow ram is cleared and is ready for
1982 static s32
e1000_update_nvm_checksum_ich8lan(struct e1000_hw
*hw
)
1984 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
1985 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
1986 u32 i
, act_offset
, new_bank_offset
, old_bank_offset
, bank
;
1990 ret_val
= e1000e_update_nvm_checksum_generic(hw
);
1994 if (nvm
->type
!= e1000_nvm_flash_sw
)
1997 nvm
->ops
.acquire(hw
);
2000 * We're writing to the opposite bank so if we're on bank 1,
2001 * write to bank 0 etc. We also need to erase the segment that
2002 * is going to be written
2004 ret_val
= e1000_valid_nvm_bank_detect_ich8lan(hw
, &bank
);
2006 e_dbg("Could not detect valid bank, assuming bank 0\n");
2011 new_bank_offset
= nvm
->flash_bank_size
;
2012 old_bank_offset
= 0;
2013 ret_val
= e1000_erase_flash_bank_ich8lan(hw
, 1);
2015 nvm
->ops
.release(hw
);
2019 old_bank_offset
= nvm
->flash_bank_size
;
2020 new_bank_offset
= 0;
2021 ret_val
= e1000_erase_flash_bank_ich8lan(hw
, 0);
2023 nvm
->ops
.release(hw
);
2028 for (i
= 0; i
< E1000_ICH8_SHADOW_RAM_WORDS
; i
++) {
2030 * Determine whether to write the value stored
2031 * in the other NVM bank or a modified value stored
2034 if (dev_spec
->shadow_ram
[i
].modified
) {
2035 data
= dev_spec
->shadow_ram
[i
].value
;
2037 ret_val
= e1000_read_flash_word_ich8lan(hw
, i
+
2045 * If the word is 0x13, then make sure the signature bits
2046 * (15:14) are 11b until the commit has completed.
2047 * This will allow us to write 10b which indicates the
2048 * signature is valid. We want to do this after the write
2049 * has completed so that we don't mark the segment valid
2050 * while the write is still in progress
2052 if (i
== E1000_ICH_NVM_SIG_WORD
)
2053 data
|= E1000_ICH_NVM_SIG_MASK
;
2055 /* Convert offset to bytes. */
2056 act_offset
= (i
+ new_bank_offset
) << 1;
2059 /* Write the bytes to the new bank. */
2060 ret_val
= e1000_retry_write_flash_byte_ich8lan(hw
,
2067 ret_val
= e1000_retry_write_flash_byte_ich8lan(hw
,
2075 * Don't bother writing the segment valid bits if sector
2076 * programming failed.
2079 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
2080 e_dbg("Flash commit failed.\n");
2081 nvm
->ops
.release(hw
);
2086 * Finally validate the new segment by setting bit 15:14
2087 * to 10b in word 0x13 , this can be done without an
2088 * erase as well since these bits are 11 to start with
2089 * and we need to change bit 14 to 0b
2091 act_offset
= new_bank_offset
+ E1000_ICH_NVM_SIG_WORD
;
2092 ret_val
= e1000_read_flash_word_ich8lan(hw
, act_offset
, &data
);
2094 nvm
->ops
.release(hw
);
2098 ret_val
= e1000_retry_write_flash_byte_ich8lan(hw
,
2102 nvm
->ops
.release(hw
);
2107 * And invalidate the previously valid segment by setting
2108 * its signature word (0x13) high_byte to 0b. This can be
2109 * done without an erase because flash erase sets all bits
2110 * to 1's. We can write 1's to 0's without an erase
2112 act_offset
= (old_bank_offset
+ E1000_ICH_NVM_SIG_WORD
) * 2 + 1;
2113 ret_val
= e1000_retry_write_flash_byte_ich8lan(hw
, act_offset
, 0);
2115 nvm
->ops
.release(hw
);
2119 /* Great! Everything worked, we can now clear the cached entries. */
2120 for (i
= 0; i
< E1000_ICH8_SHADOW_RAM_WORDS
; i
++) {
2121 dev_spec
->shadow_ram
[i
].modified
= false;
2122 dev_spec
->shadow_ram
[i
].value
= 0xFFFF;
2125 nvm
->ops
.release(hw
);
2128 * Reload the EEPROM, or else modifications will not appear
2129 * until after the next adapter reset.
2131 e1000e_reload_nvm(hw
);
2136 e_dbg("NVM update error: %d\n", ret_val
);
2142 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
2143 * @hw: pointer to the HW structure
2145 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
2146 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
2147 * calculated, in which case we need to calculate the checksum and set bit 6.
2149 static s32
e1000_validate_nvm_checksum_ich8lan(struct e1000_hw
*hw
)
2155 * Read 0x19 and check bit 6. If this bit is 0, the checksum
2156 * needs to be fixed. This bit is an indication that the NVM
2157 * was prepared by OEM software and did not calculate the
2158 * checksum...a likely scenario.
2160 ret_val
= e1000_read_nvm(hw
, 0x19, 1, &data
);
2164 if ((data
& 0x40) == 0) {
2166 ret_val
= e1000_write_nvm(hw
, 0x19, 1, &data
);
2169 ret_val
= e1000e_update_nvm_checksum(hw
);
2174 return e1000e_validate_nvm_checksum_generic(hw
);
2178 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
2179 * @hw: pointer to the HW structure
2181 * To prevent malicious write/erase of the NVM, set it to be read-only
2182 * so that the hardware ignores all write/erase cycles of the NVM via
2183 * the flash control registers. The shadow-ram copy of the NVM will
2184 * still be updated, however any updates to this copy will not stick
2185 * across driver reloads.
2187 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw
*hw
)
2189 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
2190 union ich8_flash_protected_range pr0
;
2191 union ich8_hws_flash_status hsfsts
;
2194 nvm
->ops
.acquire(hw
);
2196 gfpreg
= er32flash(ICH_FLASH_GFPREG
);
2198 /* Write-protect GbE Sector of NVM */
2199 pr0
.regval
= er32flash(ICH_FLASH_PR0
);
2200 pr0
.range
.base
= gfpreg
& FLASH_GFPREG_BASE_MASK
;
2201 pr0
.range
.limit
= ((gfpreg
>> 16) & FLASH_GFPREG_BASE_MASK
);
2202 pr0
.range
.wpe
= true;
2203 ew32flash(ICH_FLASH_PR0
, pr0
.regval
);
2206 * Lock down a subset of GbE Flash Control Registers, e.g.
2207 * PR0 to prevent the write-protection from being lifted.
2208 * Once FLOCKDN is set, the registers protected by it cannot
2209 * be written until FLOCKDN is cleared by a hardware reset.
