2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Adrian Hunter
20 * Artem Bityutskiy (Битюцкий Артём)
24 * This file implements commit-related functionality of the LEB properties
28 #include <linux/crc16.h>
32 * first_dirty_cnode - find first dirty cnode.
33 * @c: UBIFS file-system description object
34 * @nnode: nnode at which to start
36 * This function returns the first dirty cnode or %NULL if there is not one.
38 static struct ubifs_cnode
*first_dirty_cnode(struct ubifs_nnode
*nnode
)
44 for (i
= 0; i
< UBIFS_LPT_FANOUT
; i
++) {
45 struct ubifs_cnode
*cnode
;
47 cnode
= nnode
->nbranch
[i
].cnode
;
49 test_bit(DIRTY_CNODE
, &cnode
->flags
)) {
50 if (cnode
->level
== 0)
52 nnode
= (struct ubifs_nnode
*)cnode
;
58 return (struct ubifs_cnode
*)nnode
;
63 * next_dirty_cnode - find next dirty cnode.
64 * @cnode: cnode from which to begin searching
66 * This function returns the next dirty cnode or %NULL if there is not one.
68 static struct ubifs_cnode
*next_dirty_cnode(struct ubifs_cnode
*cnode
)
70 struct ubifs_nnode
*nnode
;
74 nnode
= cnode
->parent
;
77 for (i
= cnode
->iip
+ 1; i
< UBIFS_LPT_FANOUT
; i
++) {
78 cnode
= nnode
->nbranch
[i
].cnode
;
79 if (cnode
&& test_bit(DIRTY_CNODE
, &cnode
->flags
)) {
80 if (cnode
->level
== 0)
81 return cnode
; /* cnode is a pnode */
82 /* cnode is a nnode */
83 return first_dirty_cnode((struct ubifs_nnode
*)cnode
);
86 return (struct ubifs_cnode
*)nnode
;
90 * get_cnodes_to_commit - create list of dirty cnodes to commit.
91 * @c: UBIFS file-system description object
93 * This function returns the number of cnodes to commit.
95 static int get_cnodes_to_commit(struct ubifs_info
*c
)
97 struct ubifs_cnode
*cnode
, *cnext
;
103 if (!test_bit(DIRTY_CNODE
, &c
->nroot
->flags
))
106 c
->lpt_cnext
= first_dirty_cnode(c
->nroot
);
107 cnode
= c
->lpt_cnext
;
112 ubifs_assert(!test_bit(COW_ZNODE
, &cnode
->flags
));
113 __set_bit(COW_ZNODE
, &cnode
->flags
);
114 cnext
= next_dirty_cnode(cnode
);
116 cnode
->cnext
= c
->lpt_cnext
;
119 cnode
->cnext
= cnext
;
123 dbg_cmt("committing %d cnodes", cnt
);
124 dbg_lp("committing %d cnodes", cnt
);
125 ubifs_assert(cnt
== c
->dirty_nn_cnt
+ c
->dirty_pn_cnt
);
130 * upd_ltab - update LPT LEB properties.
131 * @c: UBIFS file-system description object
133 * @free: amount of free space
134 * @dirty: amount of dirty space to add
136 static void upd_ltab(struct ubifs_info
*c
, int lnum
, int free
, int dirty
)
138 dbg_lp("LEB %d free %d dirty %d to %d +%d",
139 lnum
, c
->ltab
[lnum
- c
->lpt_first
].free
,
140 c
->ltab
[lnum
- c
->lpt_first
].dirty
, free
, dirty
);
141 ubifs_assert(lnum
>= c
->lpt_first
&& lnum
<= c
->lpt_last
);
142 c
->ltab
[lnum
- c
->lpt_first
].free
= free
;
143 c
->ltab
[lnum
- c
->lpt_first
].dirty
+= dirty
;
147 * alloc_lpt_leb - allocate an LPT LEB that is empty.
148 * @c: UBIFS file-system description object
149 * @lnum: LEB number is passed and returned here
151 * This function finds the next empty LEB in the ltab starting from @lnum. If a
152 * an empty LEB is found it is returned in @lnum and the function returns %0.
153 * Otherwise the function returns -ENOSPC. Note however, that LPT is designed
154 * never to run out of space.
156 static int alloc_lpt_leb(struct ubifs_info
*c
, int *lnum
)
160 n
= *lnum
- c
->lpt_first
+ 1;
161 for (i
= n
; i
< c
->lpt_lebs
; i
++) {
162 if (c
->ltab
[i
].tgc
|| c
->ltab
[i
].cmt
)
164 if (c
->ltab
[i
].free
== c
->leb_size
) {
166 *lnum
= i
+ c
->lpt_first
;
171 for (i
= 0; i
< n
; i
++) {
172 if (c
->ltab
[i
].tgc
|| c
->ltab
[i
].cmt
)
174 if (c
->ltab
[i
].free
== c
->leb_size
) {
176 *lnum
= i
+ c
->lpt_first
;
184 * layout_cnodes - layout cnodes for commit.
185 * @c: UBIFS file-system description object
187 * This function returns %0 on success and a negative error code on failure.
189 static int layout_cnodes(struct ubifs_info
*c
)
191 int lnum
, offs
, len
, alen
, done_lsave
, done_ltab
, err
;
192 struct ubifs_cnode
*cnode
;
194 err
= dbg_chk_lpt_sz(c
, 0, 0);
197 cnode
= c
->lpt_cnext
;
200 lnum
= c
->nhead_lnum
;
201 offs
= c
->nhead_offs
;
202 /* Try to place lsave and ltab nicely */
203 done_lsave
= !c
->big_lpt
;
205 if (!done_lsave
&& offs
+ c
->lsave_sz
<= c
->leb_size
) {
207 c
->lsave_lnum
= lnum
;
208 c
->lsave_offs
= offs
;
210 dbg_chk_lpt_sz(c
, 1, c
->lsave_sz
);
213 if (offs
+ c
->ltab_sz
<= c
->leb_size
) {
218 dbg_chk_lpt_sz(c
, 1, c
->ltab_sz
);
224 c
->dirty_nn_cnt
-= 1;
227 c
->dirty_pn_cnt
-= 1;
229 while (offs
+ len
> c
->leb_size
) {
230 alen
= ALIGN(offs
, c
->min_io_size
);
231 upd_ltab(c
, lnum
, c
->leb_size
- alen
, alen
- offs
);
232 dbg_chk_lpt_sz(c
, 2, alen
- offs
);
233 err
= alloc_lpt_leb(c
, &lnum
);
237 ubifs_assert(lnum
>= c
->lpt_first
&&
238 lnum
<= c
->lpt_last
);
239 /* Try to place lsave and ltab nicely */
242 c
->lsave_lnum
= lnum
;
243 c
->lsave_offs
= offs
;
245 dbg_chk_lpt_sz(c
, 1, c
->lsave_sz
);
253 dbg_chk_lpt_sz(c
, 1, c
->ltab_sz
);
259 cnode
->parent
->nbranch
[cnode
->iip
].lnum
= lnum
;
260 cnode
->parent
->nbranch
[cnode
->iip
].offs
= offs
;
266 dbg_chk_lpt_sz(c
, 1, len
);
267 cnode
= cnode
->cnext
;
268 } while (cnode
&& cnode
!= c
->lpt_cnext
);
270 /* Make sure to place LPT's save table */
272 if (offs
+ c
->lsave_sz
> c
->leb_size
) {
273 alen
= ALIGN(offs
, c
->min_io_size
);
274 upd_ltab(c
, lnum
, c
->leb_size
- alen
, alen
- offs
);
275 dbg_chk_lpt_sz(c
, 2, alen
- offs
);
276 err
= alloc_lpt_leb(c
, &lnum
);
280 ubifs_assert(lnum
>= c
->lpt_first
&&
281 lnum
<= c
->lpt_last
);
284 c
->lsave_lnum
= lnum
;
285 c
->lsave_offs
= offs
;
287 dbg_chk_lpt_sz(c
, 1, c
->lsave_sz
);
290 /* Make sure to place LPT's own lprops table */
292 if (offs
+ c
->ltab_sz
> c
->leb_size
) {
293 alen
= ALIGN(offs
, c
->min_io_size
);
294 upd_ltab(c
, lnum
, c
->leb_size
- alen
, alen
- offs
);
295 dbg_chk_lpt_sz(c
, 2, alen
- offs
);
296 err
= alloc_lpt_leb(c
, &lnum
);
300 ubifs_assert(lnum
>= c
->lpt_first
&&
301 lnum
<= c
->lpt_last
);
307 dbg_chk_lpt_sz(c
, 1, c
->ltab_sz
);
310 alen
= ALIGN(offs
, c
->min_io_size
);
311 upd_ltab(c
, lnum
, c
->leb_size
- alen
, alen
- offs
);
312 dbg_chk_lpt_sz(c
, 4, alen
- offs
);
313 err
= dbg_chk_lpt_sz(c
, 3, alen
);
319 ubifs_err("LPT out of space");
320 dbg_err("LPT out of space at LEB %d:%d needing %d, done_ltab %d, "
321 "done_lsave %d", lnum
, offs
, len
, done_ltab
, done_lsave
);
322 dbg_dump_lpt_info(c
);
323 dbg_dump_lpt_lebs(c
);
329 * realloc_lpt_leb - allocate an LPT LEB that is empty.
