4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_counter.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/kthread.h>
59 #include <linux/proc_fs.h>
60 #include <linux/seq_file.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/reciprocal_div.h>
68 #include <linux/unistd.h>
69 #include <linux/pagemap.h>
70 #include <linux/hrtimer.h>
71 #include <linux/tick.h>
72 #include <linux/debugfs.h>
73 #include <linux/ctype.h>
74 #include <linux/ftrace.h>
77 #include <asm/irq_regs.h>
79 #include "sched_cpupri.h"
81 #define CREATE_TRACE_POINTS
82 #include <trace/events/sched.h>
85 * Convert user-nice values [ -20 ... 0 ... 19 ]
86 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
89 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
90 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
91 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
94 * 'User priority' is the nice value converted to something we
95 * can work with better when scaling various scheduler parameters,
96 * it's a [ 0 ... 39 ] range.
98 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
99 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
100 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
103 * Helpers for converting nanosecond timing to jiffy resolution
105 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
107 #define NICE_0_LOAD SCHED_LOAD_SCALE
108 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
111 * These are the 'tuning knobs' of the scheduler:
113 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
114 * Timeslices get refilled after they expire.
116 #define DEF_TIMESLICE (100 * HZ / 1000)
119 * single value that denotes runtime == period, ie unlimited time.
121 #define RUNTIME_INF ((u64)~0ULL)
125 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
);
128 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
129 * Since cpu_power is a 'constant', we can use a reciprocal divide.
131 static inline u32
sg_div_cpu_power(const struct sched_group
*sg
, u32 load
)
133 return reciprocal_divide(load
, sg
->reciprocal_cpu_power
);
137 * Each time a sched group cpu_power is changed,
138 * we must compute its reciprocal value
140 static inline void sg_inc_cpu_power(struct sched_group
*sg
, u32 val
)
142 sg
->__cpu_power
+= val
;
143 sg
->reciprocal_cpu_power
= reciprocal_value(sg
->__cpu_power
);
147 static inline int rt_policy(int policy
)
149 if (unlikely(policy
== SCHED_FIFO
|| policy
== SCHED_RR
))
154 static inline int task_has_rt_policy(struct task_struct
*p
)
156 return rt_policy(p
->policy
);
160 * This is the priority-queue data structure of the RT scheduling class:
162 struct rt_prio_array
{
163 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
164 struct list_head queue
[MAX_RT_PRIO
];
167 struct rt_bandwidth
{
168 /* nests inside the rq lock: */
169 spinlock_t rt_runtime_lock
;
172 struct hrtimer rt_period_timer
;
175 static struct rt_bandwidth def_rt_bandwidth
;
177 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
);
179 static enum hrtimer_restart
sched_rt_period_timer(struct hrtimer
*timer
)
181 struct rt_bandwidth
*rt_b
=
182 container_of(timer
, struct rt_bandwidth
, rt_period_timer
);
188 now
= hrtimer_cb_get_time(timer
);
189 overrun
= hrtimer_forward(timer
, now
, rt_b
->rt_period
);
194 idle
= do_sched_rt_period_timer(rt_b
, overrun
);
197 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
201 void init_rt_bandwidth(struct rt_bandwidth
*rt_b
, u64 period
, u64 runtime
)
203 rt_b
->rt_period
= ns_to_ktime(period
);
204 rt_b
->rt_runtime
= runtime
;
206 spin_lock_init(&rt_b
->rt_runtime_lock
);
208 hrtimer_init(&rt_b
->rt_period_timer
,
209 CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
210 rt_b
->rt_period_timer
.function
= sched_rt_period_timer
;
213 static inline int rt_bandwidth_enabled(void)
215 return sysctl_sched_rt_runtime
>= 0;
218 static void start_rt_bandwidth(struct rt_bandwidth
*rt_b
)
222 if (!rt_bandwidth_enabled() || rt_b
->rt_runtime
== RUNTIME_INF
)
225 if (hrtimer_active(&rt_b
->rt_period_timer
))
228 spin_lock(&rt_b
->rt_runtime_lock
);
233 if (hrtimer_active(&rt_b
->rt_period_timer
))
236 now
= hrtimer_cb_get_time(&rt_b
->rt_period_timer
);
237 hrtimer_forward(&rt_b
->rt_period_timer
, now
, rt_b
->rt_period
);
239 soft
= hrtimer_get_softexpires(&rt_b
->rt_period_timer
);
240 hard
= hrtimer_get_expires(&rt_b
->rt_period_timer
);
241 delta
= ktime_to_ns(ktime_sub(hard
, soft
));
242 __hrtimer_start_range_ns(&rt_b
->rt_period_timer
, soft
, delta
,
243 HRTIMER_MODE_ABS_PINNED
, 0);
245 spin_unlock(&rt_b
->rt_runtime_lock
);
248 #ifdef CONFIG_RT_GROUP_SCHED
249 static void destroy_rt_bandwidth(struct rt_bandwidth
*rt_b
)
251 hrtimer_cancel(&rt_b
->rt_period_timer
);
256 * sched_domains_mutex serializes calls to arch_init_sched_domains,
257 * detach_destroy_domains and partition_sched_domains.
259 static DEFINE_MUTEX(sched_domains_mutex
);
261 #ifdef CONFIG_GROUP_SCHED
263 #include <linux/cgroup.h>
267 static LIST_HEAD(task_groups
);
269 /* task group related information */
271 #ifdef CONFIG_CGROUP_SCHED
272 struct cgroup_subsys_state css
;
275 #ifdef CONFIG_USER_SCHED
279 #ifdef CONFIG_FAIR_GROUP_SCHED
280 /* schedulable entities of this group on each cpu */
281 struct sched_entity
**se
;
282 /* runqueue "owned" by this group on each cpu */
283 struct cfs_rq
**cfs_rq
;
284 unsigned long shares
;
287 #ifdef CONFIG_RT_GROUP_SCHED
288 struct sched_rt_entity
**rt_se
;
289 struct rt_rq
**rt_rq
;
291 struct rt_bandwidth rt_bandwidth
;
295 struct list_head list
;
297 struct task_group
*parent
;
298 struct list_head siblings
;
299 struct list_head children
;
302 #ifdef CONFIG_USER_SCHED
304 /* Helper function to pass uid information to create_sched_user() */
305 void set_tg_uid(struct user_struct
*user
)
307 user
->tg
->uid
= user
->uid
;
312 * Every UID task group (including init_task_group aka UID-0) will
313 * be a child to this group.
315 struct task_group root_task_group
;
317 #ifdef CONFIG_FAIR_GROUP_SCHED
318 /* Default task group's sched entity on each cpu */
319 static DEFINE_PER_CPU(struct sched_entity
, init_sched_entity
);
320 /* Default task group's cfs_rq on each cpu */
321 static DEFINE_PER_CPU(struct cfs_rq
, init_cfs_rq
) ____cacheline_aligned_in_smp
;
322 #endif /* CONFIG_FAIR_GROUP_SCHED */
324 #ifdef CONFIG_RT_GROUP_SCHED
325 static DEFINE_PER_CPU(struct sched_rt_entity
, init_sched_rt_entity
);
326 static DEFINE_PER_CPU(struct rt_rq
, init_rt_rq
) ____cacheline_aligned_in_smp
;
327 #endif /* CONFIG_RT_GROUP_SCHED */
328 #else /* !CONFIG_USER_SCHED */
329 #define root_task_group init_task_group
330 #endif /* CONFIG_USER_SCHED */
332 /* task_group_lock serializes add/remove of task groups and also changes to
333 * a task group's cpu shares.
335 static DEFINE_SPINLOCK(task_group_lock
);
338 static int root_task_group_empty(void)
340 return list_empty(&root_task_group
.children
);
344 #ifdef CONFIG_FAIR_GROUP_SCHED
345 #ifdef CONFIG_USER_SCHED
346 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
347 #else /* !CONFIG_USER_SCHED */
348 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
349 #endif /* CONFIG_USER_SCHED */
352 * A weight of 0 or 1 can cause arithmetics problems.
353 * A weight of a cfs_rq is the sum of weights of which entities
354 * are queued on this cfs_rq, so a weight of a entity should not be
355 * too large, so as the shares value of a task group.
356 * (The default weight is 1024 - so there's no practical
357 * limitation from this.)
360 #define MAX_SHARES (1UL << 18)
362 static int init_task_group_load
= INIT_TASK_GROUP_LOAD
;
365 /* Default task group.
366 * Every task in system belong to this group at bootup.
368 struct task_group init_task_group
;
370 /* return group to which a task belongs */
371 static inline struct task_group
*task_group(struct task_struct
*p
)
373 struct task_group
*tg
;
375 #ifdef CONFIG_USER_SCHED
377 tg
= __task_cred(p
)->user
->tg
;
379 #elif defined(CONFIG_CGROUP_SCHED)
380 tg
= container_of(task_subsys_state(p
, cpu_cgroup_subsys_id
),
381 struct task_group
, css
);
383 tg
= &init_task_group
;
388 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
389 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
)
391 #ifdef CONFIG_FAIR_GROUP_SCHED
392 p
->se
.cfs_rq
= task_group(p
)->cfs_rq
[cpu
];
393 p
->se
.parent
= task_group(p
)->se
[cpu
];
396 #ifdef CONFIG_RT_GROUP_SCHED
397 p
->rt
.rt_rq
= task_group(p
)->rt_rq
[cpu
];
398 p
->rt
.parent
= task_group(p
)->rt_se
[cpu
];
405 static int root_task_group_empty(void)
411 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
) { }
412 static inline struct task_group
*task_group(struct task_struct
*p
)
417 #endif /* CONFIG_GROUP_SCHED */
419 /* CFS-related fields in a runqueue */
421 struct load_weight load
;
422 unsigned long nr_running
;
427 struct rb_root tasks_timeline
;
428 struct rb_node
*rb_leftmost
;
430 struct list_head tasks
;
431 struct list_head
*balance_iterator
;
434 * 'curr' points to currently running entity on this cfs_rq.
435 * It is set to NULL otherwise (i.e when none are currently running).
437 struct sched_entity
*curr
, *next
, *last
;
439 unsigned int nr_spread_over
;
441 #ifdef CONFIG_FAIR_GROUP_SCHED
442 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
445 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
446 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
447 * (like users, containers etc.)
449 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
450 * list is used during load balance.
452 struct list_head leaf_cfs_rq_list
;
453 struct task_group
*tg
; /* group that "owns" this runqueue */
457 * the part of load.weight contributed by tasks
459 unsigned long task_weight
;
462 * h_load = weight * f(tg)
464 * Where f(tg) is the recursive weight fraction assigned to
467 unsigned long h_load
;
470 * this cpu's part of tg->shares
472 unsigned long shares
;
475 * load.weight at the time we set shares
477 unsigned long rq_weight
;
482 /* Real-Time classes' related field in a runqueue: */
484 struct rt_prio_array active
;
485 unsigned long rt_nr_running
;
486 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
488 int curr
; /* highest queued rt task prio */
490 int next
; /* next highest */
495 unsigned long rt_nr_migratory
;
497 struct plist_head pushable_tasks
;
502 /* Nests inside the rq lock: */
503 spinlock_t rt_runtime_lock
;
505 #ifdef CONFIG_RT_GROUP_SCHED
506 unsigned long rt_nr_boosted
;
509 struct list_head leaf_rt_rq_list
;
510 struct task_group
*tg
;
511 struct sched_rt_entity
*rt_se
;
518 * We add the notion of a root-domain which will be used to define per-domain
519 * variables. Each exclusive cpuset essentially defines an island domain by
520 * fully partitioning the member cpus from any other cpuset. Whenever a new
521 * exclusive cpuset is created, we also create and attach a new root-domain
528 cpumask_var_t online
;
531 * The "RT overload" flag: it gets set if a CPU has more than
532 * one runnable RT task.
534 cpumask_var_t rto_mask
;
537 struct cpupri cpupri
;
539 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
541 * Preferred wake up cpu nominated by sched_mc balance that will be
542 * used when most cpus are idle in the system indicating overall very
543 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
545 unsigned int sched_mc_preferred_wakeup_cpu
;
550 * By default the system creates a single root-domain with all cpus as
551 * members (mimicking the global state we have today).
553 static struct root_domain def_root_domain
;
558 * This is the main, per-CPU runqueue data structure.
560 * Locking rule: those places that want to lock multiple runqueues
561 * (such as the load balancing or the thread migration code), lock
562 * acquire operations must be ordered by ascending &runqueue.
569 * nr_running and cpu_load should be in the same cacheline because
570 * remote CPUs use both these fields when doing load calculation.
572 unsigned long nr_running
;
573 #define CPU_LOAD_IDX_MAX 5
574 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
576 unsigned long last_tick_seen
;
577 unsigned char in_nohz_recently
;
579 /* capture load from *all* tasks on this cpu: */
580 struct load_weight load
;
581 unsigned long nr_load_updates
;
583 u64 nr_migrations_in
;
588 #ifdef CONFIG_FAIR_GROUP_SCHED
589 /* list of leaf cfs_rq on this cpu: */
590 struct list_head leaf_cfs_rq_list
;
592 #ifdef CONFIG_RT_GROUP_SCHED
593 struct list_head leaf_rt_rq_list
;
597 * This is part of a global counter where only the total sum
598 * over all CPUs matters. A task can increase this counter on
599 * one CPU and if it got migrated afterwards it may decrease
600 * it on another CPU. Always updated under the runqueue lock:
602 unsigned long nr_uninterruptible
;
604 struct task_struct
*curr
, *idle
;
605 unsigned long next_balance
;
606 struct mm_struct
*prev_mm
;
613 struct root_domain
*rd
;
614 struct sched_domain
*sd
;
616 unsigned char idle_at_tick
;
617 /* For active balancing */
620 /* cpu of this runqueue: */
624 unsigned long avg_load_per_task
;
626 struct task_struct
*migration_thread
;
627 struct list_head migration_queue
;
630 /* calc_load related fields */
631 unsigned long calc_load_update
;
632 long calc_load_active
;
634 #ifdef CONFIG_SCHED_HRTICK
636 int hrtick_csd_pending
;
637 struct call_single_data hrtick_csd
;
639 struct hrtimer hrtick_timer
;
642 #ifdef CONFIG_SCHEDSTATS
644 struct sched_info rq_sched_info
;
645 unsigned long long rq_cpu_time
;
646 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
648 /* sys_sched_yield() stats */
649 unsigned int yld_count
;
651 /* schedule() stats */
652 unsigned int sched_switch
;
653 unsigned int sched_count
;
654 unsigned int sched_goidle
;
656 /* try_to_wake_up() stats */
657 unsigned int ttwu_count
;
658 unsigned int ttwu_local
;
661 unsigned int bkl_count
;
665 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
667 static inline void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int sync
)
669 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
, sync
);
672 static inline int cpu_of(struct rq
*rq
)
682 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
683 * See detach_destroy_domains: synchronize_sched for details.
685 * The domain tree of any CPU may only be accessed from within
686 * preempt-disabled sections.
688 #define for_each_domain(cpu, __sd) \
689 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
691 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
692 #define this_rq() (&__get_cpu_var(runqueues))
693 #define task_rq(p) cpu_rq(task_cpu(p))
694 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
696 inline void update_rq_clock(struct rq
*rq
)
698 rq
->clock
= sched_clock_cpu(cpu_of(rq
));
702 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
704 #ifdef CONFIG_SCHED_DEBUG
705 # define const_debug __read_mostly
707 # define const_debug static const
713 * Returns true if the current cpu runqueue is locked.
714 * This interface allows printk to be called with the runqueue lock
715 * held and know whether or not it is OK to wake up the klogd.
717 int runqueue_is_locked(void)
720 struct rq
*rq
= cpu_rq(cpu
);
723 ret
= spin_is_locked(&rq
->lock
);
729 * Debugging: various feature bits
732 #define SCHED_FEAT(name, enabled) \
733 __SCHED_FEAT_##name ,
736 #include "sched_features.h"
741 #define SCHED_FEAT(name, enabled) \
742 (1UL << __SCHED_FEAT_##name) * enabled |
744 const_debug
unsigned int sysctl_sched_features
=
745 #include "sched_features.h"
750 #ifdef CONFIG_SCHED_DEBUG
751 #define SCHED_FEAT(name, enabled) \
754 static __read_mostly
char *sched_feat_names
[] = {
755 #include "sched_features.h"
761 static int sched_feat_show(struct seq_file
*m
, void *v
)
765 for (i
= 0; sched_feat_names
[i
]; i
++) {
766 if (!(sysctl_sched_features
& (1UL << i
)))
768 seq_printf(m
, "%s ", sched_feat_names
[i
]);
776 sched_feat_write(struct file
*filp
, const char __user
*ubuf
,
777 size_t cnt
, loff_t
*ppos
)
787 if (copy_from_user(&buf
, ubuf
, cnt
))
792 if (strncmp(buf
, "NO_", 3) == 0) {
797 for (i
= 0; sched_feat_names
[i
]; i
++) {
798 int len
= strlen(sched_feat_names
[i
]);
800 if (strncmp(cmp
, sched_feat_names
[i
], len
) == 0) {
802 sysctl_sched_features
&= ~(1UL << i
);
804 sysctl_sched_features
|= (1UL << i
);
809 if (!sched_feat_names
[i
])
817 static int sched_feat_open(struct inode
*inode
, struct file
*filp
)
819 return single_open(filp
, sched_feat_show
, NULL
);
822 static struct file_operations sched_feat_fops
= {
823 .open
= sched_feat_open
,
824 .write
= sched_feat_write
,
827 .release
= single_release
,
830 static __init
int sched_init_debug(void)
832 debugfs_create_file("sched_features", 0644, NULL
, NULL
,
837 late_initcall(sched_init_debug
);
841 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
844 * Number of tasks to iterate in a single balance run.
845 * Limited because this is done with IRQs disabled.
847 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
850 * ratelimit for updating the group shares.
853 unsigned int sysctl_sched_shares_ratelimit
= 250000;
856 * Inject some fuzzyness into changing the per-cpu group shares
857 * this avoids remote rq-locks at the expense of fairness.
860 unsigned int sysctl_sched_shares_thresh
= 4;
863 * period over which we measure -rt task cpu usage in us.
866 unsigned int sysctl_sched_rt_period
= 1000000;
868 static __read_mostly
int scheduler_running
;
871 * part of the period that we allow rt tasks to run in us.
874 int sysctl_sched_rt_runtime
= 950000;
876 static inline u64
global_rt_period(void)
878 return (u64
)sysctl_sched_rt_period
* NSEC_PER_USEC
;
881 static inline u64
global_rt_runtime(void)
883 if (sysctl_sched_rt_runtime
< 0)
886 return (u64
)sysctl_sched_rt_runtime
* NSEC_PER_USEC
;
889 #ifndef prepare_arch_switch
890 # define prepare_arch_switch(next) do { } while (0)
892 #ifndef finish_arch_switch
893 # define finish_arch_switch(prev) do { } while (0)
896 static inline int task_current(struct rq
*rq
, struct task_struct
*p
)
898 return rq
->curr
== p
;
901 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
902 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
904 return task_current(rq
, p
);
907 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
911 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
913 #ifdef CONFIG_DEBUG_SPINLOCK
914 /* this is a valid case when another task releases the spinlock */
915 rq
->lock
.owner
= current
;
918 * If we are tracking spinlock dependencies then we have to
919 * fix up the runqueue lock - which gets 'carried over' from
922 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
924 spin_unlock_irq(&rq
->lock
);
927 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
928 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
933 return task_current(rq
, p
);
937 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
941 * We can optimise this out completely for !SMP, because the
942 * SMP rebalancing from interrupt is the only thing that cares
947 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
948 spin_unlock_irq(&rq
->lock
);
950 spin_unlock(&rq
->lock
);
954 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
958 * After ->oncpu is cleared, the task can be moved to a different CPU.
959 * We must ensure this doesn't happen until the switch is completely
965 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
969 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
972 * __task_rq_lock - lock the runqueue a given task resides on.
973 * Must be called interrupts disabled.
975 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
979 struct rq
*rq
= task_rq(p
);
980 spin_lock(&rq
->lock
);
981 if (likely(rq
== task_rq(p
)))
983 spin_unlock(&rq
->lock
);
988 * task_rq_lock - lock the runqueue a given task resides on and disable
989 * interrupts. Note the ordering: we can safely lookup the task_rq without
990 * explicitly disabling preemption.
992 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
998 local_irq_save(*flags
);
1000 spin_lock(&rq
->lock
);
1001 if (likely(rq
== task_rq(p
)))
1003 spin_unlock_irqrestore(&rq
->lock
, *flags
);
1007 void task_rq_unlock_wait(struct task_struct
*p
)
1009 struct rq
*rq
= task_rq(p
);
1011 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
1012 spin_unlock_wait(&rq
->lock
);
1015 static void __task_rq_unlock(struct rq
*rq
)
1016 __releases(rq
->lock
)
1018 spin_unlock(&rq
->lock
);
1021 static inline void task_rq_unlock(struct rq
*rq
, unsigned long *flags
)
1022 __releases(rq
->lock
)
1024 spin_unlock_irqrestore(&rq
->lock
, *flags
);
1028 * this_rq_lock - lock this runqueue and disable interrupts.
1030 static struct rq
*this_rq_lock(void)
1031 __acquires(rq
->lock
)
1035 local_irq_disable();
1037 spin_lock(&rq
->lock
);
1042 #ifdef CONFIG_SCHED_HRTICK
1044 * Use HR-timers to deliver accurate preemption points.
1046 * Its all a bit involved since we cannot program an hrt while holding the
1047 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1050 * When we get rescheduled we reprogram the hrtick_timer outside of the
1056 * - enabled by features
1057 * - hrtimer is actually high res
1059 static inline int hrtick_enabled(struct rq
*rq
)
1061 if (!sched_feat(HRTICK
))
1063 if (!cpu_active(cpu_of(rq
)))
1065 return hrtimer_is_hres_active(&rq
->hrtick_timer
);
1068 static void hrtick_clear(struct rq
*rq
)
1070 if (hrtimer_active(&rq
->hrtick_timer
))
1071 hrtimer_cancel(&rq
->hrtick_timer
);
1075 * High-resolution timer tick.
1076 * Runs from hardirq context with interrupts disabled.
1078 static enum hrtimer_restart
hrtick(struct hrtimer
*timer
)
1080 struct rq
*rq
= container_of(timer
, struct rq
, hrtick_timer
);
1082 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
1084 spin_lock(&rq
->lock
);
1085 update_rq_clock(rq
);
1086 rq
->curr
->sched_class
->task_tick(rq
, rq
->curr
, 1);
1087 spin_unlock(&rq
->lock
);
1089 return HRTIMER_NORESTART
;
1094 * called from hardirq (IPI) context
1096 static void __hrtick_start(void *arg
)
1098 struct rq
*rq
= arg
;
1100 spin_lock(&rq
->lock
);
1101 hrtimer_restart(&rq
->hrtick_timer
);
1102 rq
->hrtick_csd_pending
= 0;
1103 spin_unlock(&rq
->lock
);
1107 * Called to set the hrtick timer state.
1109 * called with rq->lock held and irqs disabled
1111 static void hrtick_start(struct rq
*rq
, u64 delay
)
1113 struct hrtimer
*timer
= &rq
->hrtick_timer
;
1114 ktime_t time
= ktime_add_ns(timer
->base
->get_time(), delay
);
1116 hrtimer_set_expires(timer
, time
);
1118 if (rq
== this_rq()) {
1119 hrtimer_restart(timer
);
1120 } else if (!rq
->hrtick_csd_pending
) {
1121 __smp_call_function_single(cpu_of(rq
), &rq
->hrtick_csd
, 0);
1122 rq
->hrtick_csd_pending
= 1;
1127 hotplug_hrtick(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
1129 int cpu
= (int)(long)hcpu
;
1132 case CPU_UP_CANCELED
:
1133 case CPU_UP_CANCELED_FROZEN
:
1134 case CPU_DOWN_PREPARE
:
1135 case CPU_DOWN_PREPARE_FROZEN
:
1137 case CPU_DEAD_FROZEN
:
1138 hrtick_clear(cpu_rq(cpu
));
1145 static __init
void init_hrtick(void)
1147 hotcpu_notifier(hotplug_hrtick
, 0);
1151 * Called to set the hrtick timer state.
1153 * called with rq->lock held and irqs disabled
1155 static void hrtick_start(struct rq
*rq
, u64 delay
)
1157 __hrtimer_start_range_ns(&rq
->hrtick_timer
, ns_to_ktime(delay
), 0,
1158 HRTIMER_MODE_REL_PINNED
, 0);
1161 static inline void init_hrtick(void)
1164 #endif /* CONFIG_SMP */
1166 static void init_rq_hrtick(struct rq
*rq
)
1169 rq
->hrtick_csd_pending
= 0;
1171 rq
->hrtick_csd
.flags
= 0;
1172 rq
->hrtick_csd
.func
= __hrtick_start
;
1173 rq
->hrtick_csd
.info
= rq
;
1176 hrtimer_init(&rq
->hrtick_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1177 rq
->hrtick_timer
.function
= hrtick
;
1179 #else /* CONFIG_SCHED_HRTICK */
1180 static inline void hrtick_clear(struct rq
*rq
)
1184 static inline void init_rq_hrtick(struct rq
*rq
)
1188 static inline void init_hrtick(void)
1191 #endif /* CONFIG_SCHED_HRTICK */
1194 * resched_task - mark a task 'to be rescheduled now'.
1196 * On UP this means the setting of the need_resched flag, on SMP it
1197 * might also involve a cross-CPU call to trigger the scheduler on
1202 #ifndef tsk_is_polling
1203 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1206 static void resched_task(struct task_struct
*p
)
1210 assert_spin_locked(&task_rq(p
)->lock
);
1212 if (test_tsk_need_resched(p
))
1215 set_tsk_need_resched(p
);
1218 if (cpu
== smp_processor_id())
1221 /* NEED_RESCHED must be visible before we test polling */
1223 if (!tsk_is_polling(p
))
1224 smp_send_reschedule(cpu
);
1227 static void resched_cpu(int cpu
)
1229 struct rq
*rq
= cpu_rq(cpu
);
1230 unsigned long flags
;
1232 if (!spin_trylock_irqsave(&rq
->lock
, flags
))
1234 resched_task(cpu_curr(cpu
));
1235 spin_unlock_irqrestore(&rq
->lock
, flags
);
1240 * When add_timer_on() enqueues a timer into the timer wheel of an
1241 * idle CPU then this timer might expire before the next timer event
1242 * which is scheduled to wake up that CPU. In case of a completely
1243 * idle system the next event might even be infinite time into the
1244 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1245 * leaves the inner idle loop so the newly added timer is taken into
1246 * account when the CPU goes back to idle and evaluates the timer
1247 * wheel for the next timer event.
1249 void wake_up_idle_cpu(int cpu
)
1251 struct rq
*rq
= cpu_rq(cpu
);
1253 if (cpu
== smp_processor_id())
1257 * This is safe, as this function is called with the timer
1258 * wheel base lock of (cpu) held. When the CPU is on the way
1259 * to idle and has not yet set rq->curr to idle then it will
1260 * be serialized on the timer wheel base lock and take the new
1261 * timer into account automatically.
1263 if (rq
->curr
!= rq
->idle
)
1267 * We can set TIF_RESCHED on the idle task of the other CPU
1268 * lockless. The worst case is that the other CPU runs the
1269 * idle task through an additional NOOP schedule()
1271 set_tsk_need_resched(rq
->idle
);
1273 /* NEED_RESCHED must be visible before we test polling */
1275 if (!tsk_is_polling(rq
->idle
))
1276 smp_send_reschedule(cpu
);
1278 #endif /* CONFIG_NO_HZ */
1280 #else /* !CONFIG_SMP */
1281 static void resched_task(struct task_struct
*p
)
1283 assert_spin_locked(&task_rq(p
)->lock
);
1284 set_tsk_need_resched(p
);
1286 #endif /* CONFIG_SMP */
1288 #if BITS_PER_LONG == 32
1289 # define WMULT_CONST (~0UL)
1291 # define WMULT_CONST (1UL << 32)
1294 #define WMULT_SHIFT 32
1297 * Shift right and round:
1299 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1302 * delta *= weight / lw
1304 static unsigned long
1305 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
1306 struct load_weight
*lw
)
1310 if (!lw
->inv_weight
) {
1311 if (BITS_PER_LONG
> 32 && unlikely(lw
->weight
>= WMULT_CONST
))
1314 lw
->inv_weight
= 1 + (WMULT_CONST
-lw
->weight
/2)
1318 tmp
= (u64
)delta_exec
* weight
;
1320 * Check whether we'd overflow the 64-bit multiplication:
1322 if (unlikely(tmp
> WMULT_CONST
))
1323 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
1326 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
1328 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
1331 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
1337 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
1344 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1345 * of tasks with abnormal "nice" values across CPUs the contribution that
1346 * each task makes to its run queue's load is weighted according to its
1347 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1348 * scaled version of the new time slice allocation that they receive on time
1352 #define WEIGHT_IDLEPRIO 3
1353 #define WMULT_IDLEPRIO 1431655765
1356 * Nice levels are multiplicative, with a gentle 10% change for every
1357 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1358 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1359 * that remained on nice 0.
1361 * The "10% effect" is relative and cumulative: from _any_ nice level,
1362 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1363 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1364 * If a task goes up by ~10% and another task goes down by ~10% then
1365 * the relative distance between them is ~25%.)
1367 static const int prio_to_weight
[40] = {
1368 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1369 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1370 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1371 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1372 /* 0 */ 1024, 820, 655, 526, 423,
1373 /* 5 */ 335, 272, 215, 172, 137,
1374 /* 10 */ 110, 87, 70, 56, 45,
1375 /* 15 */ 36, 29, 23, 18, 15,
1379 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1381 * In cases where the weight does not change often, we can use the
1382 * precalculated inverse to speed up arithmetics by turning divisions
1383 * into multiplications:
1385 static const u32 prio_to_wmult
[40] = {
1386 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1387 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1388 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1389 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1390 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1391 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1392 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1393 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1396 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
);
1399 * runqueue iterator, to support SMP load-balancing between different
1400 * scheduling classes, without having to expose their internal data
1401 * structures to the load-balancing proper:
1403 struct rq_iterator
{
1405 struct task_struct
*(*start
)(void *);
1406 struct task_struct
*(*next
)(void *);
1410 static unsigned long
1411 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1412 unsigned long max_load_move
, struct sched_domain
*sd
,
1413 enum cpu_idle_type idle
, int *all_pinned
,
1414 int *this_best_prio
, struct rq_iterator
*iterator
);
1417 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1418 struct sched_domain
*sd
, enum cpu_idle_type idle
,
1419 struct rq_iterator
*iterator
);
1422 /* Time spent by the tasks of the cpu accounting group executing in ... */
1423 enum cpuacct_stat_index
{
1424 CPUACCT_STAT_USER
, /* ... user mode */
1425 CPUACCT_STAT_SYSTEM
, /* ... kernel mode */
1427 CPUACCT_STAT_NSTATS
,
1430 #ifdef CONFIG_CGROUP_CPUACCT
1431 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
);
1432 static void cpuacct_update_stats(struct task_struct
*tsk
,
1433 enum cpuacct_stat_index idx
, cputime_t val
);
1435 static inline void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
) {}
1436 static inline void cpuacct_update_stats(struct task_struct
*tsk
,
1437 enum cpuacct_stat_index idx
, cputime_t val
) {}
1440 static inline void inc_cpu_load(struct rq
*rq
, unsigned long load
)
1442 update_load_add(&rq
->load
, load
);
1445 static inline void dec_cpu_load(struct rq
*rq
, unsigned long load
)
1447 update_load_sub(&rq
->load
, load
);
1450 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1451 typedef int (*tg_visitor
)(struct task_group
*, void *);
1454 * Iterate the full tree, calling @down when first entering a node and @up when
1455 * leaving it for the final time.
1457 static int walk_tg_tree(tg_visitor down
, tg_visitor up
, void *data
)
1459 struct task_group
*parent
, *child
;
1463 parent
= &root_task_group
;
1465 ret
= (*down
)(parent
, data
);
1468 list_for_each_entry_rcu(child
, &parent
->children
, siblings
) {
1475 ret
= (*up
)(parent
, data
);
1480 parent
= parent
->parent
;
1489 static int tg_nop(struct task_group
*tg
, void *data
)
1496 static unsigned long source_load(int cpu
, int type
);
1497 static unsigned long target_load(int cpu
, int type
);
1498 static int task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
);
1500 static unsigned long cpu_avg_load_per_task(int cpu
)
1502 struct rq
*rq
= cpu_rq(cpu
);
1503 unsigned long nr_running
= ACCESS_ONCE(rq
->nr_running
);
1506 rq
->avg_load_per_task
= rq
->load
.weight
/ nr_running
;
1508 rq
->avg_load_per_task
= 0;
1510 return rq
->avg_load_per_task
;
1513 #ifdef CONFIG_FAIR_GROUP_SCHED
1515 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
);
1518 * Calculate and set the cpu's group shares.
1521 update_group_shares_cpu(struct task_group
*tg
, int cpu
,
1522 unsigned long sd_shares
, unsigned long sd_rq_weight
)
1524 unsigned long shares
;
1525 unsigned long rq_weight
;
1530 rq_weight
= tg
->cfs_rq
[cpu
]->rq_weight
;
1533 * \Sum shares * rq_weight
1534 * shares = -----------------------
1538 shares
= (sd_shares
* rq_weight
) / sd_rq_weight
;
1539 shares
= clamp_t(unsigned long, shares
, MIN_SHARES
, MAX_SHARES
);
1541 if (abs(shares
- tg
->se
[cpu
]->load
.weight
) >
1542 sysctl_sched_shares_thresh
) {
1543 struct rq
*rq
= cpu_rq(cpu
);
1544 unsigned long flags
;
1546 spin_lock_irqsave(&rq
->lock
, flags
);
1547 tg
->cfs_rq
[cpu
]->shares
= shares
;
1549 __set_se_shares(tg
->se
[cpu
], shares
);
1550 spin_unlock_irqrestore(&rq
->lock
, flags
);
1555 * Re-compute the task group their per cpu shares over the given domain.
1556 * This needs to be done in a bottom-up fashion because the rq weight of a
1557 * parent group depends on the shares of its child groups.
1559 static int tg_shares_up(struct task_group
*tg
, void *data
)
1561 unsigned long weight
, rq_weight
= 0;
1562 unsigned long shares
= 0;
1563 struct sched_domain
*sd
= data
;
1566 for_each_cpu(i
, sched_domain_span(sd
)) {
1568 * If there are currently no tasks on the cpu pretend there
1569 * is one of average load so that when a new task gets to
1570 * run here it will not get delayed by group starvation.