2211 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
2212 hsfsts
.hsf_status
.flockdn
= true;
2213 ew32flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
);
2215 nvm
->ops
.release(hw
);
2219 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
2220 * @hw: pointer to the HW structure
2221 * @offset: The offset (in bytes) of the byte/word to read.
2222 * @size: Size of data to read, 1=byte 2=word
2223 * @data: The byte(s) to write to the NVM.
2225 * Writes one/two bytes to the NVM using the flash access registers.
2227 static s32
e1000_write_flash_data_ich8lan(struct e1000_hw
*hw
, u32 offset
,
2230 union ich8_hws_flash_status hsfsts
;
2231 union ich8_hws_flash_ctrl hsflctl
;
2232 u32 flash_linear_addr
;
2237 if (size
< 1 || size
> 2 || data
> size
* 0xff ||
2238 offset
> ICH_FLASH_LINEAR_ADDR_MASK
)
2239 return -E1000_ERR_NVM
;
2241 flash_linear_addr
= (ICH_FLASH_LINEAR_ADDR_MASK
& offset
) +
2242 hw
->nvm
.flash_base_addr
;
2247 ret_val
= e1000_flash_cycle_init_ich8lan(hw
);
2251 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
2252 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2253 hsflctl
.hsf_ctrl
.fldbcount
= size
-1;
2254 hsflctl
.hsf_ctrl
.flcycle
= ICH_CYCLE_WRITE
;
2255 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
2257 ew32flash(ICH_FLASH_FADDR
, flash_linear_addr
);
2260 flash_data
= (u32
)data
& 0x00FF;
2262 flash_data
= (u32
)data
;
2264 ew32flash(ICH_FLASH_FDATA0
, flash_data
);
2267 * check if FCERR is set to 1 , if set to 1, clear it
2268 * and try the whole sequence a few more times else done
2270 ret_val
= e1000_flash_cycle_ich8lan(hw
,
2271 ICH_FLASH_WRITE_COMMAND_TIMEOUT
);
2276 * If we're here, then things are most likely
2277 * completely hosed, but if the error condition
2278 * is detected, it won't hurt to give it another
2279 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
2281 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
2282 if (hsfsts
.hsf_status
.flcerr
== 1)
2283 /* Repeat for some time before giving up. */
2285 if (hsfsts
.hsf_status
.flcdone
== 0) {
2286 e_dbg("Timeout error - flash cycle "
2287 "did not complete.");
2290 } while (count
++ < ICH_FLASH_CYCLE_REPEAT_COUNT
);
2296 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
2297 * @hw: pointer to the HW structure
2298 * @offset: The index of the byte to read.
2299 * @data: The byte to write to the NVM.
2301 * Writes a single byte to the NVM using the flash access registers.
2303 static s32
e1000_write_flash_byte_ich8lan(struct e1000_hw
*hw
, u32 offset
,
2306 u16 word
= (u16
)data
;
2308 return e1000_write_flash_data_ich8lan(hw
, offset
, 1, word
);
2312 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
2313 * @hw: pointer to the HW structure
2314 * @offset: The offset of the byte to write.
2315 * @byte: The byte to write to the NVM.
2317 * Writes a single byte to the NVM using the flash access registers.
2318 * Goes through a retry algorithm before giving up.
2320 static s32
e1000_retry_write_flash_byte_ich8lan(struct e1000_hw
*hw
,
2321 u32 offset
, u8 byte
)
2324 u16 program_retries
;
2326 ret_val
= e1000_write_flash_byte_ich8lan(hw
, offset
, byte
);
2330 for (program_retries
= 0; program_retries
< 100; program_retries
++) {
2331 e_dbg("Retrying Byte %2.2X at offset %u\n", byte
, offset
);
2333 ret_val
= e1000_write_flash_byte_ich8lan(hw
, offset
, byte
);
2337 if (program_retries
== 100)
2338 return -E1000_ERR_NVM
;
2344 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
2345 * @hw: pointer to the HW structure
2346 * @bank: 0 for first bank, 1 for second bank, etc.
2348 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
2349 * bank N is 4096 * N + flash_reg_addr.
2351 static s32
e1000_erase_flash_bank_ich8lan(struct e1000_hw
*hw
, u32 bank
)
2353 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
2354 union ich8_hws_flash_status hsfsts
;
2355 union ich8_hws_flash_ctrl hsflctl
;
2356 u32 flash_linear_addr
;
2357 /* bank size is in 16bit words - adjust to bytes */
2358 u32 flash_bank_size
= nvm
->flash_bank_size
* 2;
2361 s32 j
, iteration
, sector_size
;
2363 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
2366 * Determine HW Sector size: Read BERASE bits of hw flash status
2368 * 00: The Hw sector is 256 bytes, hence we need to erase 16
2369 * consecutive sectors. The start index for the nth Hw sector
2370 * can be calculated as = bank * 4096 + n * 256
2371 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
2372 * The start index for the nth Hw sector can be calculated
2374 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
2375 * (ich9 only, otherwise error condition)
2376 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
2378 switch (hsfsts
.hsf_status
.berasesz
) {
2380 /* Hw sector size 256 */
2381 sector_size
= ICH_FLASH_SEG_SIZE_256
;
2382 iteration
= flash_bank_size
/ ICH_FLASH_SEG_SIZE_256
;
2385 sector_size
= ICH_FLASH_SEG_SIZE_4K
;
2389 sector_size
= ICH_FLASH_SEG_SIZE_8K
;
2393 sector_size
= ICH_FLASH_SEG_SIZE_64K
;
2397 return -E1000_ERR_NVM
;
2400 /* Start with the base address, then add the sector offset. */
2401 flash_linear_addr
= hw
->nvm
.flash_base_addr
;
2402 flash_linear_addr
+= (bank
) ? flash_bank_size
: 0;
2404 for (j
= 0; j
< iteration
; j
++) {
2407 ret_val
= e1000_flash_cycle_init_ich8lan(hw
);
2412 * Write a value 11 (block Erase) in Flash
2413 * Cycle field in hw flash control
2415 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
2416 hsflctl
.hsf_ctrl
.flcycle
= ICH_CYCLE_ERASE
;
2417 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
2420 * Write the last 24 bits of an index within the
2421 * block into Flash Linear address field in Flash
2424 flash_linear_addr
+= (j
* sector_size
);
2425 ew32flash(ICH_FLASH_FADDR
, flash_linear_addr
);
2427 ret_val
= e1000_flash_cycle_ich8lan(hw
,
2428 ICH_FLASH_ERASE_COMMAND_TIMEOUT
);
2433 * Check if FCERR is set to 1. If 1,
2434 * clear it and try the whole sequence
2435 * a few more times else Done
2437 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
2438 if (hsfsts
.hsf_status
.flcerr
== 1)
2439 /* repeat for some time before giving up */
2441 else if (hsfsts
.hsf_status
.flcdone
== 0)
2443 } while (++count
< ICH_FLASH_CYCLE_REPEAT_COUNT
);
2450 * e1000_valid_led_default_ich8lan - Set the default LED settings
2451 * @hw: pointer to the HW structure
2452 * @data: Pointer to the LED settings
2454 * Reads the LED default settings from the NVM to data. If the NVM LED
2455 * settings is all 0's or F's, set the LED default to a valid LED default
2458 static s32
e1000_valid_led_default_ich8lan(struct e1000_hw
*hw
, u16
*data
)
2462 ret_val
= e1000_read_nvm(hw
, NVM_ID_LED_SETTINGS
, 1, data
);
2464 e_dbg("NVM Read Error\n");
2468 if (*data
== ID_LED_RESERVED_0000
||
2469 *data
== ID_LED_RESERVED_FFFF
)
2470 *data
= ID_LED_DEFAULT_ICH8LAN
;
2476 * e1000_id_led_init_pchlan - store LED configurations
2477 * @hw: pointer to the HW structure
2479 * PCH does not control LEDs via the LEDCTL register, rather it uses
2480 * the PHY LED configuration register.