330 * @c: UBIFS file-system description object
331 * @lnum: LEB number is passed and returned here
333 * This function duplicates exactly the results of the function alloc_lpt_leb.
334 * It is used during end commit to reallocate the same LEB numbers that were
335 * allocated by alloc_lpt_leb during start commit.
337 * This function finds the next LEB that was allocated by the alloc_lpt_leb
338 * function starting from @lnum. If a LEB is found it is returned in @lnum and
339 * the function returns %0. Otherwise the function returns -ENOSPC.
340 * Note however, that LPT is designed never to run out of space.
342 static int realloc_lpt_leb(struct ubifs_info
*c
, int *lnum
)
346 n
= *lnum
- c
->lpt_first
+ 1;
347 for (i
= n
; i
< c
->lpt_lebs
; i
++)
348 if (c
->ltab
[i
].cmt
) {
350 *lnum
= i
+ c
->lpt_first
;
354 for (i
= 0; i
< n
; i
++)
355 if (c
->ltab
[i
].cmt
) {
357 *lnum
= i
+ c
->lpt_first
;
364 * write_cnodes - write cnodes for commit.
365 * @c: UBIFS file-system description object
367 * This function returns %0 on success and a negative error code on failure.
369 static int write_cnodes(struct ubifs_info
*c
)
371 int lnum
, offs
, len
, from
, err
, wlen
, alen
, done_ltab
, done_lsave
;
372 struct ubifs_cnode
*cnode
;
373 void *buf
= c
->lpt_buf
;
375 cnode
= c
->lpt_cnext
;
378 lnum
= c
->nhead_lnum
;
379 offs
= c
->nhead_offs
;
381 /* Ensure empty LEB is unmapped */
383 err
= ubifs_leb_unmap(c
, lnum
);
387 /* Try to place lsave and ltab nicely */
388 done_lsave
= !c
->big_lpt
;
390 if (!done_lsave
&& offs
+ c
->lsave_sz
<= c
->leb_size
) {
392 ubifs_pack_lsave(c
, buf
+ offs
, c
->lsave
);
394 dbg_chk_lpt_sz(c
, 1, c
->lsave_sz
);
397 if (offs
+ c
->ltab_sz
<= c
->leb_size
) {
399 ubifs_pack_ltab(c
, buf
+ offs
, c
->ltab_cmt
);
401 dbg_chk_lpt_sz(c
, 1, c
->ltab_sz
);
404 /* Loop for each cnode */
410 while (offs
+ len
> c
->leb_size
) {
413 alen
= ALIGN(wlen
, c
->min_io_size
);
414 memset(buf
+ offs
, 0xff, alen
- wlen
);
415 err
= ubifs_leb_write(c
, lnum
, buf
+ from
, from
,
416 alen
, UBI_SHORTTERM
);
419 dbg_chk_lpt_sz(c
, 4, alen
- wlen
);
421 dbg_chk_lpt_sz(c
, 2, 0);
422 err
= realloc_lpt_leb(c
, &lnum
);
427 ubifs_assert(lnum
>= c
->lpt_first
&&
428 lnum
<= c
->lpt_last
);
429 err
= ubifs_leb_unmap(c
, lnum
);
432 /* Try to place lsave and ltab nicely */
435 ubifs_pack_lsave(c
, buf
+ offs
, c
->lsave
);
437 dbg_chk_lpt_sz(c
, 1, c
->lsave_sz
);
442 ubifs_pack_ltab(c
, buf
+ offs
, c
->ltab_cmt
);
444 dbg_chk_lpt_sz(c
, 1, c
->ltab_sz
);
450 ubifs_pack_nnode(c
, buf
+ offs
,
451 (struct ubifs_nnode
*)cnode
);
453 ubifs_pack_pnode(c
, buf
+ offs
,
454 (struct ubifs_pnode
*)cnode
);
456 * The reason for the barriers is the same as in case of TNC.
457 * See comment in 'write_index()'. 'dirty_cow_nnode()' and
458 * 'dirty_cow_pnode()' are the functions for which this is
461 clear_bit(DIRTY_CNODE
, &cnode
->flags
);
462 smp_mb__before_clear_bit();
463 clear_bit(COW_ZNODE
, &cnode
->flags
);
464 smp_mb__after_clear_bit();
466 dbg_chk_lpt_sz(c
, 1, len
);
467 cnode
= cnode
->cnext
;
468 } while (cnode
&& cnode
!= c
->lpt_cnext
);
470 /* Make sure to place LPT's save table */
472 if (offs
+ c
->lsave_sz
> c
->leb_size
) {
474 alen
= ALIGN(wlen
, c
->min_io_size
);
475 memset(buf
+ offs
, 0xff, alen
- wlen
);
476 err
= ubifs_leb_write(c
, lnum
, buf
+ from
, from
, alen
,
480 dbg_chk_lpt_sz(c
, 2, alen
- wlen
);
481 err
= realloc_lpt_leb(c
, &lnum
);
485 ubifs_assert(lnum
>= c
->lpt_first
&&
486 lnum
<= c
->lpt_last
);
487 err
= ubifs_leb_unmap(c
, lnum
);
492 ubifs_pack_lsave(c
, buf
+ offs
, c
->lsave
);
494 dbg_chk_lpt_sz(c
, 1, c
->lsave_sz
);
497 /* Make sure to place LPT's own lprops table */
499 if (offs
+ c
->ltab_sz
> c
->leb_size
) {
501 alen
= ALIGN(wlen
, c
->min_io_size
);
502 memset(buf
+ offs
, 0xff, alen
- wlen
);
503 err
= ubifs_leb_write(c
, lnum
, buf
+ from
, from
, alen
,
507 dbg_chk_lpt_sz(c
, 2, alen
- wlen
);
508 err
= realloc_lpt_leb(c
, &lnum
);
512 ubifs_assert(lnum
>= c
->lpt_first
&&
513 lnum
<= c
->lpt_last
);
514 err
= ubifs_leb_unmap(c
, lnum
);
519 ubifs_pack_ltab(c
, buf
+ offs
, c
->ltab_cmt
);
521 dbg_chk_lpt_sz(c
, 1, c
->ltab_sz
);
524 /* Write remaining data in buffer */
526 alen
= ALIGN(wlen
, c
->min_io_size
);
527 memset(buf
+ offs
, 0xff, alen
- wlen
);
528 err
= ubifs_leb_write(c
, lnum
, buf
+ from
, from
, alen
, UBI_SHORTTERM
);
532 dbg_chk_lpt_sz(c
, 4, alen
- wlen
);
533 err
= dbg_chk_lpt_sz(c
, 3, ALIGN(offs
, c
->min_io_size
));
537 c
->nhead_lnum
= lnum
;
538 c
->nhead_offs
= ALIGN(offs
, c
->min_io_size
);
540 dbg_lp("LPT root is at %d:%d", c
->lpt_lnum
, c
->lpt_offs
);
541 dbg_lp("LPT head is at %d:%d", c
->nhead_lnum
, c
->nhead_offs
);
542 dbg_lp("LPT ltab is at %d:%d", c
->ltab_lnum
, c
->ltab_offs
);
544 dbg_lp("LPT lsave is at %d:%d", c
->lsave_lnum
, c
->lsave_offs
);
549 ubifs_err("LPT out of space mismatch");
550 dbg_err("LPT out of space mismatch at LEB %d:%d needing %d, done_ltab "
551 "%d, done_lsave %d", lnum
, offs
, len
, done_ltab
, done_lsave
);
552 dbg_dump_lpt_info(c
);
553 dbg_dump_lpt_lebs(c
);
559 * next_pnode - find next pnode.