1572 weight
= tg
->cfs_rq
[i
]->load
.weight
;
1574 weight
= NICE_0_LOAD
;
1576 tg
->cfs_rq
[i
]->rq_weight
= weight
;
1577 rq_weight
+= weight
;
1578 shares
+= tg
->cfs_rq
[i
]->shares
;
1581 if ((!shares
&& rq_weight
) || shares
> tg
->shares
)
1582 shares
= tg
->shares
;
1584 if (!sd
->parent
|| !(sd
->parent
->flags
& SD_LOAD_BALANCE
))
1585 shares
= tg
->shares
;
1587 for_each_cpu(i
, sched_domain_span(sd
))
1588 update_group_shares_cpu(tg
, i
, shares
, rq_weight
);
1594 * Compute the cpu's hierarchical load factor for each task group.
1595 * This needs to be done in a top-down fashion because the load of a child
1596 * group is a fraction of its parents load.
1598 static int tg_load_down(struct task_group
*tg
, void *data
)
1601 long cpu
= (long)data
;
1604 load
= cpu_rq(cpu
)->load
.weight
;
1606 load
= tg
->parent
->cfs_rq
[cpu
]->h_load
;
1607 load
*= tg
->cfs_rq
[cpu
]->shares
;
1608 load
/= tg
->parent
->cfs_rq
[cpu
]->load
.weight
+ 1;
1611 tg
->cfs_rq
[cpu
]->h_load
= load
;
1616 static void update_shares(struct sched_domain
*sd
)
1618 u64 now
= cpu_clock(raw_smp_processor_id());
1619 s64 elapsed
= now
- sd
->last_update
;
1621 if (elapsed
>= (s64
)(u64
)sysctl_sched_shares_ratelimit
) {
1622 sd
->last_update
= now
;
1623 walk_tg_tree(tg_nop
, tg_shares_up
, sd
);
1627 static void update_shares_locked(struct rq
*rq
, struct sched_domain
*sd
)
1629 spin_unlock(&rq
->lock
);
1631 spin_lock(&rq
->lock
);
1634 static void update_h_load(long cpu
)
1636 walk_tg_tree(tg_load_down
, tg_nop
, (void *)cpu
);
1641 static inline void update_shares(struct sched_domain
*sd
)
1645 static inline void update_shares_locked(struct rq
*rq
, struct sched_domain
*sd
)
1651 #ifdef CONFIG_PREEMPT
1654 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1655 * way at the expense of forcing extra atomic operations in all
1656 * invocations. This assures that the double_lock is acquired using the
1657 * same underlying policy as the spinlock_t on this architecture, which
1658 * reduces latency compared to the unfair variant below. However, it
1659 * also adds more overhead and therefore may reduce throughput.
1661 static inline int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1662 __releases(this_rq
->lock
)
1663 __acquires(busiest
->lock
)
1664 __acquires(this_rq
->lock
)
1666 spin_unlock(&this_rq
->lock
);
1667 double_rq_lock(this_rq
, busiest
);
1674 * Unfair double_lock_balance: Optimizes throughput at the expense of
1675 * latency by eliminating extra atomic operations when the locks are
1676 * already in proper order on entry. This favors lower cpu-ids and will
1677 * grant the double lock to lower cpus over higher ids under contention,
1678 * regardless of entry order into the function.
1680 static int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1681 __releases(this_rq
->lock
)
1682 __acquires(busiest
->lock
)
1683 __acquires(this_rq
->lock
)
1687 if (unlikely(!spin_trylock(&busiest
->lock
))) {
1688 if (busiest
< this_rq
) {
1689 spin_unlock(&this_rq
->lock
);
1690 spin_lock(&busiest
->lock
);
1691 spin_lock_nested(&this_rq
->lock
, SINGLE_DEPTH_NESTING
);
1694 spin_lock_nested(&busiest
->lock
, SINGLE_DEPTH_NESTING
);
1699 #endif /* CONFIG_PREEMPT */
1702 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1704 static int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1706 if (unlikely(!irqs_disabled())) {
1707 /* printk() doesn't work good under rq->lock */
1708 spin_unlock(&this_rq
->lock
);
1712 return _double_lock_balance(this_rq
, busiest
);
1715 static inline void double_unlock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1716 __releases(busiest
->lock
)
1718 spin_unlock(&busiest
->lock
);
1719 lock_set_subclass(&this_rq
->lock
.dep_map
, 0, _RET_IP_
);
1723 #ifdef CONFIG_FAIR_GROUP_SCHED
1724 static void cfs_rq_set_shares(struct cfs_rq
*cfs_rq
, unsigned long shares
)
1727 cfs_rq
->shares
= shares
;
1732 static void calc_load_account_active(struct rq
*this_rq
);
1734 #include "sched_stats.h"
1735 #include "sched_idletask.c"
1736 #include "sched_fair.c"
1737 #include "sched_rt.c"
1738 #ifdef CONFIG_SCHED_DEBUG
1739 # include "sched_debug.c"
1742 #define sched_class_highest (&rt_sched_class)
1743 #define for_each_class(class) \
1744 for (class = sched_class_highest; class; class = class->next)
1746 static void inc_nr_running(struct rq
*rq
)
1751 static void dec_nr_running(struct rq
*rq
)
1756 static void set_load_weight(struct task_struct
*p
)
1758 if (task_has_rt_policy(p
)) {
1759 p
->se
.load
.weight
= prio_to_weight
[0] * 2;
1760 p
->se
.load
.inv_weight
= prio_to_wmult
[0] >> 1;
1765 * SCHED_IDLE tasks get minimal weight:
1767 if (p
->policy
== SCHED_IDLE
) {
1768 p
->se
.load
.weight
= WEIGHT_IDLEPRIO
;
1769 p
->se
.load
.inv_weight
= WMULT_IDLEPRIO
;
1773 p
->se
.load
.weight
= prio_to_weight
[p
->static_prio
- MAX_RT_PRIO
];
1774 p
->se
.load
.inv_weight
= prio_to_wmult
[p
->static_prio
- MAX_RT_PRIO
];
1777 static void update_avg(u64
*avg
, u64 sample
)
1779 s64 diff
= sample
- *avg
;
1783 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1786 p
->se
.start_runtime
= p
->se
.sum_exec_runtime
;
1788 sched_info_queued(p
);
1789 p
->sched_class
->enqueue_task(rq
, p
, wakeup
);
1793 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1796 if (p
->se
.last_wakeup
) {
1797 update_avg(&p
->se
.avg_overlap
,
1798 p
->se
.sum_exec_runtime
- p
->se
.last_wakeup
);
1799 p
->se
.last_wakeup
= 0;
1801 update_avg(&p
->se
.avg_wakeup
,
1802 sysctl_sched_wakeup_granularity
);
1806 sched_info_dequeued(p
);
1807 p
->sched_class
->dequeue_task(rq
, p
, sleep
);
1812 * __normal_prio - return the priority that is based on the static prio
1814 static inline int __normal_prio(struct task_struct
*p
)
1816 return p
->static_prio
;
1820 * Calculate the expected normal priority: i.e. priority
1821 * without taking RT-inheritance into account. Might be
1822 * boosted by interactivity modifiers. Changes upon fork,
1823 * setprio syscalls, and whenever the interactivity
1824 * estimator recalculates.
1826 static inline int normal_prio(struct task_struct
*p
)
1830 if (task_has_rt_policy(p
))
1831 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
1833 prio
= __normal_prio(p
);
1838 * Calculate the current priority, i.e. the priority
1839 * taken into account by the scheduler. This value might
1840 * be boosted by RT tasks, or might be boosted by
1841 * interactivity modifiers. Will be RT if the task got
1842 * RT-boosted. If not then it returns p->normal_prio.
1844 static int effective_prio(struct task_struct
*p
)
1846 p
->normal_prio
= normal_prio(p
);
1848 * If we are RT tasks or we were boosted to RT priority,
1849 * keep the priority unchanged. Otherwise, update priority
1850 * to the normal priority:
1852 if (!rt_prio(p
->prio
))
1853 return p
->normal_prio
;
1858 * activate_task - move a task to the runqueue.
1860 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1862 if (task_contributes_to_load(p
))
1863 rq
->nr_uninterruptible
--;
1865 enqueue_task(rq
, p
, wakeup
);
1870 * deactivate_task - remove a task from the runqueue.
1872 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1874 if (task_contributes_to_load(p
))
1875 rq
->nr_uninterruptible
++;
1877 dequeue_task(rq
, p
, sleep
);
1882 * task_curr - is this task currently executing on a CPU?
1883 * @p: the task in question.
1885 inline int task_curr(const struct task_struct
*p
)
1887 return cpu_curr(task_cpu(p
)) == p
;
1890 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
1892 set_task_rq(p
, cpu
);
1895 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1896 * successfuly executed on another CPU. We must ensure that updates of
1897 * per-task data have been completed by this moment.
1900 task_thread_info(p
)->cpu
= cpu
;
1904 static inline void check_class_changed(struct rq
*rq
, struct task_struct
*p
,
1905 const struct sched_class
*prev_class
,
1906 int oldprio
, int running
)
1908 if (prev_class
!= p
->sched_class
) {
1909 if (prev_class
->switched_from
)
1910 prev_class
->switched_from(rq
, p
, running
);
1911 p
->sched_class
->switched_to(rq
, p
, running
);
1913 p
->sched_class
->prio_changed(rq
, p
, oldprio
, running
);
1918 /* Used instead of source_load when we know the type == 0 */
1919 static unsigned long weighted_cpuload(const int cpu
)
1921 return cpu_rq(cpu
)->load
.weight
;
1925 * Is this task likely cache-hot:
1928 task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
)
1933 * Buddy candidates are cache hot:
1935 if (sched_feat(CACHE_HOT_BUDDY
) &&
1936 (&p
->se
== cfs_rq_of(&p
->se
)->next
||
1937 &p
->se
== cfs_rq_of(&p
->se
)->last
))
1940 if (p
->sched_class
!= &fair_sched_class
)
1943 if (sysctl_sched_migration_cost
== -1)
1945 if (sysctl_sched_migration_cost
== 0)
1948 delta
= now
- p
->se
.exec_start
;
1950 return delta
< (s64
)sysctl_sched_migration_cost
;
1954 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
1956 int old_cpu
= task_cpu(p
);
1957 struct rq
*old_rq
= cpu_rq(old_cpu
), *new_rq
= cpu_rq(new_cpu
);
1958 struct cfs_rq
*old_cfsrq
= task_cfs_rq(p
),
1959 *new_cfsrq
= cpu_cfs_rq(old_cfsrq
, new_cpu
);
1962 clock_offset
= old_rq
->clock
- new_rq
->clock
;
1964 trace_sched_migrate_task(p
, new_cpu
);
1966 #ifdef CONFIG_SCHEDSTATS
1967 if (p
->se
.wait_start
)
1968 p
->se
.wait_start
-= clock_offset
;
1969 if (p
->se
.sleep_start
)
1970 p
->se
.sleep_start
-= clock_offset
;
1971 if (p
->se
.block_start
)
1972 p
->se
.block_start
-= clock_offset
;
1974 if (old_cpu
!= new_cpu
) {
1975 p
->se
.nr_migrations
++;
1976 new_rq
->nr_migrations_in
++;
1977 #ifdef CONFIG_SCHEDSTATS
1978 if (task_hot(p
, old_rq
->clock
, NULL
))
1979 schedstat_inc(p
, se
.nr_forced2_migrations
);
1981 perf_swcounter_event(PERF_COUNT_SW_CPU_MIGRATIONS
,
1984 p
->se
.vruntime
-= old_cfsrq
->min_vruntime
-
1985 new_cfsrq
->min_vruntime
;
1987 __set_task_cpu(p
, new_cpu
);
1990 struct migration_req
{
1991 struct list_head list
;
1993 struct task_struct
*task
;
1996 struct completion done
;
2000 * The task's runqueue lock must be held.
2001 * Returns true if you have to wait for migration thread.
2004 migrate_task(struct task_struct
*p
, int dest_cpu
, struct migration_req
*req
)
2006 struct rq
*rq
= task_rq(p
);
2009 * If the task is not on a runqueue (and not running), then
2010 * it is sufficient to simply update the task's cpu field.
2012 if (!p
->se
.on_rq
&& !task_running(rq
, p
)) {
2013 set_task_cpu(p
, dest_cpu
);
2017 init_completion(&req
->done
);
2019 req
->dest_cpu
= dest_cpu
;
2020 list_add(&req
->list
, &rq
->migration_queue
);
2026 * wait_task_context_switch - wait for a thread to complete at least one
2029 * @p must not be current.
2031 void wait_task_context_switch(struct task_struct
*p
)
2033 unsigned long nvcsw
, nivcsw
, flags
;
2041 * The runqueue is assigned before the actual context
2042 * switch. We need to take the runqueue lock.
2044 * We could check initially without the lock but it is
2045 * very likely that we need to take the lock in every
2048 rq
= task_rq_lock(p
, &flags
);
2049 running
= task_running(rq
, p
);
2050 task_rq_unlock(rq
, &flags
);
2052 if (likely(!running
))
2055 * The switch count is incremented before the actual
2056 * context switch. We thus wait for two switches to be
2057 * sure at least one completed.
2059 if ((p
->nvcsw
- nvcsw
) > 1)
2061 if ((p
->nivcsw
- nivcsw
) > 1)
2069 * wait_task_inactive - wait for a thread to unschedule.
2071 * If @match_state is nonzero, it's the @p->state value just checked and
2072 * not expected to change. If it changes, i.e. @p might have woken up,
2073 * then return zero. When we succeed in waiting for @p to be off its CPU,
2074 * we return a positive number (its total switch count). If a second call
2075 * a short while later returns the same number, the caller can be sure that
2076 * @p has remained unscheduled the whole time.
2078 * The caller must ensure that the task *will* unschedule sometime soon,
2079 * else this function might spin for a *long* time. This function can't
2080 * be called with interrupts off, or it may introduce deadlock with
2081 * smp_call_function() if an IPI is sent by the same process we are
2082 * waiting to become inactive.
2084 unsigned long wait_task_inactive(struct task_struct
*p
, long match_state
)
2086 unsigned long flags
;
2093 * We do the initial early heuristics without holding
2094 * any task-queue locks at all. We'll only try to get
2095 * the runqueue lock when things look like they will
2101 * If the task is actively running on another CPU
2102 * still, just relax and busy-wait without holding
2105 * NOTE! Since we don't hold any locks, it's not
2106 * even sure that "rq" stays as the right runqueue!
2107 * But we don't care, since "task_running()" will
2108 * return false if the runqueue has changed and p
2109 * is actually now running somewhere else!
2111 while (task_running(rq
, p
)) {
2112 if (match_state
&& unlikely(p
->state
!= match_state
))
2118 * Ok, time to look more closely! We need the rq
2119 * lock now, to be *sure*. If we're wrong, we'll
2120 * just go back and repeat.
2122 rq
= task_rq_lock(p
, &flags
);
2123 trace_sched_wait_task(rq
, p
);
2124 running
= task_running(rq
, p
);
2125 on_rq
= p
->se
.on_rq
;
2127 if (!match_state
|| p
->state
== match_state
)
2128 ncsw
= p
->nvcsw
| LONG_MIN
; /* sets MSB */
2129 task_rq_unlock(rq
, &flags
);
2132 * If it changed from the expected state, bail out now.
2134 if (unlikely(!ncsw
))
2138 * Was it really running after all now that we
2139 * checked with the proper locks actually held?
2141 * Oops. Go back and try again..
2143 if (unlikely(running
)) {
2149 * It's not enough that it's not actively running,
2150 * it must be off the runqueue _entirely_, and not
2153 * So if it was still runnable (but just not actively
2154 * running right now), it's preempted, and we should
2155 * yield - it could be a while.
2157 if (unlikely(on_rq
)) {
2158 schedule_timeout_uninterruptible(1);
2163 * Ahh, all good. It wasn't running, and it wasn't
2164 * runnable, which means that it will never become
2165 * running in the future either. We're all done!
2174 * kick_process - kick a running thread to enter/exit the kernel
2175 * @p: the to-be-kicked thread
2177 * Cause a process which is running on another CPU to enter
2178 * kernel-mode, without any delay. (to get signals handled.)
2180 * NOTE: this function doesnt have to take the runqueue lock,
2181 * because all it wants to ensure is that the remote task enters
2182 * the kernel. If the IPI races and the task has been migrated
2183 * to another CPU then no harm is done and the purpose has been
2186 void kick_process(struct task_struct
*p
)
2192 if ((cpu
!= smp_processor_id()) && task_curr(p
))
2193 smp_send_reschedule(cpu
);
2196 EXPORT_SYMBOL_GPL(kick_process
);
2199 * Return a low guess at the load of a migration-source cpu weighted
2200 * according to the scheduling class and "nice" value.
2202 * We want to under-estimate the load of migration sources, to
2203 * balance conservatively.
2205 static unsigned long source_load(int cpu
, int type
)
2207 struct rq
*rq
= cpu_rq(cpu
);
2208 unsigned long total
= weighted_cpuload(cpu
);
2210 if (type
== 0 || !sched_feat(LB_BIAS
))
2213 return min(rq
->cpu_load
[type
-1], total
);
2217 * Return a high guess at the load of a migration-target cpu weighted
2218 * according to the scheduling class and "nice" value.
2220 static unsigned long target_load(int cpu
, int type
)
2222 struct rq
*rq
= cpu_rq(cpu
);
2223 unsigned long total
= weighted_cpuload(cpu
);
2225 if (type
== 0 || !sched_feat(LB_BIAS
))
2228 return max(rq
->cpu_load
[type
-1], total
);
2232 * find_idlest_group finds and returns the least busy CPU group within the
2235 static struct sched_group
*
2236 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
, int this_cpu
)
2238 struct sched_group
*idlest
= NULL
, *this = NULL
, *group
= sd
->groups
;
2239 unsigned long min_load
= ULONG_MAX
, this_load
= 0;
2240 int load_idx
= sd
->forkexec_idx
;
2241 int imbalance
= 100 + (sd
->imbalance_pct
-100)/2;
2244 unsigned long load
, avg_load
;
2248 /* Skip over this group if it has no CPUs allowed */
2249 if (!cpumask_intersects(sched_group_cpus(group
),
2253 local_group
= cpumask_test_cpu(this_cpu
,
2254 sched_group_cpus(group
));
2256 /* Tally up the load of all CPUs in the group */
2259 for_each_cpu(i
, sched_group_cpus(group
)) {
2260 /* Bias balancing toward cpus of our domain */
2262 load
= source_load(i
, load_idx
);
2264 load
= target_load(i
, load_idx
);
2269 /* Adjust by relative CPU power of the group */
2270 avg_load
= sg_div_cpu_power(group
,
2271 avg_load
* SCHED_LOAD_SCALE
);
2274 this_load
= avg_load
;
2276 } else if (avg_load
< min_load
) {
2277 min_load
= avg_load
;
2280 } while (group
= group
->next
, group
!= sd
->groups
);
2282 if (!idlest
|| 100*this_load
< imbalance
*min_load
)
2288 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2291 find_idlest_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
)
2293 unsigned long load
, min_load
= ULONG_MAX
;
2297 /* Traverse only the allowed CPUs */
2298 for_each_cpu_and(i
, sched_group_cpus(group
), &p
->cpus_allowed
) {
2299 load
= weighted_cpuload(i
);
2301 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
2311 * sched_balance_self: balance the current task (running on cpu) in domains
2312 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2315 * Balance, ie. select the least loaded group.
2317 * Returns the target CPU number, or the same CPU if no balancing is needed.
2319 * preempt must be disabled.
2321 static int sched_balance_self(int cpu
, int flag
)
2323 struct task_struct
*t
= current
;
2324 struct sched_domain
*tmp
, *sd
= NULL
;
2326 for_each_domain(cpu
, tmp
) {
2328 * If power savings logic is enabled for a domain, stop there.
2330 if (tmp
->flags
& SD_POWERSAVINGS_BALANCE
)
2332 if (tmp
->flags
& flag
)
2340 struct sched_group
*group
;
2341 int new_cpu
, weight
;
2343 if (!(sd
->flags
& flag
)) {
2348 group
= find_idlest_group(sd
, t
, cpu
);
2354 new_cpu
= find_idlest_cpu(group
, t
, cpu
);
2355 if (new_cpu
== -1 || new_cpu
== cpu
) {
2356 /* Now try balancing at a lower domain level of cpu */
2361 /* Now try balancing at a lower domain level of new_cpu */
2363 weight
= cpumask_weight(sched_domain_span(sd
));
2365 for_each_domain(cpu
, tmp
) {
2366 if (weight
<= cpumask_weight(sched_domain_span(tmp
)))
2368 if (tmp
->flags
& flag
)
2371 /* while loop will break here if sd == NULL */
2377 #endif /* CONFIG_SMP */
2380 * task_oncpu_function_call - call a function on the cpu on which a task runs
2381 * @p: the task to evaluate
2382 * @func: the function to be called
2383 * @info: the function call argument
2385 * Calls the function @func when the task is currently running. This might
2386 * be on the current CPU, which just calls the function directly
2388 void task_oncpu_function_call(struct task_struct
*p
,
2389 void (*func
) (void *info
), void *info
)
2396 smp_call_function_single(cpu
, func
, info
, 1);
2401 * try_to_wake_up - wake up a thread
2402 * @p: the to-be-woken-up thread
2403 * @state: the mask of task states that can be woken
2404 * @sync: do a synchronous wakeup?
2406 * Put it on the run-queue if it's not already there. The "current"
2407 * thread is always on the run-queue (except when the actual
2408 * re-schedule is in progress), and as such you're allowed to do
2409 * the simpler "current->state = TASK_RUNNING" to mark yourself
2410 * runnable without the overhead of this.
2412 * returns failure only if the task is already active.
2414 static int try_to_wake_up(struct task_struct
*p
, unsigned int state
, int sync
)
2416 int cpu
, orig_cpu
, this_cpu
, success
= 0;
2417 unsigned long flags
;
2421 if (!sched_feat(SYNC_WAKEUPS
))
2425 if (sched_feat(LB_WAKEUP_UPDATE
) && !root_task_group_empty()) {
2426 struct sched_domain
*sd
;
2428 this_cpu
= raw_smp_processor_id();
2431 for_each_domain(this_cpu
, sd
) {
2432 if (cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
2441 rq
= task_rq_lock(p
, &flags
);
2442 update_rq_clock(rq
);
2443 old_state
= p
->state
;
2444 if (!(old_state
& state
))
2452 this_cpu
= smp_processor_id();
2455 if (unlikely(task_running(rq
, p
)))
2458 cpu
= p
->sched_class
->select_task_rq(p
, sync
);
2459 if (cpu
!= orig_cpu
) {
2460 set_task_cpu(p
, cpu
);
2461 task_rq_unlock(rq
, &flags
);
2462 /* might preempt at this point */
2463 rq
= task_rq_lock(p
, &flags
);
2464 old_state
= p
->state
;
2465 if (!(old_state
& state
))
2470 this_cpu
= smp_processor_id();
2474 #ifdef CONFIG_SCHEDSTATS
2475 schedstat_inc(rq
, ttwu_count
);
2476 if (cpu
== this_cpu
)
2477 schedstat_inc(rq
, ttwu_local
);
2479 struct sched_domain
*sd
;
2480 for_each_domain(this_cpu
, sd
) {
2481 if (cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
2482 schedstat_inc(sd
, ttwu_wake_remote
);
2487 #endif /* CONFIG_SCHEDSTATS */
2490 #endif /* CONFIG_SMP */
2491 schedstat_inc(p
, se
.nr_wakeups
);
2493 schedstat_inc(p
, se
.nr_wakeups_sync
);
2494 if (orig_cpu
!= cpu
)
2495 schedstat_inc(p
, se
.nr_wakeups_migrate
);
2496 if (cpu
== this_cpu
)
2497 schedstat_inc(p
, se
.nr_wakeups_local
);
2499 schedstat_inc(p
, se
.nr_wakeups_remote
);
2500 activate_task(rq
, p
, 1);
2504 * Only attribute actual wakeups done by this task.
2506 if (!in_interrupt()) {
2507 struct sched_entity
*se
= ¤t
->se
;
2508 u64 sample
= se
->sum_exec_runtime
;
2510 if (se
->last_wakeup
)
2511 sample
-= se
->last_wakeup
;
2513 sample
-= se
->start_runtime
;
2514 update_avg(&se
->avg_wakeup
, sample
);
2516 se
->last_wakeup
= se
->sum_exec_runtime
;
2520 trace_sched_wakeup(rq
, p
, success
);
2521 check_preempt_curr(rq
, p
, sync
);
2523 p
->state
= TASK_RUNNING
;
2525 if (p
->sched_class
->task_wake_up
)
2526 p
->sched_class
->task_wake_up(rq
, p
);
2529 task_rq_unlock(rq
, &flags
);
2535 * wake_up_process - Wake up a specific process
2536 * @p: The process to be woken up.
2538 * Attempt to wake up the nominated process and move it to the set of runnable
2539 * processes. Returns 1 if the process was woken up, 0 if it was already
2542 * It may be assumed that this function implies a write memory barrier before
2543 * changing the task state if and only if any tasks are woken up.
2545 int wake_up_process(struct task_struct
*p
)
2547 return try_to_wake_up(p
, TASK_ALL
, 0);
2549 EXPORT_SYMBOL(wake_up_process
);
2551 int wake_up_state(struct task_struct
*p
, unsigned int state
)
2553 return try_to_wake_up(p
, state
, 0);
2557 * Perform scheduler related setup for a newly forked process p.
2558 * p is forked by current.
2560 * __sched_fork() is basic setup used by init_idle() too:
2562 static void __sched_fork(struct task_struct
*p
)
2564 p
->se
.exec_start
= 0;
2565 p
->se
.sum_exec_runtime
= 0;
2566 p
->se
.prev_sum_exec_runtime
= 0;
2567 p
->se
.nr_migrations
= 0;
2568 p
->se
.last_wakeup
= 0;
2569 p
->se
.avg_overlap
= 0;
2570 p
->se
.start_runtime
= 0;
2571 p
->se
.avg_wakeup
= sysctl_sched_wakeup_granularity
;
2573 #ifdef CONFIG_SCHEDSTATS
2574 p
->se
.wait_start
= 0;
2575 p
->se
.sum_sleep_runtime
= 0;
2576 p
->se
.sleep_start
= 0;
2577 p
->se
.block_start
= 0;
2578 p
->se
.sleep_max
= 0;
2579 p
->se
.block_max
= 0;
2581 p
->se
.slice_max
= 0;
2585 INIT_LIST_HEAD(&p
->rt
.run_list
);
2587 INIT_LIST_HEAD(&p
->se
.group_node
);
2589 #ifdef CONFIG_PREEMPT_NOTIFIERS
2590 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
2594 * We mark the process as running here, but have not actually
2595 * inserted it onto the runqueue yet. This guarantees that
2596 * nobody will actually run it, and a signal or other external
2597 * event cannot wake it up and insert it on the runqueue either.
2599 p
->state
= TASK_RUNNING
;
2603 * fork()/clone()-time setup:
2605 void sched_fork(struct task_struct
*p
, int clone_flags
)
2607 int cpu
= get_cpu();
2612 cpu
= sched_balance_self(cpu
, SD_BALANCE_FORK
);
2614 set_task_cpu(p
, cpu
);
2617 * Make sure we do not leak PI boosting priority to the child:
2619 p
->prio
= current
->normal_prio
;
2620 if (!rt_prio(p
->prio
))
2621 p
->sched_class
= &fair_sched_class
;
2623 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2624 if (likely(sched_info_on()))
2625 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
2627 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2630 #ifdef CONFIG_PREEMPT
2631 /* Want to start with kernel preemption disabled. */
2632 task_thread_info(p
)->preempt_count
= 1;
2634 plist_node_init(&p
->pushable_tasks
, MAX_PRIO
);
2640 * wake_up_new_task - wake up a newly created task for the first time.
2642 * This function will do some initial scheduler statistics housekeeping
2643 * that must be done for every newly created context, then puts the task
2644 * on the runqueue and wakes it.
2646 void wake_up_new_task(struct task_struct
*p
, unsigned long clone_flags
)
2648 unsigned long flags
;
2651 rq
= task_rq_lock(p
, &flags
);
2652 BUG_ON(p
->state
!= TASK_RUNNING
);
2653 update_rq_clock(rq
);
2655 p
->prio
= effective_prio(p
);
2657 if (!p
->sched_class
->task_new
|| !current
->se
.on_rq
) {
2658 activate_task(rq
, p
, 0);
2661 * Let the scheduling class do new task startup
2662 * management (if any):
2664 p
->sched_class
->task_new(rq
, p
);
2667 trace_sched_wakeup_new(rq
, p
, 1);
2668 check_preempt_curr(rq
, p
, 0);
2670 if (p
->sched_class
->task_wake_up
)
2671 p
->sched_class
->task_wake_up(rq
, p
);
2673 task_rq_unlock(rq
, &flags
);
2676 #ifdef CONFIG_PREEMPT_NOTIFIERS
2679 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2680 * @notifier: notifier struct to register
2682 void preempt_notifier_register(struct preempt_notifier
*notifier
)
2684 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
2686 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
2689 * preempt_notifier_unregister - no longer interested in preemption notifications
2690 * @notifier: notifier struct to unregister
2692 * This is safe to call from within a preemption notifier.
2694 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
2696 hlist_del(¬ifier
->link
);
2698 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
2700 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2702 struct preempt_notifier
*notifier
;
2703 struct hlist_node
*node
;
2705 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2706 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
2710 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2711 struct task_struct
*next
)
2713 struct preempt_notifier
*notifier
;
2714 struct hlist_node
*node
;
2716 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2717 notifier
->ops
->sched_out(notifier
, next
);
2720 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2722 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2727 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2728 struct task_struct
*next
)
2732 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2735 * prepare_task_switch - prepare to switch tasks
2736 * @rq: the runqueue preparing to switch
2737 * @prev: the current task that is being switched out
2738 * @next: the task we are going to switch to.
2740 * This is called with the rq lock held and interrupts off. It must
2741 * be paired with a subsequent finish_task_switch after the context
2744 * prepare_task_switch sets up locking and calls architecture specific
2748 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
2749 struct task_struct
*next
)
2751 fire_sched_out_preempt_notifiers(prev
, next
);
2752 prepare_lock_switch(rq
, next
);
2753 prepare_arch_switch(next
);
2757 * finish_task_switch - clean up after a task-switch
2758 * @rq: runqueue associated with task-switch
2759 * @prev: the thread we just switched away from.
2761 * finish_task_switch must be called after the context switch, paired
2762 * with a prepare_task_switch call before the context switch.
2763 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2764 * and do any other architecture-specific cleanup actions.
2766 * Note that we may have delayed dropping an mm in context_switch(). If
2767 * so, we finish that here outside of the runqueue lock. (Doing it
2768 * with the lock held can cause deadlocks; see schedule() for
2771 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
2772 __releases(rq
->lock
)
2774 struct mm_struct
*mm
= rq
->prev_mm
;
2777 int post_schedule
= 0;
2779 if (current
->sched_class
->needs_post_schedule
)
2780 post_schedule
= current
->sched_class
->needs_post_schedule(rq
);
2786 * A task struct has one reference for the use as "current".
2787 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2788 * schedule one last time. The schedule call will never return, and
2789 * the scheduled task must drop that reference.
2790 * The test for TASK_DEAD must occur while the runqueue locks are
2791 * still held, otherwise prev could be scheduled on another cpu, die
2792 * there before we look at prev->state, and then the reference would
2794 * Manfred Spraul <manfred@colorfullife.com>
2796 prev_state
= prev
->state
;
2797 finish_arch_switch(prev
);
2798 perf_counter_task_sched_in(current
, cpu_of(rq
));
2799 finish_lock_switch(rq
, prev
);
2802 current
->sched_class
->post_schedule(rq
);
2805 fire_sched_in_preempt_notifiers(current
);
2808 if (unlikely(prev_state
== TASK_DEAD
)) {
2810 * Remove function-return probe instances associated with this
2811 * task and put them back on the free list.
2813 kprobe_flush_task(prev
);
2814 put_task_struct(prev
);
2819 * schedule_tail - first thing a freshly forked thread must call.
2820 * @prev: the thread we just switched away from.
2822 asmlinkage
void schedule_tail(struct task_struct
*prev
)
2823 __releases(rq
->lock
)
2825 struct rq
*rq
= this_rq();
2827 finish_task_switch(rq
, prev
);
2828 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2829 /* In this case, finish_task_switch does not reenable preemption */
2832 if (current
->set_child_tid
)
2833 put_user(task_pid_vnr(current
), current
->set_child_tid
);
2837 * context_switch - switch to the new MM and the new
2838 * thread's register state.
2841 context_switch(struct rq
*rq
, struct task_struct
*prev
,
2842 struct task_struct
*next
)
2844 struct mm_struct
*mm
, *oldmm
;
2846 prepare_task_switch(rq
, prev
, next
);
2847 trace_sched_switch(rq
, prev
, next
);
2849 oldmm
= prev
->active_mm
;
2851 * For paravirt, this is coupled with an exit in switch_to to
2852 * combine the page table reload and the switch backend into
2855 arch_start_context_switch(prev
);
2857 if (unlikely(!mm
)) {
2858 next
->active_mm
= oldmm
;
2859 atomic_inc(&oldmm
->mm_count
);
2860 enter_lazy_tlb(oldmm
, next
);
2862 switch_mm(oldmm
, mm
, next
);
2864 if (unlikely(!prev
->mm
)) {
2865 prev
->active_mm
= NULL
;
2866 rq
->prev_mm
= oldmm
;
2869 * Since the runqueue lock will be released by the next
2870 * task (which is an invalid locking op but in the case
2871 * of the scheduler it's an obvious special-case), so we
2872 * do an early lockdep release here:
2874 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2875 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
2878 /* Here we just switch the register state and the stack. */
2879 switch_to(prev
, next
, prev
);
2883 * this_rq must be evaluated again because prev may have moved
2884 * CPUs since it called schedule(), thus the 'rq' on its stack
2885 * frame will be invalid.
2887 finish_task_switch(this_rq(), prev
);
2891 * nr_running, nr_uninterruptible and nr_context_switches:
2893 * externally visible scheduler statistics: current number of runnable
2894 * threads, current number of uninterruptible-sleeping threads, total
2895 * number of context switches performed since bootup.