2482 * PCH also does not have an "always on" or "always off" mode which
2483 * complicates the ID feature. Instead of using the "on" mode to indicate
2484 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()),
2485 * use "link_up" mode. The LEDs will still ID on request if there is no
2486 * link based on logic in e1000_led_[on|off]_pchlan().
2488 static s32
e1000_id_led_init_pchlan(struct e1000_hw
*hw
)
2490 struct e1000_mac_info
*mac
= &hw
->mac
;
2492 const u32 ledctl_on
= E1000_LEDCTL_MODE_LINK_UP
;
2493 const u32 ledctl_off
= E1000_LEDCTL_MODE_LINK_UP
| E1000_PHY_LED0_IVRT
;
2494 u16 data
, i
, temp
, shift
;
2496 /* Get default ID LED modes */
2497 ret_val
= hw
->nvm
.ops
.valid_led_default(hw
, &data
);
2501 mac
->ledctl_default
= er32(LEDCTL
);
2502 mac
->ledctl_mode1
= mac
->ledctl_default
;
2503 mac
->ledctl_mode2
= mac
->ledctl_default
;
2505 for (i
= 0; i
< 4; i
++) {
2506 temp
= (data
>> (i
<< 2)) & E1000_LEDCTL_LED0_MODE_MASK
;
2509 case ID_LED_ON1_DEF2
:
2510 case ID_LED_ON1_ON2
:
2511 case ID_LED_ON1_OFF2
:
2512 mac
->ledctl_mode1
&= ~(E1000_PHY_LED0_MASK
<< shift
);
2513 mac
->ledctl_mode1
|= (ledctl_on
<< shift
);
2515 case ID_LED_OFF1_DEF2
:
2516 case ID_LED_OFF1_ON2
:
2517 case ID_LED_OFF1_OFF2
:
2518 mac
->ledctl_mode1
&= ~(E1000_PHY_LED0_MASK
<< shift
);
2519 mac
->ledctl_mode1
|= (ledctl_off
<< shift
);
2526 case ID_LED_DEF1_ON2
:
2527 case ID_LED_ON1_ON2
:
2528 case ID_LED_OFF1_ON2
:
2529 mac
->ledctl_mode2
&= ~(E1000_PHY_LED0_MASK
<< shift
);
2530 mac
->ledctl_mode2
|= (ledctl_on
<< shift
);
2532 case ID_LED_DEF1_OFF2
:
2533 case ID_LED_ON1_OFF2
:
2534 case ID_LED_OFF1_OFF2
:
2535 mac
->ledctl_mode2
&= ~(E1000_PHY_LED0_MASK
<< shift
);
2536 mac
->ledctl_mode2
|= (ledctl_off
<< shift
);
2549 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
2550 * @hw: pointer to the HW structure
2552 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
2553 * register, so the the bus width is hard coded.
2555 static s32
e1000_get_bus_info_ich8lan(struct e1000_hw
*hw
)
2557 struct e1000_bus_info
*bus
= &hw
->bus
;
2560 ret_val
= e1000e_get_bus_info_pcie(hw
);
2563 * ICH devices are "PCI Express"-ish. They have
2564 * a configuration space, but do not contain
2565 * PCI Express Capability registers, so bus width
2566 * must be hardcoded.
2568 if (bus
->width
== e1000_bus_width_unknown
)
2569 bus
->width
= e1000_bus_width_pcie_x1
;
2575 * e1000_reset_hw_ich8lan - Reset the hardware
2576 * @hw: pointer to the HW structure
2578 * Does a full reset of the hardware which includes a reset of the PHY and
2581 static s32
e1000_reset_hw_ich8lan(struct e1000_hw
*hw
)
2583 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
2589 * Prevent the PCI-E bus from sticking if there is no TLP connection
2590 * on the last TLP read/write transaction when MAC is reset.
2592 ret_val
= e1000e_disable_pcie_master(hw
);
2594 e_dbg("PCI-E Master disable polling has failed.\n");
2597 e_dbg("Masking off all interrupts\n");
2598 ew32(IMC
, 0xffffffff);
2601 * Disable the Transmit and Receive units. Then delay to allow
2602 * any pending transactions to complete before we hit the MAC
2603 * with the global reset.
2606 ew32(TCTL
, E1000_TCTL_PSP
);
2611 /* Workaround for ICH8 bit corruption issue in FIFO memory */
2612 if (hw
->mac
.type
== e1000_ich8lan
) {
2613 /* Set Tx and Rx buffer allocation to 8k apiece. */
2614 ew32(PBA
, E1000_PBA_8K
);
2615 /* Set Packet Buffer Size to 16k. */
2616 ew32(PBS
, E1000_PBS_16K
);
2619 if (hw
->mac
.type
== e1000_pchlan
) {
2620 /* Save the NVM K1 bit setting*/
2621 ret_val
= e1000_read_nvm(hw
, E1000_NVM_K1_CONFIG
, 1, ®
);
2625 if (reg
& E1000_NVM_K1_ENABLE
)
2626 dev_spec
->nvm_k1_enabled
= true;
2628 dev_spec
->nvm_k1_enabled
= false;
2633 if (!e1000_check_reset_block(hw
)) {
2634 /* Clear PHY Reset Asserted bit */
2635 if (hw
->mac
.type
>= e1000_pchlan
) {
2636 u32 status
= er32(STATUS
);
2637 ew32(STATUS
, status
& ~E1000_STATUS_PHYRA
);
2641 * PHY HW reset requires MAC CORE reset at the same
2642 * time to make sure the interface between MAC and the
2643 * external PHY is reset.
