2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
24 * This file implements most of the debugging stuff which is compiled in only
25 * when it is enabled. But some debugging check functions are implemented in
26 * corresponding subsystem, just because they are closely related and utilize
27 * various local functions of those subsystems.
30 #define UBIFS_DBG_PRESERVE_UBI
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/debugfs.h>
36 #include <linux/math64.h>
38 #ifdef CONFIG_UBIFS_FS_DEBUG
40 DEFINE_SPINLOCK(dbg_lock
);
42 static char dbg_key_buf0
[128];
43 static char dbg_key_buf1
[128];
45 unsigned int ubifs_msg_flags
= UBIFS_MSG_FLAGS_DEFAULT
;
46 unsigned int ubifs_chk_flags
= UBIFS_CHK_FLAGS_DEFAULT
;
47 unsigned int ubifs_tst_flags
;
49 module_param_named(debug_msgs
, ubifs_msg_flags
, uint
, S_IRUGO
| S_IWUSR
);
50 module_param_named(debug_chks
, ubifs_chk_flags
, uint
, S_IRUGO
| S_IWUSR
);
51 module_param_named(debug_tsts
, ubifs_tst_flags
, uint
, S_IRUGO
| S_IWUSR
);
53 MODULE_PARM_DESC(debug_msgs
, "Debug message type flags");
54 MODULE_PARM_DESC(debug_chks
, "Debug check flags");
55 MODULE_PARM_DESC(debug_tsts
, "Debug special test flags");
57 static const char *get_key_fmt(int fmt
)
60 case UBIFS_SIMPLE_KEY_FMT
:
63 return "unknown/invalid format";
67 static const char *get_key_hash(int hash
)
70 case UBIFS_KEY_HASH_R5
:
72 case UBIFS_KEY_HASH_TEST
:
75 return "unknown/invalid name hash";
79 static const char *get_key_type(int type
)
93 return "unknown/invalid key";
97 static void sprintf_key(const struct ubifs_info
*c
, const union ubifs_key
*key
,
101 int type
= key_type(c
, key
);
103 if (c
->key_fmt
== UBIFS_SIMPLE_KEY_FMT
) {
106 sprintf(p
, "(%lu, %s)", (unsigned long)key_inum(c
, key
),
111 sprintf(p
, "(%lu, %s, %#08x)",
112 (unsigned long)key_inum(c
, key
),
113 get_key_type(type
), key_hash(c
, key
));
116 sprintf(p
, "(%lu, %s, %u)",
117 (unsigned long)key_inum(c
, key
),
118 get_key_type(type
), key_block(c
, key
));
121 sprintf(p
, "(%lu, %s)",
122 (unsigned long)key_inum(c
, key
),
126 sprintf(p
, "(bad key type: %#08x, %#08x)",
127 key
->u32
[0], key
->u32
[1]);
130 sprintf(p
, "bad key format %d", c
->key_fmt
);
133 const char *dbg_key_str0(const struct ubifs_info
*c
, const union ubifs_key
*key
)
135 /* dbg_lock must be held */
136 sprintf_key(c
, key
, dbg_key_buf0
);
140 const char *dbg_key_str1(const struct ubifs_info
*c
, const union ubifs_key
*key
)
142 /* dbg_lock must be held */
143 sprintf_key(c
, key
, dbg_key_buf1
);
147 const char *dbg_ntype(int type
)
151 return "padding node";
153 return "superblock node";
155 return "master node";
157 return "reference node";
160 case UBIFS_DENT_NODE
:
161 return "direntry node";
162 case UBIFS_XENT_NODE
:
163 return "xentry node";
164 case UBIFS_DATA_NODE
:
166 case UBIFS_TRUN_NODE
:
167 return "truncate node";
169 return "indexing node";
171 return "commit start node";
172 case UBIFS_ORPH_NODE
:
173 return "orphan node";
175 return "unknown node";
179 static const char *dbg_gtype(int type
)
182 case UBIFS_NO_NODE_GROUP
:
183 return "no node group";
184 case UBIFS_IN_NODE_GROUP
:
185 return "in node group";
186 case UBIFS_LAST_OF_NODE_GROUP
:
187 return "last of node group";
193 const char *dbg_cstate(int cmt_state
)
197 return "commit resting";
198 case COMMIT_BACKGROUND
:
199 return "background commit requested";
200 case COMMIT_REQUIRED
:
201 return "commit required";
202 case COMMIT_RUNNING_BACKGROUND
:
203 return "BACKGROUND commit running";
204 case COMMIT_RUNNING_REQUIRED
:
205 return "commit running and required";
207 return "broken commit";
209 return "unknown commit state";
213 static void dump_ch(const struct ubifs_ch
*ch
)
215 printk(KERN_DEBUG
"\tmagic %#x\n", le32_to_cpu(ch
->magic
));
216 printk(KERN_DEBUG
"\tcrc %#x\n", le32_to_cpu(ch
->crc
));
217 printk(KERN_DEBUG
"\tnode_type %d (%s)\n", ch
->node_type
,
218 dbg_ntype(ch
->node_type
));
219 printk(KERN_DEBUG
"\tgroup_type %d (%s)\n", ch
->group_type
,
220 dbg_gtype(ch
->group_type
));
221 printk(KERN_DEBUG
"\tsqnum %llu\n",
222 (unsigned long long)le64_to_cpu(ch
->sqnum
));
223 printk(KERN_DEBUG
"\tlen %u\n", le32_to_cpu(ch
->len
));
226 void dbg_dump_inode(const struct ubifs_info
*c
, const struct inode
*inode
)
228 const struct ubifs_inode
*ui
= ubifs_inode(inode
);
230 printk(KERN_DEBUG
"Dump in-memory inode:");
231 printk(KERN_DEBUG
"\tinode %lu\n", inode
->i_ino
);
232 printk(KERN_DEBUG
"\tsize %llu\n",
233 (unsigned long long)i_size_read(inode
));
234 printk(KERN_DEBUG
"\tnlink %u\n", inode
->i_nlink
);
235 printk(KERN_DEBUG
"\tuid %u\n", (unsigned int)inode
->i_uid
);
236 printk(KERN_DEBUG
"\tgid %u\n", (unsigned int)inode
->i_gid
);
237 printk(KERN_DEBUG
"\tatime %u.%u\n",
238 (unsigned int)inode
->i_atime
.tv_sec
,
239 (unsigned int)inode
->i_atime
.tv_nsec
);
240 printk(KERN_DEBUG
"\tmtime %u.%u\n",
241 (unsigned int)inode
->i_mtime
.tv_sec
,
242 (unsigned int)inode
->i_mtime
.tv_nsec
);
243 printk(KERN_DEBUG
"\tctime %u.%u\n",
244 (unsigned int)inode
->i_ctime
.tv_sec
,
245 (unsigned int)inode
->i_ctime
.tv_nsec
);
246 printk(KERN_DEBUG
"\tcreat_sqnum %llu\n", ui
->creat_sqnum
);
247 printk(KERN_DEBUG
"\txattr_size %u\n", ui
->xattr_size
);
248 printk(KERN_DEBUG
"\txattr_cnt %u\n", ui
->xattr_cnt
);
249 printk(KERN_DEBUG
"\txattr_names %u\n", ui
->xattr_names
);
250 printk(KERN_DEBUG
"\tdirty %u\n", ui
->dirty
);
251 printk(KERN_DEBUG
"\txattr %u\n", ui
->xattr
);
252 printk(KERN_DEBUG
"\tbulk_read %u\n", ui
->xattr
);
253 printk(KERN_DEBUG
"\tsynced_i_size %llu\n",
254 (unsigned long long)ui
->synced_i_size
);
255 printk(KERN_DEBUG
"\tui_size %llu\n",
256 (unsigned long long)ui
->ui_size
);
257 printk(KERN_DEBUG
"\tflags %d\n", ui
->flags
);
258 printk(KERN_DEBUG
"\tcompr_type %d\n", ui
->compr_type
);
259 printk(KERN_DEBUG
"\tlast_page_read %lu\n", ui
->last_page_read
);
260 printk(KERN_DEBUG
"\tread_in_a_row %lu\n", ui
->read_in_a_row
);
261 printk(KERN_DEBUG
"\tdata_len %d\n", ui
->data_len
);
264 void dbg_dump_node(const struct ubifs_info
*c
, const void *node
)
268 const struct ubifs_ch
*ch
= node
;
270 if (dbg_failure_mode
)
273 /* If the magic is incorrect, just hexdump the first bytes */
274 if (le32_to_cpu(ch
->magic
) != UBIFS_NODE_MAGIC
) {
275 printk(KERN_DEBUG
"Not a node, first %zu bytes:", UBIFS_CH_SZ
);
276 print_hex_dump(KERN_DEBUG
, "", DUMP_PREFIX_OFFSET
, 32, 1,
277 (void *)node
, UBIFS_CH_SZ
, 1);
281 spin_lock(&dbg_lock
);
284 switch (ch
->node_type
) {
287 const struct ubifs_pad_node
*pad
= node
;
289 printk(KERN_DEBUG
"\tpad_len %u\n",
290 le32_to_cpu(pad
->pad_len
));
295 const struct ubifs_sb_node
*sup
= node
;
296 unsigned int sup_flags
= le32_to_cpu(sup
->flags
);
298 printk(KERN_DEBUG
"\tkey_hash %d (%s)\n",
299 (int)sup
->key_hash
, get_key_hash(sup
->key_hash
));
300 printk(KERN_DEBUG
"\tkey_fmt %d (%s)\n",
301 (int)sup
->key_fmt
, get_key_fmt(sup
->key_fmt
));
302 printk(KERN_DEBUG
"\tflags %#x\n", sup_flags
);
303 printk(KERN_DEBUG
"\t big_lpt %u\n",
304 !!(sup_flags
& UBIFS_FLG_BIGLPT
));
305 printk(KERN_DEBUG
"\tmin_io_size %u\n",
306 le32_to_cpu(sup
->min_io_size
));
307 printk(KERN_DEBUG
"\tleb_size %u\n",
308 le32_to_cpu(sup
->leb_size