2897 unsigned long nr_running(void)
2899 unsigned long i
, sum
= 0;
2901 for_each_online_cpu(i
)
2902 sum
+= cpu_rq(i
)->nr_running
;
2907 unsigned long nr_uninterruptible(void)
2909 unsigned long i
, sum
= 0;
2911 for_each_possible_cpu(i
)
2912 sum
+= cpu_rq(i
)->nr_uninterruptible
;
2915 * Since we read the counters lockless, it might be slightly
2916 * inaccurate. Do not allow it to go below zero though:
2918 if (unlikely((long)sum
< 0))
2924 unsigned long long nr_context_switches(void)
2927 unsigned long long sum
= 0;
2929 for_each_possible_cpu(i
)
2930 sum
+= cpu_rq(i
)->nr_switches
;
2935 unsigned long nr_iowait(void)
2937 unsigned long i
, sum
= 0;
2939 for_each_possible_cpu(i
)
2940 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
2945 /* Variables and functions for calc_load */
2946 static atomic_long_t calc_load_tasks
;
2947 static unsigned long calc_load_update
;
2948 unsigned long avenrun
[3];
2949 EXPORT_SYMBOL(avenrun
);
2952 * get_avenrun - get the load average array
2953 * @loads: pointer to dest load array
2954 * @offset: offset to add
2955 * @shift: shift count to shift the result left
2957 * These values are estimates at best, so no need for locking.
2959 void get_avenrun(unsigned long *loads
, unsigned long offset
, int shift
)
2961 loads
[0] = (avenrun
[0] + offset
) << shift
;
2962 loads
[1] = (avenrun
[1] + offset
) << shift
;
2963 loads
[2] = (avenrun
[2] + offset
) << shift
;
2966 static unsigned long
2967 calc_load(unsigned long load
, unsigned long exp
, unsigned long active
)
2970 load
+= active
* (FIXED_1
- exp
);
2971 return load
>> FSHIFT
;
2975 * calc_load - update the avenrun load estimates 10 ticks after the
2976 * CPUs have updated calc_load_tasks.
2978 void calc_global_load(void)
2980 unsigned long upd
= calc_load_update
+ 10;
2983 if (time_before(jiffies
, upd
))
2986 active
= atomic_long_read(&calc_load_tasks
);
2987 active
= active
> 0 ? active
* FIXED_1
: 0;
2989 avenrun
[0] = calc_load(avenrun
[0], EXP_1
, active
);
2990 avenrun
[1] = calc_load(avenrun
[1], EXP_5
, active
);
2991 avenrun
[2] = calc_load(avenrun
[2], EXP_15
, active
);
2993 calc_load_update
+= LOAD_FREQ
;
2997 * Either called from update_cpu_load() or from a cpu going idle
2999 static void calc_load_account_active(struct rq
*this_rq
)
3001 long nr_active
, delta
;
3003 nr_active
= this_rq
->nr_running
;
3004 nr_active
+= (long) this_rq
->nr_uninterruptible
;
3006 if (nr_active
!= this_rq
->calc_load_active
) {
3007 delta
= nr_active
- this_rq
->calc_load_active
;
3008 this_rq
->calc_load_active
= nr_active
;
3009 atomic_long_add(delta
, &calc_load_tasks
);
3014 * Externally visible per-cpu scheduler statistics:
3015 * cpu_nr_migrations(cpu) - number of migrations into that cpu
3017 u64
cpu_nr_migrations(int cpu
)
3019 return cpu_rq(cpu
)->nr_migrations_in
;
3023 * Update rq->cpu_load[] statistics. This function is usually called every
3024 * scheduler tick (TICK_NSEC).
3026 static void update_cpu_load(struct rq
*this_rq
)
3028 unsigned long this_load
= this_rq
->load
.weight
;
3031 this_rq
->nr_load_updates
++;
3033 /* Update our load: */
3034 for (i
= 0, scale
= 1; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
3035 unsigned long old_load
, new_load
;
3037 /* scale is effectively 1 << i now, and >> i divides by scale */
3039 old_load
= this_rq
->cpu_load
[i
];
3040 new_load
= this_load
;
3042 * Round up the averaging division if load is increasing. This
3043 * prevents us from getting stuck on 9 if the load is 10, for
3046 if (new_load
> old_load
)
3047 new_load
+= scale
-1;
3048 this_rq
->cpu_load
[i
] = (old_load
*(scale
-1) + new_load
) >> i
;
3051 if (time_after_eq(jiffies
, this_rq
->calc_load_update
)) {
3052 this_rq
->calc_load_update
+= LOAD_FREQ
;
3053 calc_load_account_active(this_rq
);
3060 * double_rq_lock - safely lock two runqueues
3062 * Note this does not disable interrupts like task_rq_lock,
3063 * you need to do so manually before calling.
3065 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
3066 __acquires(rq1
->lock
)
3067 __acquires(rq2
->lock
)
3069 BUG_ON(!irqs_disabled());
3071 spin_lock(&rq1
->lock
);
3072 __acquire(rq2
->lock
); /* Fake it out ;) */
3075 spin_lock(&rq1
->lock
);
3076 spin_lock_nested(&rq2
->lock
, SINGLE_DEPTH_NESTING
);
3078 spin_lock(&rq2
->lock
);
3079 spin_lock_nested(&rq1
->lock
, SINGLE_DEPTH_NESTING
);
3082 update_rq_clock(rq1
);
3083 update_rq_clock(rq2
);
3087 * double_rq_unlock - safely unlock two runqueues
3089 * Note this does not restore interrupts like task_rq_unlock,
3090 * you need to do so manually after calling.
3092 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
3093 __releases(rq1
->lock
)
3094 __releases(rq2
->lock
)
3096 spin_unlock(&rq1
->lock
);
3098 spin_unlock(&rq2
->lock
);
3100 __release(rq2
->lock
);
3104 * If dest_cpu is allowed for this process, migrate the task to it.
3105 * This is accomplished by forcing the cpu_allowed mask to only
3106 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
3107 * the cpu_allowed mask is restored.
3109 static void sched_migrate_task(struct task_struct
*p
, int dest_cpu
)
3111 struct migration_req req
;
3112 unsigned long flags
;
3115 rq
= task_rq_lock(p
, &flags
);
3116 if (!cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
)
3117 || unlikely(!cpu_active(dest_cpu
)))
3120 /* force the process onto the specified CPU */
3121 if (migrate_task(p
, dest_cpu
, &req
)) {
3122 /* Need to wait for migration thread (might exit: take ref). */
3123 struct task_struct
*mt
= rq
->migration_thread
;
3125 get_task_struct(mt
);
3126 task_rq_unlock(rq
, &flags
);
3127 wake_up_process(mt
);
3128 put_task_struct(mt
);
3129 wait_for_completion(&req
.done
);
3134 task_rq_unlock(rq
, &flags
);
3138 * sched_exec - execve() is a valuable balancing opportunity, because at
3139 * this point the task has the smallest effective memory and cache footprint.
3141 void sched_exec(void)
3143 int new_cpu
, this_cpu
= get_cpu();
3144 new_cpu
= sched_balance_self(this_cpu
, SD_BALANCE_EXEC
);
3146 if (new_cpu
!= this_cpu
)
3147 sched_migrate_task(current
, new_cpu
);
3151 * pull_task - move a task from a remote runqueue to the local runqueue.
3152 * Both runqueues must be locked.
3154 static void pull_task(struct rq
*src_rq
, struct task_struct
*p
,
3155 struct rq
*this_rq
, int this_cpu
)
3157 deactivate_task(src_rq
, p
, 0);
3158 set_task_cpu(p
, this_cpu
);
3159 activate_task(this_rq
, p
, 0);
3161 * Note that idle threads have a prio of MAX_PRIO, for this test
3162 * to be always true for them.
3164 check_preempt_curr(this_rq
, p
, 0);
3168 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3171 int can_migrate_task(struct task_struct
*p
, struct rq
*rq
, int this_cpu
,
3172 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3175 int tsk_cache_hot
= 0;
3177 * We do not migrate tasks that are:
3178 * 1) running (obviously), or
3179 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3180 * 3) are cache-hot on their current CPU.
3182 if (!cpumask_test_cpu(this_cpu
, &p
->cpus_allowed
)) {
3183 schedstat_inc(p
, se
.nr_failed_migrations_affine
);
3188 if (task_running(rq
, p
)) {
3189 schedstat_inc(p
, se
.nr_failed_migrations_running
);
3194 * Aggressive migration if:
3195 * 1) task is cache cold, or
3196 * 2) too many balance attempts have failed.
3199 tsk_cache_hot
= task_hot(p
, rq
->clock
, sd
);
3200 if (!tsk_cache_hot
||
3201 sd
->nr_balance_failed
> sd
->cache_nice_tries
) {
3202 #ifdef CONFIG_SCHEDSTATS
3203 if (tsk_cache_hot
) {
3204 schedstat_inc(sd
, lb_hot_gained
[idle
]);
3205 schedstat_inc(p
, se
.nr_forced_migrations
);
3211 if (tsk_cache_hot
) {
3212 schedstat_inc(p
, se
.nr_failed_migrations_hot
);
3218 static unsigned long
3219 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3220 unsigned long max_load_move
, struct sched_domain
*sd
,
3221 enum cpu_idle_type idle
, int *all_pinned
,
3222 int *this_best_prio
, struct rq_iterator
*iterator
)
3224 int loops
= 0, pulled
= 0, pinned
= 0;
3225 struct task_struct
*p
;
3226 long rem_load_move
= max_load_move
;
3228 if (max_load_move
== 0)
3234 * Start the load-balancing iterator:
3236 p
= iterator
->start(iterator
->arg
);
3238 if (!p
|| loops
++ > sysctl_sched_nr_migrate
)
3241 if ((p
->se
.load
.weight
>> 1) > rem_load_move
||
3242 !can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
3243 p
= iterator
->next(iterator
->arg
);
3247 pull_task(busiest
, p
, this_rq
, this_cpu
);
3249 rem_load_move
-= p
->se
.load
.weight
;
3251 #ifdef CONFIG_PREEMPT
3253 * NEWIDLE balancing is a source of latency, so preemptible kernels
3254 * will stop after the first task is pulled to minimize the critical
3257 if (idle
== CPU_NEWLY_IDLE
)
3262 * We only want to steal up to the prescribed amount of weighted load.
3264 if (rem_load_move
> 0) {
3265 if (p
->prio
< *this_best_prio
)
3266 *this_best_prio
= p
->prio
;
3267 p
= iterator
->next(iterator
->arg
);
3272 * Right now, this is one of only two places pull_task() is called,
3273 * so we can safely collect pull_task() stats here rather than
3274 * inside pull_task().
3276 schedstat_add(sd
, lb_gained
[idle
], pulled
);
3279 *all_pinned
= pinned
;
3281 return max_load_move
- rem_load_move
;
3285 * move_tasks tries to move up to max_load_move weighted load from busiest to
3286 * this_rq, as part of a balancing operation within domain "sd".
3287 * Returns 1 if successful and 0 otherwise.
3289 * Called with both runqueues locked.
3291 static int move_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3292 unsigned long max_load_move
,
3293 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3296 const struct sched_class
*class = sched_class_highest
;
3297 unsigned long total_load_moved
= 0;
3298 int this_best_prio
= this_rq
->curr
->prio
;
3302 class->load_balance(this_rq
, this_cpu
, busiest
,
3303 max_load_move
- total_load_moved
,
3304 sd
, idle
, all_pinned
, &this_best_prio
);
3305 class = class->next
;
3307 #ifdef CONFIG_PREEMPT
3309 * NEWIDLE balancing is a source of latency, so preemptible
3310 * kernels will stop after the first task is pulled to minimize
3311 * the critical section.
3313 if (idle
== CPU_NEWLY_IDLE
&& this_rq
->nr_running
)
3316 } while (class && max_load_move
> total_load_moved
);
3318 return total_load_moved
> 0;
3322 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3323 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3324 struct rq_iterator
*iterator
)
3326 struct task_struct
*p
= iterator
->start(iterator
->arg
);
3330 if (can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
3331 pull_task(busiest
, p
, this_rq
, this_cpu
);
3333 * Right now, this is only the second place pull_task()
3334 * is called, so we can safely collect pull_task()
3335 * stats here rather than inside pull_task().
3337 schedstat_inc(sd
, lb_gained
[idle
]);
3341 p
= iterator
->next(iterator
->arg
);
3348 * move_one_task tries to move exactly one task from busiest to this_rq, as
3349 * part of active balancing operations within "domain".
3350 * Returns 1 if successful and 0 otherwise.
3352 * Called with both runqueues locked.
3354 static int move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3355 struct sched_domain
*sd
, enum cpu_idle_type idle
)
3357 const struct sched_class
*class;
3359 for (class = sched_class_highest
; class; class = class->next
)
3360 if (class->move_one_task(this_rq
, this_cpu
, busiest
, sd
, idle
))
3365 /********** Helpers for find_busiest_group ************************/
3367 * sd_lb_stats - Structure to store the statistics of a sched_domain
3368 * during load balancing.
3370 struct sd_lb_stats
{
3371 struct sched_group
*busiest
; /* Busiest group in this sd */
3372 struct sched_group
*this; /* Local group in this sd */
3373 unsigned long total_load
; /* Total load of all groups in sd */
3374 unsigned long total_pwr
; /* Total power of all groups in sd */
3375 unsigned long avg_load
; /* Average load across all groups in sd */
3377 /** Statistics of this group */
3378 unsigned long this_load
;
3379 unsigned long this_load_per_task
;
3380 unsigned long this_nr_running
;
3382 /* Statistics of the busiest group */
3383 unsigned long max_load
;
3384 unsigned long busiest_load_per_task
;
3385 unsigned long busiest_nr_running
;
3387 int group_imb
; /* Is there imbalance in this sd */
3388 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3389 int power_savings_balance
; /* Is powersave balance needed for this sd */
3390 struct sched_group
*group_min
; /* Least loaded group in sd */
3391 struct sched_group
*group_leader
; /* Group which relieves group_min */
3392 unsigned long min_load_per_task
; /* load_per_task in group_min */
3393 unsigned long leader_nr_running
; /* Nr running of group_leader */
3394 unsigned long min_nr_running
; /* Nr running of group_min */
3399 * sg_lb_stats - stats of a sched_group required for load_balancing
3401 struct sg_lb_stats
{
3402 unsigned long avg_load
; /*Avg load across the CPUs of the group */
3403 unsigned long group_load
; /* Total load over the CPUs of the group */
3404 unsigned long sum_nr_running
; /* Nr tasks running in the group */
3405 unsigned long sum_weighted_load
; /* Weighted load of group's tasks */
3406 unsigned long group_capacity
;
3407 int group_imb
; /* Is there an imbalance in the group ? */
3411 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3412 * @group: The group whose first cpu is to be returned.
3414 static inline unsigned int group_first_cpu(struct sched_group
*group
)
3416 return cpumask_first(sched_group_cpus(group
));
3420 * get_sd_load_idx - Obtain the load index for a given sched domain.
3421 * @sd: The sched_domain whose load_idx is to be obtained.
3422 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3424 static inline int get_sd_load_idx(struct sched_domain
*sd
,
3425 enum cpu_idle_type idle
)
3431 load_idx
= sd
->busy_idx
;
3434 case CPU_NEWLY_IDLE
:
3435 load_idx
= sd
->newidle_idx
;
3438 load_idx
= sd
->idle_idx
;
3446 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3448 * init_sd_power_savings_stats - Initialize power savings statistics for
3449 * the given sched_domain, during load balancing.
3451 * @sd: Sched domain whose power-savings statistics are to be initialized.
3452 * @sds: Variable containing the statistics for sd.
3453 * @idle: Idle status of the CPU at which we're performing load-balancing.
3455 static inline void init_sd_power_savings_stats(struct sched_domain
*sd
,
3456 struct sd_lb_stats
*sds
, enum cpu_idle_type idle
)
3459 * Busy processors will not participate in power savings
3462 if (idle
== CPU_NOT_IDLE
|| !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
3463 sds
->power_savings_balance
= 0;
3465 sds
->power_savings_balance
= 1;
3466 sds
->min_nr_running
= ULONG_MAX
;
3467 sds
->leader_nr_running
= 0;
3472 * update_sd_power_savings_stats - Update the power saving stats for a
3473 * sched_domain while performing load balancing.
3475 * @group: sched_group belonging to the sched_domain under consideration.
3476 * @sds: Variable containing the statistics of the sched_domain
3477 * @local_group: Does group contain the CPU for which we're performing
3479 * @sgs: Variable containing the statistics of the group.
3481 static inline void update_sd_power_savings_stats(struct sched_group
*group
,
3482 struct sd_lb_stats
*sds
, int local_group
, struct sg_lb_stats
*sgs
)
3485 if (!sds
->power_savings_balance
)
3489 * If the local group is idle or completely loaded
3490 * no need to do power savings balance at this domain
3492 if (local_group
&& (sds
->this_nr_running
>= sgs
->group_capacity
||
3493 !sds
->this_nr_running
))
3494 sds
->power_savings_balance
= 0;
3497 * If a group is already running at full capacity or idle,
3498 * don't include that group in power savings calculations
3500 if (!sds
->power_savings_balance
||
3501 sgs
->sum_nr_running
>= sgs
->group_capacity
||
3502 !sgs
->sum_nr_running
)
3506 * Calculate the group which has the least non-idle load.
3507 * This is the group from where we need to pick up the load
3510 if ((sgs
->sum_nr_running
< sds
->min_nr_running
) ||
3511 (sgs
->sum_nr_running
== sds
->min_nr_running
&&
3512 group_first_cpu(group
) > group_first_cpu(sds
->group_min
))) {
3513 sds
->group_min
= group
;
3514 sds
->min_nr_running
= sgs
->sum_nr_running
;
3515 sds
->min_load_per_task
= sgs
->sum_weighted_load
/
3516 sgs
->sum_nr_running
;
3520 * Calculate the group which is almost near its
3521 * capacity but still has some space to pick up some load
3522 * from other group and save more power
3524 if (sgs
->sum_nr_running
> sgs
->group_capacity
- 1)
3527 if (sgs
->sum_nr_running
> sds
->leader_nr_running
||
3528 (sgs
->sum_nr_running
== sds
->leader_nr_running
&&
3529 group_first_cpu(group
) < group_first_cpu(sds
->group_leader
))) {
3530 sds
->group_leader
= group
;
3531 sds
->leader_nr_running
= sgs
->sum_nr_running
;
3536 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3537 * @sds: Variable containing the statistics of the sched_domain
3538 * under consideration.
3539 * @this_cpu: Cpu at which we're currently performing load-balancing.
3540 * @imbalance: Variable to store the imbalance.
3543 * Check if we have potential to perform some power-savings balance.
3544 * If yes, set the busiest group to be the least loaded group in the
3545 * sched_domain, so that it's CPUs can be put to idle.
3547 * Returns 1 if there is potential to perform power-savings balance.
3550 static inline int check_power_save_busiest_group(struct sd_lb_stats
*sds
,
3551 int this_cpu
, unsigned long *imbalance
)
3553 if (!sds
->power_savings_balance
)
3556 if (sds
->this != sds
->group_leader
||
3557 sds
->group_leader
== sds
->group_min
)
3560 *imbalance
= sds
->min_load_per_task
;
3561 sds
->busiest
= sds
->group_min
;
3563 if (sched_mc_power_savings
>= POWERSAVINGS_BALANCE_WAKEUP
) {
3564 cpu_rq(this_cpu
)->rd
->sched_mc_preferred_wakeup_cpu
=
3565 group_first_cpu(sds
->group_leader
);
3571 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3572 static inline void init_sd_power_savings_stats(struct sched_domain
*sd
,
3573 struct sd_lb_stats
*sds
, enum cpu_idle_type idle
)
3578 static inline void update_sd_power_savings_stats(struct sched_group
*group
,
3579 struct sd_lb_stats
*sds
, int local_group
, struct sg_lb_stats
*sgs
)
3584 static inline int check_power_save_busiest_group(struct sd_lb_stats
*sds
,
3585 int this_cpu
, unsigned long *imbalance
)
3589 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3593 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3594 * @group: sched_group whose statistics are to be updated.
3595 * @this_cpu: Cpu for which load balance is currently performed.
3596 * @idle: Idle status of this_cpu
3597 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3598 * @sd_idle: Idle status of the sched_domain containing group.
3599 * @local_group: Does group contain this_cpu.
3600 * @cpus: Set of cpus considered for load balancing.
3601 * @balance: Should we balance.
3602 * @sgs: variable to hold the statistics for this group.
3604 static inline void update_sg_lb_stats(struct sched_group
*group
, int this_cpu
,
3605 enum cpu_idle_type idle
, int load_idx
, int *sd_idle
,
3606 int local_group
, const struct cpumask
*cpus
,
3607 int *balance
, struct sg_lb_stats
*sgs
)
3609 unsigned long load
, max_cpu_load
, min_cpu_load
;
3611 unsigned int balance_cpu
= -1, first_idle_cpu
= 0;
3612 unsigned long sum_avg_load_per_task
;
3613 unsigned long avg_load_per_task
;
3616 balance_cpu
= group_first_cpu(group
);
3618 /* Tally up the load of all CPUs in the group */
3619 sum_avg_load_per_task
= avg_load_per_task
= 0;
3621 min_cpu_load
= ~0UL;
3623 for_each_cpu_and(i
, sched_group_cpus(group
), cpus
) {
3624 struct rq
*rq
= cpu_rq(i
);
3626 if (*sd_idle
&& rq
->nr_running
)
3629 /* Bias balancing toward cpus of our domain */
3631 if (idle_cpu(i
) && !first_idle_cpu
) {
3636 load
= target_load(i
, load_idx
);
3638 load
= source_load(i
, load_idx
);
3639 if (load
> max_cpu_load
)
3640 max_cpu_load
= load
;
3641 if (min_cpu_load
> load
)
3642 min_cpu_load
= load
;
3645 sgs
->group_load
+= load
;
3646 sgs
->sum_nr_running
+= rq
->nr_running
;
3647 sgs
->sum_weighted_load
+= weighted_cpuload(i
);
3649 sum_avg_load_per_task
+= cpu_avg_load_per_task(i
);
3653 * First idle cpu or the first cpu(busiest) in this sched group
3654 * is eligible for doing load balancing at this and above
3655 * domains. In the newly idle case, we will allow all the cpu's
3656 * to do the newly idle load balance.
3658 if (idle
!= CPU_NEWLY_IDLE
&& local_group
&&
3659 balance_cpu
!= this_cpu
&& balance
) {
3664 /* Adjust by relative CPU power of the group */
3665 sgs
->avg_load
= sg_div_cpu_power(group
,
3666 sgs
->group_load
* SCHED_LOAD_SCALE
);
3670 * Consider the group unbalanced when the imbalance is larger
3671 * than the average weight of two tasks.
3673 * APZ: with cgroup the avg task weight can vary wildly and
3674 * might not be a suitable number - should we keep a
3675 * normalized nr_running number somewhere that negates
3678 avg_load_per_task
= sg_div_cpu_power(group
,
3679 sum_avg_load_per_task
* SCHED_LOAD_SCALE
);
3681 if ((max_cpu_load
- min_cpu_load
) > 2*avg_load_per_task
)
3684 sgs
->group_capacity
= group
->__cpu_power
/ SCHED_LOAD_SCALE
;
3689 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3690 * @sd: sched_domain whose statistics are to be updated.
3691 * @this_cpu: Cpu for which load balance is currently performed.
3692 * @idle: Idle status of this_cpu
3693 * @sd_idle: Idle status of the sched_domain containing group.
3694 * @cpus: Set of cpus considered for load balancing.
3695 * @balance: Should we balance.
3696 * @sds: variable to hold the statistics for this sched_domain.
3698 static inline void update_sd_lb_stats(struct sched_domain
*sd
, int this_cpu
,
3699 enum cpu_idle_type idle
, int *sd_idle
,
3700 const struct cpumask
*cpus
, int *balance
,
3701 struct sd_lb_stats
*sds
)
3703 struct sched_group
*group
= sd
->groups
;
3704 struct sg_lb_stats sgs
;
3707 init_sd_power_savings_stats(sd
, sds
, idle
);
3708 load_idx
= get_sd_load_idx(sd
, idle
);
3713 local_group
= cpumask_test_cpu(this_cpu
,
3714 sched_group_cpus(group
));
3715 memset(&sgs
, 0, sizeof(sgs
));
3716 update_sg_lb_stats(group
, this_cpu
, idle
, load_idx
, sd_idle
,
3717 local_group
, cpus
, balance
, &sgs
);
3719 if (local_group
&& balance
&& !(*balance
))
3722 sds
->total_load
+= sgs
.group_load
;
3723 sds
->total_pwr
+= group
->__cpu_power
;
3726 sds
->this_load
= sgs
.avg_load
;
3728 sds
->this_nr_running
= sgs
.sum_nr_running
;
3729 sds
->this_load_per_task
= sgs
.sum_weighted_load
;
3730 } else if (sgs
.avg_load
> sds
->max_load
&&
3731 (sgs
.sum_nr_running
> sgs
.group_capacity
||
3733 sds
->max_load
= sgs
.avg_load
;
3734 sds
->busiest
= group
;
3735 sds
->busiest_nr_running
= sgs
.sum_nr_running
;
3736 sds
->busiest_load_per_task
= sgs
.sum_weighted_load
;
3737 sds
->group_imb
= sgs
.group_imb
;
3740 update_sd_power_savings_stats(group
, sds
, local_group
, &sgs
);
3741 group
= group
->next
;
3742 } while (group
!= sd
->groups
);
3747 * fix_small_imbalance - Calculate the minor imbalance that exists
3748 * amongst the groups of a sched_domain, during
3750 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3751 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3752 * @imbalance: Variable to store the imbalance.
3754 static inline void fix_small_imbalance(struct sd_lb_stats
*sds
,
3755 int this_cpu
, unsigned long *imbalance
)
3757 unsigned long tmp
, pwr_now
= 0, pwr_move
= 0;
3758 unsigned int imbn
= 2;
3760 if (sds
->this_nr_running
) {
3761 sds
->this_load_per_task
/= sds
->this_nr_running
;
3762 if (sds
->busiest_load_per_task
>
3763 sds
->this_load_per_task
)
3766 sds
->this_load_per_task
=
3767 cpu_avg_load_per_task(this_cpu
);
3769 if (sds
->max_load
- sds
->this_load
+ sds
->busiest_load_per_task
>=
3770 sds
->busiest_load_per_task
* imbn
) {
3771 *imbalance
= sds
->busiest_load_per_task
;
3776 * OK, we don't have enough imbalance to justify moving tasks,
3777 * however we may be able to increase total CPU power used by
3781 pwr_now
+= sds
->busiest
->__cpu_power
*
3782 min(sds
->busiest_load_per_task
, sds
->max_load
);
3783 pwr_now
+= sds
->this->__cpu_power
*
3784 min(sds
->this_load_per_task
, sds
->this_load
);
3785 pwr_now
/= SCHED_LOAD_SCALE
;
3787 /* Amount of load we'd subtract */
3788 tmp
= sg_div_cpu_power(sds
->busiest
,
3789 sds
->busiest_load_per_task
* SCHED_LOAD_SCALE
);
3790 if (sds
->max_load
> tmp
)
3791 pwr_move
+= sds
->busiest
->__cpu_power
*
3792 min(sds
->busiest_load_per_task
, sds
->max_load
- tmp
);
3794 /* Amount of load we'd add */
3795 if (sds
->max_load
* sds
->busiest
->__cpu_power
<
3796 sds
->busiest_load_per_task
* SCHED_LOAD_SCALE
)
3797 tmp
= sg_div_cpu_power(sds
->this,
3798 sds
->max_load
* sds
->busiest
->__cpu_power
);
3800 tmp
= sg_div_cpu_power(sds
->this,
3801 sds
->busiest_load_per_task
* SCHED_LOAD_SCALE
);
3802 pwr_move
+= sds
->this->__cpu_power
*
3803 min(sds
->this_load_per_task
, sds
->this_load
+ tmp
);
3804 pwr_move
/= SCHED_LOAD_SCALE
;
3806 /* Move if we gain throughput */
3807 if (pwr_move
> pwr_now
)
3808 *imbalance
= sds
->busiest_load_per_task
;
3812 * calculate_imbalance - Calculate the amount of imbalance present within the
3813 * groups of a given sched_domain during load balance.
3814 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3815 * @this_cpu: Cpu for which currently load balance is being performed.
3816 * @imbalance: The variable to store the imbalance.
3818 static inline void calculate_imbalance(struct sd_lb_stats
*sds
, int this_cpu
,
3819 unsigned long *imbalance
)
3821 unsigned long max_pull
;
3823 * In the presence of smp nice balancing, certain scenarios can have
3824 * max load less than avg load(as we skip the groups at or below
3825 * its cpu_power, while calculating max_load..)
3827 if (sds
->max_load
< sds
->avg_load
) {
3829 return fix_small_imbalance(sds
, this_cpu
, imbalance
);
3832 /* Don't want to pull so many tasks that a group would go idle */
3833 max_pull
= min(sds
->max_load
- sds
->avg_load
,
3834 sds
->max_load
- sds
->busiest_load_per_task
);
3836 /* How much load to actually move to equalise the imbalance */
3837 *imbalance
= min(max_pull
* sds
->busiest
->__cpu_power
,
3838 (sds
->avg_load
- sds
->this_load
) * sds
->this->__cpu_power
)
3842 * if *imbalance is less than the average load per runnable task
3843 * there is no gaurantee that any tasks will be moved so we'll have
3844 * a think about bumping its value to force at least one task to be
3847 if (*imbalance
< sds
->busiest_load_per_task
)
3848 return fix_small_imbalance(sds
, this_cpu
, imbalance
);
3851 /******* find_busiest_group() helpers end here *********************/
3854 * find_busiest_group - Returns the busiest group within the sched_domain
3855 * if there is an imbalance. If there isn't an imbalance, and
3856 * the user has opted for power-savings, it returns a group whose
3857 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3858 * such a group exists.
3860 * Also calculates the amount of weighted load which should be moved
3861 * to restore balance.
3863 * @sd: The sched_domain whose busiest group is to be returned.
3864 * @this_cpu: The cpu for which load balancing is currently being performed.
3865 * @imbalance: Variable which stores amount of weighted load which should
3866 * be moved to restore balance/put a group to idle.
3867 * @idle: The idle status of this_cpu.
3868 * @sd_idle: The idleness of sd
3869 * @cpus: The set of CPUs under consideration for load-balancing.
3870 * @balance: Pointer to a variable indicating if this_cpu
3871 * is the appropriate cpu to perform load balancing at this_level.
3873 * Returns: - the busiest group if imbalance exists.
3874 * - If no imbalance and user has opted for power-savings balance,
3875 * return the least loaded group whose CPUs can be
3876 * put to idle by rebalancing its tasks onto our group.
3878 static struct sched_group
*
3879 find_busiest_group(struct sched_domain
*sd
, int this_cpu
,
3880 unsigned long *imbalance
, enum cpu_idle_type idle
,
3881 int *sd_idle
, const struct cpumask
*cpus
, int *balance
)
3883 struct sd_lb_stats sds
;
3885 memset(&sds
, 0, sizeof(sds
));
3888 * Compute the various statistics relavent for load balancing at
3891 update_sd_lb_stats(sd
, this_cpu
, idle
, sd_idle
, cpus
,
3894 /* Cases where imbalance does not exist from POV of this_cpu */
3895 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3897 * 2) There is no busy sibling group to pull from.
3898 * 3) This group is the busiest group.
3899 * 4) This group is more busy than the avg busieness at this
3901 * 5) The imbalance is within the specified limit.
3902 * 6) Any rebalance would lead to ping-pong
3904 if (balance
&& !(*balance
))
3907 if (!sds
.busiest
|| sds
.busiest_nr_running
== 0)
3910 if (sds
.this_load
>= sds
.max_load
)
3913 sds
.avg_load
= (SCHED_LOAD_SCALE
* sds
.total_load
) / sds
.total_pwr
;
3915 if (sds
.this_load
>= sds
.avg_load
)
3918 if (100 * sds
.max_load
<= sd
->imbalance_pct
* sds
.this_load
)
3921 sds
.busiest_load_per_task
/= sds
.busiest_nr_running
;
3923 sds
.busiest_load_per_task
=
3924 min(sds
.busiest_load_per_task
, sds
.avg_load
);
3927 * We're trying to get all the cpus to the average_load, so we don't
3928 * want to push ourselves above the average load, nor do we wish to
3929 * reduce the max loaded cpu below the average load, as either of these
3930 * actions would just result in more rebalancing later, and ping-pong
3931 * tasks around. Thus we look for the minimum possible imbalance.
3932 * Negative imbalances (*we* are more loaded than anyone else) will
3933 * be counted as no imbalance for these purposes -- we can't fix that
3934 * by pulling tasks to us. Be careful of negative numbers as they'll
3935 * appear as very large values with unsigned longs.
3937 if (sds
.max_load
<= sds
.busiest_load_per_task
)
3940 /* Looks like there is an imbalance. Compute it */
3941 calculate_imbalance(&sds
, this_cpu
, imbalance
);
3946 * There is no obvious imbalance. But check if we can do some balancing
3949 if (check_power_save_busiest_group(&sds
, this_cpu
, imbalance
))
3957 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3960 find_busiest_queue(struct sched_group
*group
, enum cpu_idle_type idle
,
3961 unsigned long imbalance
, const struct cpumask
*cpus
)
3963 struct rq
*busiest
= NULL
, *rq
;
3964 unsigned long max_load
= 0;
3967 for_each_cpu(i
, sched_group_cpus(group
)) {
3970 if (!cpumask_test_cpu(i
, cpus
))
3974 wl
= weighted_cpuload(i
);
3976 if (rq
->nr_running
== 1 && wl
> imbalance
)
3979 if (wl
> max_load
) {
3989 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3990 * so long as it is large enough.
3992 #define MAX_PINNED_INTERVAL 512
3994 /* Working cpumask for load_balance and load_balance_newidle. */
3995 static DEFINE_PER_CPU(cpumask_var_t
, load_balance_tmpmask
);
3998 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3999 * tasks if there is an imbalance.