560 * @c: UBIFS file-system description object
563 * This function returns the next pnode or %NULL if there are no more pnodes.
565 static struct ubifs_pnode
*next_pnode(struct ubifs_info
*c
,
566 struct ubifs_pnode
*pnode
)
568 struct ubifs_nnode
*nnode
;
571 /* Try to go right */
572 nnode
= pnode
->parent
;
573 iip
= pnode
->iip
+ 1;
574 if (iip
< UBIFS_LPT_FANOUT
) {
575 /* We assume here that LEB zero is never an LPT LEB */
576 if (nnode
->nbranch
[iip
].lnum
)
577 return ubifs_get_pnode(c
, nnode
, iip
);
580 /* Go up while can't go right */
582 iip
= nnode
->iip
+ 1;
583 nnode
= nnode
->parent
;
586 /* We assume here that LEB zero is never an LPT LEB */
587 } while (iip
>= UBIFS_LPT_FANOUT
|| !nnode
->nbranch
[iip
].lnum
);
590 nnode
= ubifs_get_nnode(c
, nnode
, iip
);
592 return (void *)nnode
;
594 /* Go down to level 1 */
595 while (nnode
->level
> 1) {
596 nnode
= ubifs_get_nnode(c
, nnode
, 0);
598 return (void *)nnode
;
601 return ubifs_get_pnode(c
, nnode
, 0);
605 * pnode_lookup - lookup a pnode in the LPT.
606 * @c: UBIFS file-system description object
607 * @i: pnode number (0 to main_lebs - 1)
609 * This function returns a pointer to the pnode on success or a negative
610 * error code on failure.
612 static struct ubifs_pnode
*pnode_lookup(struct ubifs_info
*c
, int i
)
614 int err
, h
, iip
, shft
;
615 struct ubifs_nnode
*nnode
;
618 err
= ubifs_read_nnode(c
, NULL
, 0);
622 i
<<= UBIFS_LPT_FANOUT_SHIFT
;
624 shft
= c
->lpt_hght
* UBIFS_LPT_FANOUT_SHIFT
;
625 for (h
= 1; h
< c
->lpt_hght
; h
++) {
626 iip
= ((i
>> shft
) & (UBIFS_LPT_FANOUT
- 1));
627 shft
-= UBIFS_LPT_FANOUT_SHIFT
;
628 nnode
= ubifs_get_nnode(c
, nnode
, iip
);
630 return ERR_PTR(PTR_ERR(nnode
));
632 iip
= ((i
>> shft
) & (UBIFS_LPT_FANOUT
- 1));
633 return ubifs_get_pnode(c
, nnode
, iip
);
637 * add_pnode_dirt - add dirty space to LPT LEB properties.
638 * @c: UBIFS file-system description object
639 * @pnode: pnode for which to add dirt
641 static void add_pnode_dirt(struct ubifs_info
*c
, struct ubifs_pnode
*pnode
)
643 ubifs_add_lpt_dirt(c
, pnode
->parent
->nbranch
[pnode
->iip
].lnum
,
648 * do_make_pnode_dirty - mark a pnode dirty.
649 * @c: UBIFS file-system description object
650 * @pnode: pnode to mark dirty
652 static void do_make_pnode_dirty(struct ubifs_info
*c
, struct ubifs_pnode
*pnode
)
654 /* Assumes cnext list is empty i.e. not called during commit */
655 if (!test_and_set_bit(DIRTY_CNODE
, &pnode
->flags
)) {
656 struct ubifs_nnode
*nnode
;
658 c
->dirty_pn_cnt
+= 1;
659 add_pnode_dirt(c
, pnode
);
660 /* Mark parent and ancestors dirty too */
661 nnode
= pnode
->parent
;
663 if (!test_and_set_bit(DIRTY_CNODE
, &nnode
->flags
)) {
664 c
->dirty_nn_cnt
+= 1;
665 ubifs_add_nnode_dirt(c
, nnode
);
666 nnode
= nnode
->parent
;
674 * make_tree_dirty - mark the entire LEB properties tree dirty.
675 * @c: UBIFS file-system description object
677 * This function is used by the "small" LPT model to cause the entire LEB
678 * properties tree to be written. The "small" LPT model does not use LPT
679 * garbage collection because it is more efficient to write the entire tree
680 * (because it is small).
682 * This function returns %0 on success and a negative error code on failure.
684 static int make_tree_dirty(struct ubifs_info
*c
)
686 struct ubifs_pnode
*pnode
;
688 pnode
= pnode_lookup(c
, 0);
690 do_make_pnode_dirty(c
, pnode
);
691 pnode
= next_pnode(c
, pnode
);
693 return PTR_ERR(pnode
);
699 * need_write_all - determine if the LPT area is running out of free space.
700 * @c: UBIFS file-system description object
702 * This function returns %1 if the LPT area is running out of free space and %0
705 static int need_write_all(struct ubifs_info
*c
)
710 for (i
= 0; i
< c
->lpt_lebs
; i
++) {
711 if (i
+ c
->lpt_first
== c
->nhead_lnum
)
712 free
+= c
->leb_size
- c
->nhead_offs
;
713 else if (c
->ltab
[i
].free
== c
->leb_size
)
715 else if (c
->ltab
[i
].free
+ c
->ltab
[i
].dirty
== c
->leb_size
)
718 /* Less than twice the size left */
719 if (free
<= c
->lpt_sz
* 2)
725 * lpt_tgc_start - start trivial garbage collection of LPT LEBs.
726 * @c: UBIFS file-system description object
728 * LPT trivial garbage collection is where a LPT LEB contains only dirty and
729 * free space and so may be reused as soon as the next commit is completed.
730 * This function is called during start commit to mark LPT LEBs for trivial GC.
732 static void lpt_tgc_start(struct ubifs_info
*c
)
736 for (i
= 0; i
< c
->lpt_lebs
; i
++) {
737 if (i
+ c
->lpt_first
== c
->nhead_lnum
)
739 if (c
->ltab
[i
].dirty
> 0 &&
740 c
->ltab
[i
].free
+ c
->ltab
[i
].dirty
== c
->leb_size
) {
742 c
->ltab
[i
].free
= c
->leb_size
;
743 c
->ltab
[i
].dirty
= 0;
744 dbg_lp("LEB %d", i
+ c
->lpt_first
);
750 * lpt_tgc_end - end trivial garbage collection of LPT LEBs.