));
309 printk(KERN_DEBUG
"\tleb_cnt %u\n",
310 le32_to_cpu(sup
->leb_cnt
));
311 printk(KERN_DEBUG
"\tmax_leb_cnt %u\n",
312 le32_to_cpu(sup
->max_leb_cnt
));
313 printk(KERN_DEBUG
"\tmax_bud_bytes %llu\n",
314 (unsigned long long)le64_to_cpu(sup
->max_bud_bytes
));
315 printk(KERN_DEBUG
"\tlog_lebs %u\n",
316 le32_to_cpu(sup
->log_lebs
));
317 printk(KERN_DEBUG
"\tlpt_lebs %u\n",
318 le32_to_cpu(sup
->lpt_lebs
));
319 printk(KERN_DEBUG
"\torph_lebs %u\n",
320 le32_to_cpu(sup
->orph_lebs
));
321 printk(KERN_DEBUG
"\tjhead_cnt %u\n",
322 le32_to_cpu(sup
->jhead_cnt
));
323 printk(KERN_DEBUG
"\tfanout %u\n",
324 le32_to_cpu(sup
->fanout
));
325 printk(KERN_DEBUG
"\tlsave_cnt %u\n",
326 le32_to_cpu(sup
->lsave_cnt
));
327 printk(KERN_DEBUG
"\tdefault_compr %u\n",
328 (int)le16_to_cpu(sup
->default_compr
));
329 printk(KERN_DEBUG
"\trp_size %llu\n",
330 (unsigned long long)le64_to_cpu(sup
->rp_size
));
331 printk(KERN_DEBUG
"\trp_uid %u\n",
332 le32_to_cpu(sup
->rp_uid
));
333 printk(KERN_DEBUG
"\trp_gid %u\n",
334 le32_to_cpu(sup
->rp_gid
));
335 printk(KERN_DEBUG
"\tfmt_version %u\n",
336 le32_to_cpu(sup
->fmt_version
));
337 printk(KERN_DEBUG
"\ttime_gran %u\n",
338 le32_to_cpu(sup
->time_gran
));
339 printk(KERN_DEBUG
"\tUUID %02X%02X%02X%02X-%02X%02X"
340 "-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X\n",
341 sup
->uuid
[0], sup
->uuid
[1], sup
->uuid
[2], sup
->uuid
[3],
342 sup
->uuid
[4], sup
->uuid
[5], sup
->uuid
[6], sup
->uuid
[7],
343 sup
->uuid
[8], sup
->uuid
[9], sup
->uuid
[10], sup
->uuid
[11],
344 sup
->uuid
[12], sup
->uuid
[13], sup
->uuid
[14],
350 const struct ubifs_mst_node
*mst
= node
;
352 printk(KERN_DEBUG
"\thighest_inum %llu\n",
353 (unsigned long long)le64_to_cpu(mst
->highest_inum
));
354 printk(KERN_DEBUG
"\tcommit number %llu\n",
355 (unsigned long long)le64_to_cpu(mst
->cmt_no
));
356 printk(KERN_DEBUG
"\tflags %#x\n",
357 le32_to_cpu(mst
->flags
));
358 printk(KERN_DEBUG
"\tlog_lnum %u\n",
359 le32_to_cpu(mst
->log_lnum
));
360 printk(KERN_DEBUG
"\troot_lnum %u\n",
361 le32_to_cpu(mst
->root_lnum
));
362 printk(KERN_DEBUG
"\troot_offs %u\n",
363 le32_to_cpu(mst
->root_offs
));
364 printk(KERN_DEBUG
"\troot_len %u\n",
365 le32_to_cpu(mst
->root_len
));
366 printk(KERN_DEBUG
"\tgc_lnum %u\n",
367 le32_to_cpu(mst
->gc_lnum
));
368 printk(KERN_DEBUG
"\tihead_lnum %u\n",
369 le32_to_cpu(mst
->ihead_lnum
));
370 printk(KERN_DEBUG
"\tihead_offs %u\n",
371 le32_to_cpu(mst
->ihead_offs
));
372 printk(KERN_DEBUG
"\tindex_size %llu\n",
373 (unsigned long long)le64_to_cpu(mst
->index_size
));
374 printk(KERN_DEBUG
"\tlpt_lnum %u\n",
375 le32_to_cpu(mst
->lpt_lnum
));
376 printk(KERN_DEBUG
"\tlpt_offs %u\n",
377 le32_to_cpu(mst
->lpt_offs
));
378 printk(KERN_DEBUG
"\tnhead_lnum %u\n",
379 le32_to_cpu(mst
->nhead_lnum
));
380 printk(KERN_DEBUG
"\tnhead_offs %u\n",
381 le32_to_cpu(mst
->nhead_offs
));
382 printk(KERN_DEBUG
"\tltab_lnum %u\n",
383 le32_to_cpu(mst
->ltab_lnum
));
384 printk(KERN_DEBUG
"\tltab_offs %u\n",
385 le32_to_cpu(mst
->ltab_offs
));
386 printk(KERN_DEBUG
"\tlsave_lnum %u\n",
387 le32_to_cpu(mst
->lsave_lnum
));
388 printk(KERN_DEBUG
"\tlsave_offs %u\n",
389 le32_to_cpu(mst
->lsave_offs
));
390 printk(KERN_DEBUG
"\tlscan_lnum %u\n",
391 le32_to_cpu(mst
->lscan_lnum
));
392 printk(KERN_DEBUG
"\tleb_cnt %u\n",
393 le32_to_cpu(mst
->leb_cnt
));
394 printk(KERN_DEBUG
"\tempty_lebs %u\n",
395 le32_to_cpu(mst
->empty_lebs
));
396 printk(KERN_DEBUG
"\tidx_lebs %u\n",
397 le32_to_cpu(mst
->idx_lebs
));
398 printk(KERN_DEBUG
"\ttotal_free %llu\n",
399 (unsigned long long)le64_to_cpu(mst
->total_free
));
400 printk(KERN_DEBUG
"\ttotal_dirty %llu\n",
401 (unsigned long long)le64_to_cpu(mst
->total_dirty
));
402 printk(KERN_DEBUG
"\ttotal_used %llu\n",
403 (unsigned long long)le64_to_cpu(mst
->total_used
));
404 printk(KERN_DEBUG
"\ttotal_dead %llu\n",
405 (unsigned long long)le64_to_cpu(mst
->total_dead
));
406 printk(KERN_DEBUG
"\ttotal_dark %llu\n",
407 (unsigned long long)le64_to_cpu(mst
->total_dark
));
412 const struct ubifs_ref_node
*ref
= node
;
414 printk(KERN_DEBUG
"\tlnum %u\n",
415 le32_to_cpu(ref
->lnum
));
416 printk(KERN_DEBUG
"\toffs %u\n",
417 le32_to_cpu(ref
->offs
));
418 printk(KERN_DEBUG
"\tjhead %u\n",
419 le32_to_cpu(ref
->jhead
));
424 const struct ubifs_ino_node
*ino
= node
;
426 key_read(c
, &ino
->key
, &key
);
427 printk(KERN_DEBUG
"\tkey %s\n", DBGKEY(&key
));
428 printk(KERN_DEBUG
"\tcreat_sqnum %llu\n",
429 (unsigned long long)le64_to_cpu(ino
->creat_sqnum
));
430 printk(KERN_DEBUG
"\tsize %llu\n",
431 (unsigned long long)le64_to_cpu(ino
->size
));
432 printk(KERN_DEBUG
"\tnlink %u\n",
433 le32_to_cpu(ino
->nlink
));
434 printk(KERN_DEBUG
"\tatime %lld.%u\n",
435 (long long)le64_to_cpu(ino
->atime_sec
),
436 le32_to_cpu(ino
->atime_nsec
));
437 printk(KERN_DEBUG
"\tmtime %lld.%u\n",
438 (long long)le64_to_cpu(ino
->mtime_sec
),
439 le32_to_cpu(ino
->mtime_nsec
));
440 printk(KERN_DEBUG
"\tctime %lld.%u\n",
441 (long long)le64_to_cpu(ino
->ctime_sec
),
442 le32_to_cpu(ino
->ctime_nsec
));
443 printk(KERN_DEBUG
"\tuid %u\n",
444 le32_to_cpu(ino
->uid
));
445 printk(KERN_DEBUG
"\tgid %u\n",
446 le32_to_cpu(ino
->gid
));
447 printk(KERN_DEBUG
"\tmode %u\n",
448 le32_to_cpu(ino
->mode
));
449 printk(KERN_DEBUG
"\tflags %#x\n",
450 le32_to_cpu(ino
->flags
));
451 printk(KERN_DEBUG
"\txattr_cnt %u\n",
452 le32_to_cpu(ino
->xattr_cnt
));
453 printk(KERN_DEBUG
"\txattr_size %u\n",
454 le32_to_cpu(ino
->xattr_size
));
455 printk(KERN_DEBUG
"\txattr_names %u\n",
456 le32_to_cpu(ino
->xattr_names
));
457 printk(KERN_DEBUG
"\tcompr_type %#x\n",
458 (int)le16_to_cpu(ino
->compr_type
));
459 printk(KERN_DEBUG
"\tdata len %u\n",
460 le32_to_cpu(ino
->data_len
));
463 case UBIFS_DENT_NODE
:
464 case UBIFS_XENT_NODE
:
466 const struct ubifs_dent_node
*dent
= node
;
467 int nlen
= le16_to_cpu(dent
->nlen
);
469 key_read(c
, &dent
->key
, &key
);
470 printk(KERN_DEBUG
"\tkey %s\n", DBGKEY(&key
));
471 printk(KERN_DEBUG
"\tinum %llu\n",
472 (unsigned long long)le64_to_cpu(dent
->inum
));
473 printk(KERN_DEBUG
"\ttype %d\n", (int)dent
->type
);
474 printk(KERN_DEBUG
"\tnlen %d\n", nlen
);
475 printk(KERN_DEBUG
"\tname ");
477 if (nlen
> UBIFS_MAX_NLEN
)
478 printk(KERN_DEBUG
"(bad name length, not printing, "
479 "bad or corrupted node)");
481 for (i
= 0; i
< nlen
&& dent
->name
[i
]; i
++)
482 printk("%c", dent
->name
[i
]);
488 case UBIFS_DATA_NODE
:
490 const struct ubifs_data_node
*dn
= node
;
491 int dlen
= le32_to_cpu(ch
->len
) - UBIFS_DATA_NODE_SZ
;
493 key_read(c
, &dn
->key
, &key
);
494 printk(KERN_DEBUG
"\tkey %s\n", DBGKEY(&key
));
495 printk(KERN_DEBUG
"\tsize %u\n",
496 le32_to_cpu(dn
->size
));
497 printk(KERN_DEBUG
"\tcompr_typ %d\n",
498 (int)le16_to_cpu(dn
->compr_type
));
499 printk(KERN_DEBUG
"\tdata size %d\n",
501 printk(KERN_DEBUG
"\tdata:\n");
502 print_hex_dump(KERN_DEBUG
, "\t", DUMP_PREFIX_OFFSET
, 32, 1,
503 (void *)&dn
->data
, dlen
, 0);
506 case UBIFS_TRUN_NODE
:
508 const struct ubifs_trun_node
*trun
= node
;
510 printk(KERN_DEBUG
"\tinum %u\n",
511 le32_to_cpu(trun
->inum
));
512 printk(KERN_DEBUG
"\told_size %llu\n",
513 (unsigned long long)le64_to_cpu(trun