4001 static int load_balance(int this_cpu
, struct rq
*this_rq
,
4002 struct sched_domain
*sd
, enum cpu_idle_type idle
,
4005 int ld_moved
, all_pinned
= 0, active_balance
= 0, sd_idle
= 0;
4006 struct sched_group
*group
;
4007 unsigned long imbalance
;
4009 unsigned long flags
;
4010 struct cpumask
*cpus
= __get_cpu_var(load_balance_tmpmask
);
4012 cpumask_setall(cpus
);
4015 * When power savings policy is enabled for the parent domain, idle
4016 * sibling can pick up load irrespective of busy siblings. In this case,
4017 * let the state of idle sibling percolate up as CPU_IDLE, instead of
4018 * portraying it as CPU_NOT_IDLE.
4020 if (idle
!= CPU_NOT_IDLE
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
4021 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
4024 schedstat_inc(sd
, lb_count
[idle
]);
4028 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, idle
, &sd_idle
,
4035 schedstat_inc(sd
, lb_nobusyg
[idle
]);
4039 busiest
= find_busiest_queue(group
, idle
, imbalance
, cpus
);
4041 schedstat_inc(sd
, lb_nobusyq
[idle
]);
4045 BUG_ON(busiest
== this_rq
);
4047 schedstat_add(sd
, lb_imbalance
[idle
], imbalance
);
4050 if (busiest
->nr_running
> 1) {
4052 * Attempt to move tasks. If find_busiest_group has found
4053 * an imbalance but busiest->nr_running <= 1, the group is
4054 * still unbalanced. ld_moved simply stays zero, so it is
4055 * correctly treated as an imbalance.
4057 local_irq_save(flags
);
4058 double_rq_lock(this_rq
, busiest
);
4059 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
4060 imbalance
, sd
, idle
, &all_pinned
);
4061 double_rq_unlock(this_rq
, busiest
);
4062 local_irq_restore(flags
);
4065 * some other cpu did the load balance for us.
4067 if (ld_moved
&& this_cpu
!= smp_processor_id())
4068 resched_cpu(this_cpu
);
4070 /* All tasks on this runqueue were pinned by CPU affinity */
4071 if (unlikely(all_pinned
)) {
4072 cpumask_clear_cpu(cpu_of(busiest
), cpus
);
4073 if (!cpumask_empty(cpus
))
4080 schedstat_inc(sd
, lb_failed
[idle
]);
4081 sd
->nr_balance_failed
++;
4083 if (unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2)) {
4085 spin_lock_irqsave(&busiest
->lock
, flags
);
4087 /* don't kick the migration_thread, if the curr
4088 * task on busiest cpu can't be moved to this_cpu
4090 if (!cpumask_test_cpu(this_cpu
,
4091 &busiest
->curr
->cpus_allowed
)) {
4092 spin_unlock_irqrestore(&busiest
->lock
, flags
);
4094 goto out_one_pinned
;
4097 if (!busiest
->active_balance
) {
4098 busiest
->active_balance
= 1;
4099 busiest
->push_cpu
= this_cpu
;
4102 spin_unlock_irqrestore(&busiest
->lock
, flags
);
4104 wake_up_process(busiest
->migration_thread
);
4107 * We've kicked active balancing, reset the failure
4110 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
4113 sd
->nr_balance_failed
= 0;
4115 if (likely(!active_balance
)) {
4116 /* We were unbalanced, so reset the balancing interval */
4117 sd
->balance_interval
= sd
->min_interval
;
4120 * If we've begun active balancing, start to back off. This
4121 * case may not be covered by the all_pinned logic if there
4122 * is only 1 task on the busy runqueue (because we don't call
4125 if (sd
->balance_interval
< sd
->max_interval
)
4126 sd
->balance_interval
*= 2;
4129 if (!ld_moved
&& !sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
4130 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
4136 schedstat_inc(sd
, lb_balanced
[idle
]);
4138 sd
->nr_balance_failed
= 0;
4141 /* tune up the balancing interval */
4142 if ((all_pinned
&& sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
4143 (sd
->balance_interval
< sd
->max_interval
))
4144 sd
->balance_interval
*= 2;
4146 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
4147 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
4158 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4159 * tasks if there is an imbalance.
4161 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4162 * this_rq is locked.
4165 load_balance_newidle(int this_cpu
, struct rq
*this_rq
, struct sched_domain
*sd
)
4167 struct sched_group
*group
;
4168 struct rq
*busiest
= NULL
;
4169 unsigned long imbalance
;
4173 struct cpumask
*cpus
= __get_cpu_var(load_balance_tmpmask
);
4175 cpumask_setall(cpus
);
4178 * When power savings policy is enabled for the parent domain, idle
4179 * sibling can pick up load irrespective of busy siblings. In this case,
4180 * let the state of idle sibling percolate up as IDLE, instead of
4181 * portraying it as CPU_NOT_IDLE.
4183 if (sd
->flags
& SD_SHARE_CPUPOWER
&&
4184 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
4187 schedstat_inc(sd
, lb_count
[CPU_NEWLY_IDLE
]);
4189 update_shares_locked(this_rq
, sd
);
4190 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, CPU_NEWLY_IDLE
,
4191 &sd_idle
, cpus
, NULL
);
4193 schedstat_inc(sd
, lb_nobusyg
[CPU_NEWLY_IDLE
]);
4197 busiest
= find_busiest_queue(group
, CPU_NEWLY_IDLE
, imbalance
, cpus
);
4199 schedstat_inc(sd
, lb_nobusyq
[CPU_NEWLY_IDLE
]);
4203 BUG_ON(busiest
== this_rq
);
4205 schedstat_add(sd
, lb_imbalance
[CPU_NEWLY_IDLE
], imbalance
);
4208 if (busiest
->nr_running
> 1) {
4209 /* Attempt to move tasks */
4210 double_lock_balance(this_rq
, busiest
);
4211 /* this_rq->clock is already updated */
4212 update_rq_clock(busiest
);
4213 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
4214 imbalance
, sd
, CPU_NEWLY_IDLE
,
4216 double_unlock_balance(this_rq
, busiest
);
4218 if (unlikely(all_pinned
)) {
4219 cpumask_clear_cpu(cpu_of(busiest
), cpus
);
4220 if (!cpumask_empty(cpus
))
4226 int active_balance
= 0;
4228 schedstat_inc(sd
, lb_failed
[CPU_NEWLY_IDLE
]);
4229 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
4230 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
4233 if (sched_mc_power_savings
< POWERSAVINGS_BALANCE_WAKEUP
)
4236 if (sd
->nr_balance_failed
++ < 2)
4240 * The only task running in a non-idle cpu can be moved to this
4241 * cpu in an attempt to completely freeup the other CPU
4242 * package. The same method used to move task in load_balance()
4243 * have been extended for load_balance_newidle() to speedup
4244 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4246 * The package power saving logic comes from
4247 * find_busiest_group(). If there are no imbalance, then
4248 * f_b_g() will return NULL. However when sched_mc={1,2} then
4249 * f_b_g() will select a group from which a running task may be
4250 * pulled to this cpu in order to make the other package idle.
4251 * If there is no opportunity to make a package idle and if
4252 * there are no imbalance, then f_b_g() will return NULL and no
4253 * action will be taken in load_balance_newidle().
4255 * Under normal task pull operation due to imbalance, there
4256 * will be more than one task in the source run queue and
4257 * move_tasks() will succeed. ld_moved will be true and this
4258 * active balance code will not be triggered.
4261 /* Lock busiest in correct order while this_rq is held */
4262 double_lock_balance(this_rq
, busiest
);
4265 * don't kick the migration_thread, if the curr
4266 * task on busiest cpu can't be moved to this_cpu
4268 if (!cpumask_test_cpu(this_cpu
, &busiest
->curr
->cpus_allowed
)) {
4269 double_unlock_balance(this_rq
, busiest
);
4274 if (!busiest
->active_balance
) {
4275 busiest
->active_balance
= 1;
4276 busiest
->push_cpu
= this_cpu
;
4280 double_unlock_balance(this_rq
, busiest
);
4282 * Should not call ttwu while holding a rq->lock
4284 spin_unlock(&this_rq
->lock
);
4286 wake_up_process(busiest
->migration_thread
);
4287 spin_lock(&this_rq
->lock
);
4290 sd
->nr_balance_failed
= 0;
4292 update_shares_locked(this_rq
, sd
);
4296 schedstat_inc(sd
, lb_balanced
[CPU_NEWLY_IDLE
]);
4297 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
4298 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
4300 sd
->nr_balance_failed
= 0;
4306 * idle_balance is called by schedule() if this_cpu is about to become
4307 * idle. Attempts to pull tasks from other CPUs.
4309 static void idle_balance(int this_cpu
, struct rq
*this_rq
)
4311 struct sched_domain
*sd
;
4312 int pulled_task
= 0;
4313 unsigned long next_balance
= jiffies
+ HZ
;
4315 for_each_domain(this_cpu
, sd
) {
4316 unsigned long interval
;
4318 if (!(sd
->flags
& SD_LOAD_BALANCE
))
4321 if (sd
->flags
& SD_BALANCE_NEWIDLE
)
4322 /* If we've pulled tasks over stop searching: */
4323 pulled_task
= load_balance_newidle(this_cpu
, this_rq
,
4326 interval
= msecs_to_jiffies(sd
->balance_interval
);
4327 if (time_after(next_balance
, sd
->last_balance
+ interval
))
4328 next_balance
= sd
->last_balance
+ interval
;
4332 if (pulled_task
|| time_after(jiffies
, this_rq
->next_balance
)) {
4334 * We are going idle. next_balance may be set based on
4335 * a busy processor. So reset next_balance.
4337 this_rq
->next_balance
= next_balance
;
4342 * active_load_balance is run by migration threads. It pushes running tasks
4343 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4344 * running on each physical CPU where possible, and avoids physical /
4345 * logical imbalances.
4347 * Called with busiest_rq locked.
4349 static void active_load_balance(struct rq
*busiest_rq
, int busiest_cpu
)
4351 int target_cpu
= busiest_rq
->push_cpu
;
4352 struct sched_domain
*sd
;
4353 struct rq
*target_rq
;
4355 /* Is there any task to move? */
4356 if (busiest_rq
->nr_running
<= 1)
4359 target_rq
= cpu_rq(target_cpu
);
4362 * This condition is "impossible", if it occurs
4363 * we need to fix it. Originally reported by
4364 * Bjorn Helgaas on a 128-cpu setup.
4366 BUG_ON(busiest_rq
== target_rq
);
4368 /* move a task from busiest_rq to target_rq */
4369 double_lock_balance(busiest_rq
, target_rq
);
4370 update_rq_clock(busiest_rq
);
4371 update_rq_clock(target_rq
);
4373 /* Search for an sd spanning us and the target CPU. */
4374 for_each_domain(target_cpu
, sd
) {
4375 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
4376 cpumask_test_cpu(busiest_cpu
, sched_domain_span(sd
)))
4381 schedstat_inc(sd
, alb_count
);
4383 if (move_one_task(target_rq
, target_cpu
, busiest_rq
,
4385 schedstat_inc(sd
, alb_pushed
);
4387 schedstat_inc(sd
, alb_failed
);
4389 double_unlock_balance(busiest_rq
, target_rq
);
4394 atomic_t load_balancer
;
4395 cpumask_var_t cpu_mask
;
4396 cpumask_var_t ilb_grp_nohz_mask
;
4397 } nohz ____cacheline_aligned
= {
4398 .load_balancer
= ATOMIC_INIT(-1),
4401 int get_nohz_load_balancer(void)
4403 return atomic_read(&nohz
.load_balancer
);
4406 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4408 * lowest_flag_domain - Return lowest sched_domain containing flag.
4409 * @cpu: The cpu whose lowest level of sched domain is to
4411 * @flag: The flag to check for the lowest sched_domain
4412 * for the given cpu.
4414 * Returns the lowest sched_domain of a cpu which contains the given flag.
4416 static inline struct sched_domain
*lowest_flag_domain(int cpu
, int flag
)
4418 struct sched_domain
*sd
;
4420 for_each_domain(cpu
, sd
)
4421 if (sd
&& (sd
->flags
& flag
))
4428 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4429 * @cpu: The cpu whose domains we're iterating over.
4430 * @sd: variable holding the value of the power_savings_sd
4432 * @flag: The flag to filter the sched_domains to be iterated.
4434 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4435 * set, starting from the lowest sched_domain to the highest.
4437 #define for_each_flag_domain(cpu, sd, flag) \
4438 for (sd = lowest_flag_domain(cpu, flag); \
4439 (sd && (sd->flags & flag)); sd = sd->parent)
4442 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4443 * @ilb_group: group to be checked for semi-idleness
4445 * Returns: 1 if the group is semi-idle. 0 otherwise.
4447 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4448 * and atleast one non-idle CPU. This helper function checks if the given
4449 * sched_group is semi-idle or not.
4451 static inline int is_semi_idle_group(struct sched_group
*ilb_group
)
4453 cpumask_and(nohz
.ilb_grp_nohz_mask
, nohz
.cpu_mask
,
4454 sched_group_cpus(ilb_group
));
4457 * A sched_group is semi-idle when it has atleast one busy cpu
4458 * and atleast one idle cpu.
4460 if (cpumask_empty(nohz
.ilb_grp_nohz_mask
))
4463 if (cpumask_equal(nohz
.ilb_grp_nohz_mask
, sched_group_cpus(ilb_group
)))
4469 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4470 * @cpu: The cpu which is nominating a new idle_load_balancer.
4472 * Returns: Returns the id of the idle load balancer if it exists,
4473 * Else, returns >= nr_cpu_ids.
4475 * This algorithm picks the idle load balancer such that it belongs to a
4476 * semi-idle powersavings sched_domain. The idea is to try and avoid
4477 * completely idle packages/cores just for the purpose of idle load balancing
4478 * when there are other idle cpu's which are better suited for that job.
4480 static int find_new_ilb(int cpu
)
4482 struct sched_domain
*sd
;
4483 struct sched_group
*ilb_group
;
4486 * Have idle load balancer selection from semi-idle packages only
4487 * when power-aware load balancing is enabled
4489 if (!(sched_smt_power_savings
|| sched_mc_power_savings
))
4493 * Optimize for the case when we have no idle CPUs or only one
4494 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4496 if (cpumask_weight(nohz
.cpu_mask
) < 2)
4499 for_each_flag_domain(cpu
, sd
, SD_POWERSAVINGS_BALANCE
) {
4500 ilb_group
= sd
->groups
;
4503 if (is_semi_idle_group(ilb_group
))
4504 return cpumask_first(nohz
.ilb_grp_nohz_mask
);
4506 ilb_group
= ilb_group
->next
;
4508 } while (ilb_group
!= sd
->groups
);
4512 return cpumask_first(nohz
.cpu_mask
);
4514 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4515 static inline int find_new_ilb(int call_cpu
)
4517 return cpumask_first(nohz
.cpu_mask
);
4522 * This routine will try to nominate the ilb (idle load balancing)
4523 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4524 * load balancing on behalf of all those cpus. If all the cpus in the system
4525 * go into this tickless mode, then there will be no ilb owner (as there is
4526 * no need for one) and all the cpus will sleep till the next wakeup event
4529 * For the ilb owner, tick is not stopped. And this tick will be used
4530 * for idle load balancing. ilb owner will still be part of
4533 * While stopping the tick, this cpu will become the ilb owner if there
4534 * is no other owner. And will be the owner till that cpu becomes busy
4535 * or if all cpus in the system stop their ticks at which point
4536 * there is no need for ilb owner.
4538 * When the ilb owner becomes busy, it nominates another owner, during the
4539 * next busy scheduler_tick()
4541 int select_nohz_load_balancer(int stop_tick
)
4543 int cpu
= smp_processor_id();
4546 cpu_rq(cpu
)->in_nohz_recently
= 1;
4548 if (!cpu_active(cpu
)) {
4549 if (atomic_read(&nohz
.load_balancer
) != cpu
)
4553 * If we are going offline and still the leader,
4556 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
4562 cpumask_set_cpu(cpu
, nohz
.cpu_mask
);
4564 /* time for ilb owner also to sleep */
4565 if (cpumask_weight(nohz
.cpu_mask
) == num_online_cpus()) {
4566 if (atomic_read(&nohz
.load_balancer
) == cpu
)
4567 atomic_set(&nohz
.load_balancer
, -1);
4571 if (atomic_read(&nohz
.load_balancer
) == -1) {
4572 /* make me the ilb owner */
4573 if (atomic_cmpxchg(&nohz
.load_balancer
, -1, cpu
) == -1)
4575 } else if (atomic_read(&nohz
.load_balancer
) == cpu
) {
4578 if (!(sched_smt_power_savings
||
4579 sched_mc_power_savings
))
4582 * Check to see if there is a more power-efficient
4585 new_ilb
= find_new_ilb(cpu
);
4586 if (new_ilb
< nr_cpu_ids
&& new_ilb
!= cpu
) {
4587 atomic_set(&nohz
.load_balancer
, -1);
4588 resched_cpu(new_ilb
);
4594 if (!cpumask_test_cpu(cpu
, nohz
.cpu_mask
))
4597 cpumask_clear_cpu(cpu
, nohz
.cpu_mask
);
4599 if (atomic_read(&nohz
.load_balancer
) == cpu
)
4600 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
4607 static DEFINE_SPINLOCK(balancing
);
4610 * It checks each scheduling domain to see if it is due to be balanced,
4611 * and initiates a balancing operation if so.
4613 * Balancing parameters are set up in arch_init_sched_domains.
4615 static void rebalance_domains(int cpu
, enum cpu_idle_type idle
)
4618 struct rq
*rq
= cpu_rq(cpu
);
4619 unsigned long interval
;
4620 struct sched_domain
*sd
;
4621 /* Earliest time when we have to do rebalance again */
4622 unsigned long next_balance
= jiffies
+ 60*HZ
;
4623 int update_next_balance
= 0;
4626 for_each_domain(cpu
, sd
) {
4627 if (!(sd
->flags
& SD_LOAD_BALANCE
))
4630 interval
= sd
->balance_interval
;
4631 if (idle
!= CPU_IDLE
)
4632 interval
*= sd
->busy_factor
;
4634 /* scale ms to jiffies */
4635 interval
= msecs_to_jiffies(interval
);
4636 if (unlikely(!interval
))
4638 if (interval
> HZ
*NR_CPUS
/10)
4639 interval
= HZ
*NR_CPUS
/10;
4641 need_serialize
= sd
->flags
& SD_SERIALIZE
;
4643 if (need_serialize
) {
4644 if (!spin_trylock(&balancing
))
4648 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
4649 if (load_balance(cpu
, rq
, sd
, idle
, &balance
)) {
4651 * We've pulled tasks over so either we're no
4652 * longer idle, or one of our SMT siblings is
4655 idle
= CPU_NOT_IDLE
;
4657 sd
->last_balance
= jiffies
;
4660 spin_unlock(&balancing
);
4662 if (time_after(next_balance
, sd
->last_balance
+ interval
)) {
4663 next_balance
= sd
->last_balance
+ interval
;
4664 update_next_balance
= 1;
4668 * Stop the load balance at this level. There is another
4669 * CPU in our sched group which is doing load balancing more
4677 * next_balance will be updated only when there is a need.
4678 * When the cpu is attached to null domain for ex, it will not be
4681 if (likely(update_next_balance
))
4682 rq
->next_balance
= next_balance
;
4686 * run_rebalance_domains is triggered when needed from the scheduler tick.
4687 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4688 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4690 static void run_rebalance_domains(struct softirq_action
*h
)
4692 int this_cpu
= smp_processor_id();
4693 struct rq
*this_rq
= cpu_rq(this_cpu
);
4694 enum cpu_idle_type idle
= this_rq
->idle_at_tick
?
4695 CPU_IDLE
: CPU_NOT_IDLE
;
4697 rebalance_domains(this_cpu
, idle
);
4701 * If this cpu is the owner for idle load balancing, then do the
4702 * balancing on behalf of the other idle cpus whose ticks are
4705 if (this_rq
->idle_at_tick
&&
4706 atomic_read(&nohz
.load_balancer
) == this_cpu
) {
4710 for_each_cpu(balance_cpu
, nohz
.cpu_mask
) {
4711 if (balance_cpu
== this_cpu
)
4715 * If this cpu gets work to do, stop the load balancing
4716 * work being done for other cpus. Next load
4717 * balancing owner will pick it up.
4722 rebalance_domains(balance_cpu
, CPU_IDLE
);
4724 rq
= cpu_rq(balance_cpu
);
4725 if (time_after(this_rq
->next_balance
, rq
->next_balance
))
4726 this_rq
->next_balance
= rq
->next_balance
;
4732 static inline int on_null_domain(int cpu
)
4734 return !rcu_dereference(cpu_rq(cpu
)->sd
);
4738 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4740 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4741 * idle load balancing owner or decide to stop the periodic load balancing,
4742 * if the whole system is idle.
4744 static inline void trigger_load_balance(struct rq
*rq
, int cpu
)
4748 * If we were in the nohz mode recently and busy at the current
4749 * scheduler tick, then check if we need to nominate new idle
4752 if (rq
->in_nohz_recently
&& !rq
->idle_at_tick
) {
4753 rq
->in_nohz_recently
= 0;
4755 if (atomic_read(&nohz
.load_balancer
) == cpu
) {
4756 cpumask_clear_cpu(cpu
, nohz
.cpu_mask
);
4757 atomic_set(&nohz
.load_balancer
, -1);
4760 if (atomic_read(&nohz
.load_balancer
) == -1) {
4761 int ilb
= find_new_ilb(cpu
);
4763 if (ilb
< nr_cpu_ids
)
4769 * If this cpu is idle and doing idle load balancing for all the
4770 * cpus with ticks stopped, is it time for that to stop?
4772 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) == cpu
&&
4773 cpumask_weight(nohz
.cpu_mask
) == num_online_cpus()) {
4779 * If this cpu is idle and the idle load balancing is done by
4780 * someone else, then no need raise the SCHED_SOFTIRQ
4782 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) != cpu
&&
4783 cpumask_test_cpu(cpu
, nohz
.cpu_mask
))
4786 /* Don't need to rebalance while attached to NULL domain */
4787 if (time_after_eq(jiffies
, rq
->next_balance
) &&
4788 likely(!on_null_domain(cpu
)))
4789 raise_softirq(SCHED_SOFTIRQ
);
4792 #else /* CONFIG_SMP */
4795 * on UP we do not need to balance between CPUs:
4797 static inline void idle_balance(int cpu
, struct rq
*rq
)
4803 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
4805 EXPORT_PER_CPU_SYMBOL(kstat
);
4808 * Return any ns on the sched_clock that have not yet been accounted in
4809 * @p in case that task is currently running.
4811 * Called with task_rq_lock() held on @rq.
4813 static u64
do_task_delta_exec(struct task_struct
*p
, struct rq
*rq
)
4817 if (task_current(rq
, p
)) {
4818 update_rq_clock(rq
);
4819 ns
= rq
->clock
- p
->se
.exec_start
;
4827 unsigned long long task_delta_exec(struct task_struct
*p
)
4829 unsigned long flags
;
4833 rq
= task_rq_lock(p
, &flags
);
4834 ns
= do_task_delta_exec(p
, rq
);
4835 task_rq_unlock(rq
, &flags
);
4841 * Return accounted runtime for the task.
4842 * In case the task is currently running, return the runtime plus current's
4843 * pending runtime that have not been accounted yet.
4845 unsigned long long task_sched_runtime(struct task_struct
*p
)
4847 unsigned long flags
;
4851 rq
= task_rq_lock(p
, &flags
);
4852 ns
= p
->se
.sum_exec_runtime
+ do_task_delta_exec(p
, rq
);
4853 task_rq_unlock(rq
, &flags
);
4859 * Return sum_exec_runtime for the thread group.
4860 * In case the task is currently running, return the sum plus current's
4861 * pending runtime that have not been accounted yet.
4863 * Note that the thread group might have other running tasks as well,
4864 * so the return value not includes other pending runtime that other
4865 * running tasks might have.
4867 unsigned long long thread_group_sched_runtime(struct task_struct
*p
)
4869 struct task_cputime totals
;
4870 unsigned long flags
;
4874 rq
= task_rq_lock(p
, &flags
);
4875 thread_group_cputime(p
, &totals
);
4876 ns
= totals
.sum_exec_runtime
+ do_task_delta_exec(p
, rq
);
4877 task_rq_unlock(rq
, &flags
);
4883 * Account user cpu time to a process.
4884 * @p: the process that the cpu time gets accounted to
4885 * @cputime: the cpu time spent in user space since the last update
4886 * @cputime_scaled: cputime scaled by cpu frequency
4888 void account_user_time(struct task_struct
*p
, cputime_t cputime
,
4889 cputime_t cputime_scaled
)
4891 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4894 /* Add user time to process. */
4895 p
->utime
= cputime_add(p
->utime
, cputime
);
4896 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
4897 account_group_user_time(p
, cputime
);
4899 /* Add user time to cpustat. */
4900 tmp
= cputime_to_cputime64(cputime
);
4901 if (TASK_NICE(p
) > 0)
4902 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
4904 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
4906 cpuacct_update_stats(p
, CPUACCT_STAT_USER
, cputime
);
4907 /* Account for user time used */
4908 acct_update_integrals(p
);
4912 * Account guest cpu time to a process.
4913 * @p: the process that the cpu time gets accounted to
4914 * @cputime: the cpu time spent in virtual machine since the last update
4915 * @cputime_scaled: cputime scaled by cpu frequency
4917 static void account_guest_time(struct task_struct
*p
, cputime_t cputime
,
4918 cputime_t cputime_scaled
)
4921 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4923 tmp
= cputime_to_cputime64(cputime
);
4925 /* Add guest time to process. */
4926 p
->utime
= cputime_add(p
->utime
, cputime
);
4927 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
4928 account_group_user_time(p
, cputime
);
4929 p
->gtime
= cputime_add(p
->gtime
, cputime
);
4931 /* Add guest time to cpustat. */
4932 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
4933 cpustat
->guest
= cputime64_add(cpustat
->guest
, tmp
);
4937 * Account system cpu time to a process.
4938 * @p: the process that the cpu time gets accounted to
4939 * @hardirq_offset: the offset to subtract from hardirq_count()
4940 * @cputime: the cpu time spent in kernel space since the last update
4941 * @cputime_scaled: cputime scaled by cpu frequency
4943 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
4944 cputime_t cputime
, cputime_t cputime_scaled
)
4946 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4949 if ((p
->flags
& PF_VCPU
) && (irq_count() - hardirq_offset
== 0)) {
4950 account_guest_time(p
, cputime
, cputime_scaled
);
4954 /* Add system time to process. */
4955 p
->stime
= cputime_add(p
->stime
, cputime
);
4956 p
->stimescaled
= cputime_add(p
->stimescaled
, cputime_scaled
);
4957 account_group_system_time(p
, cputime
);
4959 /* Add system time to cpustat. */
4960 tmp
= cputime_to_cputime64(cputime
);
4961 if (hardirq_count() - hardirq_offset
)
4962 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
4963 else if (softirq_count())
4964 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
4966 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
4968 cpuacct_update_stats(p
, CPUACCT_STAT_SYSTEM
, cputime
);
4970 /* Account for system time used */
4971 acct_update_integrals(p
);
4975 * Account for involuntary wait time.
4976 * @steal: the cpu time spent in involuntary wait
4978 void account_steal_time(cputime_t cputime
)
4980 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4981 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
4983 cpustat
->steal
= cputime64_add(cpustat
->steal
, cputime64
);
4987 * Account for idle time.
4988 * @cputime: the cpu time spent in idle wait
4990 void account_idle_time(cputime_t cputime
)
4992 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4993 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
4994 struct rq
*rq
= this_rq();
4996 if (atomic_read(&rq
->nr_iowait
) > 0)
4997 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, cputime64
);
4999 cpustat
->idle
= cputime64_add(cpustat
->idle
, cputime64
);
5002 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
5005 * Account a single tick of cpu time.
5006 * @p: the process that the cpu time gets accounted to
5007 * @user_tick: indicates if the tick is a user or a system tick
5009 void account_process_tick(struct task_struct
*p
, int user_tick
)
5011 cputime_t one_jiffy
= jiffies_to_cputime(1);
5012 cputime_t one_jiffy_scaled
= cputime_to_scaled(one_jiffy
);
5013 struct rq
*rq
= this_rq();
5016 account_user_time(p
, one_jiffy
, one_jiffy_scaled
);
5017 else if ((p
!= rq
->idle
) || (irq_count() != HARDIRQ_OFFSET
))
5018 account_system_time(p
, HARDIRQ_OFFSET
, one_jiffy
,
5021 account_idle_time(one_jiffy
);
5025 * Account multiple ticks of steal time.
5026 * @p: the process from which the cpu time has been stolen
5027 * @ticks: number of stolen ticks
5029 void account_steal_ticks(unsigned long ticks
)
5031 account_steal_time(jiffies_to_cputime(ticks
));
5035 * Account multiple ticks of idle time.
5036 * @ticks: number of stolen ticks
5038 void account_idle_ticks(unsigned long ticks
)
5040 account_idle_time(jiffies_to_cputime(ticks
));
5046 * Use precise platform statistics if available:
5048 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
5049 cputime_t
task_utime(struct task_struct
*p
)
5054 cputime_t
task_stime(struct task_struct
*p
)
5059 cputime_t
task_utime(struct task_struct
*p
)
5061 clock_t utime
= cputime_to_clock_t(p
->utime
),
5062 total
= utime
+ cputime_to_clock_t(p
->stime
);
5066 * Use CFS's precise accounting:
5068 temp
= (u64
)nsec_to_clock_t(p
->se
.sum_exec_runtime
);
5072 do_div(temp
, total
);
5074 utime
= (clock_t)temp
;
5076 p
->prev_utime
= max(p
->prev_utime
, clock_t_to_cputime(utime
));
5077 return p
->prev_utime
;
5080 cputime_t
task_stime(struct task_struct
*p
)
5085 * Use CFS's precise accounting. (we subtract utime from
5086 * the total, to make sure the total observed by userspace
5087 * grows monotonically - apps rely on that):
5089 stime
= nsec_to_clock_t(p
->se
.sum_exec_runtime
) -
5090 cputime_to_clock_t(task_utime(p
));
5093 p
->prev_stime
= max(p
->prev_stime
, clock_t_to_cputime(stime
));
5095 return p
->prev_stime
;
5099 inline cputime_t
task_gtime(struct task_struct
*p
)
5105 * This function gets called by the timer code, with HZ frequency.
5106 * We call it with interrupts disabled.
5108 * It also gets called by the fork code, when changing the parent's
5111 void scheduler_tick(void)
5113 int cpu
= smp_processor_id();
5114 struct rq
*rq
= cpu_rq(cpu
);
5115 struct task_struct
*curr
= rq
->curr
;
5119 spin_lock(&rq
->lock
);
5120 update_rq_clock(rq
);
5121 update_cpu_load(rq
);
5122 curr
->sched_class
->task_tick(rq
, curr
, 0);
5123 spin_unlock(&rq
->lock
);
5125 perf_counter_task_tick(curr
, cpu
);
5128 rq
->idle_at_tick
= idle_cpu(cpu
);
5129 trigger_load_balance(rq
, cpu
);
5133 notrace
unsigned long get_parent_ip(unsigned long addr
)
5135 if (in_lock_functions(addr
)) {
5136 addr
= CALLER_ADDR2
;
5137 if (in_lock_functions(addr
))
5138 addr
= CALLER_ADDR3
;
5143 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5144 defined(CONFIG_PREEMPT_TRACER))
5146 void __kprobes
add_preempt_count(int val
)
5148 #ifdef CONFIG_DEBUG_PREEMPT
5152 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5155 preempt_count() += val
;
5156 #ifdef CONFIG_DEBUG_PREEMPT
5158 * Spinlock count overflowing soon?
5160 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
5163 if (preempt_count() == val
)
5164 trace_preempt_off(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
5166 EXPORT_SYMBOL(add_preempt_count
);
5168 void __kprobes
sub_preempt_count(int val
)
5170 #ifdef CONFIG_DEBUG_PREEMPT
5174 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
5177 * Is the spinlock portion underflowing?
5179 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
5180 !(preempt_count() & PREEMPT_MASK
)))
5184 if (preempt_count() == val
)
5185 trace_preempt_on(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
5186 preempt_count() -= val
;
5188 EXPORT_SYMBOL(sub_preempt_count
);
5193 * Print scheduling while atomic bug:
5195 static noinline
void __schedule_bug(struct task_struct
*prev
)
5197 struct pt_regs
*regs
= get_irq_regs();
5199 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
5200 prev
->comm
, prev
->pid
, preempt_count());
5202 debug_show_held_locks(prev
);
5204 if (irqs_disabled())
5205 print_irqtrace_events(prev
);
5214 * Various schedule()-time debugging checks and statistics:
5216 static inline void schedule_debug(struct task_struct
*prev
)
5219 * Test if we are atomic. Since do_exit() needs to call into
5220 * schedule() atomically, we ignore that path for now.
5221 * Otherwise, whine if we are scheduling when we should not be.
5223 if (unlikely(in_atomic_preempt_off() && !prev
->exit_state
))
5224 __schedule_bug(prev
);
5226 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
5228 schedstat_inc(this_rq(), sched_count
);
5229 #ifdef CONFIG_SCHEDSTATS
5230 if (unlikely(prev
->lock_depth
>= 0)) {
5231 schedstat_inc(this_rq(), bkl_count
);
5232 schedstat_inc(prev
, sched_info
.bkl_count
);
5237 static void put_prev_task(struct rq
*rq
, struct task_struct
*prev
)
5239 if (prev
->state
== TASK_RUNNING
) {
5240 u64 runtime
= prev
->se
.sum_exec_runtime
;
5242 runtime
-= prev
->se
.prev_sum_exec_runtime
;
5243 runtime
= min_t(u64
, runtime
, 2*sysctl_sched_migration_cost
);
5246 * In order to avoid avg_overlap growing stale when we are
5247 * indeed overlapping and hence not getting put to sleep, grow
5248 * the avg_overlap on preemption.
5250 * We use the average preemption runtime because that
5251 * correlates to the amount of cache footprint a task can
5254 update_avg(&prev
->se
.avg_overlap
, runtime
);
5256 prev
->sched_class
->put_prev_task(rq
, prev
);
5260 * Pick up the highest-prio task:
5262 static inline struct task_struct
*
5263 pick_next_task(struct rq
*rq
)
5265 const struct sched_class
*class;
5266 struct task_struct
*p
;
5269 * Optimization: we know that if all tasks are in
5270 * the fair class we can call that function directly:
5272 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
5273 p
= fair_sched_class
.pick_next_task(rq
);
5278 class = sched_class_highest
;
5280 p
= class->pick_next_task(rq
);
5284 * Will never be NULL as the idle class always
5285 * returns a non-NULL p:
5287 class = class->next
;
5292 * schedule() is the main scheduler function.