751 * @c: UBIFS file-system description object
753 * LPT trivial garbage collection is where a LPT LEB contains only dirty and
754 * free space and so may be reused as soon as the next commit is completed.
755 * This function is called after the commit is completed (master node has been
756 * written) and un-maps LPT LEBs that were marked for trivial GC.
758 static int lpt_tgc_end(struct ubifs_info
*c
)
762 for (i
= 0; i
< c
->lpt_lebs
; i
++)
763 if (c
->ltab
[i
].tgc
) {
764 err
= ubifs_leb_unmap(c
, i
+ c
->lpt_first
);
768 dbg_lp("LEB %d", i
+ c
->lpt_first
);
774 * populate_lsave - fill the lsave array with important LEB numbers.
775 * @c: the UBIFS file-system description object
777 * This function is only called for the "big" model. It records a small number
778 * of LEB numbers of important LEBs. Important LEBs are ones that are (from
779 * most important to least important): empty, freeable, freeable index, dirty
780 * index, dirty or free. Upon mount, we read this list of LEB numbers and bring
781 * their pnodes into memory. That will stop us from having to scan the LPT
782 * straight away. For the "small" model we assume that scanning the LPT is no
785 static void populate_lsave(struct ubifs_info
*c
)
787 struct ubifs_lprops
*lprops
;
788 struct ubifs_lpt_heap
*heap
;
791 ubifs_assert(c
->big_lpt
);
792 if (!(c
->lpt_drty_flgs
& LSAVE_DIRTY
)) {
793 c
->lpt_drty_flgs
|= LSAVE_DIRTY
;
794 ubifs_add_lpt_dirt(c
, c
->lsave_lnum
, c
->lsave_sz
);
796 list_for_each_entry(lprops
, &c
->empty_list
, list
) {
797 c
->lsave
[cnt
++] = lprops
->lnum
;
798 if (cnt
>= c
->lsave_cnt
)
801 list_for_each_entry(lprops
, &c
->freeable_list
, list
) {
802 c
->lsave
[cnt
++] = lprops
->lnum
;
803 if (cnt
>= c
->lsave_cnt
)
806 list_for_each_entry(lprops
, &c
->frdi_idx_list
, list
) {
807 c
->lsave
[cnt
++] = lprops
->lnum
;
808 if (cnt
>= c
->lsave_cnt
)
811 heap
= &c
->lpt_heap
[LPROPS_DIRTY_IDX
- 1];
812 for (i
= 0; i
< heap
->cnt
; i
++) {
813 c
->lsave
[cnt
++] = heap
->arr
[i
]->lnum
;
814 if (cnt
>= c
->lsave_cnt
)
817 heap
= &c
->lpt_heap
[LPROPS_DIRTY
- 1];
818 for (i
= 0; i
< heap
->cnt
; i
++) {
819 c
->lsave
[cnt
++] = heap
->arr
[i
]->lnum
;
820 if (cnt
>= c
->lsave_cnt
)
823 heap
= &c
->lpt_heap
[LPROPS_FREE
- 1];
824 for (i
= 0; i
< heap
->cnt
; i
++) {
825 c
->lsave
[cnt
++] = heap
->arr
[i
]->lnum
;
826 if (cnt
>= c
->lsave_cnt
)
829 /* Fill it up completely */
830 while (cnt
< c
->lsave_cnt
)
831 c
->lsave
[cnt
++] = c
->main_first
;
835 * nnode_lookup - lookup a nnode in the LPT.
836 * @c: UBIFS file-system description object
839 * This function returns a pointer to the nnode on success or a negative
840 * error code on failure.
842 static struct ubifs_nnode
*nnode_lookup(struct ubifs_info
*c
, int i
)
845 struct ubifs_nnode
*nnode
;
848 err
= ubifs_read_nnode(c
, NULL
, 0);
854 iip
= i
& (UBIFS_LPT_FANOUT
- 1);
855 i
>>= UBIFS_LPT_FANOUT_SHIFT
;
858 nnode
= ubifs_get_nnode(c
, nnode
, iip
);
866 * make_nnode_dirty - find a nnode and, if found, make it dirty.
867 * @c: UBIFS file-system description object
868 * @node_num: nnode number of nnode to make dirty
869 * @lnum: LEB number where nnode was written
870 * @offs: offset where nnode was written
872 * This function is used by LPT garbage collection. LPT garbage collection is
873 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
874 * simply involves marking all the nodes in the LEB being garbage-collected as
875 * dirty. The dirty nodes are written next commit, after which the LEB is free
878 * This function returns %0 on success and a negative error code on failure.
880 static int make_nnode_dirty(struct ubifs_info
*c
, int node_num
, int lnum
,
883 struct ubifs_nnode
*nnode
;
885 nnode
= nnode_lookup(c
, node_num
);
887 return PTR_ERR(nnode
);
889 struct ubifs_nbranch
*branch
;
891 branch
= &nnode
->parent
->nbranch
[nnode
->iip
];
892 if (branch
->lnum
!= lnum
|| branch
->offs
!= offs
)
893 return 0; /* nnode is obsolete */
894 } else if (c
->lpt_lnum
!= lnum
|| c
->lpt_offs
!= offs
)
895 return 0; /* nnode is obsolete */
896 /* Assumes cnext list is empty i.e. not called during commit */
897 if (!test_and_set_bit(DIRTY_CNODE
, &nnode
->flags
)) {
898 c
->dirty_nn_cnt
+= 1;
899 ubifs_add_nnode_dirt(c
, nnode
);
900 /* Mark parent and ancestors dirty too */
901 nnode
= nnode
->parent
;
903 if (!test_and_set_bit(DIRTY_CNODE
, &nnode
->flags
)) {
904 c
->dirty_nn_cnt
+= 1;
905 ubifs_add_nnode_dirt(c
, nnode
);
906 nnode
= nnode
->parent
;
915 * make_pnode_dirty - find a pnode and, if found, make it dirty.
916 * @c: UBIFS file-system description object
917 * @node_num: pnode number of pnode to make dirty
918 * @lnum: LEB number where pnode was written
919 * @offs: offset where pnode was written
921 * This function is used by LPT garbage collection. LPT garbage collection is
922 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
923 * simply involves marking all the nodes in the LEB being garbage-collected as
924 * dirty. The dirty nodes are written next commit, after which the LEB is free
927 * This function returns %0 on success and a negative error code on failure.
929 static int make_pnode_dirty(struct ubifs_info
*c
, int node_num
, int lnum
,
932 struct ubifs_pnode
*pnode
;
933 struct ubifs_nbranch
*branch
;
935 pnode
= pnode_lookup(c
, node_num
);
937 return PTR_ERR(pnode
);
938 branch
= &pnode
->parent
->nbranch
[pnode
->iip
];
939 if (branch
->lnum
!= lnum
|| branch
->offs
!= offs
)
941 do_make_pnode_dirty(c
, pnode
);
946 * make_ltab_dirty - make ltab node dirty.
947 * @c: UBIFS file-system description object
948 * @lnum: LEB number where ltab was written
949 * @offs: offset where ltab was written
951 * This function is used by LPT garbage collection. LPT garbage collection is
952 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
953 * simply involves marking all the nodes in the LEB being garbage-collected as
954 * dirty. The dirty nodes are written next commit, after which the LEB is free
957 * This function returns %0 on success and a negative error code on failure.