2645 ctrl
|= E1000_CTRL_PHY_RST
;
2647 ret_val
= e1000_acquire_swflag_ich8lan(hw
);
2648 /* Whether or not the swflag was acquired, we need to reset the part */
2649 e_dbg("Issuing a global reset to ich8lan\n");
2650 ew32(CTRL
, (ctrl
| E1000_CTRL_RST
));
2654 e1000_release_swflag_ich8lan(hw
);
2656 if (ctrl
& E1000_CTRL_PHY_RST
)
2657 ret_val
= hw
->phy
.ops
.get_cfg_done(hw
);
2659 if (hw
->mac
.type
>= e1000_ich10lan
) {
2660 e1000_lan_init_done_ich8lan(hw
);
2662 ret_val
= e1000e_get_auto_rd_done(hw
);
2665 * When auto config read does not complete, do not
2666 * return with an error. This can happen in situations
2667 * where there is no eeprom and prevents getting link.
2669 e_dbg("Auto Read Done did not complete\n");
2672 /* Dummy read to clear the phy wakeup bit after lcd reset */
2673 if (hw
->mac
.type
== e1000_pchlan
)
2674 e1e_rphy(hw
, BM_WUC
, ®
);
2676 ret_val
= e1000_sw_lcd_config_ich8lan(hw
);
2680 if (hw
->mac
.type
== e1000_pchlan
) {
2681 ret_val
= e1000_oem_bits_config_ich8lan(hw
, true);
2686 * For PCH, this write will make sure that any noise
2687 * will be detected as a CRC error and be dropped rather than show up
2688 * as a bad packet to the DMA engine.
2690 if (hw
->mac
.type
== e1000_pchlan
)
2691 ew32(CRC_OFFSET
, 0x65656565);
2693 ew32(IMC
, 0xffffffff);
2696 kab
= er32(KABGTXD
);
2697 kab
|= E1000_KABGTXD_BGSQLBIAS
;
2700 if (hw
->mac
.type
== e1000_pchlan
)
2701 ret_val
= e1000_hv_phy_workarounds_ich8lan(hw
);
2708 * e1000_init_hw_ich8lan - Initialize the hardware
2709 * @hw: pointer to the HW structure
2711 * Prepares the hardware for transmit and receive by doing the following:
2712 * - initialize hardware bits
2713 * - initialize LED identification
2714 * - setup receive address registers
2715 * - setup flow control
2716 * - setup transmit descriptors
2717 * - clear statistics
2719 static s32
e1000_init_hw_ich8lan(struct e1000_hw
*hw
)
2721 struct e1000_mac_info
*mac
= &hw
->mac
;
2722 u32 ctrl_ext
, txdctl
, snoop
;
2726 e1000_initialize_hw_bits_ich8lan(hw
);
2728 /* Initialize identification LED */
2729 ret_val
= mac
->ops
.id_led_init(hw
);
2731 e_dbg("Error initializing identification LED\n");
2732 /* This is not fatal and we should not stop init due to this */
2734 /* Setup the receive address. */
2735 e1000e_init_rx_addrs(hw
, mac
->rar_entry_count
);
2737 /* Zero out the Multicast HASH table */
2738 e_dbg("Zeroing the MTA\n");
2739 for (i
= 0; i
< mac
->mta_reg_count
; i
++)
2740 E1000_WRITE_REG_ARRAY(hw
, E1000_MTA
, i
, 0);
2743 * The 82578 Rx buffer will stall if wakeup is enabled in host and
2744 * the ME. Reading the BM_WUC register will clear the host wakeup bit.
2745 * Reset the phy after disabling host wakeup to reset the Rx buffer.
2747 if (hw
->phy
.type
== e1000_phy_82578
) {
2748 hw
->phy
.ops
.read_reg(hw
, BM_WUC
, &i
);
2749 ret_val
= e1000_phy_hw_reset_ich8lan(hw
);
2754 /* Setup link and flow control */
2755 ret_val
= e1000_setup_link_ich8lan(hw
);
2757 /* Set the transmit descriptor write-back policy for both queues */
2758 txdctl
= er32(TXDCTL(0));
2759 txdctl
= (txdctl
& ~E1000_TXDCTL_WTHRESH
) |
2760 E1000_TXDCTL_FULL_TX_DESC_WB
;
2761 txdctl
= (txdctl
& ~E1000_TXDCTL_PTHRESH
) |
2762 E1000_TXDCTL_MAX_TX_DESC_PREFETCH
;
2763 ew32(TXDCTL(0), txdctl
);
2764 txdctl
= er32(TXDCTL(1));
2765 txdctl
= (txdctl
& ~E1000_TXDCTL_WTHRESH
) |
2766 E1000_TXDCTL_FULL_TX_DESC_WB
;
2767 txdctl
= (txdctl
& ~E1000_TXDCTL_PTHRESH
) |
2768 E1000_TXDCTL_MAX_TX_DESC_PREFETCH
;
2769 ew32(TXDCTL(1), txdctl
);
2772 * ICH8 has opposite polarity of no_snoop bits.
2773 * By default, we should use snoop behavior.
2775 if (mac
->type
== e1000_ich8lan
)
2776 snoop
= PCIE_ICH8_SNOOP_ALL
;
2778 snoop
= (u32
) ~(PCIE_NO_SNOOP_ALL
);
2779 e1000e_set_pcie_no_snoop(hw
, snoop
);
2781 ctrl_ext
= er32(CTRL_EXT
);
2782 ctrl_ext
|= E1000_CTRL_EXT_RO_DIS
;
2783 ew32(CTRL_EXT
, ctrl_ext
);
2786 * Clear all of the statistics registers (clear on read). It is
2787 * important that we do this after we have tried to establish link
2788 * because the symbol error count will increment wildly if there
2791 e1000_clear_hw_cntrs_ich8lan(hw
);
2796 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
2797 * @hw: pointer to the HW structure
2799 * Sets/Clears required hardware bits necessary for correctly setting up the
2800 * hardware for transmit and receive.