->old_size
));
514 printk(KERN_DEBUG
"\tnew_size %llu\n",
515 (unsigned long long)le64_to_cpu(trun
->new_size
));
520 const struct ubifs_idx_node
*idx
= node
;
522 n
= le16_to_cpu(idx
->child_cnt
);
523 printk(KERN_DEBUG
"\tchild_cnt %d\n", n
);
524 printk(KERN_DEBUG
"\tlevel %d\n",
525 (int)le16_to_cpu(idx
->level
));
526 printk(KERN_DEBUG
"\tBranches:\n");
528 for (i
= 0; i
< n
&& i
< c
->fanout
- 1; i
++) {
529 const struct ubifs_branch
*br
;
531 br
= ubifs_idx_branch(c
, idx
, i
);
532 key_read(c
, &br
->key
, &key
);
533 printk(KERN_DEBUG
"\t%d: LEB %d:%d len %d key %s\n",
534 i
, le32_to_cpu(br
->lnum
), le32_to_cpu(br
->offs
),
535 le32_to_cpu(br
->len
), DBGKEY(&key
));
541 case UBIFS_ORPH_NODE
:
543 const struct ubifs_orph_node
*orph
= node
;
545 printk(KERN_DEBUG
"\tcommit number %llu\n",
547 le64_to_cpu(orph
->cmt_no
) & LLONG_MAX
);
548 printk(KERN_DEBUG
"\tlast node flag %llu\n",
549 (unsigned long long)(le64_to_cpu(orph
->cmt_no
)) >> 63);
550 n
= (le32_to_cpu(ch
->len
) - UBIFS_ORPH_NODE_SZ
) >> 3;
551 printk(KERN_DEBUG
"\t%d orphan inode numbers:\n", n
);
552 for (i
= 0; i
< n
; i
++)
553 printk(KERN_DEBUG
"\t ino %llu\n",
554 (unsigned long long)le64_to_cpu(orph
->inos
[i
]));
558 printk(KERN_DEBUG
"node type %d was not recognized\n",
561 spin_unlock(&dbg_lock
);
564 void dbg_dump_budget_req(const struct ubifs_budget_req
*req
)
566 spin_lock(&dbg_lock
);
567 printk(KERN_DEBUG
"Budgeting request: new_ino %d, dirtied_ino %d\n",
568 req
->new_ino
, req
->dirtied_ino
);
569 printk(KERN_DEBUG
"\tnew_ino_d %d, dirtied_ino_d %d\n",
570 req
->new_ino_d
, req
->dirtied_ino_d
);
571 printk(KERN_DEBUG
"\tnew_page %d, dirtied_page %d\n",
572 req
->new_page
, req
->dirtied_page
);
573 printk(KERN_DEBUG
"\tnew_dent %d, mod_dent %d\n",
574 req
->new_dent
, req
->mod_dent
);
575 printk(KERN_DEBUG
"\tidx_growth %d\n", req
->idx_growth
);
576 printk(KERN_DEBUG
"\tdata_growth %d dd_growth %d\n",
577 req
->data_growth
, req
->dd_growth
);
578 spin_unlock(&dbg_lock
);
581 void dbg_dump_lstats(const struct ubifs_lp_stats
*lst
)
583 spin_lock(&dbg_lock
);
584 printk(KERN_DEBUG
"(pid %d) Lprops statistics: empty_lebs %d, "
585 "idx_lebs %d\n", current
->pid
, lst
->empty_lebs
, lst
->idx_lebs
);
586 printk(KERN_DEBUG
"\ttaken_empty_lebs %d, total_free %lld, "
587 "total_dirty %lld\n", lst
->taken_empty_lebs
, lst
->total_free
,
589 printk(KERN_DEBUG
"\ttotal_used %lld, total_dark %lld, "
590 "total_dead %lld\n", lst
->total_used
, lst
->total_dark
,
592 spin_unlock(&dbg_lock
);
595 void dbg_dump_budg(struct ubifs_info
*c
)
599 struct ubifs_bud
*bud
;
600 struct ubifs_gced_idx_leb
*idx_gc
;
601 long long available
, outstanding
, free
;
603 ubifs_assert(spin_is_locked(&c
->space_lock
));
604 spin_lock(&dbg_lock
);
605 printk(KERN_DEBUG
"(pid %d) Budgeting info: budg_data_growth %lld, "
606 "budg_dd_growth %lld, budg_idx_growth %lld\n", current
->pid
,
607 c
->budg_data_growth
, c
->budg_dd_growth
, c
->budg_idx_growth
);
608 printk(KERN_DEBUG
"\tdata budget sum %lld, total budget sum %lld, "
609 "freeable_cnt %d\n", c
->budg_data_growth
+ c
->budg_dd_growth
,
610 c
->budg_data_growth
+ c
->budg_dd_growth
+ c
->budg_idx_growth
,
612 printk(KERN_DEBUG
"\tmin_idx_lebs %d, old_idx_sz %lld, "
613 "calc_idx_sz %lld, idx_gc_cnt %d\n", c
->min_idx_lebs
,
614 c
->old_idx_sz
, c
->calc_idx_sz
, c
->idx_gc_cnt
);
615 printk(KERN_DEBUG
"\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, "
616 "clean_zn_cnt %ld\n", atomic_long_read(&c
->dirty_pg_cnt
),
617 atomic_long_read(&c
->dirty_zn_cnt
),
618 atomic_long_read(&c
->clean_zn_cnt
));
619 printk(KERN_DEBUG
"\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
620 c
->dark_wm
, c
->dead_wm
, c
->max_idx_node_sz
);
621 printk(KERN_DEBUG
"\tgc_lnum %d, ihead_lnum %d\n",
622 c
->gc_lnum
, c
->ihead_lnum
);
623 for (i
= 0; i
< c
->jhead_cnt
; i
++)
624 printk(KERN_DEBUG
"\tjhead %d\t LEB %d\n",
625 c
->jheads
[i
].wbuf
.jhead
, c
->jheads
[i
].wbuf
.lnum
);
626 for (rb
= rb_first(&c
->buds
); rb
; rb
= rb_next(rb
)) {
627 bud
= rb_entry(rb
, struct ubifs_bud
, rb
);
628 printk(KERN_DEBUG
"\tbud LEB %d\n", bud
->lnum
);
630 list_for_each_entry(bud
, &c
->old_buds
, list
)
631 printk(KERN_DEBUG
"\told bud LEB %d\n", bud
->lnum
);
632 list_for_each_entry(idx_gc
, &c
->idx_gc
, list
)
633 printk(KERN_DEBUG
"\tGC'ed idx LEB %d unmap %d\n",
634 idx_gc
->lnum
, idx_gc
->unmap
);
635 printk(KERN_DEBUG
"\tcommit state %d\n", c
->cmt_state
);
637 /* Print budgeting predictions */
638 available
= ubifs_calc_available(c
, c
->min_idx_lebs
);
639 outstanding
= c
->budg_data_growth
+ c
->budg_dd_growth
;
640 if (available
> outstanding
)
641 free
= ubifs_reported_space(c
, available
- outstanding
);
644 printk(KERN_DEBUG
"Budgeting predictions:\n");
645 printk(KERN_DEBUG
"\tavailable: %lld, outstanding %lld, free %lld\n",
646 available
, outstanding
, free
);
647 spin_unlock(&dbg_lock
);
650 void dbg_dump_lprop(const struct ubifs_info
*c
, const struct ubifs_lprops
*lp
)
652 printk(KERN_DEBUG
"LEB %d lprops: free %d, dirty %d (used %d), "
653 "flags %#x\n", lp
->lnum
, lp
->free
, lp
->dirty
,
654 c
->leb_size
- lp
->free
- lp
->dirty
, lp
->flags
);
657 void dbg_dump_lprops(struct ubifs_info
*c
)
660 struct ubifs_lprops lp
;
661 struct ubifs_lp_stats lst
;
663 printk(KERN_DEBUG
"(pid %d) start dumping LEB properties\n",
665 ubifs_get_lp_stats(c
, &lst
);
666 dbg_dump_lstats(&lst
);
668 for (lnum
= c
->main_first
; lnum
< c
->leb_cnt
; lnum
++) {
669 err
= ubifs_read_one_lp(c
, lnum
, &lp
);
671 ubifs_err("cannot read lprops for LEB %d", lnum
);
673 dbg_dump_lprop(c
, &lp
);
675 printk(KERN_DEBUG
"(pid %d) finish dumping LEB properties\n",
679 void dbg_dump_lpt_info(struct ubifs_info
*c
)
683 spin_lock(&dbg_lock
);
684 printk(KERN_DEBUG
"(pid %d) dumping LPT information\n", current
->pid
);
685 printk(KERN_DEBUG
"\tlpt_sz: %lld\n", c
->lpt_sz
);
686 printk(KERN_DEBUG
"\tpnode_sz: %d\n", c
->pnode_sz
);
687 printk(KERN_DEBUG
"\tnnode_sz: %d\n", c
->nnode_sz
);
688 printk(KERN_DEBUG
"\tltab_sz: %d\n", c
->ltab_sz
);
689 printk(KERN_DEBUG
"\tlsave_sz: %d\n", c
->lsave_sz
);
690 printk(KERN_DEBUG
"\tbig_lpt: %d\n", c
->big_lpt
);
691 printk(KERN_DEBUG
"\tlpt_hght: %d\n", c
->lpt_hght
);
692 printk(KERN_DEBUG
"\tpnode_cnt: %d\n", c
->pnode_cnt
);
693 printk(KERN_DEBUG
"\tnnode_cnt: %d\n", c
->nnode_cnt
);
694 printk(KERN_DEBUG
"\tdirty_pn_cnt: %d\n", c
->dirty_pn_cnt
);
695 printk(KERN_DEBUG
"\tdirty_nn_cnt: %d\n", c
->dirty_nn_cnt
);
696 printk(KERN_DEBUG
"\tlsave_cnt: %d\n", c
->lsave_cnt
);
697 printk(KERN_DEBUG
"\tspace_bits: %d\n", c
->space_bits
);
698 printk(KERN_DEBUG
"\tlpt_lnum_bits: %d\n", c
->lpt_lnum_bits
);
699 printk(KERN_DEBUG
"\tlpt_offs_bits: %d\n", c
->lpt_offs_bits
);
700 printk(KERN_DEBUG
"\tlpt_spc_bits: %d\n", c
->lpt_spc_bits
);
701 printk(KERN_DEBUG
"\tpcnt_bits: %d\n", c
->pcnt_bits
);
702 printk(KERN_DEBUG
"\tlnum_bits: %d\n", c
->lnum_bits
);
703 printk(KERN_DEBUG
"\tLPT root is at %d:%d\n", c
->lpt_lnum
, c
->lpt_offs
);
704 printk(KERN_DEBUG
"\tLPT head is at %d:%d\n",
705 c
->nhead_lnum
, c
->nhead_offs
);
706 printk(KERN_DEBUG
"\tLPT ltab is at %d:%d\n",
707 c
->ltab_lnum
, c
->ltab_offs