5294 asmlinkage
void __sched
schedule(void)
5296 struct task_struct
*prev
, *next
;
5297 unsigned long *switch_count
;
5303 cpu
= smp_processor_id();
5307 switch_count
= &prev
->nivcsw
;
5309 release_kernel_lock(prev
);
5310 need_resched_nonpreemptible
:
5312 schedule_debug(prev
);
5314 if (sched_feat(HRTICK
))
5317 spin_lock_irq(&rq
->lock
);
5318 update_rq_clock(rq
);
5319 clear_tsk_need_resched(prev
);
5321 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
5322 if (unlikely(signal_pending_state(prev
->state
, prev
)))
5323 prev
->state
= TASK_RUNNING
;
5325 deactivate_task(rq
, prev
, 1);
5326 switch_count
= &prev
->nvcsw
;
5330 if (prev
->sched_class
->pre_schedule
)
5331 prev
->sched_class
->pre_schedule(rq
, prev
);
5334 if (unlikely(!rq
->nr_running
))
5335 idle_balance(cpu
, rq
);
5337 put_prev_task(rq
, prev
);
5338 next
= pick_next_task(rq
);
5340 if (likely(prev
!= next
)) {
5341 sched_info_switch(prev
, next
);
5342 perf_counter_task_sched_out(prev
, next
, cpu
);
5348 context_switch(rq
, prev
, next
); /* unlocks the rq */
5350 * the context switch might have flipped the stack from under
5351 * us, hence refresh the local variables.
5353 cpu
= smp_processor_id();
5356 spin_unlock_irq(&rq
->lock
);
5358 if (unlikely(reacquire_kernel_lock(current
) < 0))
5359 goto need_resched_nonpreemptible
;
5361 preempt_enable_no_resched();
5365 EXPORT_SYMBOL(schedule
);
5369 * Look out! "owner" is an entirely speculative pointer
5370 * access and not reliable.
5372 int mutex_spin_on_owner(struct mutex
*lock
, struct thread_info
*owner
)
5377 if (!sched_feat(OWNER_SPIN
))
5380 #ifdef CONFIG_DEBUG_PAGEALLOC
5382 * Need to access the cpu field knowing that
5383 * DEBUG_PAGEALLOC could have unmapped it if
5384 * the mutex owner just released it and exited.
5386 if (probe_kernel_address(&owner
->cpu
, cpu
))
5393 * Even if the access succeeded (likely case),
5394 * the cpu field may no longer be valid.
5396 if (cpu
>= nr_cpumask_bits
)
5400 * We need to validate that we can do a
5401 * get_cpu() and that we have the percpu area.
5403 if (!cpu_online(cpu
))
5410 * Owner changed, break to re-assess state.
5412 if (lock
->owner
!= owner
)
5416 * Is that owner really running on that cpu?
5418 if (task_thread_info(rq
->curr
) != owner
|| need_resched())
5428 #ifdef CONFIG_PREEMPT
5430 * this is the entry point to schedule() from in-kernel preemption
5431 * off of preempt_enable. Kernel preemptions off return from interrupt
5432 * occur there and call schedule directly.
5434 asmlinkage
void __sched
preempt_schedule(void)
5436 struct thread_info
*ti
= current_thread_info();
5439 * If there is a non-zero preempt_count or interrupts are disabled,
5440 * we do not want to preempt the current task. Just return..
5442 if (likely(ti
->preempt_count
|| irqs_disabled()))
5446 add_preempt_count(PREEMPT_ACTIVE
);
5448 sub_preempt_count(PREEMPT_ACTIVE
);
5451 * Check again in case we missed a preemption opportunity
5452 * between schedule and now.
5455 } while (need_resched());
5457 EXPORT_SYMBOL(preempt_schedule
);
5460 * this is the entry point to schedule() from kernel preemption
5461 * off of irq context.
5462 * Note, that this is called and return with irqs disabled. This will
5463 * protect us against recursive calling from irq.
5465 asmlinkage
void __sched
preempt_schedule_irq(void)
5467 struct thread_info
*ti
= current_thread_info();
5469 /* Catch callers which need to be fixed */
5470 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
5473 add_preempt_count(PREEMPT_ACTIVE
);
5476 local_irq_disable();
5477 sub_preempt_count(PREEMPT_ACTIVE
);
5480 * Check again in case we missed a preemption opportunity
5481 * between schedule and now.
5484 } while (need_resched());
5487 #endif /* CONFIG_PREEMPT */
5489 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int sync
,
5492 return try_to_wake_up(curr
->private, mode
, sync
);
5494 EXPORT_SYMBOL(default_wake_function
);
5497 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5498 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5499 * number) then we wake all the non-exclusive tasks and one exclusive task.
5501 * There are circumstances in which we can try to wake a task which has already
5502 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5503 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5505 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
5506 int nr_exclusive
, int sync
, void *key
)
5508 wait_queue_t
*curr
, *next
;
5510 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
5511 unsigned flags
= curr
->flags
;
5513 if (curr
->func(curr
, mode
, sync
, key
) &&
5514 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
5520 * __wake_up - wake up threads blocked on a waitqueue.
5522 * @mode: which threads
5523 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5524 * @key: is directly passed to the wakeup function
5526 * It may be assumed that this function implies a write memory barrier before
5527 * changing the task state if and only if any tasks are woken up.
5529 void __wake_up(wait_queue_head_t
*q
, unsigned int mode
,
5530 int nr_exclusive
, void *key
)
5532 unsigned long flags
;
5534 spin_lock_irqsave(&q
->lock
, flags
);
5535 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
5536 spin_unlock_irqrestore(&q
->lock
, flags
);
5538 EXPORT_SYMBOL(__wake_up
);
5541 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5543 void __wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
5545 __wake_up_common(q
, mode
, 1, 0, NULL
);
5548 void __wake_up_locked_key(wait_queue_head_t
*q
, unsigned int mode
, void *key
)
5550 __wake_up_common(q
, mode
, 1, 0, key
);
5554 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
5556 * @mode: which threads
5557 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5558 * @key: opaque value to be passed to wakeup targets
5560 * The sync wakeup differs that the waker knows that it will schedule
5561 * away soon, so while the target thread will be woken up, it will not
5562 * be migrated to another CPU - ie. the two threads are 'synchronized'
5563 * with each other. This can prevent needless bouncing between CPUs.
5565 * On UP it can prevent extra preemption.
5567 * It may be assumed that this function implies a write memory barrier before
5568 * changing the task state if and only if any tasks are woken up.
5570 void __wake_up_sync_key(wait_queue_head_t
*q
, unsigned int mode
,
5571 int nr_exclusive
, void *key
)
5573 unsigned long flags
;
5579 if (unlikely(!nr_exclusive
))
5582 spin_lock_irqsave(&q
->lock
, flags
);
5583 __wake_up_common(q
, mode
, nr_exclusive
, sync
, key
);
5584 spin_unlock_irqrestore(&q
->lock
, flags
);
5586 EXPORT_SYMBOL_GPL(__wake_up_sync_key
);
5589 * __wake_up_sync - see __wake_up_sync_key()
5591 void __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
5593 __wake_up_sync_key(q
, mode
, nr_exclusive
, NULL
);
5595 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
5598 * complete: - signals a single thread waiting on this completion
5599 * @x: holds the state of this particular completion
5601 * This will wake up a single thread waiting on this completion. Threads will be
5602 * awakened in the same order in which they were queued.
5604 * See also complete_all(), wait_for_completion() and related routines.
5606 * It may be assumed that this function implies a write memory barrier before
5607 * changing the task state if and only if any tasks are woken up.
5609 void complete(struct completion
*x
)
5611 unsigned long flags
;
5613 spin_lock_irqsave(&x
->wait
.lock
, flags
);
5615 __wake_up_common(&x
->wait
, TASK_NORMAL
, 1, 0, NULL
);
5616 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
5618 EXPORT_SYMBOL(complete
);
5621 * complete_all: - signals all threads waiting on this completion
5622 * @x: holds the state of this particular completion
5624 * This will wake up all threads waiting on this particular completion event.
5626 * It may be assumed that this function implies a write memory barrier before
5627 * changing the task state if and only if any tasks are woken up.
5629 void complete_all(struct completion
*x
)
5631 unsigned long flags
;
5633 spin_lock_irqsave(&x
->wait
.lock
, flags
);
5634 x
->done
+= UINT_MAX
/2;
5635 __wake_up_common(&x
->wait
, TASK_NORMAL
, 0, 0, NULL
);
5636 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
5638 EXPORT_SYMBOL(complete_all
);
5640 static inline long __sched
5641 do_wait_for_common(struct completion
*x
, long timeout
, int state
)
5644 DECLARE_WAITQUEUE(wait
, current
);
5646 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
5647 __add_wait_queue_tail(&x
->wait
, &wait
);
5649 if (signal_pending_state(state
, current
)) {
5650 timeout
= -ERESTARTSYS
;
5653 __set_current_state(state
);
5654 spin_unlock_irq(&x
->wait
.lock
);
5655 timeout
= schedule_timeout(timeout
);
5656 spin_lock_irq(&x
->wait
.lock
);
5657 } while (!x
->done
&& timeout
);
5658 __remove_wait_queue(&x
->wait
, &wait
);
5663 return timeout
?: 1;
5667 wait_for_common(struct completion
*x
, long timeout
, int state
)
5671 spin_lock_irq(&x
->wait
.lock
);
5672 timeout
= do_wait_for_common(x
, timeout
, state
);
5673 spin_unlock_irq(&x
->wait
.lock
);
5678 * wait_for_completion: - waits for completion of a task
5679 * @x: holds the state of this particular completion
5681 * This waits to be signaled for completion of a specific task. It is NOT
5682 * interruptible and there is no timeout.
5684 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5685 * and interrupt capability. Also see complete().
5687 void __sched
wait_for_completion(struct completion
*x
)
5689 wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_UNINTERRUPTIBLE
);
5691 EXPORT_SYMBOL(wait_for_completion
);
5694 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5695 * @x: holds the state of this particular completion
5696 * @timeout: timeout value in jiffies
5698 * This waits for either a completion of a specific task to be signaled or for a
5699 * specified timeout to expire. The timeout is in jiffies. It is not
5702 unsigned long __sched
5703 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
5705 return wait_for_common(x
, timeout
, TASK_UNINTERRUPTIBLE
);
5707 EXPORT_SYMBOL(wait_for_completion_timeout
);
5710 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5711 * @x: holds the state of this particular completion
5713 * This waits for completion of a specific task to be signaled. It is
5716 int __sched
wait_for_completion_interruptible(struct completion
*x
)
5718 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_INTERRUPTIBLE
);
5719 if (t
== -ERESTARTSYS
)
5723 EXPORT_SYMBOL(wait_for_completion_interruptible
);
5726 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5727 * @x: holds the state of this particular completion
5728 * @timeout: timeout value in jiffies
5730 * This waits for either a completion of a specific task to be signaled or for a
5731 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5733 unsigned long __sched
5734 wait_for_completion_interruptible_timeout(struct completion
*x
,
5735 unsigned long timeout
)
5737 return wait_for_common(x
, timeout
, TASK_INTERRUPTIBLE
);
5739 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
5742 * wait_for_completion_killable: - waits for completion of a task (killable)
5743 * @x: holds the state of this particular completion
5745 * This waits to be signaled for completion of a specific task. It can be
5746 * interrupted by a kill signal.
5748 int __sched
wait_for_completion_killable(struct completion
*x
)
5750 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_KILLABLE
);
5751 if (t
== -ERESTARTSYS
)
5755 EXPORT_SYMBOL(wait_for_completion_killable
);
5758 * try_wait_for_completion - try to decrement a completion without blocking
5759 * @x: completion structure
5761 * Returns: 0 if a decrement cannot be done without blocking
5762 * 1 if a decrement succeeded.
5764 * If a completion is being used as a counting completion,
5765 * attempt to decrement the counter without blocking. This
5766 * enables us to avoid waiting if the resource the completion
5767 * is protecting is not available.
5769 bool try_wait_for_completion(struct completion
*x
)
5773 spin_lock_irq(&x
->wait
.lock
);
5778 spin_unlock_irq(&x
->wait
.lock
);
5781 EXPORT_SYMBOL(try_wait_for_completion
);
5784 * completion_done - Test to see if a completion has any waiters
5785 * @x: completion structure
5787 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5788 * 1 if there are no waiters.
5791 bool completion_done(struct completion
*x
)
5795 spin_lock_irq(&x
->wait
.lock
);
5798 spin_unlock_irq(&x
->wait
.lock
);
5801 EXPORT_SYMBOL(completion_done
);
5804 sleep_on_common(wait_queue_head_t
*q
, int state
, long timeout
)
5806 unsigned long flags
;
5809 init_waitqueue_entry(&wait
, current
);
5811 __set_current_state(state
);
5813 spin_lock_irqsave(&q
->lock
, flags
);
5814 __add_wait_queue(q
, &wait
);
5815 spin_unlock(&q
->lock
);
5816 timeout
= schedule_timeout(timeout
);
5817 spin_lock_irq(&q
->lock
);
5818 __remove_wait_queue(q
, &wait
);
5819 spin_unlock_irqrestore(&q
->lock
, flags
);
5824 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
5826 sleep_on_common(q
, TASK_INTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
5828 EXPORT_SYMBOL(interruptible_sleep_on
);
5831 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
5833 return sleep_on_common(q
, TASK_INTERRUPTIBLE
, timeout
);
5835 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
5837 void __sched
sleep_on(wait_queue_head_t
*q
)
5839 sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
5841 EXPORT_SYMBOL(sleep_on
);
5843 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
5845 return sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, timeout
);
5847 EXPORT_SYMBOL(sleep_on_timeout
);
5849 #ifdef CONFIG_RT_MUTEXES
5852 * rt_mutex_setprio - set the current priority of a task
5854 * @prio: prio value (kernel-internal form)
5856 * This function changes the 'effective' priority of a task. It does
5857 * not touch ->normal_prio like __setscheduler().
5859 * Used by the rt_mutex code to implement priority inheritance logic.
5861 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
5863 unsigned long flags
;
5864 int oldprio
, on_rq
, running
;
5866 const struct sched_class
*prev_class
= p
->sched_class
;
5868 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
5870 rq
= task_rq_lock(p
, &flags
);
5871 update_rq_clock(rq
);
5874 on_rq
= p
->se
.on_rq
;
5875 running
= task_current(rq
, p
);
5877 dequeue_task(rq
, p
, 0);
5879 p
->sched_class
->put_prev_task(rq
, p
);
5882 p
->sched_class
= &rt_sched_class
;
5884 p
->sched_class
= &fair_sched_class
;
5889 p
->sched_class
->set_curr_task(rq
);
5891 enqueue_task(rq
, p
, 0);
5893 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
5895 task_rq_unlock(rq
, &flags
);
5900 void set_user_nice(struct task_struct
*p
, long nice
)
5902 int old_prio
, delta
, on_rq
;
5903 unsigned long flags
;
5906 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
5909 * We have to be careful, if called from sys_setpriority(),
5910 * the task might be in the middle of scheduling on another CPU.
5912 rq
= task_rq_lock(p
, &flags
);
5913 update_rq_clock(rq
);
5915 * The RT priorities are set via sched_setscheduler(), but we still
5916 * allow the 'normal' nice value to be set - but as expected
5917 * it wont have any effect on scheduling until the task is
5918 * SCHED_FIFO/SCHED_RR:
5920 if (task_has_rt_policy(p
)) {
5921 p
->static_prio
= NICE_TO_PRIO(nice
);
5924 on_rq
= p
->se
.on_rq
;
5926 dequeue_task(rq
, p
, 0);
5928 p
->static_prio
= NICE_TO_PRIO(nice
);
5931 p
->prio
= effective_prio(p
);
5932 delta
= p
->prio
- old_prio
;
5935 enqueue_task(rq
, p
, 0);
5937 * If the task increased its priority or is running and
5938 * lowered its priority, then reschedule its CPU:
5940 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
5941 resched_task(rq
->curr
);
5944 task_rq_unlock(rq
, &flags
);
5946 EXPORT_SYMBOL(set_user_nice
);
5949 * can_nice - check if a task can reduce its nice value
5953 int can_nice(const struct task_struct
*p
, const int nice
)
5955 /* convert nice value [19,-20] to rlimit style value [1,40] */
5956 int nice_rlim
= 20 - nice
;
5958 return (nice_rlim
<= p
->signal
->rlim
[RLIMIT_NICE
].rlim_cur
||
5959 capable(CAP_SYS_NICE
));
5962 #ifdef __ARCH_WANT_SYS_NICE
5965 * sys_nice - change the priority of the current process.
5966 * @increment: priority increment
5968 * sys_setpriority is a more generic, but much slower function that
5969 * does similar things.
5971 SYSCALL_DEFINE1(nice
, int, increment
)
5976 * Setpriority might change our priority at the same moment.
5977 * We don't have to worry. Conceptually one call occurs first
5978 * and we have a single winner.
5980 if (increment
< -40)
5985 nice
= TASK_NICE(current
) + increment
;
5991 if (increment
< 0 && !can_nice(current
, nice
))
5994 retval
= security_task_setnice(current
, nice
);
5998 set_user_nice(current
, nice
);
6005 * task_prio - return the priority value of a given task.
6006 * @p: the task in question.
6008 * This is the priority value as seen by users in /proc.
6009 * RT tasks are offset by -200. Normal tasks are centered
6010 * around 0, value goes from -16 to +15.
6012 int task_prio(const struct task_struct
*p
)
6014 return p
->prio
- MAX_RT_PRIO
;
6018 * task_nice - return the nice value of a given task.
6019 * @p: the task in question.
6021 int task_nice(const struct task_struct
*p
)
6023 return TASK_NICE(p
);
6025 EXPORT_SYMBOL(task_nice
);
6028 * idle_cpu - is a given cpu idle currently?
6029 * @cpu: the processor in question.
6031 int idle_cpu(int cpu
)
6033 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
6037 * idle_task - return the idle task for a given cpu.
6038 * @cpu: the processor in question.
6040 struct task_struct
*idle_task(int cpu
)
6042 return cpu_rq(cpu
)->idle
;
6046 * find_process_by_pid - find a process with a matching PID value.
6047 * @pid: the pid in question.
6049 static struct task_struct
*find_process_by_pid(pid_t pid
)
6051 return pid
? find_task_by_vpid(pid
) : current
;
6054 /* Actually do priority change: must hold rq lock. */
6056 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
6058 BUG_ON(p
->se
.on_rq
);
6061 switch (p
->policy
) {
6065 p
->sched_class
= &fair_sched_class
;
6069 p
->sched_class
= &rt_sched_class
;
6073 p
->rt_priority
= prio
;
6074 p
->normal_prio
= normal_prio(p
);
6075 /* we are holding p->pi_lock already */
6076 p
->prio
= rt_mutex_getprio(p
);
6081 * check the target process has a UID that matches the current process's
6083 static bool check_same_owner(struct task_struct
*p
)
6085 const struct cred
*cred
= current_cred(), *pcred
;
6089 pcred
= __task_cred(p
);
6090 match
= (cred
->euid
== pcred
->euid
||
6091 cred
->euid
== pcred
->uid
);
6096 static int __sched_setscheduler(struct task_struct
*p
, int policy
,
6097 struct sched_param
*param
, bool user
)
6099 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
6100 unsigned long flags
;
6101 const struct sched_class
*prev_class
= p
->sched_class
;
6104 /* may grab non-irq protected spin_locks */
6105 BUG_ON(in_interrupt());
6107 /* double check policy once rq lock held */
6109 policy
= oldpolicy
= p
->policy
;
6110 else if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
6111 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
6112 policy
!= SCHED_IDLE
)
6115 * Valid priorities for SCHED_FIFO and SCHED_RR are
6116 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6117 * SCHED_BATCH and SCHED_IDLE is 0.
6119 if (param
->sched_priority
< 0 ||
6120 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
6121 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
6123 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
6127 * Allow unprivileged RT tasks to decrease priority:
6129 if (user
&& !capable(CAP_SYS_NICE
)) {
6130 if (rt_policy(policy
)) {
6131 unsigned long rlim_rtprio
;
6133 if (!lock_task_sighand(p
, &flags
))
6135 rlim_rtprio
= p
->signal
->rlim
[RLIMIT_RTPRIO
].rlim_cur
;
6136 unlock_task_sighand(p
, &flags
);
6138 /* can't set/change the rt policy */
6139 if (policy
!= p
->policy
&& !rlim_rtprio
)
6142 /* can't increase priority */
6143 if (param
->sched_priority
> p
->rt_priority
&&
6144 param
->sched_priority
> rlim_rtprio
)
6148 * Like positive nice levels, dont allow tasks to
6149 * move out of SCHED_IDLE either:
6151 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
)
6154 /* can't change other user's priorities */
6155 if (!check_same_owner(p
))
6160 #ifdef CONFIG_RT_GROUP_SCHED
6162 * Do not allow realtime tasks into groups that have no runtime
6165 if (rt_bandwidth_enabled() && rt_policy(policy
) &&
6166 task_group(p
)->rt_bandwidth
.rt_runtime
== 0)
6170 retval
= security_task_setscheduler(p
, policy
, param
);
6176 * make sure no PI-waiters arrive (or leave) while we are
6177 * changing the priority of the task:
6179 spin_lock_irqsave(&p
->pi_lock
, flags
);
6181 * To be able to change p->policy safely, the apropriate
6182 * runqueue lock must be held.
6184 rq
= __task_rq_lock(p
);
6185 /* recheck policy now with rq lock held */
6186 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
6187 policy
= oldpolicy
= -1;
6188 __task_rq_unlock(rq
);
6189 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
6192 update_rq_clock(rq
);
6193 on_rq
= p
->se
.on_rq
;
6194 running
= task_current(rq
, p
);
6196 deactivate_task(rq
, p
, 0);
6198 p
->sched_class
->put_prev_task(rq
, p
);
6201 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
6204 p
->sched_class
->set_curr_task(rq
);
6206 activate_task(rq
, p
, 0);
6208 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
6210 __task_rq_unlock(rq
);
6211 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
6213 rt_mutex_adjust_pi(p
);
6219 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6220 * @p: the task in question.
6221 * @policy: new policy.
6222 * @param: structure containing the new RT priority.
6224 * NOTE that the task may be already dead.
6226 int sched_setscheduler(struct task_struct
*p
, int policy
,
6227 struct sched_param
*param
)
6229 return __sched_setscheduler(p
, policy
, param
, true);
6231 EXPORT_SYMBOL_GPL(sched_setscheduler
);
6234 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6235 * @p: the task in question.
6236 * @policy: new policy.
6237 * @param: structure containing the new RT priority.
6239 * Just like sched_setscheduler, only don't bother checking if the
6240 * current context has permission. For example, this is needed in
6241 * stop_machine(): we create temporary high priority worker threads,
6242 * but our caller might not have that capability.
6244 int sched_setscheduler_nocheck(struct task_struct
*p
, int policy
,
6245 struct sched_param
*param
)
6247 return __sched_setscheduler(p
, policy
, param
, false);
6251 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
6253 struct sched_param lparam
;
6254 struct task_struct
*p
;
6257 if (!param
|| pid
< 0)
6259 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
6264 p
= find_process_by_pid(pid
);
6266 retval
= sched_setscheduler(p
, policy
, &lparam
);
6273 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6274 * @pid: the pid in question.
6275 * @policy: new policy.
6276 * @param: structure containing the new RT priority.
6278 SYSCALL_DEFINE3(sched_setscheduler
, pid_t
, pid
, int, policy
,
6279 struct sched_param __user
*, param
)
6281 /* negative values for policy are not valid */
6285 return do_sched_setscheduler(pid
, policy
, param
);
6289 * sys_sched_setparam - set/change the RT priority of a thread
6290 * @pid: the pid in question.
6291 * @param: structure containing the new RT priority.
6293 SYSCALL_DEFINE2(sched_setparam
, pid_t
, pid
, struct sched_param __user
*, param
)
6295 return do_sched_setscheduler(pid
, -1, param
);
6299 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6300 * @pid: the pid in question.
6302 SYSCALL_DEFINE1(sched_getscheduler
, pid_t
, pid
)
6304 struct task_struct
*p
;
6311 read_lock(&tasklist_lock
);
6312 p
= find_process_by_pid(pid
);
6314 retval
= security_task_getscheduler(p
);
6318 read_unlock(&tasklist_lock
);
6323 * sys_sched_getscheduler - get the RT priority of a thread
6324 * @pid: the pid in question.
6325 * @param: structure containing the RT priority.
6327 SYSCALL_DEFINE2(sched_getparam
, pid_t
, pid
, struct sched_param __user
*, param
)
6329 struct sched_param lp
;
6330 struct task_struct
*p
;
6333 if (!param
|| pid
< 0)
6336 read_lock(&tasklist_lock
);
6337 p
= find_process_by_pid(pid
);
6342 retval
= security_task_getscheduler(p
);
6346 lp
.sched_priority
= p
->rt_priority
;
6347 read_unlock(&tasklist_lock
);
6350 * This one might sleep, we cannot do it with a spinlock held ...
6352 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
6357 read_unlock(&tasklist_lock
);
6361 long sched_setaffinity(pid_t pid
, const struct cpumask
*in_mask
)
6363 cpumask_var_t cpus_allowed
, new_mask
;
6364 struct task_struct
*p
;
6368 read_lock(&tasklist_lock
);
6370 p
= find_process_by_pid(pid
);
6372 read_unlock(&tasklist_lock
);
6378 * It is not safe to call set_cpus_allowed with the
6379 * tasklist_lock held. We will bump the task_struct's
6380 * usage count and then drop tasklist_lock.
6383 read_unlock(&tasklist_lock
);
6385 if (!alloc_cpumask_var(&cpus_allowed
, GFP_KERNEL
)) {
6389 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
)) {
6391 goto out_free_cpus_allowed
;
6394 if (!check_same_owner(p
) && !capable(CAP_SYS_NICE
))
6397 retval
= security_task_setscheduler(p
, 0, NULL
);
6401 cpuset_cpus_allowed(p
, cpus_allowed
);
6402 cpumask_and(new_mask
, in_mask
, cpus_allowed
);
6404 retval
= set_cpus_allowed_ptr(p
, new_mask
);
6407 cpuset_cpus_allowed(p
, cpus_allowed
);
6408 if (!cpumask_subset(new_mask
, cpus_allowed
)) {
6410 * We must have raced with a concurrent cpuset
6411 * update. Just reset the cpus_allowed to the
6412 * cpuset's cpus_allowed
6414 cpumask_copy(new_mask
, cpus_allowed
);
6419 free_cpumask_var(new_mask
);
6420 out_free_cpus_allowed
:
6421 free_cpumask_var(cpus_allowed
);
6428 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
6429 struct cpumask
*new_mask
)
6431 if (len
< cpumask_size())
6432 cpumask_clear(new_mask
);
6433 else if (len
> cpumask_size())
6434 len
= cpumask_size();
6436 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
6440 * sys_sched_setaffinity - set the cpu affinity of a process
6441 * @pid: pid of the process
6442 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6443 * @user_mask_ptr: user-space pointer to the new cpu mask
6445 SYSCALL_DEFINE3(sched_setaffinity
, pid_t
, pid
, unsigned int, len
,
6446 unsigned long __user
*, user_mask_ptr
)
6448 cpumask_var_t new_mask
;
6451 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
))
6454 retval
= get_user_cpu_mask(user_mask_ptr
, len
, new_mask
);
6456 retval
= sched_setaffinity(pid
, new_mask
);
6457 free_cpumask_var(new_mask
);
6461 long sched_getaffinity(pid_t pid
, struct cpumask
*mask
)
6463 struct task_struct
*p
;
6467 read_lock(&tasklist_lock
);
6470 p
= find_process_by_pid(pid
);
6474 retval
= security_task_getscheduler(p
);
6478 cpumask_and(mask
, &p
->cpus_allowed
, cpu_online_mask
);
6481 read_unlock(&tasklist_lock
);
6488 * sys_sched_getaffinity - get the cpu affinity of a process
6489 * @pid: pid of the process
6490 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6491 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6493 SYSCALL_DEFINE3(sched_getaffinity
, pid_t
, pid
, unsigned int, len
,
6494 unsigned long __user
*, user_mask_ptr
)
6499 if (len
< cpumask_size())
6502 if (!alloc_cpumask_var(&mask
, GFP_KERNEL
))
6505 ret
= sched_getaffinity(pid
, mask
);
6507 if (copy_to_user(user_mask_ptr
, mask
, cpumask_size()))
6510 ret
= cpumask_size();
6512 free_cpumask_var(mask
);
6518 * sys_sched_yield - yield the current processor to other threads.
6520 * This function yields the current CPU to other tasks. If there are no
6521 * other threads running on this CPU then this function will return.
6523 SYSCALL_DEFINE0(sched_yield
)
6525 struct rq
*rq
= this_rq_lock();
6527 schedstat_inc(rq
, yld_count
);
6528 current
->sched_class
->yield_task(rq
);
6531 * Since we are going to call schedule() anyway, there's
6532 * no need to preempt or enable interrupts:
6534 __release(rq
->lock
);
6535 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
6536 _raw_spin_unlock(&rq
->lock
);
6537 preempt_enable_no_resched();
6544 static void __cond_resched(void)
6546 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6547 __might_sleep(__FILE__
, __LINE__
);
6550 * The BKS might be reacquired before we have dropped
6551 * PREEMPT_ACTIVE, which could trigger a second
6552 * cond_resched() call.
6555 add_preempt_count(PREEMPT_ACTIVE
);
6557 sub_preempt_count(PREEMPT_ACTIVE
);
6558 } while (need_resched());
6561 int __sched
_cond_resched(void)
6563 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE
) &&
6564 system_state
== SYSTEM_RUNNING
) {
6570 EXPORT_SYMBOL(_cond_resched
);
6573 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
6574 * call schedule, and on return reacquire the lock.
6576 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6577 * operations here to prevent schedule() from being called twice (once via
6578 * spin_unlock(), once by hand).
6580 int cond_resched_lock(spinlock_t
*lock
)
6582 int resched
= need_resched() && system_state
== SYSTEM_RUNNING
;
6585 if (spin_needbreak(lock
) || resched
) {
6587 if (resched
&& need_resched())
6596 EXPORT_SYMBOL(cond_resched_lock
);
6598 int __sched
cond_resched_softirq(void)
6600 BUG_ON(!in_softirq());
6602 if (need_resched() && system_state
== SYSTEM_RUNNING
) {
6610 EXPORT_SYMBOL(cond_resched_softirq
);
6613 * yield - yield the current processor to other threads.
6615 * This is a shortcut for kernel-space yielding - it marks the
6616 * thread runnable and calls sys_sched_yield().
6618 void __sched
yield(void)
6620 set_current_state(TASK_RUNNING
);
6623 EXPORT_SYMBOL(yield
);
6626 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6627 * that process accounting knows that this is a task in IO wait state.
6629 * But don't do that if it is a deliberate, throttling IO wait (this task
6630 * has set its backing_dev_info: the queue against which it should throttle)
6632 void __sched
io_schedule(void)
6634 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
6636 delayacct_blkio_start();
6637 atomic_inc(&rq
->nr_iowait
);
6639 atomic_dec(&rq
->nr_iowait
);
6640 delayacct_blkio_end();
6642 EXPORT_SYMBOL(io_schedule
);
6644 long __sched
io_schedule_timeout(long timeout
)
6646 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
6649 delayacct_blkio_start();
6650 atomic_inc(&rq
->nr_iowait
);
6651 ret
= schedule_timeout(timeout
);
6652 atomic_dec(&rq
->nr_iowait
);
6653 delayacct_blkio_end();
6658 * sys_sched_get_priority_max - return maximum RT priority.
6659 * @policy: scheduling class.
6661 * this syscall returns the maximum rt_priority that can be used
6662 * by a given scheduling class.
6664 SYSCALL_DEFINE1(sched_get_priority_max
, int, policy
)
6671 ret
= MAX_USER_RT_PRIO
-1;
6683 * sys_sched_get_priority_min - return minimum RT priority.
6684 * @policy: scheduling class.
6686 * this syscall returns the minimum rt_priority that can be used
6687 * by a given scheduling class.
6689 SYSCALL_DEFINE1(sched_get_priority_min
, int, policy
)
6707 * sys_sched_rr_get_interval - return the default timeslice of a process.
6708 * @pid: pid of the process.
6709 * @interval: userspace pointer to the timeslice value.
6711 * this syscall writes the default timeslice value of a given process
6712 * into the user-space timespec buffer. A value of '0' means infinity.
6714 SYSCALL_DEFINE2(sched_rr_get_interval
, pid_t
, pid
,
6715 struct timespec __user
*, interval
)
6717 struct task_struct
*p
;
6718 unsigned int time_slice
;
6726 read_lock(&tasklist_lock
);
6727 p
= find_process_by_pid(pid
);
6731 retval
= security_task_getscheduler(p
);
6736 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6737 * tasks that are on an otherwise idle runqueue:
6740 if (p
->policy
== SCHED_RR
) {
6741 time_slice
= DEF_TIMESLICE
;
6742 } else if (p
->policy
!= SCHED_FIFO
) {
6743 struct sched_entity
*se
= &p
->se
;
6744 unsigned long flags
;
6747 rq
= task_rq_lock(p
, &flags
);
6748 if (rq
->cfs
.load
.weight
)
6749 time_slice
= NS_TO_JIFFIES(sched_slice(&rq
->cfs
, se
));
6750 task_rq_unlock(rq
, &flags
);
6752 read_unlock(&tasklist_lock
);
6753 jiffies_to_timespec(time_slice
, &t
);
6754 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
6758 read_unlock(&tasklist_lock
);
6762 static const char stat_nam
[] = TASK_STATE_TO_CHAR_STR
;
6764 void sched_show_task(struct task_struct
*p
)
6766 unsigned long free
= 0;
6769 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
6770 printk(KERN_INFO
"%-13.13s %c", p
->comm
,
6771 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
6772 #if BITS_PER_LONG == 32
6773 if (state
== TASK_RUNNING
)
6774 printk(KERN_CONT
" running ");
6776 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
6778 if (state
== TASK_RUNNING
)
6779 printk(KERN_CONT
" running task ");
6781 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
6783 #ifdef CONFIG_DEBUG_STACK_USAGE
6784 free
= stack_not_used(p
);
6786 printk(KERN_CONT
"%5lu %5d %6d 0x%08lx\n", free
,
6787 task_pid_nr(p
), task_pid_nr(p
->real_parent
),
6788 (unsigned long)task_thread_info(p
)->flags
);
6790 show_stack(p
, NULL
);
6793 void show_state_filter(unsigned long state_filter
)
6795 struct task_struct
*g
, *p
;
6797 #if BITS_PER_LONG == 32
6799 " task PC stack pid father\n");
6802 " task PC stack pid father\n");
6804 read_lock(&tasklist_lock
);
6805 do_each_thread(g
, p
) {
6807 * reset the NMI-timeout, listing all files on a slow
6808 * console might take alot of time:
6810 touch_nmi_watchdog();
6811 if (!state_filter
|| (p
->state
& state_filter
))
6813 } while_each_thread(g
, p
);
6815 touch_all_softlockup_watchdogs();
6817 #ifdef CONFIG_SCHED_DEBUG
6818 sysrq_sched_debug_show();
6820 read_unlock(&tasklist_lock
);
6822 * Only show locks if all tasks are dumped:
6824 if (state_filter
== -1)
6825 debug_show_all_locks();
6828 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
6830 idle
->sched_class
= &idle_sched_class
;
6834 * init_idle - set up an idle thread for a given CPU
6835 * @idle: task in question
6836 * @cpu: cpu the idle task belongs to
6838 * NOTE: this function does not set the idle thread's NEED_RESCHED
6839 * flag, to make booting more robust.