2802 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw
*hw
)
2806 /* Extended Device Control */
2807 reg
= er32(CTRL_EXT
);
2809 /* Enable PHY low-power state when MAC is at D3 w/o WoL */
2810 if (hw
->mac
.type
>= e1000_pchlan
)
2811 reg
|= E1000_CTRL_EXT_PHYPDEN
;
2812 ew32(CTRL_EXT
, reg
);
2814 /* Transmit Descriptor Control 0 */
2815 reg
= er32(TXDCTL(0));
2817 ew32(TXDCTL(0), reg
);
2819 /* Transmit Descriptor Control 1 */
2820 reg
= er32(TXDCTL(1));
2822 ew32(TXDCTL(1), reg
);
2824 /* Transmit Arbitration Control 0 */
2825 reg
= er32(TARC(0));
2826 if (hw
->mac
.type
== e1000_ich8lan
)
2827 reg
|= (1 << 28) | (1 << 29);
2828 reg
|= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
2831 /* Transmit Arbitration Control 1 */
2832 reg
= er32(TARC(1));
2833 if (er32(TCTL
) & E1000_TCTL_MULR
)
2837 reg
|= (1 << 24) | (1 << 26) | (1 << 30);
2841 if (hw
->mac
.type
== e1000_ich8lan
) {
2849 * e1000_setup_link_ich8lan - Setup flow control and link settings
2850 * @hw: pointer to the HW structure
2852 * Determines which flow control settings to use, then configures flow
2853 * control. Calls the appropriate media-specific link configuration
2854 * function. Assuming the adapter has a valid link partner, a valid link
2855 * should be established. Assumes the hardware has previously been reset
2856 * and the transmitter and receiver are not enabled.
2858 static s32
e1000_setup_link_ich8lan(struct e1000_hw
*hw
)
2862 if (e1000_check_reset_block(hw
))
2866 * ICH parts do not have a word in the NVM to determine
2867 * the default flow control setting, so we explicitly
2870 if (hw
->fc
.requested_mode
== e1000_fc_default
) {
2871 /* Workaround h/w hang when Tx flow control enabled */
2872 if (hw
->mac
.type
== e1000_pchlan
)
2873 hw
->fc
.requested_mode
= e1000_fc_rx_pause
;
2875 hw
->fc
.requested_mode
= e1000_fc_full
;
2879 * Save off the requested flow control mode for use later. Depending
2880 * on the link partner's capabilities, we may or may not use this mode.
2882 hw
->fc
.current_mode
= hw
->fc
.requested_mode
;
2884 e_dbg("After fix-ups FlowControl is now = %x\n",
2885 hw
->fc
.current_mode
);
2887 /* Continue to configure the copper link. */
2888 ret_val
= e1000_setup_copper_link_ich8lan(hw
);
2892 ew32(FCTTV
, hw
->fc
.pause_time
);
2893 if ((hw
->phy
.type
== e1000_phy_82578
) ||
2894 (hw
->phy
.type
== e1000_phy_82577
)) {
2895 ret_val
= hw
->phy
.ops
.write_reg(hw
,
2896 PHY_REG(BM_PORT_CTRL_PAGE
, 27),
2902 return e1000e_set_fc_watermarks(hw
);
2906 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
2907 * @hw: pointer to the HW structure
2909 * Configures the kumeran interface to the PHY to wait the appropriate time
2910 * when polling the PHY, then call the generic setup_copper_link to finish
2911 * configuring the copper link.
2913 static s32
e1000_setup_copper_link_ich8lan(struct e1000_hw
*hw
)
2920 ctrl
|= E1000_CTRL_SLU
;
2921 ctrl
&= ~(E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
);
2925 * Set the mac to wait the maximum time between each iteration
2926 * and increase the max iterations when polling the phy;
2927 * this fixes erroneous timeouts at 10Mbps.
2929 ret_val
= e1000e_write_kmrn_reg(hw
, GG82563_REG(0x34, 4), 0xFFFF);
2932 ret_val
= e1000e_read_kmrn_reg(hw
, GG82563_REG(0x34, 9), ®_data
);
2936 ret_val
= e1000e_write_kmrn_reg(hw
, GG82563_REG(0x34, 9), reg_data
);
2940 switch (hw
->phy
.type
) {
2941 case e1000_phy_igp_3
:
2942 ret_val
= e1000e_copper_link_setup_igp(hw
);
2947 case e1000_phy_82578
:
2948 ret_val
= e1000e_copper_link_setup_m88(hw
);
2952 case e1000_phy_82577
:
2953 ret_val
= e1000_copper_link_setup_82577(hw
);
2958 ret_val
= hw
->phy
.ops
.read_reg(hw
, IFE_PHY_MDIX_CONTROL
,
2963 reg_data
&= ~IFE_PMC_AUTO_MDIX
;
2965 switch (hw
->phy
.mdix
) {
2967 reg_data
&= ~IFE_PMC_FORCE_MDIX
;
2970 reg_data
|= IFE_PMC_FORCE_MDIX
;
2974 reg_data
|= IFE_PMC_AUTO_MDIX
;
2977 ret_val
= hw
->phy
.ops
.write_reg(hw
, IFE_PHY_MDIX_CONTROL
,
2985 return e1000e_setup_copper_link(hw
);
2989 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
2990 * @hw: pointer to the HW structure
2991 * @speed: pointer to store current link speed
2992 * @duplex: pointer to store the current link duplex
2994 * Calls the generic get_speed_and_duplex to retrieve the current link
2995 * information and then calls the Kumeran lock loss workaround for links at
2998 static s32
e1000_get_link_up_info_ich8lan(struct e1000_hw
*hw
, u16
*speed
,
3003 ret_val
= e1000e_get_speed_and_duplex_copper(hw
, speed
, duplex
);
3007 if ((hw
->mac
.type
== e1000_ich8lan
) &&
3008 (hw
->phy
.type
== e1000_phy_igp_3
) &&
3009 (*speed
== SPEED_1000
)) {
3010 ret_val
= e1000_kmrn_lock_loss_workaround_ich8lan(hw
);
3017 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
3018 * @hw: pointer to the HW structure
3020 * Work-around for 82566 Kumeran PCS lock loss:
3021 * On link status change (i.e. PCI reset, speed change) and link is up and
3023 * 0) if workaround is optionally disabled do nothing
3024 * 1) wait 1ms for Kumeran link to come up
3025 * 2) check Kumeran Diagnostic register PCS lock loss bit
3026 * 3) if not set the link is locked (all is good), otherwise...
3028 * 5) repeat up to 10 times
3029 * Note: this is only called for IGP3 copper when speed is 1gb.
3031 static s32
e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw
*hw
)
3033 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
3039 if (!dev_spec
->kmrn_lock_loss_workaround_enabled
)
3043 * Make sure link is up before proceeding. If not just return.