);
709 printk(KERN_DEBUG
"\tLPT lsave is at %d:%d\n",
710 c
->lsave_lnum
, c
->lsave_offs
);
711 for (i
= 0; i
< c
->lpt_lebs
; i
++)
712 printk(KERN_DEBUG
"\tLPT LEB %d free %d dirty %d tgc %d "
713 "cmt %d\n", i
+ c
->lpt_first
, c
->ltab
[i
].free
,
714 c
->ltab
[i
].dirty
, c
->ltab
[i
].tgc
, c
->ltab
[i
].cmt
);
715 spin_unlock(&dbg_lock
);
718 void dbg_dump_leb(const struct ubifs_info
*c
, int lnum
)
720 struct ubifs_scan_leb
*sleb
;
721 struct ubifs_scan_node
*snod
;
723 if (dbg_failure_mode
)
726 printk(KERN_DEBUG
"(pid %d) start dumping LEB %d\n",
728 sleb
= ubifs_scan(c
, lnum
, 0, c
->dbg
->buf
);
730 ubifs_err("scan error %d", (int)PTR_ERR(sleb
));
734 printk(KERN_DEBUG
"LEB %d has %d nodes ending at %d\n", lnum
,
735 sleb
->nodes_cnt
, sleb
->endpt
);
737 list_for_each_entry(snod
, &sleb
->nodes
, list
) {
739 printk(KERN_DEBUG
"Dumping node at LEB %d:%d len %d\n", lnum
,
740 snod
->offs
, snod
->len
);
741 dbg_dump_node(c
, snod
->node
);
744 printk(KERN_DEBUG
"(pid %d) finish dumping LEB %d\n",
746 ubifs_scan_destroy(sleb
);
750 void dbg_dump_znode(const struct ubifs_info
*c
,
751 const struct ubifs_znode
*znode
)
754 const struct ubifs_zbranch
*zbr
;
756 spin_lock(&dbg_lock
);
758 zbr
= &znode
->parent
->zbranch
[znode
->iip
];
762 printk(KERN_DEBUG
"znode %p, LEB %d:%d len %d parent %p iip %d level %d"
763 " child_cnt %d flags %lx\n", znode
, zbr
->lnum
, zbr
->offs
,
764 zbr
->len
, znode
->parent
, znode
->iip
, znode
->level
,
765 znode
->child_cnt
, znode
->flags
);
767 if (znode
->child_cnt
<= 0 || znode
->child_cnt
> c
->fanout
) {
768 spin_unlock(&dbg_lock
);
772 printk(KERN_DEBUG
"zbranches:\n");
773 for (n
= 0; n
< znode
->child_cnt
; n
++) {
774 zbr
= &znode
->zbranch
[n
];
775 if (znode
->level
> 0)
776 printk(KERN_DEBUG
"\t%d: znode %p LEB %d:%d len %d key "
777 "%s\n", n
, zbr
->znode
, zbr
->lnum
,
781 printk(KERN_DEBUG
"\t%d: LNC %p LEB %d:%d len %d key "
782 "%s\n", n
, zbr
->znode
, zbr
->lnum
,
786 spin_unlock(&dbg_lock
);
789 void dbg_dump_heap(struct ubifs_info
*c
, struct ubifs_lpt_heap
*heap
, int cat
)
793 printk(KERN_DEBUG
"(pid %d) start dumping heap cat %d (%d elements)\n",
794 current
->pid
, cat
, heap
->cnt
);
795 for (i
= 0; i
< heap
->cnt
; i
++) {
796 struct ubifs_lprops
*lprops
= heap
->arr
[i
];
798 printk(KERN_DEBUG
"\t%d. LEB %d hpos %d free %d dirty %d "
799 "flags %d\n", i
, lprops
->lnum
, lprops
->hpos
,
800 lprops
->free
, lprops
->dirty
, lprops
->flags
);
802 printk(KERN_DEBUG
"(pid %d) finish dumping heap\n", current
->pid
);
805 void dbg_dump_pnode(struct ubifs_info
*c
, struct ubifs_pnode
*pnode
,
806 struct ubifs_nnode
*parent
, int iip
)
810 printk(KERN_DEBUG
"(pid %d) dumping pnode:\n", current
->pid
);
811 printk(KERN_DEBUG
"\taddress %zx parent %zx cnext %zx\n",
812 (size_t)pnode
, (size_t)parent
, (size_t)pnode
->cnext
);
813 printk(KERN_DEBUG
"\tflags %lu iip %d level %d num %d\n",
814 pnode
->flags
, iip
, pnode
->level
, pnode
->num
);
815 for (i
= 0; i
< UBIFS_LPT_FANOUT
; i
++) {
816 struct ubifs_lprops
*lp
= &pnode
->lprops
[i
];
818 printk(KERN_DEBUG
"\t%d: free %d dirty %d flags %d lnum %d\n",
819 i
, lp
->free
, lp
->dirty
, lp
->flags
, lp
->lnum
);
823 void dbg_dump_tnc(struct ubifs_info
*c
)
825 struct ubifs_znode
*znode
;
828 printk(KERN_DEBUG
"\n");
829 printk(KERN_DEBUG
"(pid %d) start dumping TNC tree\n", current
->pid
);
830 znode
= ubifs_tnc_levelorder_next(c
->zroot
.znode
, NULL
);
831 level
= znode
->level
;
832 printk(KERN_DEBUG
"== Level %d ==\n", level
);
834 if (level
!= znode
->level
) {
835 level
= znode
->level
;
836 printk(KERN_DEBUG
"== Level %d ==\n", level
);
838 dbg_dump_znode(c
, znode
);
839 znode
= ubifs_tnc_levelorder_next(c
->zroot
.znode
, znode
);
841 printk(KERN_DEBUG
"(pid %d) finish dumping TNC tree\n", current
->pid
);
844 static int dump_znode(struct ubifs_info
*c
, struct ubifs_znode
*znode
,
847 dbg_dump_znode(c
, znode
);
852 * dbg_dump_index - dump the on-flash index.
853 * @c: UBIFS file-system description object
855 * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()'
856 * which dumps only in-memory znodes and does not read znodes which from flash.
858 void dbg_dump_index(struct ubifs_info
*c
)
860 dbg_walk_index(c
, NULL
, dump_znode
, NULL
);
864 * dbg_check_synced_i_size - check synchronized inode size.
865 * @inode: inode to check
867 * If inode is clean, synchronized inode size has to be equivalent to current
868 * inode size. This function has to be called only for locked inodes (@i_mutex
869 * has to be locked). Returns %0 if synchronized inode size if correct, and
872 int dbg_check_synced_i_size(struct inode
*inode
)
875 struct ubifs_inode
*ui
= ubifs_inode(inode
);
877 if (!(ubifs_chk_flags
& UBIFS_CHK_GEN
))
879 if (!S_ISREG(inode
->i_mode
))
882 mutex_lock(&ui
->ui_mutex
);
883 spin_lock(&ui
->ui_lock
);
884 if (ui
->ui_size
!= ui
->synced_i_size
&& !ui
->dirty
) {
885 ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode "
886 "is clean", ui
->ui_size
, ui
->synced_i_size
);
887 ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode
->i_ino
,
888 inode
->i_mode
, i_size_read(inode
));
892 spin_unlock(&ui
->ui_lock
);
893 mutex_unlock(&ui
->ui_mutex
);
898 * dbg_check_dir - check directory inode size and link count.
899 * @c: UBIFS file-system description object
900 * @dir: the directory to calculate size for
901 * @size: the result is returned here
903 * This function makes sure that directory size and link count are correct.
904 * Returns zero in case of success and a negative error code in case of
907 * Note, it is good idea to make sure the @dir->i_mutex is locked before
908 * calling this function.
910 int dbg_check_dir_size(struct ubifs_info
*c
, const struct inode
*dir
)
912 unsigned int nlink
= 2;
914 struct ubifs_dent_node
*dent
, *pdent
= NULL
;
915 struct qstr nm
= { .name
= NULL
};
916 loff_t size
= UBIFS_INO_NODE_SZ
;
918 if (!(ubifs_chk_flags
& UBIFS_CHK_GEN
))
921 if (!S_ISDIR(dir
->i_mode
))
924 lowest_dent_key(c
, &key
, dir
->i_ino
);
928 dent
= ubifs_tnc_next_ent(c
, &key
, &nm
);
936 nm
.name
= dent
->name
;
937 nm
.len
= le16_to_cpu(dent
->nlen
);
938 size
+= CALC_DENT_SIZE(nm
.len
);
939 if (dent
->type
== UBIFS_ITYPE_DIR
)
943 key_read(c
, &dent
->key
, &key
);
947 if (i_size_read(dir
) != size
) {
948 ubifs_err("directory inode %lu has size %llu, "
949 "but calculated size is %llu", dir
->i_ino
,
950 (unsigned long long)i_size_read(dir
),
951 (unsigned long long)size
);
955 if (dir
->i_nlink
!= nlink
) {
956 ubifs_err("directory inode %lu has nlink %u, but calculated "
957 "nlink is %u", dir
->i_ino
, dir
->i_nlink
, nlink
);
966 * dbg_check_key_order - make sure that colliding keys are properly ordered.
967 * @c: UBIFS file-system description object
968 * @zbr1: first zbranch
969 * @zbr2: following zbranch
971 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
972 * names of the direntries/xentries which are referred by the keys. This
973 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
974 * sure the name of direntry/xentry referred by @zbr1 is less than
975 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
976 * and a negative error code in case of failure.