6841 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
6843 struct rq
*rq
= cpu_rq(cpu
);
6844 unsigned long flags
;
6846 spin_lock_irqsave(&rq
->lock
, flags
);
6849 idle
->se
.exec_start
= sched_clock();
6851 idle
->prio
= idle
->normal_prio
= MAX_PRIO
;
6852 cpumask_copy(&idle
->cpus_allowed
, cpumask_of(cpu
));
6853 __set_task_cpu(idle
, cpu
);
6855 rq
->curr
= rq
->idle
= idle
;
6856 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6859 spin_unlock_irqrestore(&rq
->lock
, flags
);
6861 /* Set the preempt count _outside_ the spinlocks! */
6862 #if defined(CONFIG_PREEMPT)
6863 task_thread_info(idle
)->preempt_count
= (idle
->lock_depth
>= 0);
6865 task_thread_info(idle
)->preempt_count
= 0;
6868 * The idle tasks have their own, simple scheduling class:
6870 idle
->sched_class
= &idle_sched_class
;
6871 ftrace_graph_init_task(idle
);
6875 * In a system that switches off the HZ timer nohz_cpu_mask
6876 * indicates which cpus entered this state. This is used
6877 * in the rcu update to wait only for active cpus. For system
6878 * which do not switch off the HZ timer nohz_cpu_mask should
6879 * always be CPU_BITS_NONE.
6881 cpumask_var_t nohz_cpu_mask
;
6884 * Increase the granularity value when there are more CPUs,
6885 * because with more CPUs the 'effective latency' as visible
6886 * to users decreases. But the relationship is not linear,
6887 * so pick a second-best guess by going with the log2 of the
6890 * This idea comes from the SD scheduler of Con Kolivas:
6892 static inline void sched_init_granularity(void)
6894 unsigned int factor
= 1 + ilog2(num_online_cpus());
6895 const unsigned long limit
= 200000000;
6897 sysctl_sched_min_granularity
*= factor
;
6898 if (sysctl_sched_min_granularity
> limit
)
6899 sysctl_sched_min_granularity
= limit
;
6901 sysctl_sched_latency
*= factor
;
6902 if (sysctl_sched_latency
> limit
)
6903 sysctl_sched_latency
= limit
;
6905 sysctl_sched_wakeup_granularity
*= factor
;
6907 sysctl_sched_shares_ratelimit
*= factor
;
6912 * This is how migration works:
6914 * 1) we queue a struct migration_req structure in the source CPU's
6915 * runqueue and wake up that CPU's migration thread.
6916 * 2) we down() the locked semaphore => thread blocks.
6917 * 3) migration thread wakes up (implicitly it forces the migrated
6918 * thread off the CPU)
6919 * 4) it gets the migration request and checks whether the migrated
6920 * task is still in the wrong runqueue.
6921 * 5) if it's in the wrong runqueue then the migration thread removes
6922 * it and puts it into the right queue.
6923 * 6) migration thread up()s the semaphore.
6924 * 7) we wake up and the migration is done.
6928 * Change a given task's CPU affinity. Migrate the thread to a
6929 * proper CPU and schedule it away if the CPU it's executing on
6930 * is removed from the allowed bitmask.
6932 * NOTE: the caller must have a valid reference to the task, the
6933 * task must not exit() & deallocate itself prematurely. The
6934 * call is not atomic; no spinlocks may be held.
6936 int set_cpus_allowed_ptr(struct task_struct
*p
, const struct cpumask
*new_mask
)
6938 struct migration_req req
;
6939 unsigned long flags
;
6943 rq
= task_rq_lock(p
, &flags
);
6944 if (!cpumask_intersects(new_mask
, cpu_online_mask
)) {
6949 if (unlikely((p
->flags
& PF_THREAD_BOUND
) && p
!= current
&&
6950 !cpumask_equal(&p
->cpus_allowed
, new_mask
))) {
6955 if (p
->sched_class
->set_cpus_allowed
)
6956 p
->sched_class
->set_cpus_allowed(p
, new_mask
);
6958 cpumask_copy(&p
->cpus_allowed
, new_mask
);
6959 p
->rt
.nr_cpus_allowed
= cpumask_weight(new_mask
);
6962 /* Can the task run on the task's current CPU? If so, we're done */
6963 if (cpumask_test_cpu(task_cpu(p
), new_mask
))
6966 if (migrate_task(p
, cpumask_any_and(cpu_online_mask
, new_mask
), &req
)) {
6967 /* Need help from migration thread: drop lock and wait. */
6968 task_rq_unlock(rq
, &flags
);
6969 wake_up_process(rq
->migration_thread
);
6970 wait_for_completion(&req
.done
);
6971 tlb_migrate_finish(p
->mm
);
6975 task_rq_unlock(rq
, &flags
);
6979 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr
);
6982 * Move (not current) task off this cpu, onto dest cpu. We're doing
6983 * this because either it can't run here any more (set_cpus_allowed()
6984 * away from this CPU, or CPU going down), or because we're
6985 * attempting to rebalance this task on exec (sched_exec).
6987 * So we race with normal scheduler movements, but that's OK, as long
6988 * as the task is no longer on this CPU.
6990 * Returns non-zero if task was successfully migrated.
6992 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
6994 struct rq
*rq_dest
, *rq_src
;
6997 if (unlikely(!cpu_active(dest_cpu
)))
7000 rq_src
= cpu_rq(src_cpu
);
7001 rq_dest
= cpu_rq(dest_cpu
);
7003 double_rq_lock(rq_src
, rq_dest
);
7004 /* Already moved. */
7005 if (task_cpu(p
) != src_cpu
)
7007 /* Affinity changed (again). */
7008 if (!cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
7011 on_rq
= p
->se
.on_rq
;
7013 deactivate_task(rq_src
, p
, 0);
7015 set_task_cpu(p
, dest_cpu
);
7017 activate_task(rq_dest
, p
, 0);
7018 check_preempt_curr(rq_dest
, p
, 0);
7023 double_rq_unlock(rq_src
, rq_dest
);
7028 * migration_thread - this is a highprio system thread that performs
7029 * thread migration by bumping thread off CPU then 'pushing' onto
7032 static int migration_thread(void *data
)
7034 int cpu
= (long)data
;
7038 BUG_ON(rq
->migration_thread
!= current
);
7040 set_current_state(TASK_INTERRUPTIBLE
);
7041 while (!kthread_should_stop()) {
7042 struct migration_req
*req
;
7043 struct list_head
*head
;
7045 spin_lock_irq(&rq
->lock
);
7047 if (cpu_is_offline(cpu
)) {
7048 spin_unlock_irq(&rq
->lock
);
7052 if (rq
->active_balance
) {
7053 active_load_balance(rq
, cpu
);
7054 rq
->active_balance
= 0;
7057 head
= &rq
->migration_queue
;
7059 if (list_empty(head
)) {
7060 spin_unlock_irq(&rq
->lock
);
7062 set_current_state(TASK_INTERRUPTIBLE
);
7065 req
= list_entry(head
->next
, struct migration_req
, list
);
7066 list_del_init(head
->next
);
7068 spin_unlock(&rq
->lock
);
7069 __migrate_task(req
->task
, cpu
, req
->dest_cpu
);
7072 complete(&req
->done
);
7074 __set_current_state(TASK_RUNNING
);
7079 #ifdef CONFIG_HOTPLUG_CPU
7081 static int __migrate_task_irq(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
7085 local_irq_disable();
7086 ret
= __migrate_task(p
, src_cpu
, dest_cpu
);
7092 * Figure out where task on dead CPU should go, use force if necessary.
7094 static void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*p
)
7097 const struct cpumask
*nodemask
= cpumask_of_node(cpu_to_node(dead_cpu
));
7100 /* Look for allowed, online CPU in same node. */
7101 for_each_cpu_and(dest_cpu
, nodemask
, cpu_online_mask
)
7102 if (cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
7105 /* Any allowed, online CPU? */
7106 dest_cpu
= cpumask_any_and(&p
->cpus_allowed
, cpu_online_mask
);
7107 if (dest_cpu
< nr_cpu_ids
)
7110 /* No more Mr. Nice Guy. */
7111 if (dest_cpu
>= nr_cpu_ids
) {
7112 cpuset_cpus_allowed_locked(p
, &p
->cpus_allowed
);
7113 dest_cpu
= cpumask_any_and(cpu_online_mask
, &p
->cpus_allowed
);
7116 * Don't tell them about moving exiting tasks or
7117 * kernel threads (both mm NULL), since they never
7120 if (p
->mm
&& printk_ratelimit()) {
7121 printk(KERN_INFO
"process %d (%s) no "
7122 "longer affine to cpu%d\n",
7123 task_pid_nr(p
), p
->comm
, dead_cpu
);
7128 /* It can have affinity changed while we were choosing. */
7129 if (unlikely(!__migrate_task_irq(p
, dead_cpu
, dest_cpu
)))
7134 * While a dead CPU has no uninterruptible tasks queued at this point,
7135 * it might still have a nonzero ->nr_uninterruptible counter, because
7136 * for performance reasons the counter is not stricly tracking tasks to
7137 * their home CPUs. So we just add the counter to another CPU's counter,
7138 * to keep the global sum constant after CPU-down:
7140 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
7142 struct rq
*rq_dest
= cpu_rq(cpumask_any(cpu_online_mask
));
7143 unsigned long flags
;
7145 local_irq_save(flags
);
7146 double_rq_lock(rq_src
, rq_dest
);
7147 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
7148 rq_src
->nr_uninterruptible
= 0;
7149 double_rq_unlock(rq_src
, rq_dest
);
7150 local_irq_restore(flags
);
7153 /* Run through task list and migrate tasks from the dead cpu. */
7154 static void migrate_live_tasks(int src_cpu
)
7156 struct task_struct
*p
, *t
;
7158 read_lock(&tasklist_lock
);
7160 do_each_thread(t
, p
) {
7164 if (task_cpu(p
) == src_cpu
)
7165 move_task_off_dead_cpu(src_cpu
, p
);
7166 } while_each_thread(t
, p
);
7168 read_unlock(&tasklist_lock
);
7172 * Schedules idle task to be the next runnable task on current CPU.
7173 * It does so by boosting its priority to highest possible.
7174 * Used by CPU offline code.
7176 void sched_idle_next(void)
7178 int this_cpu
= smp_processor_id();
7179 struct rq
*rq
= cpu_rq(this_cpu
);
7180 struct task_struct
*p
= rq
->idle
;
7181 unsigned long flags
;
7183 /* cpu has to be offline */
7184 BUG_ON(cpu_online(this_cpu
));
7187 * Strictly not necessary since rest of the CPUs are stopped by now
7188 * and interrupts disabled on the current cpu.
7190 spin_lock_irqsave(&rq
->lock
, flags
);
7192 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
7194 update_rq_clock(rq
);
7195 activate_task(rq
, p
, 0);
7197 spin_unlock_irqrestore(&rq
->lock
, flags
);
7201 * Ensures that the idle task is using init_mm right before its cpu goes
7204 void idle_task_exit(void)
7206 struct mm_struct
*mm
= current
->active_mm
;
7208 BUG_ON(cpu_online(smp_processor_id()));
7211 switch_mm(mm
, &init_mm
, current
);
7215 /* called under rq->lock with disabled interrupts */
7216 static void migrate_dead(unsigned int dead_cpu
, struct task_struct
*p
)
7218 struct rq
*rq
= cpu_rq(dead_cpu
);
7220 /* Must be exiting, otherwise would be on tasklist. */
7221 BUG_ON(!p
->exit_state
);
7223 /* Cannot have done final schedule yet: would have vanished. */
7224 BUG_ON(p
->state
== TASK_DEAD
);
7229 * Drop lock around migration; if someone else moves it,
7230 * that's OK. No task can be added to this CPU, so iteration is
7233 spin_unlock_irq(&rq
->lock
);
7234 move_task_off_dead_cpu(dead_cpu
, p
);
7235 spin_lock_irq(&rq
->lock
);
7240 /* release_task() removes task from tasklist, so we won't find dead tasks. */
7241 static void migrate_dead_tasks(unsigned int dead_cpu
)
7243 struct rq
*rq
= cpu_rq(dead_cpu
);
7244 struct task_struct
*next
;
7247 if (!rq
->nr_running
)
7249 update_rq_clock(rq
);
7250 next
= pick_next_task(rq
);
7253 next
->sched_class
->put_prev_task(rq
, next
);
7254 migrate_dead(dead_cpu
, next
);
7260 * remove the tasks which were accounted by rq from calc_load_tasks.
7262 static void calc_global_load_remove(struct rq
*rq
)
7264 atomic_long_sub(rq
->calc_load_active
, &calc_load_tasks
);
7266 #endif /* CONFIG_HOTPLUG_CPU */
7268 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7270 static struct ctl_table sd_ctl_dir
[] = {
7272 .procname
= "sched_domain",
7278 static struct ctl_table sd_ctl_root
[] = {
7280 .ctl_name
= CTL_KERN
,
7281 .procname
= "kernel",
7283 .child
= sd_ctl_dir
,
7288 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
7290 struct ctl_table
*entry
=
7291 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
7296 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
7298 struct ctl_table
*entry
;
7301 * In the intermediate directories, both the child directory and
7302 * procname are dynamically allocated and could fail but the mode
7303 * will always be set. In the lowest directory the names are
7304 * static strings and all have proc handlers.
7306 for (entry
= *tablep
; entry
->mode
; entry
++) {
7308 sd_free_ctl_entry(&entry
->child
);
7309 if (entry
->proc_handler
== NULL
)
7310 kfree(entry
->procname
);
7318 set_table_entry(struct ctl_table
*entry
,
7319 const char *procname
, void *data
, int maxlen
,
7320 mode_t mode
, proc_handler
*proc_handler
)
7322 entry
->procname
= procname
;
7324 entry
->maxlen
= maxlen
;
7326 entry
->proc_handler
= proc_handler
;
7329 static struct ctl_table
*
7330 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
7332 struct ctl_table
*table
= sd_alloc_ctl_entry(13);
7337 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
7338 sizeof(long), 0644, proc_doulongvec_minmax
);
7339 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
7340 sizeof(long), 0644, proc_doulongvec_minmax
);
7341 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
7342 sizeof(int), 0644, proc_dointvec_minmax
);
7343 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
7344 sizeof(int), 0644, proc_dointvec_minmax
);
7345 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
7346 sizeof(int), 0644, proc_dointvec_minmax
);
7347 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
7348 sizeof(int), 0644, proc_dointvec_minmax
);
7349 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
7350 sizeof(int), 0644, proc_dointvec_minmax
);
7351 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
7352 sizeof(int), 0644, proc_dointvec_minmax
);
7353 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
7354 sizeof(int), 0644, proc_dointvec_minmax
);
7355 set_table_entry(&table
[9], "cache_nice_tries",
7356 &sd
->cache_nice_tries
,
7357 sizeof(int), 0644, proc_dointvec_minmax
);
7358 set_table_entry(&table
[10], "flags", &sd
->flags
,
7359 sizeof(int), 0644, proc_dointvec_minmax
);
7360 set_table_entry(&table
[11], "name", sd
->name
,
7361 CORENAME_MAX_SIZE
, 0444, proc_dostring
);
7362 /* &table[12] is terminator */
7367 static ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
7369 struct ctl_table
*entry
, *table
;
7370 struct sched_domain
*sd
;
7371 int domain_num
= 0, i
;
7374 for_each_domain(cpu
, sd
)
7376 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
7381 for_each_domain(cpu
, sd
) {
7382 snprintf(buf
, 32, "domain%d", i
);
7383 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
7385 entry
->child
= sd_alloc_ctl_domain_table(sd
);
7392 static struct ctl_table_header
*sd_sysctl_header
;
7393 static void register_sched_domain_sysctl(void)
7395 int i
, cpu_num
= num_online_cpus();
7396 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
7399 WARN_ON(sd_ctl_dir
[0].child
);
7400 sd_ctl_dir
[0].child
= entry
;
7405 for_each_online_cpu(i
) {
7406 snprintf(buf
, 32, "cpu%d", i
);
7407 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
7409 entry
->child
= sd_alloc_ctl_cpu_table(i
);
7413 WARN_ON(sd_sysctl_header
);
7414 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
7417 /* may be called multiple times per register */
7418 static void unregister_sched_domain_sysctl(void)
7420 if (sd_sysctl_header
)
7421 unregister_sysctl_table(sd_sysctl_header
);
7422 sd_sysctl_header
= NULL
;
7423 if (sd_ctl_dir
[0].child
)
7424 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
7427 static void register_sched_domain_sysctl(void)
7430 static void unregister_sched_domain_sysctl(void)
7435 static void set_rq_online(struct rq
*rq
)
7438 const struct sched_class
*class;
7440 cpumask_set_cpu(rq
->cpu
, rq
->rd
->online
);
7443 for_each_class(class) {
7444 if (class->rq_online
)
7445 class->rq_online(rq
);
7450 static void set_rq_offline(struct rq
*rq
)
7453 const struct sched_class
*class;
7455 for_each_class(class) {
7456 if (class->rq_offline
)
7457 class->rq_offline(rq
);
7460 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->online
);
7466 * migration_call - callback that gets triggered when a CPU is added.
7467 * Here we can start up the necessary migration thread for the new CPU.
7469 static int __cpuinit
7470 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
7472 struct task_struct
*p
;
7473 int cpu
= (long)hcpu
;
7474 unsigned long flags
;
7479 case CPU_UP_PREPARE
:
7480 case CPU_UP_PREPARE_FROZEN
:
7481 p
= kthread_create(migration_thread
, hcpu
, "migration/%d", cpu
);
7484 kthread_bind(p
, cpu
);
7485 /* Must be high prio: stop_machine expects to yield to it. */
7486 rq
= task_rq_lock(p
, &flags
);
7487 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
7488 task_rq_unlock(rq
, &flags
);
7490 cpu_rq(cpu
)->migration_thread
= p
;
7494 case CPU_ONLINE_FROZEN
:
7495 /* Strictly unnecessary, as first user will wake it. */
7496 wake_up_process(cpu_rq(cpu
)->migration_thread
);
7498 /* Update our root-domain */
7500 spin_lock_irqsave(&rq
->lock
, flags
);
7501 rq
->calc_load_update
= calc_load_update
;
7502 rq
->calc_load_active
= 0;
7504 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
7508 spin_unlock_irqrestore(&rq
->lock
, flags
);
7511 #ifdef CONFIG_HOTPLUG_CPU
7512 case CPU_UP_CANCELED
:
7513 case CPU_UP_CANCELED_FROZEN
:
7514 if (!cpu_rq(cpu
)->migration_thread
)
7516 /* Unbind it from offline cpu so it can run. Fall thru. */
7517 kthread_bind(cpu_rq(cpu
)->migration_thread
,
7518 cpumask_any(cpu_online_mask
));
7519 kthread_stop(cpu_rq(cpu
)->migration_thread
);
7520 put_task_struct(cpu_rq(cpu
)->migration_thread
);
7521 cpu_rq(cpu
)->migration_thread
= NULL
;
7525 case CPU_DEAD_FROZEN
:
7526 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
7527 migrate_live_tasks(cpu
);
7529 kthread_stop(rq
->migration_thread
);
7530 put_task_struct(rq
->migration_thread
);
7531 rq
->migration_thread
= NULL
;
7532 /* Idle task back to normal (off runqueue, low prio) */
7533 spin_lock_irq(&rq
->lock
);
7534 update_rq_clock(rq
);
7535 deactivate_task(rq
, rq
->idle
, 0);
7536 rq
->idle
->static_prio
= MAX_PRIO
;
7537 __setscheduler(rq
, rq
->idle
, SCHED_NORMAL
, 0);
7538 rq
->idle
->sched_class
= &idle_sched_class
;
7539 migrate_dead_tasks(cpu
);
7540 spin_unlock_irq(&rq
->lock
);
7542 migrate_nr_uninterruptible(rq
);
7543 BUG_ON(rq
->nr_running
!= 0);
7544 calc_global_load_remove(rq
);
7546 * No need to migrate the tasks: it was best-effort if
7547 * they didn't take sched_hotcpu_mutex. Just wake up
7550 spin_lock_irq(&rq
->lock
);
7551 while (!list_empty(&rq
->migration_queue
)) {
7552 struct migration_req
*req
;
7554 req
= list_entry(rq
->migration_queue
.next
,
7555 struct migration_req
, list
);
7556 list_del_init(&req
->list
);
7557 spin_unlock_irq(&rq
->lock
);
7558 complete(&req
->done
);
7559 spin_lock_irq(&rq
->lock
);
7561 spin_unlock_irq(&rq
->lock
);
7565 case CPU_DYING_FROZEN
:
7566 /* Update our root-domain */
7568 spin_lock_irqsave(&rq
->lock
, flags
);
7570 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
7573 spin_unlock_irqrestore(&rq
->lock
, flags
);
7581 * Register at high priority so that task migration (migrate_all_tasks)
7582 * happens before everything else. This has to be lower priority than
7583 * the notifier in the perf_counter subsystem, though.
7585 static struct notifier_block __cpuinitdata migration_notifier
= {
7586 .notifier_call
= migration_call
,
7590 static int __init
migration_init(void)
7592 void *cpu
= (void *)(long)smp_processor_id();
7595 /* Start one for the boot CPU: */
7596 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
7597 BUG_ON(err
== NOTIFY_BAD
);
7598 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
7599 register_cpu_notifier(&migration_notifier
);
7603 early_initcall(migration_init
);
7608 #ifdef CONFIG_SCHED_DEBUG
7610 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
,
7611 struct cpumask
*groupmask
)
7613 struct sched_group
*group
= sd
->groups
;
7616 cpulist_scnprintf(str
, sizeof(str
), sched_domain_span(sd
));
7617 cpumask_clear(groupmask
);
7619 printk(KERN_DEBUG
"%*s domain %d: ", level
, "", level
);
7621 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
7622 printk("does not load-balance\n");
7624 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
7629 printk(KERN_CONT
"span %s level %s\n", str
, sd
->name
);
7631 if (!cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
7632 printk(KERN_ERR
"ERROR: domain->span does not contain "
7635 if (!cpumask_test_cpu(cpu
, sched_group_cpus(group
))) {
7636 printk(KERN_ERR
"ERROR: domain->groups does not contain"
7640 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
7644 printk(KERN_ERR
"ERROR: group is NULL\n");
7648 if (!group
->__cpu_power
) {
7649 printk(KERN_CONT
"\n");
7650 printk(KERN_ERR
"ERROR: domain->cpu_power not "
7655 if (!cpumask_weight(sched_group_cpus(group
))) {
7656 printk(KERN_CONT
"\n");
7657 printk(KERN_ERR
"ERROR: empty group\n");
7661 if (cpumask_intersects(groupmask
, sched_group_cpus(group
))) {
7662 printk(KERN_CONT
"\n");
7663 printk(KERN_ERR
"ERROR: repeated CPUs\n");
7667 cpumask_or(groupmask
, groupmask
, sched_group_cpus(group
));
7669 cpulist_scnprintf(str
, sizeof(str
), sched_group_cpus(group
));
7671 printk(KERN_CONT
" %s", str
);
7672 if (group
->__cpu_power
!= SCHED_LOAD_SCALE
) {
7673 printk(KERN_CONT
" (__cpu_power = %d)",
7674 group
->__cpu_power
);
7677 group
= group
->next
;
7678 } while (group
!= sd
->groups
);
7679 printk(KERN_CONT
"\n");
7681 if (!cpumask_equal(sched_domain_span(sd
), groupmask
))
7682 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
7685 !cpumask_subset(groupmask
, sched_domain_span(sd
->parent
)))
7686 printk(KERN_ERR
"ERROR: parent span is not a superset "
7687 "of domain->span\n");
7691 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
7693 cpumask_var_t groupmask
;
7697 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
7701 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
7703 if (!alloc_cpumask_var(&groupmask
, GFP_KERNEL
)) {
7704 printk(KERN_DEBUG
"Cannot load-balance (out of memory)\n");
7709 if (sched_domain_debug_one(sd
, cpu
, level
, groupmask
))
7716 free_cpumask_var(groupmask
);
7718 #else /* !CONFIG_SCHED_DEBUG */
7719 # define sched_domain_debug(sd, cpu) do { } while (0)
7720 #endif /* CONFIG_SCHED_DEBUG */
7722 static int sd_degenerate(struct sched_domain
*sd
)
7724 if (cpumask_weight(sched_domain_span(sd
)) == 1)
7727 /* Following flags need at least 2 groups */
7728 if (sd
->flags
& (SD_LOAD_BALANCE
|
7729 SD_BALANCE_NEWIDLE
|
7733 SD_SHARE_PKG_RESOURCES
)) {
7734 if (sd
->groups
!= sd
->groups
->next
)
7738 /* Following flags don't use groups */
7739 if (sd
->flags
& (SD_WAKE_IDLE
|
7748 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
7750 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
7752 if (sd_degenerate(parent
))
7755 if (!cpumask_equal(sched_domain_span(sd
), sched_domain_span(parent
)))
7758 /* Does parent contain flags not in child? */
7759 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
7760 if (cflags
& SD_WAKE_AFFINE
)
7761 pflags
&= ~SD_WAKE_BALANCE
;
7762 /* Flags needing groups don't count if only 1 group in parent */
7763 if (parent
->groups
== parent
->groups
->next
) {
7764 pflags
&= ~(SD_LOAD_BALANCE
|
7765 SD_BALANCE_NEWIDLE
|
7769 SD_SHARE_PKG_RESOURCES
);
7770 if (nr_node_ids
== 1)
7771 pflags
&= ~SD_SERIALIZE
;
7773 if (~cflags
& pflags
)
7779 static void free_rootdomain(struct root_domain
*rd
)
7781 cpupri_cleanup(&rd
->cpupri
);
7783 free_cpumask_var(rd
->rto_mask
);
7784 free_cpumask_var(rd
->online
);
7785 free_cpumask_var(rd
->span
);
7789 static void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
7791 struct root_domain
*old_rd
= NULL
;
7792 unsigned long flags
;
7794 spin_lock_irqsave(&rq
->lock
, flags
);
7799 if (cpumask_test_cpu(rq
->cpu
, old_rd
->online
))
7802 cpumask_clear_cpu(rq
->cpu
, old_rd
->span
);
7805 * If we dont want to free the old_rt yet then
7806 * set old_rd to NULL to skip the freeing later
7809 if (!atomic_dec_and_test(&old_rd
->refcount
))
7813 atomic_inc(&rd
->refcount
);
7816 cpumask_set_cpu(rq
->cpu
, rd
->span
);
7817 if (cpumask_test_cpu(rq
->cpu
, cpu_online_mask
))
7820 spin_unlock_irqrestore(&rq
->lock
, flags
);
7823 free_rootdomain(old_rd
);
7826 static int init_rootdomain(struct root_domain
*rd
, bool bootmem
)
7828 gfp_t gfp
= GFP_KERNEL
;
7830 memset(rd
, 0, sizeof(*rd
));
7835 if (!alloc_cpumask_var(&rd
->span
, gfp
))
7837 if (!alloc_cpumask_var(&rd
->online
, gfp
))
7839 if (!alloc_cpumask_var(&rd
->rto_mask
, gfp
))
7842 if (cpupri_init(&rd
->cpupri
, bootmem
) != 0)
7847 free_cpumask_var(rd
->rto_mask
);
7849 free_cpumask_var(rd
->online
);
7851 free_cpumask_var(rd
->span
);
7856 static void init_defrootdomain(void)
7858 init_rootdomain(&def_root_domain
, true);
7860 atomic_set(&def_root_domain
.refcount
, 1);
7863 static struct root_domain
*alloc_rootdomain(void)
7865 struct root_domain
*rd
;
7867 rd
= kmalloc(sizeof(*rd
), GFP_KERNEL
);
7871 if (init_rootdomain(rd
, false) != 0) {
7880 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
7881 * hold the hotplug lock.
7884 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
7886 struct rq
*rq
= cpu_rq(cpu
);
7887 struct sched_domain
*tmp
;
7889 /* Remove the sched domains which do not contribute to scheduling. */
7890 for (tmp
= sd
; tmp
; ) {
7891 struct sched_domain
*parent
= tmp
->parent
;
7895 if (sd_parent_degenerate(tmp
, parent
)) {
7896 tmp
->parent
= parent
->parent
;
7898 parent
->parent
->child
= tmp
;
7903 if (sd
&& sd_degenerate(sd
)) {
7909 sched_domain_debug(sd
, cpu
);
7911 rq_attach_root(rq
, rd
);
7912 rcu_assign_pointer(rq
->sd
, sd
);
7915 /* cpus with isolated domains */
7916 static cpumask_var_t cpu_isolated_map
;
7918 /* Setup the mask of cpus configured for isolated domains */
7919 static int __init
isolated_cpu_setup(char *str
)
7921 cpulist_parse(str
, cpu_isolated_map
);
7925 __setup("isolcpus=", isolated_cpu_setup
);
7928 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7929 * to a function which identifies what group(along with sched group) a CPU
7930 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7931 * (due to the fact that we keep track of groups covered with a struct cpumask).
7933 * init_sched_build_groups will build a circular linked list of the groups
7934 * covered by the given span, and will set each group's ->cpumask correctly,
7935 * and ->cpu_power to 0.
7938 init_sched_build_groups(const struct cpumask
*span
,
7939 const struct cpumask
*cpu_map
,
7940 int (*group_fn
)(int cpu
, const struct cpumask
*cpu_map
,
7941 struct sched_group
**sg
,
7942 struct cpumask
*tmpmask
),
7943 struct cpumask
*covered
, struct cpumask
*tmpmask
)
7945 struct sched_group
*first
= NULL
, *last
= NULL
;
7948 cpumask_clear(covered
);
7950 for_each_cpu(i
, span
) {
7951 struct sched_group
*sg
;
7952 int group
= group_fn(i
, cpu_map
, &sg
, tmpmask
);
7955 if (cpumask_test_cpu(i
, covered
))
7958 cpumask_clear(sched_group_cpus(sg
));
7959 sg
->__cpu_power
= 0;
7961 for_each_cpu(j
, span
) {
7962 if (group_fn(j
, cpu_map
, NULL
, tmpmask
) != group
)
7965 cpumask_set_cpu(j
, covered
);
7966 cpumask_set_cpu(j
, sched_group_cpus(sg
));
7977 #define SD_NODES_PER_DOMAIN 16
7982 * find_next_best_node - find the next node to include in a sched_domain
7983 * @node: node whose sched_domain we're building
7984 * @used_nodes: nodes already in the sched_domain
7986 * Find the next node to include in a given scheduling domain. Simply
7987 * finds the closest node not already in the @used_nodes map.
7989 * Should use nodemask_t.
7991 static int find_next_best_node(int node
, nodemask_t
*used_nodes
)
7993 int i
, n
, val
, min_val
, best_node
= 0;
7997 for (i
= 0; i
< nr_node_ids
; i
++) {
7998 /* Start at @node */
7999 n
= (node
+ i
) % nr_node_ids
;
8001 if (!nr_cpus_node(n
))
8004 /* Skip already used nodes */
8005 if (node_isset(n
, *used_nodes
))
8008 /* Simple min distance search */
8009 val
= node_distance(node
, n
);
8011 if (val
< min_val
) {
8017 node_set(best_node
, *used_nodes
);
8022 * sched_domain_node_span - get a cpumask for a node's sched_domain
8023 * @node: node whose cpumask we're constructing
8024 * @span: resulting cpumask
8026 * Given a node, construct a good cpumask for its sched_domain to span. It
8027 * should be one that prevents unnecessary balancing, but also spreads tasks
8030 static void sched_domain_node_span(int node
, struct cpumask
*span
)
8032 nodemask_t used_nodes
;
8035 cpumask_clear(span
);
8036 nodes_clear(used_nodes
);
8038 cpumask_or(span
, span
, cpumask_of_node(node
));
8039 node_set(node
, used_nodes
);
8041 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
8042 int next_node
= find_next_best_node(node
, &used_nodes
);
8044 cpumask_or(span
, span
, cpumask_of_node(next_node
));
8047 #endif /* CONFIG_NUMA */
8049 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
8052 * The cpus mask in sched_group and sched_domain hangs off the end.