3044 * Attempting this while link is negotiating fouled up link
3047 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
3051 for (i
= 0; i
< 10; i
++) {
3052 /* read once to clear */
3053 ret_val
= e1e_rphy(hw
, IGP3_KMRN_DIAG
, &data
);
3056 /* and again to get new status */
3057 ret_val
= e1e_rphy(hw
, IGP3_KMRN_DIAG
, &data
);
3061 /* check for PCS lock */
3062 if (!(data
& IGP3_KMRN_DIAG_PCS_LOCK_LOSS
))
3065 /* Issue PHY reset */
3066 e1000_phy_hw_reset(hw
);
3069 /* Disable GigE link negotiation */
3070 phy_ctrl
= er32(PHY_CTRL
);
3071 phy_ctrl
|= (E1000_PHY_CTRL_GBE_DISABLE
|
3072 E1000_PHY_CTRL_NOND0A_GBE_DISABLE
);
3073 ew32(PHY_CTRL
, phy_ctrl
);
3076 * Call gig speed drop workaround on Gig disable before accessing
3079 e1000e_gig_downshift_workaround_ich8lan(hw
);
3081 /* unable to acquire PCS lock */
3082 return -E1000_ERR_PHY
;
3086 * e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
3087 * @hw: pointer to the HW structure
3088 * @state: boolean value used to set the current Kumeran workaround state
3090 * If ICH8, set the current Kumeran workaround state (enabled - true
3091 * /disabled - false).
3093 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw
*hw
,
3096 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
3098 if (hw
->mac
.type
!= e1000_ich8lan
) {
3099 e_dbg("Workaround applies to ICH8 only.\n");
3103 dev_spec
->kmrn_lock_loss_workaround_enabled
= state
;
3107 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
3108 * @hw: pointer to the HW structure
3110 * Workaround for 82566 power-down on D3 entry:
3111 * 1) disable gigabit link
3112 * 2) write VR power-down enable
3114 * Continue if successful, else issue LCD reset and repeat
3116 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw
*hw
)
3122 if (hw
->phy
.type
!= e1000_phy_igp_3
)
3125 /* Try the workaround twice (if needed) */
3128 reg
= er32(PHY_CTRL
);
3129 reg
|= (E1000_PHY_CTRL_GBE_DISABLE
|
3130 E1000_PHY_CTRL_NOND0A_GBE_DISABLE
);
3131 ew32(PHY_CTRL
, reg
);
3134 * Call gig speed drop workaround on Gig disable before
3135 * accessing any PHY registers
3137 if (hw
->mac
.type
== e1000_ich8lan
)
3138 e1000e_gig_downshift_workaround_ich8lan(hw
);
3140 /* Write VR power-down enable */
3141 e1e_rphy(hw
, IGP3_VR_CTRL
, &data
);
3142 data
&= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK
;
3143 e1e_wphy(hw
, IGP3_VR_CTRL
, data
| IGP3_VR_CTRL_MODE_SHUTDOWN
);
3145 /* Read it back and test */
3146 e1e_rphy(hw
, IGP3_VR_CTRL
, &data
);
3147 data
&= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK
;
3148 if ((data
== IGP3_VR_CTRL_MODE_SHUTDOWN
) || retry
)
3151 /* Issue PHY reset and repeat at most one more time */
3153 ew32(CTRL
, reg
| E1000_CTRL_PHY_RST
);
3159 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
3160 * @hw: pointer to the HW structure
3162 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
3163 * LPLU, Gig disable, MDIC PHY reset):
3164 * 1) Set Kumeran Near-end loopback
3165 * 2) Clear Kumeran Near-end loopback
3166 * Should only be called for ICH8[m] devices with IGP_3 Phy.
3168 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw
*hw
)
3173 if ((hw
->mac
.type
!= e1000_ich8lan
) ||
3174 (hw
->phy
.type
!= e1000_phy_igp_3
))
3177 ret_val
= e1000e_read_kmrn_reg(hw
, E1000_KMRNCTRLSTA_DIAG_OFFSET
,
3181 reg_data
|= E1000_KMRNCTRLSTA_DIAG_NELPBK
;
3182 ret_val
= e1000e_write_kmrn_reg(hw
, E1000_KMRNCTRLSTA_DIAG_OFFSET
,
3186 reg_data
&= ~E1000_KMRNCTRLSTA_DIAG_NELPBK
;
3187 ret_val
= e1000e_write_kmrn_reg(hw
, E1000_KMRNCTRLSTA_DIAG_OFFSET
,
3192 * e1000e_disable_gig_wol_ich8lan - disable gig during WoL
3193 * @hw: pointer to the HW structure
3195 * During S0 to Sx transition, it is possible the link remains at gig
3196 * instead of negotiating to a lower speed. Before going to Sx, set
3197 * 'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
3200 * Should only be called for applicable parts.
3202 void e1000e_disable_gig_wol_ich8lan(struct e1000_hw
*hw
)
3206 switch (hw
->mac
.type
) {
3208 case e1000_ich10lan
:
3210 phy_ctrl
= er32(PHY_CTRL
);
3211 phy_ctrl
|= E1000_PHY_CTRL_D0A_LPLU
|
3212 E1000_PHY_CTRL_GBE_DISABLE
;
3213 ew32(PHY_CTRL
, phy_ctrl
);
3215 if (hw
->mac
.type
== e1000_pchlan
)
3216 e1000_phy_hw_reset_ich8lan(hw
);
3225 * e1000_cleanup_led_ich8lan - Restore the default LED operation
3226 * @hw: pointer to the HW structure
3228 * Return the LED back to the default configuration.
3230 static s32
e1000_cleanup_led_ich8lan(struct e1000_hw
*hw
)
3232 if (hw
->phy
.type
== e1000_phy_ife
)
3233 return e1e_wphy(hw
, IFE_PHY_SPECIAL_CONTROL_LED
, 0);
3235 ew32(LEDCTL
, hw
->mac
.ledctl_default
);
3240 * e1000_led_on_ich8lan - Turn LEDs on
3241 * @hw: pointer to the HW structure
3245 static s32
e1000_led_on_ich8lan(struct e1000_hw
*hw
)
3247 if (hw
->phy
.type
== e1000_phy_ife
)
3248 return e1e_wphy(hw
, IFE_PHY_SPECIAL_CONTROL_LED
,
3249 (IFE_PSCL_PROBE_MODE
| IFE_PSCL_PROBE_LEDS_ON
));
3251 ew32(LEDCTL
, hw
->mac
.ledctl_mode2
);
3256 * e1000_led_off_ich8lan - Turn LEDs off
3257 * @hw: pointer to the HW structure
3259 * Turn off the LEDs.