978 static int dbg_check_key_order(struct ubifs_info
*c
, struct ubifs_zbranch
*zbr1
,
979 struct ubifs_zbranch
*zbr2
)
981 int err
, nlen1
, nlen2
, cmp
;
982 struct ubifs_dent_node
*dent1
, *dent2
;
985 ubifs_assert(!keys_cmp(c
, &zbr1
->key
, &zbr2
->key
));
986 dent1
= kmalloc(UBIFS_MAX_DENT_NODE_SZ
, GFP_NOFS
);
989 dent2
= kmalloc(UBIFS_MAX_DENT_NODE_SZ
, GFP_NOFS
);
995 err
= ubifs_tnc_read_node(c
, zbr1
, dent1
);
998 err
= ubifs_validate_entry(c
, dent1
);
1002 err
= ubifs_tnc_read_node(c
, zbr2
, dent2
);
1005 err
= ubifs_validate_entry(c
, dent2
);
1009 /* Make sure node keys are the same as in zbranch */
1011 key_read(c
, &dent1
->key
, &key
);
1012 if (keys_cmp(c
, &zbr1
->key
, &key
)) {
1013 dbg_err("1st entry at %d:%d has key %s", zbr1
->lnum
,
1014 zbr1
->offs
, DBGKEY(&key
));
1015 dbg_err("but it should have key %s according to tnc",
1016 DBGKEY(&zbr1
->key
));
1017 dbg_dump_node(c
, dent1
);
1021 key_read(c
, &dent2
->key
, &key
);
1022 if (keys_cmp(c
, &zbr2
->key
, &key
)) {
1023 dbg_err("2nd entry at %d:%d has key %s", zbr1
->lnum
,
1024 zbr1
->offs
, DBGKEY(&key
));
1025 dbg_err("but it should have key %s according to tnc",
1026 DBGKEY(&zbr2
->key
));
1027 dbg_dump_node(c
, dent2
);
1031 nlen1
= le16_to_cpu(dent1
->nlen
);
1032 nlen2
= le16_to_cpu(dent2
->nlen
);
1034 cmp
= memcmp(dent1
->name
, dent2
->name
, min_t(int, nlen1
, nlen2
));
1035 if (cmp
< 0 || (cmp
== 0 && nlen1
< nlen2
)) {
1039 if (cmp
== 0 && nlen1
== nlen2
)
1040 dbg_err("2 xent/dent nodes with the same name");
1042 dbg_err("bad order of colliding key %s",
1045 ubifs_msg("first node at %d:%d\n", zbr1
->lnum
, zbr1
->offs
);
1046 dbg_dump_node(c
, dent1
);
1047 ubifs_msg("second node at %d:%d\n", zbr2
->lnum
, zbr2
->offs
);
1048 dbg_dump_node(c
, dent2
);
1057 * dbg_check_znode - check if znode is all right.
1058 * @c: UBIFS file-system description object
1059 * @zbr: zbranch which points to this znode
1061 * This function makes sure that znode referred to by @zbr is all right.
1062 * Returns zero if it is, and %-EINVAL if it is not.
1064 static int dbg_check_znode(struct ubifs_info
*c
, struct ubifs_zbranch
*zbr
)
1066 struct ubifs_znode
*znode
= zbr
->znode
;
1067 struct ubifs_znode
*zp
= znode
->parent
;
1070 if (znode
->child_cnt
<= 0 || znode
->child_cnt
> c
->fanout
) {
1074 if (znode
->level
< 0) {
1078 if (znode
->iip
< 0 || znode
->iip
>= c
->fanout
) {
1084 /* Only dirty zbranch may have no on-flash nodes */
1085 if (!ubifs_zn_dirty(znode
)) {
1090 if (ubifs_zn_dirty(znode
)) {
1092 * If znode is dirty, its parent has to be dirty as well. The
1093 * order of the operation is important, so we have to have
1097 if (zp
&& !ubifs_zn_dirty(zp
)) {
1099 * The dirty flag is atomic and is cleared outside the
1100 * TNC mutex, so znode's dirty flag may now have
1101 * been cleared. The child is always cleared before the
1102 * parent, so we just need to check again.
1105 if (ubifs_zn_dirty(znode
)) {
1113 const union ubifs_key
*min
, *max
;
1115 if (znode
->level
!= zp
->level
- 1) {
1120 /* Make sure the 'parent' pointer in our znode is correct */
1121 err
= ubifs_search_zbranch(c
, zp
, &zbr
->key
, &n
);
1123 /* This zbranch does not exist in the parent */
1128 if (znode
->iip
>= zp
->child_cnt
) {
1133 if (znode
->iip
!= n
) {
1134 /* This may happen only in case of collisions */
1135 if (keys_cmp(c
, &zp
->zbranch
[n
].key
,
1136 &zp
->zbranch
[znode
->iip
].key
)) {
1144 * Make sure that the first key in our znode is greater than or
1145 * equal to the key in the pointing zbranch.
1148 cmp
= keys_cmp(c
, min
, &znode
->zbranch
[0].key
);
1154 if (n
+ 1 < zp
->child_cnt
) {
1155 max
= &zp
->zbranch
[n
+ 1].key
;
1158 * Make sure the last key in our znode is less or
1159 * equivalent than the the key in zbranch which goes
1160 * after our pointing zbranch.
1162 cmp
= keys_cmp(c
, max
,
1163 &znode
->zbranch
[znode
->child_cnt
- 1].key
);
1170 /* This may only be root znode */
1171 if (zbr
!= &c
->zroot
) {
1178 * Make sure that next key is greater or equivalent then the previous
1181 for (n
= 1; n
< znode
->child_cnt
; n
++) {
1182 cmp
= keys_cmp(c
, &znode
->zbranch
[n
- 1].key
,
1183 &znode
->zbranch
[n
].key
);
1189 /* This can only be keys with colliding hash */
1190 if (!is_hash_key(c
, &znode
->zbranch
[n
].key
)) {
1195 if (znode
->level
!= 0 || c
->replaying
)
1199 * Colliding keys should follow binary order of
1200 * corresponding xentry/dentry names.
1202 err
= dbg_check_key_order(c
, &znode
->zbranch
[n
- 1],
1203 &znode
->zbranch
[n
]);
1213 for (n
= 0; n
< znode
->child_cnt
; n
++) {
1214 if (!znode
->zbranch
[n
].znode
&&
1215 (znode
->zbranch
[n
].lnum
== 0 ||
1216 znode
->zbranch
[n
].len
== 0)) {
1221 if (znode
->zbranch
[n
].lnum
!= 0 &&
1222 znode
->zbranch
[n
].len
== 0) {
1227 if (znode
->zbranch
[n
].lnum
== 0 &&
1228 znode
->zbranch
[n
].len
!= 0) {
1233 if (znode
->zbranch
[n
].lnum
== 0 &&
1234 znode
->zbranch
[n
].offs
!= 0) {
1239 if (znode
->level
!= 0 && znode
->zbranch
[n
].znode
)
1240 if (znode
->zbranch
[n
].znode
->parent
!= znode
) {
1249 ubifs_err("failed, error %d", err
);
1250 ubifs_msg("dump of the znode");
1251 dbg_dump_znode(c
, znode
);
1253 ubifs_msg("dump of the parent znode");
1254 dbg_dump_znode(c
, zp
);
1261 * dbg_check_tnc - check TNC tree.
1262 * @c: UBIFS file-system description object
1263 * @extra: do extra checks that are possible at start commit
1265 * This function traverses whole TNC tree and checks every znode. Returns zero
1266 * if everything is all right and %-EINVAL if something is wrong with TNC.
1268 int dbg_check_tnc(struct ubifs_info
*c
, int extra
)
1270 struct ubifs_znode
*znode
;
1271 long clean_cnt
= 0, dirty_cnt
= 0;
1274 if (!(ubifs_chk_flags
& UBIFS_CHK_TNC
))
1277 ubifs_assert(mutex_is_locked(&c
->tnc_mutex
));
1278 if (!c
->zroot
.znode
)
1281 znode
= ubifs_tnc_postorder_first(c
->zroot
.znode
);
1283 struct ubifs_znode
*prev
;
1284 struct ubifs_zbranch
*zbr
;
1289 zbr
= &znode
->parent
->zbranch
[znode
->iip
];
1291 err
= dbg_check_znode(c
, zbr
);
1296 if (ubifs_zn_dirty(znode
))
1303 znode
= ubifs_tnc_postorder_next(znode
);
1308 * If the last key of this znode is equivalent to the first key
1309 * of the next znode (collision), then check order of the keys.
1311 last
= prev
->child_cnt
- 1;
1312 if (prev
->level
== 0 && znode
->level
== 0 && !c
->replaying
&&
1313 !keys_cmp(c
, &prev
->zbranch
[last
].key
,
1314 &znode
->zbranch
[0].key
)) {
1315 err
= dbg_check_key_order(c
, &prev
->zbranch
[last
],
1316 &znode
->zbranch
[0]);
1320 ubifs_msg("first znode");
1321 dbg_dump_znode(c
, prev
);
1322 ubifs_msg("second znode");
1323 dbg_dump_znode(c
, znode
);
1330 if (clean_cnt
!= atomic_long_read(&c
->clean_zn_cnt
)) {
1331 ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1332 atomic_long_read(&c
->clean_zn_cnt
),
1336 if (dirty_cnt
!= atomic_long_read(&c
->dirty_zn_cnt
)) {
1337 ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1338 atomic_long_read(&c
->dirty_zn_cnt
),
1348 * dbg_walk_index - walk the on-flash index.
1349 * @c: UBIFS file-system description object
1350 * @leaf_cb: called for each leaf node
1351 * @znode_cb: called for each indexing node
1352 * @priv: private date which is passed to callbacks
1354 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1355 * node and @znode_cb for each indexing node. Returns zero in case of success
1356 * and a negative error code in case of failure.
1358 * It would be better if this function removed every znode it pulled to into
1359 * the TNC, so that the behavior more closely matched the non-debugging
1362 int dbg_walk_index(struct ubifs_info
*c
, dbg_leaf_callback leaf_cb
,
1363 dbg_znode_callback znode_cb
, void *priv
)
1366 struct ubifs_zbranch
*zbr
;
1367 struct ubifs_znode
*znode
, *child
;
1369 mutex_lock(&c
->tnc_mutex
);
1370 /* If the root indexing node is not in TNC - pull it */
1371 if (!c
->zroot
.znode
) {
1372 c
->zroot
.znode
= ubifs_load_znode(c
, &c
->zroot
, NULL
, 0);
1373 if (IS_ERR(c
->zroot
.znode
)) {
1374 err
= PTR_ERR(c
->zroot
.znode
);
1375 c
->zroot
.znode
= NULL
;
1381 * We are going to traverse the indexing tree in the postorder manner.