959 static int make_ltab_dirty(struct ubifs_info
*c
, int lnum
, int offs
)
961 if (lnum
!= c
->ltab_lnum
|| offs
!= c
->ltab_offs
)
962 return 0; /* This ltab node is obsolete */
963 if (!(c
->lpt_drty_flgs
& LTAB_DIRTY
)) {
964 c
->lpt_drty_flgs
|= LTAB_DIRTY
;
965 ubifs_add_lpt_dirt(c
, c
->ltab_lnum
, c
->ltab_sz
);
971 * make_lsave_dirty - make lsave node dirty.
972 * @c: UBIFS file-system description object
973 * @lnum: LEB number where lsave was written
974 * @offs: offset where lsave was written
976 * This function is used by LPT garbage collection. LPT garbage collection is
977 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
978 * simply involves marking all the nodes in the LEB being garbage-collected as
979 * dirty. The dirty nodes are written next commit, after which the LEB is free
982 * This function returns %0 on success and a negative error code on failure.
984 static int make_lsave_dirty(struct ubifs_info
*c
, int lnum
, int offs
)
986 if (lnum
!= c
->lsave_lnum
|| offs
!= c
->lsave_offs
)
987 return 0; /* This lsave node is obsolete */
988 if (!(c
->lpt_drty_flgs
& LSAVE_DIRTY
)) {
989 c
->lpt_drty_flgs
|= LSAVE_DIRTY
;
990 ubifs_add_lpt_dirt(c
, c
->lsave_lnum
, c
->lsave_sz
);
996 * make_node_dirty - make node dirty.
997 * @c: UBIFS file-system description object
998 * @node_type: LPT node type
999 * @node_num: node number
1000 * @lnum: LEB number where node was written
1001 * @offs: offset where node was written
1003 * This function is used by LPT garbage collection. LPT garbage collection is
1004 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
1005 * simply involves marking all the nodes in the LEB being garbage-collected as
1006 * dirty. The dirty nodes are written next commit, after which the LEB is free
1009 * This function returns %0 on success and a negative error code on failure.
1011 static int make_node_dirty(struct ubifs_info
*c
, int node_type
, int node_num
,
1014 switch (node_type
) {
1015 case UBIFS_LPT_NNODE
:
1016 return make_nnode_dirty(c
, node_num
, lnum
, offs
);
1017 case UBIFS_LPT_PNODE
:
1018 return make_pnode_dirty(c
, node_num
, lnum
, offs
);
1019 case UBIFS_LPT_LTAB
:
1020 return make_ltab_dirty(c
, lnum
, offs
);
1021 case UBIFS_LPT_LSAVE
:
1022 return make_lsave_dirty(c
, lnum
, offs
);
1028 * get_lpt_node_len - return the length of a node based on its type.
1029 * @c: UBIFS file-system description object
1030 * @node_type: LPT node type
1032 static int get_lpt_node_len(const struct ubifs_info
*c
, int node_type
)
1034 switch (node_type
) {
1035 case UBIFS_LPT_NNODE
:
1037 case UBIFS_LPT_PNODE
:
1039 case UBIFS_LPT_LTAB
:
1041 case UBIFS_LPT_LSAVE
:
1048 * get_pad_len - return the length of padding in a buffer.
1049 * @c: UBIFS file-system description object
1051 * @len: length of buffer
1053 static int get_pad_len(const struct ubifs_info
*c
, uint8_t *buf
, int len
)
1057 if (c
->min_io_size
== 1)
1059 offs
= c
->leb_size
- len
;
1060 pad_len
= ALIGN(offs
, c
->min_io_size
) - offs
;
1065 * get_lpt_node_type - return type (and node number) of a node in a buffer.
1066 * @c: UBIFS file-system description object
1068 * @node_num: node number is returned here
1070 static int get_lpt_node_type(const struct ubifs_info
*c
, uint8_t *buf
,
1073 uint8_t *addr
= buf
+ UBIFS_LPT_CRC_BYTES
;
1074 int pos
= 0, node_type
;
1076 node_type
= ubifs_unpack_bits(&addr
, &pos
, UBIFS_LPT_TYPE_BITS
);
1077 *node_num
= ubifs_unpack_bits(&addr
, &pos
, c
->pcnt_bits
);
1082 * is_a_node - determine if a buffer contains a node.
1083 * @c: UBIFS file-system description object
1085 * @len: length of buffer
1087 * This function returns %1 if the buffer contains a node or %0 if it does not.
1089 static int is_a_node(const struct ubifs_info
*c
, uint8_t *buf
, int len
)
1091 uint8_t *addr
= buf
+ UBIFS_LPT_CRC_BYTES
;
1092 int pos
= 0, node_type
, node_len
;
1093 uint16_t crc
, calc_crc
;
1095 if (len
< UBIFS_LPT_CRC_BYTES
+ (UBIFS_LPT_TYPE_BITS
+ 7) / 8)
1097 node_type
= ubifs_unpack_bits(&addr
, &pos
, UBIFS_LPT_TYPE_BITS
);
1098 if (node_type
== UBIFS_LPT_NOT_A_NODE
)
1100 node_len
= get_lpt_node_len(c
, node_type
);
1101 if (!node_len
|| node_len
> len
)
1105 crc
= ubifs_unpack_bits(&addr
, &pos
, UBIFS_LPT_CRC_BITS
);
1106 calc_crc
= crc16(-1, buf
+ UBIFS_LPT_CRC_BYTES
,
1107 node_len
- UBIFS_LPT_CRC_BYTES
);
1108 if (crc
!= calc_crc
)
1114 * lpt_gc_lnum - garbage collect a LPT LEB.
1115 * @c: UBIFS file-system description object
1116 * @lnum: LEB number to garbage collect
1118 * LPT garbage collection is used only for the "big" LPT model
1119 * (c->big_lpt == 1). Garbage collection simply involves marking all the nodes
1120 * in the LEB being garbage-collected as dirty. The dirty nodes are written
1121 * next commit, after which the LEB is free to be reused.
1123 * This function returns %0 on success and a negative error code on failure.
1125 static int lpt_gc_lnum(struct ubifs_info
*c
, int lnum
)
1127 int err
, len
= c
->leb_size
, node_type
, node_num
, node_len
, offs
;
1128 void *buf
= c
->lpt_buf
;
1130 dbg_lp("LEB %d", lnum
);
1131 err
= ubi_read(c
->ubi
, lnum
, buf
, 0, c
->leb_size
);
1133 ubifs_err("cannot read LEB %d, error %d", lnum
, err
);
1137 if (!is_a_node(c
, buf
, len
)) {
1140 pad_len
= get_pad_len(c
, buf
, len
);
1148 node_type
= get_lpt_node_type(c
, buf
, &node_num
);
1149 node_len
= get_lpt_node_len(c
, node_type
);
1150 offs
= c
->leb_size
- len
;
1151 ubifs_assert(node_len
!= 0);
1152 mutex_lock(&c
->lp_mutex
);
1153 err
= make_node_dirty(c
, node_type
, node_num
, lnum
, offs
);
1154 mutex_unlock(&c
->lp_mutex
);
1164 * lpt_gc - LPT garbage collection.
1165 * @c: UBIFS file-system description object
1167 * Select a LPT LEB for LPT garbage collection and call 'lpt_gc_lnum()'.
1168 * Returns %0 on success and a negative error code on failure.
1170 static int lpt_gc(struct ubifs_info
*c
)
1172 int i
, lnum
= -1, dirty
= 0;
1174 mutex_lock(&c
->lp_mutex
);
1175 for (i
= 0; i
< c
->lpt_lebs
; i
++) {
1176 ubifs_assert(!c
->ltab
[i
].tgc
);
1177 if (i
+ c
->lpt_first
== c
->nhead_lnum
||
1178 c
->ltab
[i
].free
+ c
->ltab
[i
].dirty
== c
->leb_size
)
1180 if (c
->ltab
[i
].dirty
> dirty
) {
1181 dirty
= c
->ltab
[i
].dirty
;
1182 lnum
= i
+ c
->lpt_first
;
1185 mutex_unlock(&c
->lp_mutex
);
1188 return lpt_gc_lnum(c
, lnum
);
1192 * ubifs_lpt_start_commit - UBIFS commit starts.