8054 * ( See the the comments in include/linux/sched.h:struct sched_group
8055 * and struct sched_domain. )
8057 struct static_sched_group
{
8058 struct sched_group sg
;
8059 DECLARE_BITMAP(cpus
, CONFIG_NR_CPUS
);
8062 struct static_sched_domain
{
8063 struct sched_domain sd
;
8064 DECLARE_BITMAP(span
, CONFIG_NR_CPUS
);
8068 * SMT sched-domains:
8070 #ifdef CONFIG_SCHED_SMT
8071 static DEFINE_PER_CPU(struct static_sched_domain
, cpu_domains
);
8072 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_cpus
);
8075 cpu_to_cpu_group(int cpu
, const struct cpumask
*cpu_map
,
8076 struct sched_group
**sg
, struct cpumask
*unused
)
8079 *sg
= &per_cpu(sched_group_cpus
, cpu
).sg
;
8082 #endif /* CONFIG_SCHED_SMT */
8085 * multi-core sched-domains:
8087 #ifdef CONFIG_SCHED_MC
8088 static DEFINE_PER_CPU(struct static_sched_domain
, core_domains
);
8089 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_core
);
8090 #endif /* CONFIG_SCHED_MC */
8092 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
8094 cpu_to_core_group(int cpu
, const struct cpumask
*cpu_map
,
8095 struct sched_group
**sg
, struct cpumask
*mask
)
8099 cpumask_and(mask
, topology_thread_cpumask(cpu
), cpu_map
);
8100 group
= cpumask_first(mask
);
8102 *sg
= &per_cpu(sched_group_core
, group
).sg
;
8105 #elif defined(CONFIG_SCHED_MC)
8107 cpu_to_core_group(int cpu
, const struct cpumask
*cpu_map
,
8108 struct sched_group
**sg
, struct cpumask
*unused
)
8111 *sg
= &per_cpu(sched_group_core
, cpu
).sg
;
8116 static DEFINE_PER_CPU(struct static_sched_domain
, phys_domains
);
8117 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_phys
);
8120 cpu_to_phys_group(int cpu
, const struct cpumask
*cpu_map
,
8121 struct sched_group
**sg
, struct cpumask
*mask
)
8124 #ifdef CONFIG_SCHED_MC
8125 cpumask_and(mask
, cpu_coregroup_mask(cpu
), cpu_map
);
8126 group
= cpumask_first(mask
);
8127 #elif defined(CONFIG_SCHED_SMT)
8128 cpumask_and(mask
, topology_thread_cpumask(cpu
), cpu_map
);
8129 group
= cpumask_first(mask
);
8134 *sg
= &per_cpu(sched_group_phys
, group
).sg
;
8140 * The init_sched_build_groups can't handle what we want to do with node
8141 * groups, so roll our own. Now each node has its own list of groups which
8142 * gets dynamically allocated.
8144 static DEFINE_PER_CPU(struct static_sched_domain
, node_domains
);
8145 static struct sched_group
***sched_group_nodes_bycpu
;
8147 static DEFINE_PER_CPU(struct static_sched_domain
, allnodes_domains
);
8148 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_allnodes
);
8150 static int cpu_to_allnodes_group(int cpu
, const struct cpumask
*cpu_map
,
8151 struct sched_group
**sg
,
8152 struct cpumask
*nodemask
)
8156 cpumask_and(nodemask
, cpumask_of_node(cpu_to_node(cpu
)), cpu_map
);
8157 group
= cpumask_first(nodemask
);
8160 *sg
= &per_cpu(sched_group_allnodes
, group
).sg
;
8164 static void init_numa_sched_groups_power(struct sched_group
*group_head
)
8166 struct sched_group
*sg
= group_head
;
8172 for_each_cpu(j
, sched_group_cpus(sg
)) {
8173 struct sched_domain
*sd
;
8175 sd
= &per_cpu(phys_domains
, j
).sd
;
8176 if (j
!= group_first_cpu(sd
->groups
)) {
8178 * Only add "power" once for each
8184 sg_inc_cpu_power(sg
, sd
->groups
->__cpu_power
);
8187 } while (sg
!= group_head
);
8189 #endif /* CONFIG_NUMA */
8192 /* Free memory allocated for various sched_group structures */
8193 static void free_sched_groups(const struct cpumask
*cpu_map
,
8194 struct cpumask
*nodemask
)
8198 for_each_cpu(cpu
, cpu_map
) {
8199 struct sched_group
**sched_group_nodes
8200 = sched_group_nodes_bycpu
[cpu
];
8202 if (!sched_group_nodes
)
8205 for (i
= 0; i
< nr_node_ids
; i
++) {
8206 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
8208 cpumask_and(nodemask
, cpumask_of_node(i
), cpu_map
);
8209 if (cpumask_empty(nodemask
))
8219 if (oldsg
!= sched_group_nodes
[i
])
8222 kfree(sched_group_nodes
);
8223 sched_group_nodes_bycpu
[cpu
] = NULL
;
8226 #else /* !CONFIG_NUMA */
8227 static void free_sched_groups(const struct cpumask
*cpu_map
,
8228 struct cpumask
*nodemask
)
8231 #endif /* CONFIG_NUMA */
8234 * Initialize sched groups cpu_power.
8236 * cpu_power indicates the capacity of sched group, which is used while
8237 * distributing the load between different sched groups in a sched domain.
8238 * Typically cpu_power for all the groups in a sched domain will be same unless
8239 * there are asymmetries in the topology. If there are asymmetries, group
8240 * having more cpu_power will pickup more load compared to the group having
8243 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
8244 * the maximum number of tasks a group can handle in the presence of other idle
8245 * or lightly loaded groups in the same sched domain.
8247 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
8249 struct sched_domain
*child
;
8250 struct sched_group
*group
;
8252 WARN_ON(!sd
|| !sd
->groups
);
8254 if (cpu
!= group_first_cpu(sd
->groups
))
8259 sd
->groups
->__cpu_power
= 0;
8262 * For perf policy, if the groups in child domain share resources
8263 * (for example cores sharing some portions of the cache hierarchy
8264 * or SMT), then set this domain groups cpu_power such that each group
8265 * can handle only one task, when there are other idle groups in the
8266 * same sched domain.
8268 if (!child
|| (!(sd
->flags
& SD_POWERSAVINGS_BALANCE
) &&
8270 (SD_SHARE_CPUPOWER
| SD_SHARE_PKG_RESOURCES
)))) {
8271 sg_inc_cpu_power(sd
->groups
, SCHED_LOAD_SCALE
);
8276 * add cpu_power of each child group to this groups cpu_power
8278 group
= child
->groups
;
8280 sg_inc_cpu_power(sd
->groups
, group
->__cpu_power
);
8281 group
= group
->next
;
8282 } while (group
!= child
->groups
);
8286 * Initializers for schedule domains
8287 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8290 #ifdef CONFIG_SCHED_DEBUG
8291 # define SD_INIT_NAME(sd, type) sd->name = #type
8293 # define SD_INIT_NAME(sd, type) do { } while (0)
8296 #define SD_INIT(sd, type) sd_init_##type(sd)
8298 #define SD_INIT_FUNC(type) \
8299 static noinline void sd_init_##type(struct sched_domain *sd) \
8301 memset(sd, 0, sizeof(*sd)); \
8302 *sd = SD_##type##_INIT; \
8303 sd->level = SD_LV_##type; \
8304 SD_INIT_NAME(sd, type); \
8309 SD_INIT_FUNC(ALLNODES
)
8312 #ifdef CONFIG_SCHED_SMT
8313 SD_INIT_FUNC(SIBLING
)
8315 #ifdef CONFIG_SCHED_MC
8319 static int default_relax_domain_level
= -1;
8321 static int __init
setup_relax_domain_level(char *str
)
8325 val
= simple_strtoul(str
, NULL
, 0);
8326 if (val
< SD_LV_MAX
)
8327 default_relax_domain_level
= val
;
8331 __setup("relax_domain_level=", setup_relax_domain_level
);
8333 static void set_domain_attribute(struct sched_domain
*sd
,
8334 struct sched_domain_attr
*attr
)
8338 if (!attr
|| attr
->relax_domain_level
< 0) {
8339 if (default_relax_domain_level
< 0)
8342 request
= default_relax_domain_level
;
8344 request
= attr
->relax_domain_level
;
8345 if (request
< sd
->level
) {
8346 /* turn off idle balance on this domain */
8347 sd
->flags
&= ~(SD_WAKE_IDLE
|SD_BALANCE_NEWIDLE
);
8349 /* turn on idle balance on this domain */
8350 sd
->flags
|= (SD_WAKE_IDLE_FAR
|SD_BALANCE_NEWIDLE
);
8355 * Build sched domains for a given set of cpus and attach the sched domains
8356 * to the individual cpus
8358 static int __build_sched_domains(const struct cpumask
*cpu_map
,
8359 struct sched_domain_attr
*attr
)
8361 int i
, err
= -ENOMEM
;
8362 struct root_domain
*rd
;
8363 cpumask_var_t nodemask
, this_sibling_map
, this_core_map
, send_covered
,
8366 cpumask_var_t domainspan
, covered
, notcovered
;
8367 struct sched_group
**sched_group_nodes
= NULL
;
8368 int sd_allnodes
= 0;
8370 if (!alloc_cpumask_var(&domainspan
, GFP_KERNEL
))
8372 if (!alloc_cpumask_var(&covered
, GFP_KERNEL
))
8373 goto free_domainspan
;
8374 if (!alloc_cpumask_var(¬covered
, GFP_KERNEL
))
8378 if (!alloc_cpumask_var(&nodemask
, GFP_KERNEL
))
8379 goto free_notcovered
;
8380 if (!alloc_cpumask_var(&this_sibling_map
, GFP_KERNEL
))
8382 if (!alloc_cpumask_var(&this_core_map
, GFP_KERNEL
))
8383 goto free_this_sibling_map
;
8384 if (!alloc_cpumask_var(&send_covered
, GFP_KERNEL
))
8385 goto free_this_core_map
;
8386 if (!alloc_cpumask_var(&tmpmask
, GFP_KERNEL
))
8387 goto free_send_covered
;
8391 * Allocate the per-node list of sched groups
8393 sched_group_nodes
= kcalloc(nr_node_ids
, sizeof(struct sched_group
*),
8395 if (!sched_group_nodes
) {
8396 printk(KERN_WARNING
"Can not alloc sched group node list\n");
8401 rd
= alloc_rootdomain();
8403 printk(KERN_WARNING
"Cannot alloc root domain\n");
8404 goto free_sched_groups
;
8408 sched_group_nodes_bycpu
[cpumask_first(cpu_map
)] = sched_group_nodes
;
8412 * Set up domains for cpus specified by the cpu_map.
8414 for_each_cpu(i
, cpu_map
) {
8415 struct sched_domain
*sd
= NULL
, *p
;
8417 cpumask_and(nodemask
, cpumask_of_node(cpu_to_node(i
)), cpu_map
);
8420 if (cpumask_weight(cpu_map
) >
8421 SD_NODES_PER_DOMAIN
*cpumask_weight(nodemask
)) {
8422 sd
= &per_cpu(allnodes_domains
, i
).sd
;
8423 SD_INIT(sd
, ALLNODES
);
8424 set_domain_attribute(sd
, attr
);
8425 cpumask_copy(sched_domain_span(sd
), cpu_map
);
8426 cpu_to_allnodes_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
8432 sd
= &per_cpu(node_domains
, i
).sd
;
8434 set_domain_attribute(sd
, attr
);
8435 sched_domain_node_span(cpu_to_node(i
), sched_domain_span(sd
));
8439 cpumask_and(sched_domain_span(sd
),
8440 sched_domain_span(sd
), cpu_map
);
8444 sd
= &per_cpu(phys_domains
, i
).sd
;
8446 set_domain_attribute(sd
, attr
);
8447 cpumask_copy(sched_domain_span(sd
), nodemask
);
8451 cpu_to_phys_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
8453 #ifdef CONFIG_SCHED_MC
8455 sd
= &per_cpu(core_domains
, i
).sd
;
8457 set_domain_attribute(sd
, attr
);
8458 cpumask_and(sched_domain_span(sd
), cpu_map
,
8459 cpu_coregroup_mask(i
));
8462 cpu_to_core_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
8465 #ifdef CONFIG_SCHED_SMT
8467 sd
= &per_cpu(cpu_domains
, i
).sd
;
8468 SD_INIT(sd
, SIBLING
);
8469 set_domain_attribute(sd
, attr
);
8470 cpumask_and(sched_domain_span(sd
),
8471 topology_thread_cpumask(i
), cpu_map
);
8474 cpu_to_cpu_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
8478 #ifdef CONFIG_SCHED_SMT
8479 /* Set up CPU (sibling) groups */
8480 for_each_cpu(i
, cpu_map
) {
8481 cpumask_and(this_sibling_map
,
8482 topology_thread_cpumask(i
), cpu_map
);
8483 if (i
!= cpumask_first(this_sibling_map
))
8486 init_sched_build_groups(this_sibling_map
, cpu_map
,
8488 send_covered
, tmpmask
);
8492 #ifdef CONFIG_SCHED_MC
8493 /* Set up multi-core groups */
8494 for_each_cpu(i
, cpu_map
) {
8495 cpumask_and(this_core_map
, cpu_coregroup_mask(i
), cpu_map
);
8496 if (i
!= cpumask_first(this_core_map
))
8499 init_sched_build_groups(this_core_map
, cpu_map
,
8501 send_covered
, tmpmask
);
8505 /* Set up physical groups */
8506 for (i
= 0; i
< nr_node_ids
; i
++) {
8507 cpumask_and(nodemask
, cpumask_of_node(i
), cpu_map
);
8508 if (cpumask_empty(nodemask
))
8511 init_sched_build_groups(nodemask
, cpu_map
,
8513 send_covered
, tmpmask
);
8517 /* Set up node groups */
8519 init_sched_build_groups(cpu_map
, cpu_map
,
8520 &cpu_to_allnodes_group
,
8521 send_covered
, tmpmask
);
8524 for (i
= 0; i
< nr_node_ids
; i
++) {
8525 /* Set up node groups */
8526 struct sched_group
*sg
, *prev
;
8529 cpumask_clear(covered
);
8530 cpumask_and(nodemask
, cpumask_of_node(i
), cpu_map
);
8531 if (cpumask_empty(nodemask
)) {
8532 sched_group_nodes
[i
] = NULL
;
8536 sched_domain_node_span(i
, domainspan
);
8537 cpumask_and(domainspan
, domainspan
, cpu_map
);
8539 sg
= kmalloc_node(sizeof(struct sched_group
) + cpumask_size(),
8542 printk(KERN_WARNING
"Can not alloc domain group for "
8546 sched_group_nodes
[i
] = sg
;
8547 for_each_cpu(j
, nodemask
) {
8548 struct sched_domain
*sd
;
8550 sd
= &per_cpu(node_domains
, j
).sd
;
8553 sg
->__cpu_power
= 0;
8554 cpumask_copy(sched_group_cpus(sg
), nodemask
);
8556 cpumask_or(covered
, covered
, nodemask
);
8559 for (j
= 0; j
< nr_node_ids
; j
++) {
8560 int n
= (i
+ j
) % nr_node_ids
;
8562 cpumask_complement(notcovered
, covered
);
8563 cpumask_and(tmpmask
, notcovered
, cpu_map
);
8564 cpumask_and(tmpmask
, tmpmask
, domainspan
);
8565 if (cpumask_empty(tmpmask
))
8568 cpumask_and(tmpmask
, tmpmask
, cpumask_of_node(n
));
8569 if (cpumask_empty(tmpmask
))
8572 sg
= kmalloc_node(sizeof(struct sched_group
) +
8577 "Can not alloc domain group for node %d\n", j
);
8580 sg
->__cpu_power
= 0;
8581 cpumask_copy(sched_group_cpus(sg
), tmpmask
);
8582 sg
->next
= prev
->next
;
8583 cpumask_or(covered
, covered
, tmpmask
);
8590 /* Calculate CPU power for physical packages and nodes */
8591 #ifdef CONFIG_SCHED_SMT
8592 for_each_cpu(i
, cpu_map
) {
8593 struct sched_domain
*sd
= &per_cpu(cpu_domains
, i
).sd
;
8595 init_sched_groups_power(i
, sd
);
8598 #ifdef CONFIG_SCHED_MC
8599 for_each_cpu(i
, cpu_map
) {
8600 struct sched_domain
*sd
= &per_cpu(core_domains
, i
).sd
;
8602 init_sched_groups_power(i
, sd
);
8606 for_each_cpu(i
, cpu_map
) {
8607 struct sched_domain
*sd
= &per_cpu(phys_domains
, i
).sd
;
8609 init_sched_groups_power(i
, sd
);
8613 for (i
= 0; i
< nr_node_ids
; i
++)
8614 init_numa_sched_groups_power(sched_group_nodes
[i
]);
8617 struct sched_group
*sg
;
8619 cpu_to_allnodes_group(cpumask_first(cpu_map
), cpu_map
, &sg
,
8621 init_numa_sched_groups_power(sg
);
8625 /* Attach the domains */
8626 for_each_cpu(i
, cpu_map
) {
8627 struct sched_domain
*sd
;
8628 #ifdef CONFIG_SCHED_SMT
8629 sd
= &per_cpu(cpu_domains
, i
).sd
;
8630 #elif defined(CONFIG_SCHED_MC)
8631 sd
= &per_cpu(core_domains
, i
).sd
;
8633 sd
= &per_cpu(phys_domains
, i
).sd
;
8635 cpu_attach_domain(sd
, rd
, i
);
8641 free_cpumask_var(tmpmask
);
8643 free_cpumask_var(send_covered
);
8645 free_cpumask_var(this_core_map
);
8646 free_this_sibling_map
:
8647 free_cpumask_var(this_sibling_map
);
8649 free_cpumask_var(nodemask
);
8652 free_cpumask_var(notcovered
);
8654 free_cpumask_var(covered
);
8656 free_cpumask_var(domainspan
);
8663 kfree(sched_group_nodes
);
8669 free_sched_groups(cpu_map
, tmpmask
);
8670 free_rootdomain(rd
);
8675 static int build_sched_domains(const struct cpumask
*cpu_map
)
8677 return __build_sched_domains(cpu_map
, NULL
);
8680 static struct cpumask
*doms_cur
; /* current sched domains */
8681 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
8682 static struct sched_domain_attr
*dattr_cur
;
8683 /* attribues of custom domains in 'doms_cur' */
8686 * Special case: If a kmalloc of a doms_cur partition (array of
8687 * cpumask) fails, then fallback to a single sched domain,
8688 * as determined by the single cpumask fallback_doms.
8690 static cpumask_var_t fallback_doms
;
8693 * arch_update_cpu_topology lets virtualized architectures update the
8694 * cpu core maps. It is supposed to return 1 if the topology changed
8695 * or 0 if it stayed the same.
8697 int __attribute__((weak
)) arch_update_cpu_topology(void)
8703 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
8704 * For now this just excludes isolated cpus, but could be used to
8705 * exclude other special cases in the future.
8707 static int arch_init_sched_domains(const struct cpumask
*cpu_map
)
8711 arch_update_cpu_topology();
8713 doms_cur
= kmalloc(cpumask_size(), GFP_KERNEL
);
8715 doms_cur
= fallback_doms
;
8716 cpumask_andnot(doms_cur
, cpu_map
, cpu_isolated_map
);
8718 err
= build_sched_domains(doms_cur
);
8719 register_sched_domain_sysctl();
8724 static void arch_destroy_sched_domains(const struct cpumask
*cpu_map
,
8725 struct cpumask
*tmpmask
)
8727 free_sched_groups(cpu_map
, tmpmask
);
8731 * Detach sched domains from a group of cpus specified in cpu_map
8732 * These cpus will now be attached to the NULL domain
8734 static void detach_destroy_domains(const struct cpumask
*cpu_map
)
8736 /* Save because hotplug lock held. */
8737 static DECLARE_BITMAP(tmpmask
, CONFIG_NR_CPUS
);
8740 for_each_cpu(i
, cpu_map
)
8741 cpu_attach_domain(NULL
, &def_root_domain
, i
);
8742 synchronize_sched();
8743 arch_destroy_sched_domains(cpu_map
, to_cpumask(tmpmask
));
8746 /* handle null as "default" */
8747 static int dattrs_equal(struct sched_domain_attr
*cur
, int idx_cur
,
8748 struct sched_domain_attr
*new, int idx_new
)
8750 struct sched_domain_attr tmp
;
8757 return !memcmp(cur
? (cur
+ idx_cur
) : &tmp
,
8758 new ? (new + idx_new
) : &tmp
,
8759 sizeof(struct sched_domain_attr
));
8763 * Partition sched domains as specified by the 'ndoms_new'
8764 * cpumasks in the array doms_new[] of cpumasks. This compares
8765 * doms_new[] to the current sched domain partitioning, doms_cur[].
8766 * It destroys each deleted domain and builds each new domain.
8768 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
8769 * The masks don't intersect (don't overlap.) We should setup one
8770 * sched domain for each mask. CPUs not in any of the cpumasks will
8771 * not be load balanced. If the same cpumask appears both in the
8772 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8775 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8776 * ownership of it and will kfree it when done with it. If the caller
8777 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8778 * ndoms_new == 1, and partition_sched_domains() will fallback to
8779 * the single partition 'fallback_doms', it also forces the domains
8782 * If doms_new == NULL it will be replaced with cpu_online_mask.
8783 * ndoms_new == 0 is a special case for destroying existing domains,
8784 * and it will not create the default domain.
8786 * Call with hotplug lock held
8788 /* FIXME: Change to struct cpumask *doms_new[] */
8789 void partition_sched_domains(int ndoms_new
, struct cpumask
*doms_new
,
8790 struct sched_domain_attr
*dattr_new
)
8795 mutex_lock(&sched_domains_mutex
);
8797 /* always unregister in case we don't destroy any domains */
8798 unregister_sched_domain_sysctl();
8800 /* Let architecture update cpu core mappings. */
8801 new_topology
= arch_update_cpu_topology();
8803 n
= doms_new
? ndoms_new
: 0;
8805 /* Destroy deleted domains */
8806 for (i
= 0; i
< ndoms_cur
; i
++) {
8807 for (j
= 0; j
< n
&& !new_topology
; j
++) {
8808 if (cpumask_equal(&doms_cur
[i
], &doms_new
[j
])
8809 && dattrs_equal(dattr_cur
, i
, dattr_new
, j
))
8812 /* no match - a current sched domain not in new doms_new[] */
8813 detach_destroy_domains(doms_cur
+ i
);
8818 if (doms_new
== NULL
) {
8820 doms_new
= fallback_doms
;
8821 cpumask_andnot(&doms_new
[0], cpu_online_mask
, cpu_isolated_map
);
8822 WARN_ON_ONCE(dattr_new
);
8825 /* Build new domains */
8826 for (i
= 0; i
< ndoms_new
; i
++) {
8827 for (j
= 0; j
< ndoms_cur
&& !new_topology
; j
++) {
8828 if (cpumask_equal(&doms_new
[i
], &doms_cur
[j
])
8829 && dattrs_equal(dattr_new
, i
, dattr_cur
, j
))
8832 /* no match - add a new doms_new */
8833 __build_sched_domains(doms_new
+ i
,
8834 dattr_new
? dattr_new
+ i
: NULL
);
8839 /* Remember the new sched domains */
8840 if (doms_cur
!= fallback_doms
)
8842 kfree(dattr_cur
); /* kfree(NULL) is safe */
8843 doms_cur
= doms_new
;
8844 dattr_cur
= dattr_new
;
8845 ndoms_cur
= ndoms_new
;
8847 register_sched_domain_sysctl();
8849 mutex_unlock(&sched_domains_mutex
);
8852 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
8853 static void arch_reinit_sched_domains(void)
8857 /* Destroy domains first to force the rebuild */
8858 partition_sched_domains(0, NULL
, NULL
);
8860 rebuild_sched_domains();
8864 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
8866 unsigned int level
= 0;
8868 if (sscanf(buf
, "%u", &level
) != 1)
8872 * level is always be positive so don't check for
8873 * level < POWERSAVINGS_BALANCE_NONE which is 0
8874 * What happens on 0 or 1 byte write,
8875 * need to check for count as well?
8878 if (level
>= MAX_POWERSAVINGS_BALANCE_LEVELS
)
8882 sched_smt_power_savings
= level
;
8884 sched_mc_power_savings
= level
;
8886 arch_reinit_sched_domains();
8891 #ifdef CONFIG_SCHED_MC
8892 static ssize_t
sched_mc_power_savings_show(struct sysdev_class
*class,
8895 return sprintf(page
, "%u\n", sched_mc_power_savings
);
8897 static ssize_t
sched_mc_power_savings_store(struct sysdev_class
*class,
8898 const char *buf
, size_t count
)
8900 return sched_power_savings_store(buf
, count
, 0);
8902 static SYSDEV_CLASS_ATTR(sched_mc_power_savings
, 0644,
8903 sched_mc_power_savings_show
,
8904 sched_mc_power_savings_store
);
8907 #ifdef CONFIG_SCHED_SMT
8908 static ssize_t
sched_smt_power_savings_show(struct sysdev_class
*dev
,
8911 return sprintf(page
, "%u\n", sched_smt_power_savings
);
8913 static ssize_t
sched_smt_power_savings_store(struct sysdev_class
*dev
,
8914 const char *buf
, size_t count
)
8916 return sched_power_savings_store(buf
, count
, 1);
8918 static SYSDEV_CLASS_ATTR(sched_smt_power_savings
, 0644,
8919 sched_smt_power_savings_show
,
8920 sched_smt_power_savings_store
);
8923 int __init
sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
8927 #ifdef CONFIG_SCHED_SMT
8929 err
= sysfs_create_file(&cls
->kset
.kobj
,
8930 &attr_sched_smt_power_savings
.attr
);
8932 #ifdef CONFIG_SCHED_MC
8933 if (!err
&& mc_capable())
8934 err
= sysfs_create_file(&cls
->kset
.kobj
,
8935 &attr_sched_mc_power_savings
.attr
);
8939 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
8941 #ifndef CONFIG_CPUSETS
8943 * Add online and remove offline CPUs from the scheduler domains.
8944 * When cpusets are enabled they take over this function.
8946 static int update_sched_domains(struct notifier_block
*nfb
,
8947 unsigned long action
, void *hcpu
)
8951 case CPU_ONLINE_FROZEN
:
8953 case CPU_DEAD_FROZEN
:
8954 partition_sched_domains(1, NULL
, NULL
);
8963 static int update_runtime(struct notifier_block
*nfb
,
8964 unsigned long action
, void *hcpu
)
8966 int cpu
= (int)(long)hcpu
;
8969 case CPU_DOWN_PREPARE
:
8970 case CPU_DOWN_PREPARE_FROZEN
:
8971 disable_runtime(cpu_rq(cpu
));
8974 case CPU_DOWN_FAILED
:
8975 case CPU_DOWN_FAILED_FROZEN
:
8977 case CPU_ONLINE_FROZEN
:
8978 enable_runtime(cpu_rq(cpu
));
8986 void __init
sched_init_smp(void)
8988 cpumask_var_t non_isolated_cpus
;
8990 alloc_cpumask_var(&non_isolated_cpus
, GFP_KERNEL
);
8992 #if defined(CONFIG_NUMA)
8993 sched_group_nodes_bycpu
= kzalloc(nr_cpu_ids
* sizeof(void **),
8995 BUG_ON(sched_group_nodes_bycpu
== NULL
);
8998 mutex_lock(&sched_domains_mutex
);
8999 arch_init_sched_domains(cpu_online_mask
);
9000 cpumask_andnot(non_isolated_cpus
, cpu_possible_mask
, cpu_isolated_map
);
9001 if (cpumask_empty(non_isolated_cpus
))
9002 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus
);
9003 mutex_unlock(&sched_domains_mutex
);
9006 #ifndef CONFIG_CPUSETS
9007 /* XXX: Theoretical race here - CPU may be hotplugged now */
9008 hotcpu_notifier(update_sched_domains
, 0);
9011 /* RT runtime code needs to handle some hotplug events */
9012 hotcpu_notifier(update_runtime
, 0);
9016 /* Move init over to a non-isolated CPU */
9017 if (set_cpus_allowed_ptr(current
, non_isolated_cpus
) < 0)
9019 sched_init_granularity();
9020 free_cpumask_var(non_isolated_cpus
);
9022 alloc_cpumask_var(&fallback_doms
, GFP_KERNEL
);
9023 init_sched_rt_class();
9026 void __init
sched_init_smp(void)
9028 sched_init_granularity();
9030 #endif /* CONFIG_SMP */
9032 const_debug
unsigned int sysctl_timer_migration
= 1;
9034 int in_sched_functions(unsigned long addr
)
9036 return in_lock_functions(addr
) ||
9037 (addr
>= (unsigned long)__sched_text_start
9038 && addr
< (unsigned long)__sched_text_end
);
9041 static void init_cfs_rq(struct cfs_rq
*cfs_rq
, struct rq
*rq
)
9043 cfs_rq
->tasks_timeline
= RB_ROOT
;
9044 INIT_LIST_HEAD(&cfs_rq
->tasks
);
9045 #ifdef CONFIG_FAIR_GROUP_SCHED
9048 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
9051 static void init_rt_rq(struct rt_rq
*rt_rq
, struct rq
*rq
)
9053 struct rt_prio_array
*array
;
9056 array
= &rt_rq
->active
;
9057 for (i
= 0; i
< MAX_RT_PRIO
; i
++) {
9058 INIT_LIST_HEAD(array
->queue
+ i
);
9059 __clear_bit(i
, array
->bitmap
);
9061 /* delimiter for bitsearch: */
9062 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
9064 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9065 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
9067 rt_rq
->highest_prio
.next
= MAX_RT_PRIO
;
9071 rt_rq
->rt_nr_migratory
= 0;
9072 rt_rq
->overloaded
= 0;
9073 plist_head_init(&rq
->rt
.pushable_tasks
, &rq
->lock
);
9077 rt_rq
->rt_throttled
= 0;
9078 rt_rq
->rt_runtime
= 0;
9079 spin_lock_init(&rt_rq
->rt_runtime_lock
);
9081 #ifdef CONFIG_RT_GROUP_SCHED
9082 rt_rq
->rt_nr_boosted
= 0;
9087 #ifdef CONFIG_FAIR_GROUP_SCHED
9088 static void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
9089 struct sched_entity
*se
, int cpu
, int add
,
9090 struct sched_entity
*parent
)
9092 struct rq
*rq
= cpu_rq(cpu
);
9093 tg
->cfs_rq
[cpu
] = cfs_rq
;
9094 init_cfs_rq(cfs_rq
, rq
);
9097 list_add(&cfs_rq
->leaf_cfs_rq_list
, &rq
->leaf_cfs_rq_list
);
9100 /* se could be NULL for init_task_group */
9105 se
->cfs_rq
= &rq
->cfs
;
9107 se
->cfs_rq
= parent
->my_q
;
9110 se
->load
.weight
= tg
->shares
;
9111 se
->load
.inv_weight
= 0;
9112 se
->parent
= parent
;
9116 #ifdef CONFIG_RT_GROUP_SCHED
9117 static void init_tg_rt_entry(struct task_group
*tg
, struct rt_rq
*rt_rq
,
9118 struct sched_rt_entity
*rt_se
, int cpu
, int add
,
9119 struct sched_rt_entity
*parent
)
9121 struct rq
*rq
= cpu_rq(cpu
);
9123 tg
->rt_rq
[cpu
] = rt_rq
;
9124 init_rt_rq(rt_rq
, rq
);
9126 rt_rq
->rt_se
= rt_se
;
9127 rt_rq
->rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
9129 list_add(&rt_rq
->leaf_rt_rq_list
, &rq
->leaf_rt_rq_list
);
9131 tg
->rt_se
[cpu
] = rt_se
;
9136 rt_se
->rt_rq
= &rq
->rt
;
9138 rt_se
->rt_rq
= parent
->my_q
;
9140 rt_se
->my_q
= rt_rq
;
9141 rt_se
->parent
= parent
;
9142 INIT_LIST_HEAD(&rt_se
->run_list
);
9146 void __init
sched_init(void)
9149 unsigned long alloc_size
= 0, ptr
;
9151 #ifdef CONFIG_FAIR_GROUP_SCHED
9152 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
9154 #ifdef CONFIG_RT_GROUP_SCHED
9155 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
9157 #ifdef CONFIG_USER_SCHED
9160 #ifdef CONFIG_CPUMASK_OFFSTACK
9161 alloc_size
+= num_possible_cpus() * cpumask_size();
9164 * As sched_init() is called before page_alloc is setup,
9165 * we use alloc_bootmem().
9168 ptr
= (unsigned long)kzalloc(alloc_size
, GFP_NOWAIT
);
9170 #ifdef CONFIG_FAIR_GROUP_SCHED
9171 init_task_group
.se
= (struct sched_entity
**)ptr
;
9172 ptr
+= nr_cpu_ids
* sizeof(void **);
9174 init_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
9175 ptr
+= nr_cpu_ids
* sizeof(void **);
9177 #ifdef CONFIG_USER_SCHED
9178 root_task_group
.se
= (struct sched_entity
**)ptr
;
9179 ptr
+= nr_cpu_ids
* sizeof(void **);
9181 root_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
9182 ptr
+= nr_cpu_ids
* sizeof(void **);
9183 #endif /* CONFIG_USER_SCHED */
9184 #endif /* CONFIG_FAIR_GROUP_SCHED */
9185 #ifdef CONFIG_RT_GROUP_SCHED
9186 init_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
9187 ptr
+= nr_cpu_ids
* sizeof(void **);
9189 init_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
9190 ptr
+= nr_cpu_ids
* sizeof(void **);
9192 #ifdef CONFIG_USER_SCHED
9193 root_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
9194 ptr
+= nr_cpu_ids
* sizeof(void **);
9196 root_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
9197 ptr
+= nr_cpu_ids
* sizeof(void **);
9198 #endif /* CONFIG_USER_SCHED */
9199 #endif /* CONFIG_RT_GROUP_SCHED */
9200 #ifdef CONFIG_CPUMASK_OFFSTACK
9201 for_each_possible_cpu(i
) {
9202 per_cpu(load_balance_tmpmask
, i
) = (void *)ptr
;
9203 ptr
+= cpumask_size();
9205 #endif /* CONFIG_CPUMASK_OFFSTACK */
9209 init_defrootdomain();
9212 init_rt_bandwidth(&def_rt_bandwidth
,
9213 global_rt_period(), global_rt_runtime());
9215 #ifdef CONFIG_RT_GROUP_SCHED
9216 init_rt_bandwidth(&init_task_group
.rt_bandwidth
,
9217 global_rt_period(), global_rt_runtime());
9218 #ifdef CONFIG_USER_SCHED
9219 init_rt_bandwidth(&root_task_group
.rt_bandwidth
,
9220 global_rt_period(), RUNTIME_INF
);
9221 #endif /* CONFIG_USER_SCHED */
9222 #endif /* CONFIG_RT_GROUP_SCHED */
9224 #ifdef CONFIG_GROUP_SCHED
9225 list_add(&init_task_group
.list
, &task_groups
);
9226 INIT_LIST_HEAD(&init_task_group
.children
);
9228 #ifdef CONFIG_USER_SCHED
9229 INIT_LIST_HEAD(&root_task_group
.children
);
9230 init_task_group
.parent
= &root_task_group
;
9231 list_add(&init_task_group
.siblings
, &root_task_group
.children
);
9232 #endif /* CONFIG_USER_SCHED */
9233 #endif /* CONFIG_GROUP_SCHED */
9235 for_each_possible_cpu(i
) {
9239 spin_lock_init(&rq
->lock
);
9241 rq
->calc_load_active
= 0;
9242 rq
->calc_load_update
= jiffies
+ LOAD_FREQ
;
9243 init_cfs_rq(&rq
->cfs
, rq
);
9244 init_rt_rq(&rq
->rt
, rq
);
9245 #ifdef CONFIG_FAIR_GROUP_SCHED
9246 init_task_group
.shares
= init_task_group_load
;
9247 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
9248 #ifdef CONFIG_CGROUP_SCHED
9250 * How much cpu bandwidth does init_task_group get?