3261 static s32
e1000_led_off_ich8lan(struct e1000_hw
*hw
)
3263 if (hw
->phy
.type
== e1000_phy_ife
)
3264 return e1e_wphy(hw
, IFE_PHY_SPECIAL_CONTROL_LED
,
3265 (IFE_PSCL_PROBE_MODE
| IFE_PSCL_PROBE_LEDS_OFF
));
3267 ew32(LEDCTL
, hw
->mac
.ledctl_mode1
);
3272 * e1000_setup_led_pchlan - Configures SW controllable LED
3273 * @hw: pointer to the HW structure
3275 * This prepares the SW controllable LED for use.
3277 static s32
e1000_setup_led_pchlan(struct e1000_hw
*hw
)
3279 return hw
->phy
.ops
.write_reg(hw
, HV_LED_CONFIG
,
3280 (u16
)hw
->mac
.ledctl_mode1
);
3284 * e1000_cleanup_led_pchlan - Restore the default LED operation
3285 * @hw: pointer to the HW structure
3287 * Return the LED back to the default configuration.
3289 static s32
e1000_cleanup_led_pchlan(struct e1000_hw
*hw
)
3291 return hw
->phy
.ops
.write_reg(hw
, HV_LED_CONFIG
,
3292 (u16
)hw
->mac
.ledctl_default
);
3296 * e1000_led_on_pchlan - Turn LEDs on
3297 * @hw: pointer to the HW structure
3301 static s32
e1000_led_on_pchlan(struct e1000_hw
*hw
)
3303 u16 data
= (u16
)hw
->mac
.ledctl_mode2
;
3307 * If no link, then turn LED on by setting the invert bit
3308 * for each LED that's mode is "link_up" in ledctl_mode2.
3310 if (!(er32(STATUS
) & E1000_STATUS_LU
)) {
3311 for (i
= 0; i
< 3; i
++) {
3312 led
= (data
>> (i
* 5)) & E1000_PHY_LED0_MASK
;
3313 if ((led
& E1000_PHY_LED0_MODE_MASK
) !=
3314 E1000_LEDCTL_MODE_LINK_UP
)
3316 if (led
& E1000_PHY_LED0_IVRT
)
3317 data
&= ~(E1000_PHY_LED0_IVRT
<< (i
* 5));
3319 data
|= (E1000_PHY_LED0_IVRT
<< (i
* 5));
3323 return hw
->phy
.ops
.write_reg(hw
, HV_LED_CONFIG
, data
);
3327 * e1000_led_off_pchlan - Turn LEDs off
3328 * @hw: pointer to the HW structure
3330 * Turn off the LEDs.
3332 static s32
e1000_led_off_pchlan(struct e1000_hw
*hw
)
3334 u16 data
= (u16
)hw
->mac
.ledctl_mode1
;
3338 * If no link, then turn LED off by clearing the invert bit
3339 * for each LED that's mode is "link_up" in ledctl_mode1.
3341 if (!(er32(STATUS
) & E1000_STATUS_LU
)) {
3342 for (i
= 0; i
< 3; i
++) {
3343 led
= (data
>> (i
* 5)) & E1000_PHY_LED0_MASK
;
3344 if ((led
& E1000_PHY_LED0_MODE_MASK
) !=
3345 E1000_LEDCTL_MODE_LINK_UP
)
3347 if (led
& E1000_PHY_LED0_IVRT
)
3348 data
&= ~(E1000_PHY_LED0_IVRT
<< (i
* 5));
3350 data
|= (E1000_PHY_LED0_IVRT
<< (i
* 5));
3354 return hw
->phy
.ops
.write_reg(hw
, HV_LED_CONFIG
, data
);
3358 * e1000_get_cfg_done_ich8lan - Read config done bit
3359 * @hw: pointer to the HW structure
3361 * Read the management control register for the config done bit for
3362 * completion status. NOTE: silicon which is EEPROM-less will fail trying
3363 * to read the config done bit, so an error is *ONLY* logged and returns
3364 * 0. If we were to return with error, EEPROM-less silicon
3365 * would not be able to be reset or change link.
3367 static s32
e1000_get_cfg_done_ich8lan(struct e1000_hw
*hw
)
3371 if (hw
->mac
.type
>= e1000_pchlan
) {
3372 u32 status
= er32(STATUS
);
3374 if (status
& E1000_STATUS_PHYRA
)
3375 ew32(STATUS
, status
& ~E1000_STATUS_PHYRA
);
3377 e_dbg("PHY Reset Asserted not set - needs delay\n");
3380 e1000e_get_cfg_done(hw
);
3382 /* If EEPROM is not marked present, init the IGP 3 PHY manually */
3383 if ((hw
->mac
.type
!= e1000_ich10lan
) &&
3384 (hw
->mac
.type
!= e1000_pchlan
)) {
3385 if (((er32(EECD
) & E1000_EECD_PRES
) == 0) &&
3386 (hw
->phy
.type
== e1000_phy_igp_3
)) {
3387 e1000e_phy_init_script_igp3(hw
);
3390 if (e1000_valid_nvm_bank_detect_ich8lan(hw
, &bank
)) {
3391 /* Maybe we should do a basic PHY config */
3392 e_dbg("EEPROM not present\n");
3393 return -E1000_ERR_CONFIG
;
3401 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
3402 * @hw: pointer to the HW structure
3404 * In the case of a PHY power down to save power, or to turn off link during a
3405 * driver unload, or wake on lan is not enabled, remove the link.
3407 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw
*hw
)
3409 /* If the management interface is not enabled, then power down */
3410 if (!(hw
->mac
.ops
.check_mng_mode(hw
) ||
3411 hw
->phy
.ops
.check_reset_block(hw
)))
3412 e1000_power_down_phy_copper(hw
);
3418 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
3419 * @hw: pointer to the HW structure
3421 * Clears hardware counters specific to the silicon family and calls
3422 * clear_hw_cntrs_generic to clear all general purpose counters.