1382 * Go down and find the leftmost indexing node where we are going to
1385 znode
= c
->zroot
.znode
;
1386 while (znode
->level
> 0) {
1387 zbr
= &znode
->zbranch
[0];
1390 child
= ubifs_load_znode(c
, zbr
, znode
, 0);
1391 if (IS_ERR(child
)) {
1392 err
= PTR_ERR(child
);
1401 /* Iterate over all indexing nodes */
1408 err
= znode_cb(c
, znode
, priv
);
1410 ubifs_err("znode checking function returned "
1412 dbg_dump_znode(c
, znode
);
1416 if (leaf_cb
&& znode
->level
== 0) {
1417 for (idx
= 0; idx
< znode
->child_cnt
; idx
++) {
1418 zbr
= &znode
->zbranch
[idx
];
1419 err
= leaf_cb(c
, zbr
, priv
);
1421 ubifs_err("leaf checking function "
1422 "returned error %d, for leaf "
1424 err
, zbr
->lnum
, zbr
->offs
);
1433 idx
= znode
->iip
+ 1;
1434 znode
= znode
->parent
;
1435 if (idx
< znode
->child_cnt
) {
1436 /* Switch to the next index in the parent */
1437 zbr
= &znode
->zbranch
[idx
];
1440 child
= ubifs_load_znode(c
, zbr
, znode
, idx
);
1441 if (IS_ERR(child
)) {
1442 err
= PTR_ERR(child
);
1450 * This is the last child, switch to the parent and
1455 /* Go to the lowest leftmost znode in the new sub-tree */
1456 while (znode
->level
> 0) {
1457 zbr
= &znode
->zbranch
[0];
1460 child
= ubifs_load_znode(c
, zbr
, znode
, 0);
1461 if (IS_ERR(child
)) {
1462 err
= PTR_ERR(child
);
1471 mutex_unlock(&c
->tnc_mutex
);
1476 zbr
= &znode
->parent
->zbranch
[znode
->iip
];
1479 ubifs_msg("dump of znode at LEB %d:%d", zbr
->lnum
, zbr
->offs
);
1480 dbg_dump_znode(c
, znode
);
1482 mutex_unlock(&c
->tnc_mutex
);
1487 * add_size - add znode size to partially calculated index size.
1488 * @c: UBIFS file-system description object
1489 * @znode: znode to add size for
1490 * @priv: partially calculated index size
1492 * This is a helper function for 'dbg_check_idx_size()' which is called for
1493 * every indexing node and adds its size to the 'long long' variable pointed to
1496 static int add_size(struct ubifs_info
*c
, struct ubifs_znode
*znode
, void *priv
)
1498 long long *idx_size
= priv
;
1501 add
= ubifs_idx_node_sz(c
, znode
->child_cnt
);
1502 add
= ALIGN(add
, 8);
1508 * dbg_check_idx_size - check index size.
1509 * @c: UBIFS file-system description object
1510 * @idx_size: size to check
1512 * This function walks the UBIFS index, calculates its size and checks that the
1513 * size is equivalent to @idx_size. Returns zero in case of success and a
1514 * negative error code in case of failure.
1516 int dbg_check_idx_size(struct ubifs_info
*c
, long long idx_size
)
1521 if (!(ubifs_chk_flags
& UBIFS_CHK_IDX_SZ
))
1524 err
= dbg_walk_index(c
, NULL
, add_size
, &calc
);
1526 ubifs_err("error %d while walking the index", err
);
1530 if (calc
!= idx_size
) {
1531 ubifs_err("index size check failed: calculated size is %lld, "
1532 "should be %lld", calc
, idx_size
);
1541 * struct fsck_inode - information about an inode used when checking the file-system.
1542 * @rb: link in the RB-tree of inodes
1543 * @inum: inode number
1544 * @mode: inode type, permissions, etc
1545 * @nlink: inode link count
1546 * @xattr_cnt: count of extended attributes
1547 * @references: how many directory/xattr entries refer this inode (calculated
1548 * while walking the index)
1549 * @calc_cnt: for directory inode count of child directories
1550 * @size: inode size (read from on-flash inode)
1551 * @xattr_sz: summary size of all extended attributes (read from on-flash
1553 * @calc_sz: for directories calculated directory size
1554 * @calc_xcnt: count of extended attributes
1555 * @calc_xsz: calculated summary size of all extended attributes
1556 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1557 * inode (read from on-flash inode)
1558 * @calc_xnms: calculated sum of lengths of all extended attribute names
1565 unsigned int xattr_cnt
;
1569 unsigned int xattr_sz
;
1571 long long calc_xcnt
;
1573 unsigned int xattr_nms
;
1574 long long calc_xnms
;
1578 * struct fsck_data - private FS checking information.
1579 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1582 struct rb_root inodes
;
1586 * add_inode - add inode information to RB-tree of inodes.
1587 * @c: UBIFS file-system description object
1588 * @fsckd: FS checking information
1589 * @ino: raw UBIFS inode to add
1591 * This is a helper function for 'check_leaf()' which adds information about
1592 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1593 * case of success and a negative error code in case of failure.
1595 static struct fsck_inode
*add_inode(struct ubifs_info
*c
,
1596 struct fsck_data
*fsckd
,
1597 struct ubifs_ino_node
*ino
)
1599 struct rb_node
**p
, *parent
= NULL
;
1600 struct fsck_inode
*fscki
;
1601 ino_t inum
= key_inum_flash(c
, &ino
->key
);
1603 p
= &fsckd
->inodes
.rb_node
;
1606 fscki
= rb_entry(parent
, struct fsck_inode
, rb
);
1607 if (inum
< fscki
->inum
)
1609 else if (inum
> fscki
->inum
)
1610 p
= &(*p
)->rb_right
;
1615 if (inum
> c
->highest_inum
) {
1616 ubifs_err("too high inode number, max. is %lu",
1617 (unsigned long)c
->highest_inum
);
1618 return ERR_PTR(-EINVAL
);
1621 fscki
= kzalloc(sizeof(struct fsck_inode
), GFP_NOFS
);
1623 return ERR_PTR(-ENOMEM
);
1626 fscki
->nlink
= le32_to_cpu(ino
->nlink
);
1627 fscki
->size
= le64_to_cpu(ino
->size
);
1628 fscki
->xattr_cnt
= le32_to_cpu(ino
->xattr_cnt
);
1629 fscki
->xattr_sz
= le32_to_cpu(ino
->xattr_size
);
1630 fscki
->xattr_nms
= le32_to_cpu(ino
->xattr_names
);
1631 fscki
->mode
= le32_to_cpu(ino
->mode
);
1632 if (S_ISDIR(fscki
->mode
)) {
1633 fscki
->calc_sz
= UBIFS_INO_NODE_SZ
;
1634 fscki
->calc_cnt
= 2;
1636 rb_link_node(&fscki
->rb
, parent
, p
);
1637 rb_insert_color(&fscki
->rb
, &fsckd
->inodes
);
1642 * search_inode - search inode in the RB-tree of inodes.
1643 * @fsckd: FS checking information
1644 * @inum: inode number to search
1646 * This is a helper function for 'check_leaf()' which searches inode @inum in
1647 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1648 * the inode was not found.
1650 static struct fsck_inode
*search_inode(struct fsck_data
*fsckd
, ino_t inum
)
1653 struct fsck_inode
*fscki
;
1655 p
= fsckd
->inodes
.rb_node
;
1657 fscki
= rb_entry(p
, struct fsck_inode
, rb
);
1658 if (inum
< fscki
->inum
)
1660 else if (inum
> fscki
->inum
)
1669 * read_add_inode - read inode node and add it to RB-tree of inodes.
1670 * @c: UBIFS file-system description object
1671 * @fsckd: FS checking information
1672 * @inum: inode number to read
1674 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1675 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1676 * information pointer in case of success and a negative error code in case of
1679 static struct fsck_inode
*read_add_inode(struct ubifs_info
*c
,
1680 struct fsck_data
*fsckd
, ino_t inum
)
1683 union ubifs_key key
;
1684 struct ubifs_znode
*znode
;
1685 struct ubifs_zbranch
*zbr
;
1686 struct ubifs_ino_node
*ino
;
1687 struct fsck_inode
*fscki
;
1689 fscki
= search_inode(fsckd
, inum
);
1693 ino_key_init(c
, &key
, inum
);
1694 err
= ubifs_lookup_level0(c
, &key
, &znode
, &n
);
1696 ubifs_err("inode %lu not found in index", (unsigned long)inum
);
1697 return ERR_PTR(-ENOENT
);
1698 } else if (err
< 0) {
1699 ubifs_err("error %d while looking up inode %lu",
1700 err
, (unsigned long)inum
);
1701 return ERR_PTR(err
);
1704 zbr
= &znode
->zbranch
[n
];
1705 if (zbr
->len
< UBIFS_INO_NODE_SZ
) {
1706 ubifs_err("bad node %lu node length %d",
1707 (unsigned long)inum
, zbr
->len
);
1708 return ERR_PTR(-EINVAL
);
1711 ino
= kmalloc(zbr
->len
, GFP_NOFS
);
1713 return ERR_PTR(-ENOMEM
);
1715 err
= ubifs_tnc_read_node(c
, zbr
, ino
);
1717 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
1718 zbr
->lnum
, zbr
->offs
, err
);
1720 return ERR_PTR(err
);
1723 fscki
= add_inode(c
, fsckd
, ino
);
1725 if (IS_ERR(fscki
)) {
1726 ubifs_err("error %ld while adding inode %lu node",
1727 PTR_ERR(fscki
), (unsigned long)inum
);
1735 * check_leaf - check leaf node.
1736 * @c: UBIFS file-system description object
1737 * @zbr: zbranch of the leaf node to check
1738 * @priv: FS checking information
1740 * This is a helper function for 'dbg_check_filesystem()' which is called for
1741 * every single leaf node while walking the indexing tree. It checks that the
1742 * leaf node referred from the indexing tree exists, has correct CRC, and does
1743 * some other basic validation. This function is also responsible for building
1744 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1745 * calculates reference count, size, etc for each inode in order to later
1746 * compare them to the information stored inside the inodes and detect possible
1747 * inconsistencies. Returns zero in case of success and a negative error code
1748 * in case of failure.