9252 * In case of task-groups formed thr' the cgroup filesystem, it
9253 * gets 100% of the cpu resources in the system. This overall
9254 * system cpu resource is divided among the tasks of
9255 * init_task_group and its child task-groups in a fair manner,
9256 * based on each entity's (task or task-group's) weight
9257 * (se->load.weight).
9259 * In other words, if init_task_group has 10 tasks of weight
9260 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9261 * then A0's share of the cpu resource is:
9263 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9265 * We achieve this by letting init_task_group's tasks sit
9266 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9268 init_tg_cfs_entry(&init_task_group
, &rq
->cfs
, NULL
, i
, 1, NULL
);
9269 #elif defined CONFIG_USER_SCHED
9270 root_task_group
.shares
= NICE_0_LOAD
;
9271 init_tg_cfs_entry(&root_task_group
, &rq
->cfs
, NULL
, i
, 0, NULL
);
9273 * In case of task-groups formed thr' the user id of tasks,
9274 * init_task_group represents tasks belonging to root user.
9275 * Hence it forms a sibling of all subsequent groups formed.
9276 * In this case, init_task_group gets only a fraction of overall
9277 * system cpu resource, based on the weight assigned to root
9278 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9279 * by letting tasks of init_task_group sit in a separate cfs_rq
9280 * (init_cfs_rq) and having one entity represent this group of
9281 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9283 init_tg_cfs_entry(&init_task_group
,
9284 &per_cpu(init_cfs_rq
, i
),
9285 &per_cpu(init_sched_entity
, i
), i
, 1,
9286 root_task_group
.se
[i
]);
9289 #endif /* CONFIG_FAIR_GROUP_SCHED */
9291 rq
->rt
.rt_runtime
= def_rt_bandwidth
.rt_runtime
;
9292 #ifdef CONFIG_RT_GROUP_SCHED
9293 INIT_LIST_HEAD(&rq
->leaf_rt_rq_list
);
9294 #ifdef CONFIG_CGROUP_SCHED
9295 init_tg_rt_entry(&init_task_group
, &rq
->rt
, NULL
, i
, 1, NULL
);
9296 #elif defined CONFIG_USER_SCHED
9297 init_tg_rt_entry(&root_task_group
, &rq
->rt
, NULL
, i
, 0, NULL
);
9298 init_tg_rt_entry(&init_task_group
,
9299 &per_cpu(init_rt_rq
, i
),
9300 &per_cpu(init_sched_rt_entity
, i
), i
, 1,
9301 root_task_group
.rt_se
[i
]);
9305 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
9306 rq
->cpu_load
[j
] = 0;
9310 rq
->active_balance
= 0;
9311 rq
->next_balance
= jiffies
;
9315 rq
->migration_thread
= NULL
;
9316 INIT_LIST_HEAD(&rq
->migration_queue
);
9317 rq_attach_root(rq
, &def_root_domain
);
9320 atomic_set(&rq
->nr_iowait
, 0);
9323 set_load_weight(&init_task
);
9325 #ifdef CONFIG_PREEMPT_NOTIFIERS
9326 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
9330 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
);
9333 #ifdef CONFIG_RT_MUTEXES
9334 plist_head_init(&init_task
.pi_waiters
, &init_task
.pi_lock
);
9338 * The boot idle thread does lazy MMU switching as well:
9340 atomic_inc(&init_mm
.mm_count
);
9341 enter_lazy_tlb(&init_mm
, current
);
9344 * Make us the idle thread. Technically, schedule() should not be
9345 * called from this thread, however somewhere below it might be,
9346 * but because we are the idle thread, we just pick up running again
9347 * when this runqueue becomes "idle".
9349 init_idle(current
, smp_processor_id());
9351 calc_load_update
= jiffies
+ LOAD_FREQ
;
9354 * During early bootup we pretend to be a normal task:
9356 current
->sched_class
= &fair_sched_class
;
9358 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9359 alloc_cpumask_var(&nohz_cpu_mask
, GFP_NOWAIT
);
9362 alloc_cpumask_var(&nohz
.cpu_mask
, GFP_NOWAIT
);
9363 alloc_cpumask_var(&nohz
.ilb_grp_nohz_mask
, GFP_NOWAIT
);
9365 alloc_cpumask_var(&cpu_isolated_map
, GFP_NOWAIT
);
9368 perf_counter_init();
9370 scheduler_running
= 1;
9373 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9374 void __might_sleep(char *file
, int line
)
9377 static unsigned long prev_jiffy
; /* ratelimiting */
9379 if ((!in_atomic() && !irqs_disabled()) ||
9380 system_state
!= SYSTEM_RUNNING
|| oops_in_progress
)
9382 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
9384 prev_jiffy
= jiffies
;
9387 "BUG: sleeping function called from invalid context at %s:%d\n",
9390 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9391 in_atomic(), irqs_disabled(),
9392 current
->pid
, current
->comm
);
9394 debug_show_held_locks(current
);
9395 if (irqs_disabled())
9396 print_irqtrace_events(current
);
9400 EXPORT_SYMBOL(__might_sleep
);
9403 #ifdef CONFIG_MAGIC_SYSRQ
9404 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
9408 update_rq_clock(rq
);
9409 on_rq
= p
->se
.on_rq
;
9411 deactivate_task(rq
, p
, 0);
9412 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
9414 activate_task(rq
, p
, 0);
9415 resched_task(rq
->curr
);
9419 void normalize_rt_tasks(void)
9421 struct task_struct
*g
, *p
;
9422 unsigned long flags
;
9425 read_lock_irqsave(&tasklist_lock
, flags
);
9426 do_each_thread(g
, p
) {
9428 * Only normalize user tasks:
9433 p
->se
.exec_start
= 0;
9434 #ifdef CONFIG_SCHEDSTATS
9435 p
->se
.wait_start
= 0;
9436 p
->se
.sleep_start
= 0;
9437 p
->se
.block_start
= 0;
9442 * Renice negative nice level userspace
9445 if (TASK_NICE(p
) < 0 && p
->mm
)
9446 set_user_nice(p
, 0);
9450 spin_lock(&p
->pi_lock
);
9451 rq
= __task_rq_lock(p
);
9453 normalize_task(rq
, p
);
9455 __task_rq_unlock(rq
);
9456 spin_unlock(&p
->pi_lock
);
9457 } while_each_thread(g
, p
);
9459 read_unlock_irqrestore(&tasklist_lock
, flags
);
9462 #endif /* CONFIG_MAGIC_SYSRQ */
9466 * These functions are only useful for the IA64 MCA handling.
9468 * They can only be called when the whole system has been
9469 * stopped - every CPU needs to be quiescent, and no scheduling
9470 * activity can take place. Using them for anything else would
9471 * be a serious bug, and as a result, they aren't even visible
9472 * under any other configuration.
9476 * curr_task - return the current task for a given cpu.
9477 * @cpu: the processor in question.
9479 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9481 struct task_struct
*curr_task(int cpu
)
9483 return cpu_curr(cpu
);
9487 * set_curr_task - set the current task for a given cpu.
9488 * @cpu: the processor in question.
9489 * @p: the task pointer to set.
9491 * Description: This function must only be used when non-maskable interrupts
9492 * are serviced on a separate stack. It allows the architecture to switch the
9493 * notion of the current task on a cpu in a non-blocking manner. This function
9494 * must be called with all CPU's synchronized, and interrupts disabled, the
9495 * and caller must save the original value of the current task (see
9496 * curr_task() above) and restore that value before reenabling interrupts and
9497 * re-starting the system.
9499 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9501 void set_curr_task(int cpu
, struct task_struct
*p
)
9508 #ifdef CONFIG_FAIR_GROUP_SCHED
9509 static void free_fair_sched_group(struct task_group
*tg
)
9513 for_each_possible_cpu(i
) {
9515 kfree(tg
->cfs_rq
[i
]);
9525 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
9527 struct cfs_rq
*cfs_rq
;
9528 struct sched_entity
*se
;
9532 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * nr_cpu_ids
, GFP_KERNEL
);
9535 tg
->se
= kzalloc(sizeof(se
) * nr_cpu_ids
, GFP_KERNEL
);
9539 tg
->shares
= NICE_0_LOAD
;
9541 for_each_possible_cpu(i
) {
9544 cfs_rq
= kzalloc_node(sizeof(struct cfs_rq
),
9545 GFP_KERNEL
, cpu_to_node(i
));
9549 se
= kzalloc_node(sizeof(struct sched_entity
),
9550 GFP_KERNEL
, cpu_to_node(i
));
9554 init_tg_cfs_entry(tg
, cfs_rq
, se
, i
, 0, parent
->se
[i
]);
9563 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
9565 list_add_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
,
9566 &cpu_rq(cpu
)->leaf_cfs_rq_list
);
9569 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
9571 list_del_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
);
9573 #else /* !CONFG_FAIR_GROUP_SCHED */
9574 static inline void free_fair_sched_group(struct task_group
*tg
)
9579 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
9584 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
9588 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
9591 #endif /* CONFIG_FAIR_GROUP_SCHED */
9593 #ifdef CONFIG_RT_GROUP_SCHED
9594 static void free_rt_sched_group(struct task_group
*tg
)
9598 destroy_rt_bandwidth(&tg
->rt_bandwidth
);
9600 for_each_possible_cpu(i
) {
9602 kfree(tg
->rt_rq
[i
]);
9604 kfree(tg
->rt_se
[i
]);
9612 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
9614 struct rt_rq
*rt_rq
;
9615 struct sched_rt_entity
*rt_se
;
9619 tg
->rt_rq
= kzalloc(sizeof(rt_rq
) * nr_cpu_ids
, GFP_KERNEL
);
9622 tg
->rt_se
= kzalloc(sizeof(rt_se
) * nr_cpu_ids
, GFP_KERNEL
);
9626 init_rt_bandwidth(&tg
->rt_bandwidth
,
9627 ktime_to_ns(def_rt_bandwidth
.rt_period
), 0);
9629 for_each_possible_cpu(i
) {
9632 rt_rq
= kzalloc_node(sizeof(struct rt_rq
),
9633 GFP_KERNEL
, cpu_to_node(i
));
9637 rt_se
= kzalloc_node(sizeof(struct sched_rt_entity
),
9638 GFP_KERNEL
, cpu_to_node(i
));
9642 init_tg_rt_entry(tg
, rt_rq
, rt_se
, i
, 0, parent
->rt_se
[i
]);
9651 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
9653 list_add_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
,
9654 &cpu_rq(cpu
)->leaf_rt_rq_list
);
9657 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
9659 list_del_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
);
9661 #else /* !CONFIG_RT_GROUP_SCHED */
9662 static inline void free_rt_sched_group(struct task_group
*tg
)
9667 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
9672 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
9676 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
9679 #endif /* CONFIG_RT_GROUP_SCHED */
9681 #ifdef CONFIG_GROUP_SCHED
9682 static void free_sched_group(struct task_group
*tg
)
9684 free_fair_sched_group(tg
);
9685 free_rt_sched_group(tg
);
9689 /* allocate runqueue etc for a new task group */
9690 struct task_group
*sched_create_group(struct task_group
*parent
)
9692 struct task_group
*tg
;
9693 unsigned long flags
;
9696 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
9698 return ERR_PTR(-ENOMEM
);
9700 if (!alloc_fair_sched_group(tg
, parent
))
9703 if (!alloc_rt_sched_group(tg
, parent
))
9706 spin_lock_irqsave(&task_group_lock
, flags
);
9707 for_each_possible_cpu(i
) {
9708 register_fair_sched_group(tg
, i
);
9709 register_rt_sched_group(tg
, i
);
9711 list_add_rcu(&tg
->list
, &task_groups
);
9713 WARN_ON(!parent
); /* root should already exist */
9715 tg
->parent
= parent
;
9716 INIT_LIST_HEAD(&tg
->children
);
9717 list_add_rcu(&tg
->siblings
, &parent
->children
);
9718 spin_unlock_irqrestore(&task_group_lock
, flags
);
9723 free_sched_group(tg
);
9724 return ERR_PTR(-ENOMEM
);
9727 /* rcu callback to free various structures associated with a task group */
9728 static void free_sched_group_rcu(struct rcu_head
*rhp
)
9730 /* now it should be safe to free those cfs_rqs */
9731 free_sched_group(container_of(rhp
, struct task_group
, rcu
));
9734 /* Destroy runqueue etc associated with a task group */
9735 void sched_destroy_group(struct task_group
*tg
)
9737 unsigned long flags
;
9740 spin_lock_irqsave(&task_group_lock
, flags
);
9741 for_each_possible_cpu(i
) {
9742 unregister_fair_sched_group(tg
, i
);
9743 unregister_rt_sched_group(tg
, i
);
9745 list_del_rcu(&tg
->list
);
9746 list_del_rcu(&tg
->siblings
);
9747 spin_unlock_irqrestore(&task_group_lock
, flags
);
9749 /* wait for possible concurrent references to cfs_rqs complete */
9750 call_rcu(&tg
->rcu
, free_sched_group_rcu
);
9753 /* change task's runqueue when it moves between groups.
9754 * The caller of this function should have put the task in its new group
9755 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9756 * reflect its new group.
9758 void sched_move_task(struct task_struct
*tsk
)
9761 unsigned long flags
;
9764 rq
= task_rq_lock(tsk
, &flags
);
9766 update_rq_clock(rq
);
9768 running
= task_current(rq
, tsk
);
9769 on_rq
= tsk
->se
.on_rq
;
9772 dequeue_task(rq
, tsk
, 0);
9773 if (unlikely(running
))
9774 tsk
->sched_class
->put_prev_task(rq
, tsk
);
9776 set_task_rq(tsk
, task_cpu(tsk
));
9778 #ifdef CONFIG_FAIR_GROUP_SCHED
9779 if (tsk
->sched_class
->moved_group
)
9780 tsk
->sched_class
->moved_group(tsk
);
9783 if (unlikely(running
))
9784 tsk
->sched_class
->set_curr_task(rq
);
9786 enqueue_task(rq
, tsk
, 0);
9788 task_rq_unlock(rq
, &flags
);
9790 #endif /* CONFIG_GROUP_SCHED */
9792 #ifdef CONFIG_FAIR_GROUP_SCHED
9793 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
)
9795 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
9800 dequeue_entity(cfs_rq
, se
, 0);
9802 se
->load
.weight
= shares
;
9803 se
->load
.inv_weight
= 0;
9806 enqueue_entity(cfs_rq
, se
, 0);
9809 static void set_se_shares(struct sched_entity
*se
, unsigned long shares
)
9811 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
9812 struct rq
*rq
= cfs_rq
->rq
;
9813 unsigned long flags
;
9815 spin_lock_irqsave(&rq
->lock
, flags
);
9816 __set_se_shares(se
, shares
);
9817 spin_unlock_irqrestore(&rq
->lock
, flags
);
9820 static DEFINE_MUTEX(shares_mutex
);
9822 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
9825 unsigned long flags
;
9828 * We can't change the weight of the root cgroup.
9833 if (shares
< MIN_SHARES
)
9834 shares
= MIN_SHARES
;
9835 else if (shares
> MAX_SHARES
)
9836 shares
= MAX_SHARES
;
9838 mutex_lock(&shares_mutex
);
9839 if (tg
->shares
== shares
)
9842 spin_lock_irqsave(&task_group_lock
, flags
);
9843 for_each_possible_cpu(i
)
9844 unregister_fair_sched_group(tg
, i
);
9845 list_del_rcu(&tg
->siblings
);
9846 spin_unlock_irqrestore(&task_group_lock
, flags
);
9848 /* wait for any ongoing reference to this group to finish */
9849 synchronize_sched();
9852 * Now we are free to modify the group's share on each cpu
9853 * w/o tripping rebalance_share or load_balance_fair.
9855 tg
->shares
= shares
;
9856 for_each_possible_cpu(i
) {
9860 cfs_rq_set_shares(tg
->cfs_rq
[i
], 0);
9861 set_se_shares(tg
->se
[i
], shares
);
9865 * Enable load balance activity on this group, by inserting it back on
9866 * each cpu's rq->leaf_cfs_rq_list.
9868 spin_lock_irqsave(&task_group_lock
, flags
);
9869 for_each_possible_cpu(i
)
9870 register_fair_sched_group(tg
, i
);
9871 list_add_rcu(&tg
->siblings
, &tg
->parent
->children
);
9872 spin_unlock_irqrestore(&task_group_lock
, flags
);
9874 mutex_unlock(&shares_mutex
);
9878 unsigned long sched_group_shares(struct task_group
*tg
)
9884 #ifdef CONFIG_RT_GROUP_SCHED
9886 * Ensure that the real time constraints are schedulable.
9888 static DEFINE_MUTEX(rt_constraints_mutex
);
9890 static unsigned long to_ratio(u64 period
, u64 runtime
)
9892 if (runtime
== RUNTIME_INF
)
9895 return div64_u64(runtime
<< 20, period
);
9898 /* Must be called with tasklist_lock held */
9899 static inline int tg_has_rt_tasks(struct task_group
*tg
)
9901 struct task_struct
*g
, *p
;
9903 do_each_thread(g
, p
) {
9904 if (rt_task(p
) && rt_rq_of_se(&p
->rt
)->tg
== tg
)
9906 } while_each_thread(g
, p
);
9911 struct rt_schedulable_data
{
9912 struct task_group
*tg
;
9917 static int tg_schedulable(struct task_group
*tg
, void *data
)
9919 struct rt_schedulable_data
*d
= data
;
9920 struct task_group
*child
;
9921 unsigned long total
, sum
= 0;
9922 u64 period
, runtime
;
9924 period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
9925 runtime
= tg
->rt_bandwidth
.rt_runtime
;
9928 period
= d
->rt_period
;
9929 runtime
= d
->rt_runtime
;
9932 #ifdef CONFIG_USER_SCHED
9933 if (tg
== &root_task_group
) {
9934 period
= global_rt_period();
9935 runtime
= global_rt_runtime();
9940 * Cannot have more runtime than the period.
9942 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
9946 * Ensure we don't starve existing RT tasks.
9948 if (rt_bandwidth_enabled() && !runtime
&& tg_has_rt_tasks(tg
))
9951 total
= to_ratio(period
, runtime
);
9954 * Nobody can have more than the global setting allows.
9956 if (total
> to_ratio(global_rt_period(), global_rt_runtime()))
9960 * The sum of our children's runtime should not exceed our own.
9962 list_for_each_entry_rcu(child
, &tg
->children
, siblings
) {
9963 period
= ktime_to_ns(child
->rt_bandwidth
.rt_period
);
9964 runtime
= child
->rt_bandwidth
.rt_runtime
;
9966 if (child
== d
->tg
) {
9967 period
= d
->rt_period
;
9968 runtime
= d
->rt_runtime
;
9971 sum
+= to_ratio(period
, runtime
);
9980 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
9982 struct rt_schedulable_data data
= {
9984 .rt_period
= period
,
9985 .rt_runtime
= runtime
,
9988 return walk_tg_tree(tg_schedulable
, tg_nop
, &data
);
9991 static int tg_set_bandwidth(struct task_group
*tg
,
9992 u64 rt_period
, u64 rt_runtime
)
9996 mutex_lock(&rt_constraints_mutex
);
9997 read_lock(&tasklist_lock
);
9998 err
= __rt_schedulable(tg
, rt_period
, rt_runtime
);
10002 spin_lock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
10003 tg
->rt_bandwidth
.rt_period
= ns_to_ktime(rt_period
);
10004 tg
->rt_bandwidth
.rt_runtime
= rt_runtime
;
10006 for_each_possible_cpu(i
) {
10007 struct rt_rq
*rt_rq
= tg
->rt_rq
[i
];
10009 spin_lock(&rt_rq
->rt_runtime_lock
);
10010 rt_rq
->rt_runtime
= rt_runtime
;
10011 spin_unlock(&rt_rq
->rt_runtime_lock
);
10013 spin_unlock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
10015 read_unlock(&tasklist_lock
);
10016 mutex_unlock(&rt_constraints_mutex
);
10021 int sched_group_set_rt_runtime(struct task_group
*tg
, long rt_runtime_us
)
10023 u64 rt_runtime
, rt_period
;
10025 rt_period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
10026 rt_runtime
= (u64
)rt_runtime_us
* NSEC_PER_USEC
;
10027 if (rt_runtime_us
< 0)
10028 rt_runtime
= RUNTIME_INF
;
10030 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
10033 long sched_group_rt_runtime(struct task_group
*tg
)
10037 if (tg
->rt_bandwidth
.rt_runtime
== RUNTIME_INF
)
10040 rt_runtime_us
= tg
->rt_bandwidth
.rt_runtime
;
10041 do_div(rt_runtime_us
, NSEC_PER_USEC
);
10042 return rt_runtime_us
;
10045 int sched_group_set_rt_period(struct task_group
*tg
, long rt_period_us
)
10047 u64 rt_runtime
, rt_period
;
10049 rt_period
= (u64
)rt_period_us
* NSEC_PER_USEC
;
10050 rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
10052 if (rt_period
== 0)
10055 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
10058 long sched_group_rt_period(struct task_group
*tg
)
10062 rt_period_us
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
10063 do_div(rt_period_us
, NSEC_PER_USEC
);
10064 return rt_period_us
;
10067 static int sched_rt_global_constraints(void)
10069 u64 runtime
, period
;
10072 if (sysctl_sched_rt_period
<= 0)
10075 runtime
= global_rt_runtime();
10076 period
= global_rt_period();
10079 * Sanity check on the sysctl variables.
10081 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
10084 mutex_lock(&rt_constraints_mutex
);
10085 read_lock(&tasklist_lock
);
10086 ret
= __rt_schedulable(NULL
, 0, 0);
10087 read_unlock(&tasklist_lock
);
10088 mutex_unlock(&rt_constraints_mutex
);
10093 int sched_rt_can_attach(struct task_group
*tg
, struct task_struct
*tsk
)
10095 /* Don't accept realtime tasks when there is no way for them to run */
10096 if (rt_task(tsk
) && tg
->rt_bandwidth
.rt_runtime
== 0)
10102 #else /* !CONFIG_RT_GROUP_SCHED */
10103 static int sched_rt_global_constraints(void)
10105 unsigned long flags
;
10108 if (sysctl_sched_rt_period
<= 0)
10112 * There's always some RT tasks in the root group
10113 * -- migration, kstopmachine etc..
10115 if (sysctl_sched_rt_runtime
== 0)
10118 spin_lock_irqsave(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
10119 for_each_possible_cpu(i
) {
10120 struct rt_rq
*rt_rq
= &cpu_rq(i
)->rt
;
10122 spin_lock(&rt_rq
->rt_runtime_lock
);
10123 rt_rq
->rt_runtime
= global_rt_runtime();
10124 spin_unlock(&rt_rq
->rt_runtime_lock
);
10126 spin_unlock_irqrestore(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
10130 #endif /* CONFIG_RT_GROUP_SCHED */
10132 int sched_rt_handler(struct ctl_table
*table
, int write
,
10133 struct file
*filp
, void __user
*buffer
, size_t *lenp
,
10137 int old_period
, old_runtime
;
10138 static DEFINE_MUTEX(mutex
);
10140 mutex_lock(&mutex
);
10141 old_period
= sysctl_sched_rt_period
;
10142 old_runtime
= sysctl_sched_rt_runtime
;
10144 ret
= proc_dointvec(table
, write
, filp
, buffer
, lenp
, ppos
);
10146 if (!ret
&& write
) {
10147 ret
= sched_rt_global_constraints();
10149 sysctl_sched_rt_period
= old_period
;
10150 sysctl_sched_rt_runtime
= old_runtime
;
10152 def_rt_bandwidth
.rt_runtime
= global_rt_runtime();
10153 def_rt_bandwidth
.rt_period
=
10154 ns_to_ktime(global_rt_period());
10157 mutex_unlock(&mutex
);
10162 #ifdef CONFIG_CGROUP_SCHED
10164 /* return corresponding task_group object of a cgroup */
10165 static inline struct task_group
*cgroup_tg(struct cgroup
*cgrp
)
10167 return container_of(cgroup_subsys_state(cgrp
, cpu_cgroup_subsys_id
),
10168 struct task_group
, css
);
10171 static struct cgroup_subsys_state
*
10172 cpu_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
10174 struct task_group
*tg
, *parent
;
10176 if (!cgrp
->parent
) {
10177 /* This is early initialization for the top cgroup */
10178 return &init_task_group
.css
;
10181 parent
= cgroup_tg(cgrp
->parent
);
10182 tg
= sched_create_group(parent
);
10184 return ERR_PTR(-ENOMEM
);
10190 cpu_cgroup_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
10192 struct task_group
*tg
= cgroup_tg(cgrp
);
10194 sched_destroy_group(tg
);
10198 cpu_cgroup_can_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
10199 struct task_struct
*tsk
)
10201 #ifdef CONFIG_RT_GROUP_SCHED
10202 if (!sched_rt_can_attach(cgroup_tg(cgrp
), tsk
))
10205 /* We don't support RT-tasks being in separate groups */
10206 if (tsk
->sched_class
!= &fair_sched_class
)
10214 cpu_cgroup_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
10215 struct cgroup
*old_cont
, struct task_struct
*tsk
)
10217 sched_move_task(tsk
);
10220 #ifdef CONFIG_FAIR_GROUP_SCHED
10221 static int cpu_shares_write_u64(struct cgroup
*cgrp
, struct cftype
*cftype
,
10224 return sched_group_set_shares(cgroup_tg(cgrp
), shareval
);
10227 static u64
cpu_shares_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
)
10229 struct task_group
*tg
= cgroup_tg(cgrp
);
10231 return (u64
) tg
->shares
;
10233 #endif /* CONFIG_FAIR_GROUP_SCHED */
10235 #ifdef CONFIG_RT_GROUP_SCHED
10236 static int cpu_rt_runtime_write(struct cgroup
*cgrp
, struct cftype
*cft
,
10239 return sched_group_set_rt_runtime(cgroup_tg(cgrp
), val
);
10242 static s64
cpu_rt_runtime_read(struct cgroup
*cgrp
, struct cftype
*cft
)
10244 return sched_group_rt_runtime(cgroup_tg(cgrp
));
10247 static int cpu_rt_period_write_uint(struct cgroup
*cgrp
, struct cftype
*cftype
,
10250 return sched_group_set_rt_period(cgroup_tg(cgrp
), rt_period_us
);
10253 static u64
cpu_rt_period_read_uint(struct cgroup
*cgrp
, struct cftype
*cft
)
10255 return sched_group_rt_period(cgroup_tg(cgrp
));
10257 #endif /* CONFIG_RT_GROUP_SCHED */
10259 static struct cftype cpu_files
[] = {
10260 #ifdef CONFIG_FAIR_GROUP_SCHED
10263 .read_u64
= cpu_shares_read_u64
,
10264 .write_u64
= cpu_shares_write_u64
,
10267 #ifdef CONFIG_RT_GROUP_SCHED
10269 .name
= "rt_runtime_us",
10270 .read_s64
= cpu_rt_runtime_read
,
10271 .write_s64
= cpu_rt_runtime_write
,
10274 .name
= "rt_period_us",
10275 .read_u64
= cpu_rt_period_read_uint
,
10276 .write_u64
= cpu_rt_period_write_uint
,
10281 static int cpu_cgroup_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
10283 return cgroup_add_files(cont
, ss
, cpu_files
, ARRAY_SIZE(cpu_files
));
10286 struct cgroup_subsys cpu_cgroup_subsys
= {
10288 .create
= cpu_cgroup_create
,
10289 .destroy
= cpu_cgroup_destroy
,
10290 .can_attach
= cpu_cgroup_can_attach
,
10291 .attach
= cpu_cgroup_attach
,
10292 .populate
= cpu_cgroup_populate
,
10293 .subsys_id
= cpu_cgroup_subsys_id
,
10297 #endif /* CONFIG_CGROUP_SCHED */
10299 #ifdef CONFIG_CGROUP_CPUACCT
10302 * CPU accounting code for task groups.
10304 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10305 * (balbir@in.ibm.com).
10308 /* track cpu usage of a group of tasks and its child groups */
10310 struct cgroup_subsys_state css
;
10311 /* cpuusage holds pointer to a u64-type object on every cpu */
10313 struct percpu_counter cpustat
[CPUACCT_STAT_NSTATS
];
10314 struct cpuacct
*parent
;
10317 struct cgroup_subsys cpuacct_subsys
;
10319 /* return cpu accounting group corresponding to this container */
10320 static inline struct cpuacct
*cgroup_ca(struct cgroup
*cgrp
)
10322 return container_of(cgroup_subsys_state(cgrp
, cpuacct_subsys_id
),
10323 struct cpuacct
, css
);
10326 /* return cpu accounting group to which this task belongs */
10327 static inline struct cpuacct
*task_ca(struct task_struct
*tsk
)
10329 return container_of(task_subsys_state(tsk
, cpuacct_subsys_id
),
10330 struct cpuacct
, css
);
10333 /* create a new cpu accounting group */
10334 static struct cgroup_subsys_state
*cpuacct_create(
10335 struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
10337 struct cpuacct
*ca
= kzalloc(sizeof(*ca
), GFP_KERNEL
);
10343 ca
->cpuusage
= alloc_percpu(u64
);
10347 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++)
10348 if (percpu_counter_init(&ca
->cpustat
[i
], 0))
10349 goto out_free_counters
;
10352 ca
->parent
= cgroup_ca(cgrp
->parent
);
10358 percpu_counter_destroy(&ca
->cpustat
[i
]);
10359 free_percpu(ca
->cpuusage
);
10363 return ERR_PTR(-ENOMEM
);
10366 /* destroy an existing cpu accounting group */
10368 cpuacct_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
10370 struct cpuacct
*ca
= cgroup_ca(cgrp
);
10373 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++)
10374 percpu_counter_destroy(&ca
->cpustat
[i
]);
10375 free_percpu(ca
->cpuusage
);
10379 static u64
cpuacct_cpuusage_read(struct cpuacct
*ca
, int cpu
)
10381 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
10384 #ifndef CONFIG_64BIT
10386 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10388 spin_lock_irq(&cpu_rq(cpu
)->lock
);
10390 spin_unlock_irq(&cpu_rq(cpu
)->lock
);
10398 static void cpuacct_cpuusage_write(struct cpuacct
*ca
, int cpu
, u64 val
)
10400 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
10402 #ifndef CONFIG_64BIT
10404 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10406 spin_lock_irq(&cpu_rq(cpu
)->lock
);
10408 spin_unlock_irq(&cpu_rq(cpu
)->lock
);
10414 /* return total cpu usage (in nanoseconds) of a group */
10415 static u64
cpuusage_read(struct cgroup
*cgrp
, struct cftype
*cft
)
10417 struct cpuacct
*ca
= cgroup_ca(cgrp
);
10418 u64 totalcpuusage
= 0;
10421 for_each_present_cpu(i
)
10422 totalcpuusage
+= cpuacct_cpuusage_read(ca
, i
);
10424 return totalcpuusage
;
10427 static int cpuusage_write(struct cgroup
*cgrp
, struct cftype
*cftype
,
10430 struct cpuacct
*ca
= cgroup_ca(cgrp
);
10439 for_each_present_cpu(i
)
10440 cpuacct_cpuusage_write(ca
, i
, 0);
10446 static int cpuacct_percpu_seq_read(struct cgroup
*cgroup
, struct cftype
*cft
,
10447 struct seq_file
*m
)
10449 struct cpuacct
*ca
= cgroup_ca(cgroup
);
10453 for_each_present_cpu(i
) {
10454 percpu
= cpuacct_cpuusage_read(ca
, i
);
10455 seq_printf(m
, "%llu ", (unsigned long long) percpu
);
10457 seq_printf(m
, "\n");
10461 static const char *cpuacct_stat_desc
[] = {
10462 [CPUACCT_STAT_USER
] = "user",
10463 [CPUACCT_STAT_SYSTEM
] = "system",
10466 static int cpuacct_stats_show(struct cgroup
*cgrp
, struct cftype
*cft
,
10467 struct cgroup_map_cb
*cb
)
10469 struct cpuacct
*ca
= cgroup_ca(cgrp
);
10472 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++) {
10473 s64 val
= percpu_counter_read(&ca
->cpustat
[i
]);
10474 val
= cputime64_to_clock_t(val
);
10475 cb
->fill(cb
, cpuacct_stat_desc
[i
], val
);
10480 static struct cftype files
[] = {
10483 .read_u64
= cpuusage_read
,
10484 .write_u64
= cpuusage_write
,
10487 .name
= "usage_percpu",
10488 .read_seq_string
= cpuacct_percpu_seq_read
,
10492 .read_map
= cpuacct_stats_show
,
10496 static int cpuacct_populate(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
10498 return cgroup_add_files(cgrp
, ss
, files
, ARRAY_SIZE(files
));
10502 * charge this task's execution time to its accounting group.
10504 * called with rq->lock held.
10506 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
)
10508 struct cpuacct
*ca
;
10511 if (unlikely(!cpuacct_subsys
.active
))
10514 cpu
= task_cpu(tsk
);
10520 for (; ca
; ca
= ca
->parent
) {
10521 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
10522 *cpuusage
+= cputime
;
10529 * Charge the system/user time to the task's accounting group.
10531 static void cpuacct_update_stats(struct task_struct
*tsk
,
10532 enum cpuacct_stat_index idx
, cputime_t val
)
10534 struct cpuacct
*ca
;
10536 if (unlikely(!cpuacct_subsys
.active
))
10543 percpu_counter_add(&ca
->cpustat
[idx
], val
);
10549 struct cgroup_subsys cpuacct_subsys
= {
10551 .create
= cpuacct_create
,
10552 .destroy
= cpuacct_destroy
,
10553 .populate
= cpuacct_populate
,
10554 .subsys_id
= cpuacct_subsys_id
,
10556 #endif /* CONFIG_CGROUP_CPUACCT */