1193 * @c: the UBIFS file-system description object
1195 * This function has to be called when UBIFS starts the commit operation.
1196 * This function "freezes" all currently dirty LEB properties and does not
1197 * change them anymore. Further changes are saved and tracked separately
1198 * because they are not part of this commit. This function returns zero in case
1199 * of success and a negative error code in case of failure.
1201 int ubifs_lpt_start_commit(struct ubifs_info
*c
)
1207 mutex_lock(&c
->lp_mutex
);
1208 err
= dbg_chk_lpt_free_spc(c
);
1211 err
= dbg_check_ltab(c
);
1215 if (c
->check_lpt_free
) {
1217 * We ensure there is enough free space in
1218 * ubifs_lpt_post_commit() by marking nodes dirty. That
1219 * information is lost when we unmount, so we also need
1220 * to check free space once after mounting also.
1222 c
->check_lpt_free
= 0;
1223 while (need_write_all(c
)) {
1224 mutex_unlock(&c
->lp_mutex
);
1228 mutex_lock(&c
->lp_mutex
);
1234 if (!c
->dirty_pn_cnt
) {
1235 dbg_cmt("no cnodes to commit");
1240 if (!c
->big_lpt
&& need_write_all(c
)) {
1241 /* If needed, write everything */
1242 err
= make_tree_dirty(c
);
1251 cnt
= get_cnodes_to_commit(c
);
1252 ubifs_assert(cnt
!= 0);
1254 err
= layout_cnodes(c
);
1258 /* Copy the LPT's own lprops for end commit to write */
1259 memcpy(c
->ltab_cmt
, c
->ltab
,
1260 sizeof(struct ubifs_lpt_lprops
) * c
->lpt_lebs
);
1261 c
->lpt_drty_flgs
&= ~(LTAB_DIRTY
| LSAVE_DIRTY
);
1264 mutex_unlock(&c
->lp_mutex
);
1269 * free_obsolete_cnodes - free obsolete cnodes for commit end.
1270 * @c: UBIFS file-system description object
1272 static void free_obsolete_cnodes(struct ubifs_info
*c
)
1274 struct ubifs_cnode
*cnode
, *cnext
;
1276 cnext
= c
->lpt_cnext
;
1281 cnext
= cnode
->cnext
;
1282 if (test_bit(OBSOLETE_CNODE
, &cnode
->flags
))
1285 cnode
->cnext
= NULL
;
1286 } while (cnext
!= c
->lpt_cnext
);
1287 c
->lpt_cnext
= NULL
;
1291 * ubifs_lpt_end_commit - finish the commit operation.
1292 * @c: the UBIFS file-system description object
1294 * This function has to be called when the commit operation finishes. It
1295 * flushes the changes which were "frozen" by 'ubifs_lprops_start_commit()' to
1296 * the media. Returns zero in case of success and a negative error code in case
1299 int ubifs_lpt_end_commit(struct ubifs_info
*c
)
1308 err
= write_cnodes(c
);
1312 mutex_lock(&c
->lp_mutex
);
1313 free_obsolete_cnodes(c
);
1314 mutex_unlock(&c
->lp_mutex
);
1320 * ubifs_lpt_post_commit - post commit LPT trivial GC and LPT GC.
1321 * @c: UBIFS file-system description object
1323 * LPT trivial GC is completed after a commit. Also LPT GC is done after a
1324 * commit for the "big" LPT model.
1326 int ubifs_lpt_post_commit(struct ubifs_info
*c
)
1330 mutex_lock(&c
->lp_mutex
);
1331 err
= lpt_tgc_end(c
);
1335 while (need_write_all(c
)) {
1336 mutex_unlock(&c
->lp_mutex
);
1340 mutex_lock(&c
->lp_mutex
);
1343 mutex_unlock(&c
->lp_mutex
);
1348 * first_nnode - find the first nnode in memory.
1349 * @c: UBIFS file-system description object
1350 * @hght: height of tree where nnode found is returned here
1352 * This function returns a pointer to the nnode found or %NULL if no nnode is
1353 * found. This function is a helper to 'ubifs_lpt_free()'.
1355 static struct ubifs_nnode
*first_nnode(struct ubifs_info
*c
, int *hght
)
1357 struct ubifs_nnode
*nnode
;
1364 for (h
= 1; h
< c
->lpt_hght
; h
++) {
1366 for (i
= 0; i
< UBIFS_LPT_FANOUT
; i
++) {
1367 if (nnode
->nbranch
[i
].nnode
) {
1369 nnode
= nnode
->nbranch
[i
].nnode
;
1381 * next_nnode - find the next nnode in memory.
1382 * @c: UBIFS file-system description object
1383 * @nnode: nnode from which to start.
1384 * @hght: height of tree where nnode is, is passed and returned here
1386 * This function returns a pointer to the nnode found or %NULL if no nnode is
1387 * found. This function is a helper to 'ubifs_lpt_free()'.
1389 static struct ubifs_nnode
*next_nnode(struct ubifs_info
*c
,
1390 struct ubifs_nnode
*nnode
, int *hght
)
1392 struct ubifs_nnode
*parent
;
1393 int iip
, h
, i
, found
;
1395 parent
= nnode
->parent
;
1398 if (nnode
->iip
== UBIFS_LPT_FANOUT
- 1) {
1402 for (iip
= nnode
->iip
+ 1; iip
< UBIFS_LPT_FANOUT
; iip
++) {
1403 nnode
= parent
->nbranch
[iip
].nnode
;
1411 for (h
= *hght
+ 1; h
< c
->lpt_hght
; h
++) {
1413 for (i
= 0; i
< UBIFS_LPT_FANOUT
; i
++) {
1414 if (nnode
->nbranch
[i
].nnode
) {
1416 nnode
= nnode
->nbranch
[i
].nnode
;
1428 * ubifs_lpt_free - free resources owned by the LPT.
1429 * @c: UBIFS file-system description object
1430 * @wr_only: free only resources used for writing
1432 void ubifs_lpt_free(struct ubifs_info
*c
, int wr_only
)
1434 struct ubifs_nnode
*nnode
;
1437 /* Free write-only things first */
1439 free_obsolete_cnodes(c
); /* Leftover from a failed commit */
1451 /* Now free the rest */
1453 nnode
= first_nnode(c
, &hght
);
1455 for (i
= 0; i
< UBIFS_LPT_FANOUT
; i
++)
1456 kfree(nnode
->nbranch
[i
].nnode
);
1457 nnode
= next_nnode(c
, nnode
, &hght
);
1459 for (i
= 0; i
< LPROPS_HEAP_CNT
; i
++)
1460 kfree(c
->lpt_heap
[i
].arr
);
1461 kfree(c
->dirty_idx
.arr
);
1464 kfree(c
->lpt_nod_buf
);
1467 #ifdef CONFIG_UBIFS_FS_DEBUG
1470 * dbg_is_all_ff - determine if a buffer contains only 0xFF bytes.
1472 * @len: buffer length
1474 static int dbg_is_all_ff(uint8_t *buf
, int len
)
1478 for (i
= 0; i
< len
; i
++)
1485 * dbg_is_nnode_dirty - determine if a nnode is dirty.