1750 static int check_leaf(struct ubifs_info
*c
, struct ubifs_zbranch
*zbr
,
1755 struct ubifs_ch
*ch
;
1756 int err
, type
= key_type(c
, &zbr
->key
);
1757 struct fsck_inode
*fscki
;
1759 if (zbr
->len
< UBIFS_CH_SZ
) {
1760 ubifs_err("bad leaf length %d (LEB %d:%d)",
1761 zbr
->len
, zbr
->lnum
, zbr
->offs
);
1765 node
= kmalloc(zbr
->len
, GFP_NOFS
);
1769 err
= ubifs_tnc_read_node(c
, zbr
, node
);
1771 ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
1772 zbr
->lnum
, zbr
->offs
, err
);
1776 /* If this is an inode node, add it to RB-tree of inodes */
1777 if (type
== UBIFS_INO_KEY
) {
1778 fscki
= add_inode(c
, priv
, node
);
1779 if (IS_ERR(fscki
)) {
1780 err
= PTR_ERR(fscki
);
1781 ubifs_err("error %d while adding inode node", err
);
1787 if (type
!= UBIFS_DENT_KEY
&& type
!= UBIFS_XENT_KEY
&&
1788 type
!= UBIFS_DATA_KEY
) {
1789 ubifs_err("unexpected node type %d at LEB %d:%d",
1790 type
, zbr
->lnum
, zbr
->offs
);
1796 if (le64_to_cpu(ch
->sqnum
) > c
->max_sqnum
) {
1797 ubifs_err("too high sequence number, max. is %llu",
1803 if (type
== UBIFS_DATA_KEY
) {
1805 struct ubifs_data_node
*dn
= node
;
1808 * Search the inode node this data node belongs to and insert
1809 * it to the RB-tree of inodes.
1811 inum
= key_inum_flash(c
, &dn
->key
);
1812 fscki
= read_add_inode(c
, priv
, inum
);
1813 if (IS_ERR(fscki
)) {
1814 err
= PTR_ERR(fscki
);
1815 ubifs_err("error %d while processing data node and "
1816 "trying to find inode node %lu",
1817 err
, (unsigned long)inum
);
1821 /* Make sure the data node is within inode size */
1822 blk_offs
= key_block_flash(c
, &dn
->key
);
1823 blk_offs
<<= UBIFS_BLOCK_SHIFT
;
1824 blk_offs
+= le32_to_cpu(dn
->size
);
1825 if (blk_offs
> fscki
->size
) {
1826 ubifs_err("data node at LEB %d:%d is not within inode "
1827 "size %lld", zbr
->lnum
, zbr
->offs
,
1834 struct ubifs_dent_node
*dent
= node
;
1835 struct fsck_inode
*fscki1
;
1837 err
= ubifs_validate_entry(c
, dent
);
1842 * Search the inode node this entry refers to and the parent
1843 * inode node and insert them to the RB-tree of inodes.
1845 inum
= le64_to_cpu(dent
->inum
);
1846 fscki
= read_add_inode(c
, priv
, inum
);
1847 if (IS_ERR(fscki
)) {
1848 err
= PTR_ERR(fscki
);
1849 ubifs_err("error %d while processing entry node and "
1850 "trying to find inode node %lu",
1851 err
, (unsigned long)inum
);
1855 /* Count how many direntries or xentries refers this inode */
1856 fscki
->references
+= 1;
1858 inum
= key_inum_flash(c
, &dent
->key
);
1859 fscki1
= read_add_inode(c
, priv
, inum
);
1860 if (IS_ERR(fscki1
)) {
1861 err
= PTR_ERR(fscki
);
1862 ubifs_err("error %d while processing entry node and "
1863 "trying to find parent inode node %lu",
1864 err
, (unsigned long)inum
);
1868 nlen
= le16_to_cpu(dent
->nlen
);
1869 if (type
== UBIFS_XENT_KEY
) {
1870 fscki1
->calc_xcnt
+= 1;
1871 fscki1
->calc_xsz
+= CALC_DENT_SIZE(nlen
);
1872 fscki1
->calc_xsz
+= CALC_XATTR_BYTES(fscki
->size
);
1873 fscki1
->calc_xnms
+= nlen
;
1875 fscki1
->calc_sz
+= CALC_DENT_SIZE(nlen
);
1876 if (dent
->type
== UBIFS_ITYPE_DIR
)
1877 fscki1
->calc_cnt
+= 1;
1886 ubifs_msg("dump of node at LEB %d:%d", zbr
->lnum
, zbr
->offs
);
1887 dbg_dump_node(c
, node
);
1894 * free_inodes - free RB-tree of inodes.
1895 * @fsckd: FS checking information
1897 static void free_inodes(struct fsck_data
*fsckd
)
1899 struct rb_node
*this = fsckd
->inodes
.rb_node
;
1900 struct fsck_inode
*fscki
;
1904 this = this->rb_left
;
1905 else if (this->rb_right
)
1906 this = this->rb_right
;
1908 fscki
= rb_entry(this, struct fsck_inode
, rb
);
1909 this = rb_parent(this);
1911 if (this->rb_left
== &fscki
->rb
)
1912 this->rb_left
= NULL
;
1914 this->rb_right
= NULL
;
1922 * check_inodes - checks all inodes.
1923 * @c: UBIFS file-system description object
1924 * @fsckd: FS checking information
1926 * This is a helper function for 'dbg_check_filesystem()' which walks the
1927 * RB-tree of inodes after the index scan has been finished, and checks that
1928 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
1929 * %-EINVAL if not, and a negative error code in case of failure.
1931 static int check_inodes(struct ubifs_info
*c
, struct fsck_data
*fsckd
)
1934 union ubifs_key key
;
1935 struct ubifs_znode
*znode
;
1936 struct ubifs_zbranch
*zbr
;
1937 struct ubifs_ino_node
*ino
;
1938 struct fsck_inode
*fscki
;
1939 struct rb_node
*this = rb_first(&fsckd
->inodes
);
1942 fscki
= rb_entry(this, struct fsck_inode
, rb
);
1943 this = rb_next(this);
1945 if (S_ISDIR(fscki
->mode
)) {
1947 * Directories have to have exactly one reference (they
1948 * cannot have hardlinks), although root inode is an
1951 if (fscki
->inum
!= UBIFS_ROOT_INO
&&
1952 fscki
->references
!= 1) {
1953 ubifs_err("directory inode %lu has %d "
1954 "direntries which refer it, but "
1956 (unsigned long)fscki
->inum
,
1960 if (fscki
->inum
== UBIFS_ROOT_INO
&&
1961 fscki
->references
!= 0) {
1962 ubifs_err("root inode %lu has non-zero (%d) "
1963 "direntries which refer it",
1964 (unsigned long)fscki
->inum
,
1968 if (fscki
->calc_sz
!= fscki
->size
) {
1969 ubifs_err("directory inode %lu size is %lld, "
1970 "but calculated size is %lld",
1971 (unsigned long)fscki
->inum
,
1972 fscki
->size
, fscki
->calc_sz
);
1975 if (fscki
->calc_cnt
!= fscki
->nlink
) {
1976 ubifs_err("directory inode %lu nlink is %d, "
1977 "but calculated nlink is %d",
1978 (unsigned long)fscki
->inum
,
1979 fscki
->nlink
, fscki
->calc_cnt
);
1983 if (fscki
->references
!= fscki
->nlink
) {
1984 ubifs_err("inode %lu nlink is %d, but "
1985 "calculated nlink is %d",
1986 (unsigned long)fscki
->inum
,
1987 fscki
->nlink
, fscki
->references
);
1991 if (fscki
->xattr_sz
!= fscki
->calc_xsz
) {
1992 ubifs_err("inode %lu has xattr size %u, but "
1993 "calculated size is %lld",
1994 (unsigned long)fscki
->inum
, fscki
->xattr_sz
,
1998 if (fscki
->xattr_cnt
!= fscki
->calc_xcnt
) {
1999 ubifs_err("inode %lu has %u xattrs, but "
2000 "calculated count is %lld",
2001 (unsigned long)fscki
->inum
,
2002 fscki
->xattr_cnt
, fscki
->calc_xcnt
);
2005 if (fscki
->xattr_nms
!= fscki
->calc_xnms
) {
2006 ubifs_err("inode %lu has xattr names' size %u, but "
2007 "calculated names' size is %lld",
2008 (unsigned long)fscki
->inum
, fscki
->xattr_nms
,
2017 /* Read the bad inode and dump it */
2018 ino_key_init(c
, &key
, fscki
->inum
);
2019 err
= ubifs_lookup_level0(c
, &key
, &znode
, &n
);
2021 ubifs_err("inode %lu not found in index",
2022 (unsigned long)fscki
->inum
);
2024 } else if (err
< 0) {
2025 ubifs_err("error %d while looking up inode %lu",
2026 err
, (unsigned long)fscki
->inum
);
2030 zbr
= &znode
->zbranch
[n
];
2031 ino
= kmalloc(zbr
->len
, GFP_NOFS
);
2035 err
= ubifs_tnc_read_node(c
, zbr
, ino
);
2037 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2038 zbr
->lnum
, zbr
->offs
, err
);
2043 ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
2044 (unsigned long)fscki
->inum
, zbr
->lnum
, zbr
->offs
);
2045 dbg_dump_node(c
, ino
);
2051 * dbg_check_filesystem - check the file-system.
2052 * @c: UBIFS file-system description object
2054 * This function checks the file system, namely:
2055 * o makes sure that all leaf nodes exist and their CRCs are correct;
2056 * o makes sure inode nlink, size, xattr size/count are correct (for all
2059 * The function reads whole indexing tree and all nodes, so it is pretty
2060 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2061 * not, and a negative error code in case of failure.