3424 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw
*hw
)
3428 e1000e_clear_hw_cntrs_base(hw
);
3444 /* Clear PHY statistics registers */
3445 if ((hw
->phy
.type
== e1000_phy_82578
) ||
3446 (hw
->phy
.type
== e1000_phy_82577
)) {
3447 hw
->phy
.ops
.read_reg(hw
, HV_SCC_UPPER
, &phy_data
);
3448 hw
->phy
.ops
.read_reg(hw
, HV_SCC_LOWER
, &phy_data
);
3449 hw
->phy
.ops
.read_reg(hw
, HV_ECOL_UPPER
, &phy_data
);
3450 hw
->phy
.ops
.read_reg(hw
, HV_ECOL_LOWER
, &phy_data
);
3451 hw
->phy
.ops
.read_reg(hw
, HV_MCC_UPPER
, &phy_data
);
3452 hw
->phy
.ops
.read_reg(hw
, HV_MCC_LOWER
, &phy_data
);
3453 hw
->phy
.ops
.read_reg(hw
, HV_LATECOL_UPPER
, &phy_data
);
3454 hw
->phy
.ops
.read_reg(hw
, HV_LATECOL_LOWER
, &phy_data
);
3455 hw
->phy
.ops
.read_reg(hw
, HV_COLC_UPPER
, &phy_data
);
3456 hw
->phy
.ops
.read_reg(hw
, HV_COLC_LOWER
, &phy_data
);
3457 hw
->phy
.ops
.read_reg(hw
, HV_DC_UPPER
, &phy_data
);
3458 hw
->phy
.ops
.read_reg(hw
, HV_DC_LOWER
, &phy_data
);
3459 hw
->phy
.ops
.read_reg(hw
, HV_TNCRS_UPPER
, &phy_data
);
3460 hw
->phy
.ops
.read_reg(hw
, HV_TNCRS_LOWER
, &phy_data
);
3464 static struct e1000_mac_operations ich8_mac_ops
= {
3465 .id_led_init
= e1000e_id_led_init
,
3466 .check_mng_mode
= e1000_check_mng_mode_ich8lan
,
3467 .check_for_link
= e1000_check_for_copper_link_ich8lan
,
3468 /* cleanup_led dependent on mac type */
3469 .clear_hw_cntrs
= e1000_clear_hw_cntrs_ich8lan
,
3470 .get_bus_info
= e1000_get_bus_info_ich8lan
,
3471 .get_link_up_info
= e1000_get_link_up_info_ich8lan
,
3472 /* led_on dependent on mac type */
3473 /* led_off dependent on mac type */
3474 .update_mc_addr_list
= e1000e_update_mc_addr_list_generic
,
3475 .reset_hw
= e1000_reset_hw_ich8lan
,
3476 .init_hw
= e1000_init_hw_ich8lan
,
3477 .setup_link
= e1000_setup_link_ich8lan
,
3478 .setup_physical_interface
= e1000_setup_copper_link_ich8lan
,
3479 /* id_led_init dependent on mac type */
3482 static struct e1000_phy_operations ich8_phy_ops
= {
3483 .acquire
= e1000_acquire_swflag_ich8lan
,
3484 .check_reset_block
= e1000_check_reset_block_ich8lan
,
3486 .force_speed_duplex
= e1000_phy_force_speed_duplex_ich8lan
,
3487 .get_cfg_done
= e1000_get_cfg_done_ich8lan
,
3488 .get_cable_length
= e1000e_get_cable_length_igp_2
,
3489 .get_info
= e1000_get_phy_info_ich8lan
,
3490 .read_reg
= e1000e_read_phy_reg_igp
,
3491 .release
= e1000_release_swflag_ich8lan
,
3492 .reset
= e1000_phy_hw_reset_ich8lan
,
3493 .set_d0_lplu_state
= e1000_set_d0_lplu_state_ich8lan
,
3494 .set_d3_lplu_state
= e1000_set_d3_lplu_state_ich8lan
,
3495 .write_reg
= e1000e_write_phy_reg_igp
,
3498 static struct e1000_nvm_operations ich8_nvm_ops
= {
3499 .acquire
= e1000_acquire_nvm_ich8lan
,
3500 .read
= e1000_read_nvm_ich8lan
,
3501 .release
= e1000_release_nvm_ich8lan
,
3502 .update
= e1000_update_nvm_checksum_ich8lan
,
3503 .valid_led_default
= e1000_valid_led_default_ich8lan
,
3504 .validate
= e1000_validate_nvm_checksum_ich8lan
,
3505 .write
= e1000_write_nvm_ich8lan
,
3508 struct e1000_info e1000_ich8_info
= {
3509 .mac
= e1000_ich8lan
,
3510 .flags
= FLAG_HAS_WOL
3512 | FLAG_RX_CSUM_ENABLED
3513 | FLAG_HAS_CTRLEXT_ON_LOAD
3518 .max_hw_frame_size
= ETH_FRAME_LEN
+ ETH_FCS_LEN
,
3519 .get_variants
= e1000_get_variants_ich8lan
,
3520 .mac_ops
= &ich8_mac_ops
,
3521 .phy_ops
= &ich8_phy_ops
,
3522 .nvm_ops
= &ich8_nvm_ops
,
3525 struct e1000_info e1000_ich9_info
= {
3526 .mac
= e1000_ich9lan
,
3527 .flags
= FLAG_HAS_JUMBO_FRAMES
3530 | FLAG_RX_CSUM_ENABLED
3531 | FLAG_HAS_CTRLEXT_ON_LOAD
3537 .max_hw_frame_size
= DEFAULT_JUMBO
,
3538 .get_variants
= e1000_get_variants_ich8lan
,
3539 .mac_ops
= &ich8_mac_ops
,
3540 .phy_ops
= &ich8_phy_ops
,
3541 .nvm_ops
= &ich8_nvm_ops
,
3544 struct e1000_info e1000_ich10_info
= {
3545 .mac
= e1000_ich10lan
,
3546 .flags
= FLAG_HAS_JUMBO_FRAMES
3549 | FLAG_RX_CSUM_ENABLED
3550 | FLAG_HAS_CTRLEXT_ON_LOAD
3556 .max_hw_frame_size
= DEFAULT_JUMBO
,
3557 .get_variants
= e1000_get_variants_ich8lan
,
3558 .mac_ops
= &ich8_mac_ops
,
3559 .phy_ops
= &ich8_phy_ops
,
3560 .nvm_ops
= &ich8_nvm_ops
,
3563 struct e1000_info e1000_pch_info
= {
3564 .mac
= e1000_pchlan
,
3565 .flags
= FLAG_IS_ICH
3567 | FLAG_RX_CSUM_ENABLED
3568 | FLAG_HAS_CTRLEXT_ON_LOAD
3571 | FLAG_HAS_JUMBO_FRAMES
3572 | FLAG_DISABLE_FC_PAUSE_TIME
/* errata */
3575 .max_hw_frame_size
= 4096,
3576 .get_variants
= e1000_get_variants_ich8lan
,
3577 .mac_ops
= &ich8_mac_ops
,
3578 .phy_ops
= &ich8_phy_ops
,
3579 .nvm_ops
= &ich8_nvm_ops
,