1486 * @c: the UBIFS file-system description object
1487 * @lnum: LEB number where nnode was written
1488 * @offs: offset where nnode was written
1490 static int dbg_is_nnode_dirty(struct ubifs_info
*c
, int lnum
, int offs
)
1492 struct ubifs_nnode
*nnode
;
1495 /* Entire tree is in memory so first_nnode / next_nnode are OK */
1496 nnode
= first_nnode(c
, &hght
);
1497 for (; nnode
; nnode
= next_nnode(c
, nnode
, &hght
)) {
1498 struct ubifs_nbranch
*branch
;
1501 if (nnode
->parent
) {
1502 branch
= &nnode
->parent
->nbranch
[nnode
->iip
];
1503 if (branch
->lnum
!= lnum
|| branch
->offs
!= offs
)
1505 if (test_bit(DIRTY_CNODE
, &nnode
->flags
))
1509 if (c
->lpt_lnum
!= lnum
|| c
->lpt_offs
!= offs
)
1511 if (test_bit(DIRTY_CNODE
, &nnode
->flags
))
1520 * dbg_is_pnode_dirty - determine if a pnode is dirty.
1521 * @c: the UBIFS file-system description object
1522 * @lnum: LEB number where pnode was written
1523 * @offs: offset where pnode was written
1525 static int dbg_is_pnode_dirty(struct ubifs_info
*c
, int lnum
, int offs
)
1529 cnt
= DIV_ROUND_UP(c
->main_lebs
, UBIFS_LPT_FANOUT
);
1530 for (i
= 0; i
< cnt
; i
++) {
1531 struct ubifs_pnode
*pnode
;
1532 struct ubifs_nbranch
*branch
;
1535 pnode
= pnode_lookup(c
, i
);
1537 return PTR_ERR(pnode
);
1538 branch
= &pnode
->parent
->nbranch
[pnode
->iip
];
1539 if (branch
->lnum
!= lnum
|| branch
->offs
!= offs
)
1541 if (test_bit(DIRTY_CNODE
, &pnode
->flags
))
1549 * dbg_is_ltab_dirty - determine if a ltab node is dirty.
1550 * @c: the UBIFS file-system description object
1551 * @lnum: LEB number where ltab node was written
1552 * @offs: offset where ltab node was written
1554 static int dbg_is_ltab_dirty(struct ubifs_info
*c
, int lnum
, int offs
)
1556 if (lnum
!= c
->ltab_lnum
|| offs
!= c
->ltab_offs
)
1558 return (c
->lpt_drty_flgs
& LTAB_DIRTY
) != 0;
1562 * dbg_is_lsave_dirty - determine if a lsave node is dirty.
1563 * @c: the UBIFS file-system description object
1564 * @lnum: LEB number where lsave node was written
1565 * @offs: offset where lsave node was written
1567 static int dbg_is_lsave_dirty(struct ubifs_info
*c
, int lnum
, int offs
)
1569 if (lnum
!= c
->lsave_lnum
|| offs
!= c
->lsave_offs
)
1571 return (c
->lpt_drty_flgs
& LSAVE_DIRTY
) != 0;
1575 * dbg_is_node_dirty - determine if a node is dirty.
1576 * @c: the UBIFS file-system description object
1577 * @node_type: node type
1578 * @lnum: LEB number where node was written
1579 * @offs: offset where node was written
1581 static int dbg_is_node_dirty(struct ubifs_info
*c
, int node_type
, int lnum
,
1584 switch (node_type
) {
1585 case UBIFS_LPT_NNODE
:
1586 return dbg_is_nnode_dirty(c
, lnum
, offs
);
1587 case UBIFS_LPT_PNODE
:
1588 return dbg_is_pnode_dirty(c
, lnum
, offs
);
1589 case UBIFS_LPT_LTAB
:
1590 return dbg_is_ltab_dirty(c
, lnum
, offs
);
1591 case UBIFS_LPT_LSAVE
:
1592 return dbg_is_lsave_dirty(c
, lnum
, offs
);
1598 * dbg_check_ltab_lnum - check the ltab for a LPT LEB number.
1599 * @c: the UBIFS file-system description object
1600 * @lnum: LEB number where node was written
1601 * @offs: offset where node was written
1603 * This function returns %0 on success and a negative error code on failure.
1605 static int dbg_check_ltab_lnum(struct ubifs_info
*c
, int lnum
)
1607 int err
, len
= c
->leb_size
, dirty
= 0, node_type
, node_num
, node_len
;
1609 void *buf
= c
->dbg
->buf
;
1611 if (!(ubifs_chk_flags
& UBIFS_CHK_LPROPS
))
1614 dbg_lp("LEB %d", lnum
);
1615 err
= ubi_read(c
->ubi
, lnum
, buf
, 0, c
->leb_size
);
1617 dbg_msg("ubi_read failed, LEB %d, error %d", lnum
, err
);
1621 if (!is_a_node(c
, buf
, len
)) {
1624 pad_len
= get_pad_len(c
, buf
, len
);
1631 if (!dbg_is_all_ff(buf
, len
)) {
1632 dbg_msg("invalid empty space in LEB %d at %d",
1633 lnum
, c
->leb_size
- len
);
1636 i
= lnum
- c
->lpt_first
;
1637 if (len
!= c
->ltab
[i
].free
) {
1638 dbg_msg("invalid free space in LEB %d "
1639 "(free %d, expected %d)",
1640 lnum
, len
, c
->ltab
[i
].free
);
1643 if (dirty
!= c
->ltab
[i
].dirty
) {
1644 dbg_msg("invalid dirty space in LEB %d "
1645 "(dirty %d, expected %d)",
1646 lnum
, dirty
, c
->ltab
[i
].dirty
);
1651 node_type
= get_lpt_node_type(c
, buf
, &node_num
);
1652 node_len
= get_lpt_node_len(c
, node_type
);
1653 ret
= dbg_is_node_dirty(c
, node_type
, lnum
, c
->leb_size
- len
);
1662 * dbg_check_ltab - check the free and dirty space in the ltab.
1663 * @c: the UBIFS file-system description object
1665 * This function returns %0 on success and a negative error code on failure.
1667 int dbg_check_ltab(struct ubifs_info
*c
)
1669 int lnum
, err
, i
, cnt
;
1671 if (!(ubifs_chk_flags
& UBIFS_CHK_LPROPS
))
1674 /* Bring the entire tree into memory */
1675 cnt
= DIV_ROUND_UP(c
->main_lebs
, UBIFS_LPT_FANOUT
);
1676 for (i
= 0; i
< cnt
; i
++) {
1677 struct ubifs_pnode
*pnode
;
1679 pnode
= pnode_lookup(c
, i
);
1681 return PTR_ERR(pnode
);
1686 err
= dbg_check_lpt_nodes(c
, (struct ubifs_cnode
*)c
->nroot
, 0, 0);
1690 /* Check each LEB */
1691 for (lnum
= c
->lpt_first
; lnum
<= c
->lpt_last
; lnum
++) {
1692 err
= dbg_check_ltab_lnum(c
, lnum
);
1694 dbg_err("failed at LEB %d", lnum
);
1699 dbg_lp("succeeded");
1704 * dbg_chk_lpt_free_spc - check LPT free space is enough to write entire LPT.
1705 * @c: the UBIFS file-system description object
1707 * This function returns %0 on success and a negative error code on failure.
1709 int dbg_chk_lpt_free_spc(struct ubifs_info
*c
)
1714 if (!(ubifs_chk_flags
& UBIFS_CHK_LPROPS
))
1717 for (i
= 0; i
< c
->lpt_lebs
; i
++) {
1718 if (c
->ltab
[i
].tgc
|| c
->ltab
[i
].cmt
)
1720 if (i
+ c
->lpt_first
== c
->nhead_lnum
)
1721 free
+= c
->leb_size
- c
->nhead_offs
;
1722 else if (c
->ltab
[i
].free
== c
->leb_size
)
1723 free
+= c
->leb_size
;
1725 if (free
< c
->lpt_sz
) {
1726 dbg_err("LPT space error: free %lld lpt_sz %lld",
1728 dbg_dump_lpt_info(c
);
1729 dbg_dump_lpt_lebs(c
);
1737 * dbg_chk_lpt_sz - check LPT does not write more than LPT size.
1738 * @c: the UBIFS file-system description object
1740 * @len: length written
1742 * This function returns %0 on success and a negative error code on failure.
1744 int dbg_chk_lpt_sz(struct ubifs_info
*c
, int action
, int len
)
1746 struct ubifs_debug_info
*d
= c
->dbg
;
1747 long long chk_lpt_sz
, lpt_sz
;
1750 if (!(ubifs_chk_flags
& UBIFS_CHK_LPROPS
))
1757 d
->chk_lpt_lebs
= 0;
1758 d
->chk_lpt_wastage
= 0;
1759 if (c
->dirty_pn_cnt
> c
->pnode_cnt
) {
1760 dbg_err("dirty pnodes %d exceed max %d",
1761 c
->dirty_pn_cnt
, c
->pnode_cnt
);
1764 if (c
->dirty_nn_cnt
> c
->nnode_cnt
) {
1765 dbg_err("dirty nnodes %d exceed max %d",
1766 c
->dirty_nn_cnt
, c
->nnode_cnt
);
1771 d
->chk_lpt_sz
+= len
;
1774 d
->chk_lpt_sz
+= len
;
1775 d
->chk_lpt_wastage
+= len
;
1776 d
->chk_lpt_lebs
+= 1;
1779 chk_lpt_sz
= c
->leb_size
;
1780 chk_lpt_sz
*= d
->chk_lpt_lebs
;
1781 chk_lpt_sz
+= len
- c
->nhead_offs
;
1782 if (d
->chk_lpt_sz
!= chk_lpt_sz
) {
1783 dbg_err("LPT wrote %lld but space used was %lld",
1784 d
->chk_lpt_sz
, chk_lpt_sz
);
1787 if (d
->chk_lpt_sz
> c
->lpt_sz
) {
1788 dbg_err("LPT wrote %lld but lpt_sz is %lld",
1789 d
->chk_lpt_sz
, c
->lpt_sz
);
1792 if (d
->chk_lpt_sz2
&& d
->chk_lpt_sz
!= d
->chk_lpt_sz2
) {
1793 dbg_err("LPT layout size %lld but wrote %lld",
1794 d
->chk_lpt_sz
, d
->chk_lpt_sz2
);
1797 if (d
->chk_lpt_sz2
&& d
->new_nhead_offs
!= len
) {
1798 dbg_err("LPT new nhead offs: expected %d was %d",
1799 d
->new_nhead_offs
, len
);
1802 lpt_sz
= (long long)c
->pnode_cnt
* c
->pnode_sz
;
1803 lpt_sz
+= (long long)c
->nnode_cnt
* c
->nnode_sz
;
1804 lpt_sz
+= c
->ltab_sz
;
1806 lpt_sz
+= c
->lsave_sz
;
1807 if (d
->chk_lpt_sz
- d
->chk_lpt_wastage
> lpt_sz
) {
1808 dbg_err("LPT chk_lpt_sz %lld + waste %lld exceeds %lld",
1809 d
->chk_lpt_sz
, d
->chk_lpt_wastage
, lpt_sz
);
1813 dbg_dump_lpt_info(c
);
1814 dbg_dump_lpt_lebs(c
);
1817 d
->chk_lpt_sz2
= d
->chk_lpt_sz
;
1819 d
->chk_lpt_wastage
= 0;
1820 d
->chk_lpt_lebs
= 0;
1821 d
->new_nhead_offs
= len
;
1824 d
->chk_lpt_sz
+= len
;
1825 d
->chk_lpt_wastage
+= len
;
1833 * dbg_dump_lpt_leb - dump an LPT LEB.
1834 * @c: UBIFS file-system description object
1835 * @lnum: LEB number to dump
1837 * This function dumps an LEB from LPT area. Nodes in this area are very
1838 * different to nodes in the main area (e.g., they do not have common headers,
1839 * they do not have 8-byte alignments, etc), so we have a separate function to
1840 * dump LPT area LEBs. Note, LPT has to be locked by the caller.
1842 static void dump_lpt_leb(const struct ubifs_info
*c
, int lnum
)
1844 int err
, len
= c
->leb_size
, node_type
, node_num
, node_len
, offs
;
1845 void *buf
= c
->dbg
->buf
;
1847 printk(KERN_DEBUG
"(pid %d) start dumping LEB %d\n",
1848 current
->pid
, lnum
);
1849 err
= ubi_read(c
->ubi
, lnum
, buf
, 0, c
->leb_size
);
1851 ubifs_err("cannot read LEB %d, error %d", lnum
, err
);
1855 offs
= c
->leb_size
- len
;
1856 if (!is_a_node(c
, buf
, len
)) {
1859 pad_len
= get_pad_len(c
, buf
, len
);
1861 printk(KERN_DEBUG
"LEB %d:%d, pad %d bytes\n",
1862 lnum
, offs
, pad_len
);
1868 printk(KERN_DEBUG
"LEB %d:%d, free %d bytes\n",
1873 node_type
= get_lpt_node_type(c
, buf
, &node_num
);
1874 switch (node_type
) {
1875 case UBIFS_LPT_PNODE
:
1877 node_len
= c
->pnode_sz
;
1879 printk(KERN_DEBUG
"LEB %d:%d, pnode num %d\n",
1880 lnum
, offs
, node_num
);
1882 printk(KERN_DEBUG
"LEB %d:%d, pnode\n",
1886 case UBIFS_LPT_NNODE
:
1889 struct ubifs_nnode nnode
;
1891 node_len
= c
->nnode_sz
;
1893 printk(KERN_DEBUG
"LEB %d:%d, nnode num %d, ",
1894 lnum
, offs
, node_num
);
1896 printk(KERN_DEBUG
"LEB %d:%d, nnode, ",
1898 err
= ubifs_unpack_nnode(c
, buf
, &nnode
);
1899 for (i
= 0; i
< UBIFS_LPT_FANOUT
; i
++) {
1900 printk("%d:%d", nnode
.nbranch
[i
].lnum
,
1901 nnode
.nbranch
[i
].offs
);
1902 if (i
!= UBIFS_LPT_FANOUT
- 1)
1908 case UBIFS_LPT_LTAB
:
1909 node_len
= c
->ltab_sz
;
1910 printk(KERN_DEBUG
"LEB %d:%d, ltab\n",
1913 case UBIFS_LPT_LSAVE
:
1914 node_len
= c
->lsave_sz
;
1915 printk(KERN_DEBUG
"LEB %d:%d, lsave len\n", lnum
, offs
);
1918 ubifs_err("LPT node type %d not recognized", node_type
);
1926 printk(KERN_DEBUG
"(pid %d) finish dumping LEB %d\n",
1927 current
->pid
, lnum
);
1931 * dbg_dump_lpt_lebs - dump LPT lebs.
1932 * @c: UBIFS file-system description object
1934 * This function dumps all LPT LEBs. The caller has to make sure the LPT is
1937 void dbg_dump_lpt_lebs(const struct ubifs_info
*c
)
1941 printk(KERN_DEBUG
"(pid %d) start dumping all LPT LEBs\n",
1943 for (i
= 0; i
< c
->lpt_lebs
; i
++)
1944 dump_lpt_leb(c
, i
+ c
->lpt_first
);
1945 printk(KERN_DEBUG
"(pid %d) finish dumping all LPT LEBs\n",
1949 #endif /* CONFIG_UBIFS_FS_DEBUG */