2063 int dbg_check_filesystem(struct ubifs_info
*c
)
2066 struct fsck_data fsckd
;
2068 if (!(ubifs_chk_flags
& UBIFS_CHK_FS
))
2071 fsckd
.inodes
= RB_ROOT
;
2072 err
= dbg_walk_index(c
, check_leaf
, NULL
, &fsckd
);
2076 err
= check_inodes(c
, &fsckd
);
2080 free_inodes(&fsckd
);
2084 ubifs_err("file-system check failed with error %d", err
);
2086 free_inodes(&fsckd
);
2090 static int invocation_cnt
;
2092 int dbg_force_in_the_gaps(void)
2094 if (!dbg_force_in_the_gaps_enabled
)
2096 /* Force in-the-gaps every 8th commit */
2097 return !((invocation_cnt
++) & 0x7);
2100 /* Failure mode for recovery testing */
2102 #define chance(n, d) (simple_rand() <= (n) * 32768LL / (d))
2104 struct failure_mode_info
{
2105 struct list_head list
;
2106 struct ubifs_info
*c
;
2109 static LIST_HEAD(fmi_list
);
2110 static DEFINE_SPINLOCK(fmi_lock
);
2112 static unsigned int next
;
2114 static int simple_rand(void)
2117 next
= current
->pid
;
2118 next
= next
* 1103515245 + 12345;
2119 return (next
>> 16) & 32767;
2122 static void failure_mode_init(struct ubifs_info
*c
)
2124 struct failure_mode_info
*fmi
;
2126 fmi
= kmalloc(sizeof(struct failure_mode_info
), GFP_NOFS
);
2128 ubifs_err("Failed to register failure mode - no memory");
2132 spin_lock(&fmi_lock
);
2133 list_add_tail(&fmi
->list
, &fmi_list
);
2134 spin_unlock(&fmi_lock
);
2137 static void failure_mode_exit(struct ubifs_info
*c
)
2139 struct failure_mode_info
*fmi
, *tmp
;
2141 spin_lock(&fmi_lock
);
2142 list_for_each_entry_safe(fmi
, tmp
, &fmi_list
, list
)
2144 list_del(&fmi
->list
);
2147 spin_unlock(&fmi_lock
);
2150 static struct ubifs_info
*dbg_find_info(struct ubi_volume_desc
*desc
)
2152 struct failure_mode_info
*fmi
;
2154 spin_lock(&fmi_lock
);
2155 list_for_each_entry(fmi
, &fmi_list
, list
)
2156 if (fmi
->c
->ubi
== desc
) {
2157 struct ubifs_info
*c
= fmi
->c
;
2159 spin_unlock(&fmi_lock
);
2162 spin_unlock(&fmi_lock
);
2166 static int in_failure_mode(struct ubi_volume_desc
*desc
)
2168 struct ubifs_info
*c
= dbg_find_info(desc
);
2170 if (c
&& dbg_failure_mode
)
2171 return c
->dbg
->failure_mode
;
2175 static int do_fail(struct ubi_volume_desc
*desc
, int lnum
, int write
)
2177 struct ubifs_info
*c
= dbg_find_info(desc
);
2178 struct ubifs_debug_info
*d
;
2180 if (!c
|| !dbg_failure_mode
)
2183 if (d
->failure_mode
)
2186 /* First call - decide delay to failure */
2188 unsigned int delay
= 1 << (simple_rand() >> 11);
2192 d
->fail_timeout
= jiffies
+
2193 msecs_to_jiffies(delay
);
2194 dbg_rcvry("failing after %ums", delay
);
2197 d
->fail_cnt_max
= delay
;
2198 dbg_rcvry("failing after %u calls", delay
);
2203 /* Determine if failure delay has expired */
2204 if (d
->fail_delay
== 1) {
2205 if (time_before(jiffies
, d
->fail_timeout
))
2207 } else if (d
->fail_delay
== 2)
2208 if (d
->fail_cnt
++ < d
->fail_cnt_max
)
2210 if (lnum
== UBIFS_SB_LNUM
) {
2214 } else if (chance(19, 20))
2216 dbg_rcvry("failing in super block LEB %d", lnum
);
2217 } else if (lnum
== UBIFS_MST_LNUM
|| lnum
== UBIFS_MST_LNUM
+ 1) {
2220 dbg_rcvry("failing in master LEB %d", lnum
);
2221 } else if (lnum
>= UBIFS_LOG_LNUM
&& lnum
<= c
->log_last
) {
2223 if (chance(99, 100))
2225 } else if (chance(399, 400))
2227 dbg_rcvry("failing in log LEB %d", lnum
);
2228 } else if (lnum
>= c
->lpt_first
&& lnum
<= c
->lpt_last
) {
2232 } else if (chance(19, 20))
2234 dbg_rcvry("failing in LPT LEB %d", lnum
);
2235 } else if (lnum
>= c
->orph_first
&& lnum
<= c
->orph_last
) {
2239 } else if (chance(9, 10))
2241 dbg_rcvry("failing in orphan LEB %d", lnum
);
2242 } else if (lnum
== c
->ihead_lnum
) {
2243 if (chance(99, 100))
2245 dbg_rcvry("failing in index head LEB %d", lnum
);
2246 } else if (c
->jheads
&& lnum
== c
->jheads
[GCHD
].wbuf
.lnum
) {
2249 dbg_rcvry("failing in GC head LEB %d", lnum
);
2250 } else if (write
&& !RB_EMPTY_ROOT(&c
->buds
) &&
2251 !ubifs_search_bud(c
, lnum
)) {
2254 dbg_rcvry("failing in non-bud LEB %d", lnum
);
2255 } else if (c
->cmt_state
== COMMIT_RUNNING_BACKGROUND
||
2256 c
->cmt_state
== COMMIT_RUNNING_REQUIRED
) {
2257 if (chance(999, 1000))
2259 dbg_rcvry("failing in bud LEB %d commit running", lnum
);
2261 if (chance(9999, 10000))
2263 dbg_rcvry("failing in bud LEB %d commit not running", lnum
);
2265 ubifs_err("*** SETTING FAILURE MODE ON (LEB %d) ***", lnum
);
2266 d
->failure_mode
= 1;
2271 static void cut_data(const void *buf
, int len
)
2274 unsigned char *p
= (void *)buf
;
2276 flen
= (len
* (long long)simple_rand()) >> 15;
2277 for (i
= flen
; i
< len
; i
++)
2281 int dbg_leb_read(struct ubi_volume_desc
*desc
, int lnum
, char *buf
, int offset
,
2284 if (in_failure_mode(desc
))
2286 return ubi_leb_read(desc
, lnum
, buf
, offset
, len
, check
);
2289 int dbg_leb_write(struct ubi_volume_desc
*desc
, int lnum
, const void *buf
,
2290 int offset
, int len
, int dtype
)
2294 if (in_failure_mode(desc
))
2296 failing
= do_fail(desc
, lnum
, 1);
2299 err
= ubi_leb_write(desc
, lnum
, buf
, offset
, len
, dtype
);
2307 int dbg_leb_change(struct ubi_volume_desc
*desc
, int lnum
, const void *buf
,
2312 if (do_fail(desc
, lnum
, 1))
2314 err
= ubi_leb_change(desc
, lnum
, buf
, len
, dtype
);
2317 if (do_fail(desc
, lnum
, 1))
2322 int dbg_leb_erase(struct ubi_volume_desc
*desc
, int lnum
)
2326 if (do_fail(desc
, lnum
, 0))
2328 err
= ubi_leb_erase(desc
, lnum
);
2331 if (do_fail(desc
, lnum
, 0))
2336 int dbg_leb_unmap(struct ubi_volume_desc
*desc
, int lnum
)
2340 if (do_fail(desc
, lnum
, 0))
2342 err
= ubi_leb_unmap(desc
, lnum
);
2345 if (do_fail(desc
, lnum
, 0))
2350 int dbg_is_mapped(struct ubi_volume_desc
*desc
, int lnum
)
2352 if (in_failure_mode(desc
))
2354 return ubi_is_mapped(desc
, lnum
);
2357 int dbg_leb_map(struct ubi_volume_desc
*desc
, int lnum
, int dtype
)
2361 if (do_fail(desc
, lnum
, 0))
2363 err
= ubi_leb_map(desc
, lnum
, dtype
);
2366 if (do_fail(desc
, lnum
, 0))
2372 * ubifs_debugging_init - initialize UBIFS debugging.
2373 * @c: UBIFS file-system description object
2375 * This function initializes debugging-related data for the file system.
2376 * Returns zero in case of success and a negative error code in case of
2379 int ubifs_debugging_init(struct ubifs_info
*c
)
2381 c
->dbg
= kzalloc(sizeof(struct ubifs_debug_info
), GFP_KERNEL
);
2385 c
->dbg
->buf
= vmalloc(c
->leb_size
);
2389 failure_mode_init(c
);
2398 * ubifs_debugging_exit - free debugging data.
2399 * @c: UBIFS file-system description object
2401 void ubifs_debugging_exit(struct ubifs_info
*c
)
2403 failure_mode_exit(c
);
2409 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2410 * contain the stuff specific to particular file-system mounts.
2412 static struct dentry
*debugfs_rootdir
;
2415 * dbg_debugfs_init - initialize debugfs file-system.
2417 * UBIFS uses debugfs file-system to expose various debugging knobs to
2418 * user-space. This function creates "ubifs" directory in the debugfs
2419 * file-system. Returns zero in case of success and a negative error code in
2422 int dbg_debugfs_init(void)
2424 debugfs_rootdir
= debugfs_create_dir("ubifs", NULL
);
2425 if (IS_ERR(debugfs_rootdir
)) {
2426 int err
= PTR_ERR(debugfs_rootdir
);
2427 ubifs_err("cannot create \"ubifs\" debugfs directory, "
2436 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
2438 void dbg_debugfs_exit(void)
2440 debugfs_remove(debugfs_rootdir
);
2443 static int open_debugfs_file(struct inode
*inode
, struct file
*file
)
2445 file
->private_data
= inode
->i_private
;
2449 static ssize_t
write_debugfs_file(struct file
*file
, const char __user
*buf
,
2450 size_t count
, loff_t
*ppos
)
2452 struct ubifs_info
*c
= file
->private_data
;
2453 struct ubifs_debug_info
*d
= c
->dbg
;
2455 if (file
->f_path
.dentry
== d
->dump_lprops
)
2457 else if (file
->f_path
.dentry
== d
->dump_budg
) {
2458 spin_lock(&c
->space_lock
);
2460 spin_unlock(&c
->space_lock
);
2461 } else if (file
->f_path
.dentry
== d
->dump_tnc
) {
2462 mutex_lock(&c
->tnc_mutex
);
2464 mutex_unlock(&c
->tnc_mutex
);
2472 static const struct file_operations debugfs_fops
= {
2473 .open
= open_debugfs_file
,
2474 .write
= write_debugfs_file
,
2475 .owner
= THIS_MODULE
,
2479 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2480 * @c: UBIFS file-system description object
2482 * This function creates all debugfs files for this instance of UBIFS. Returns
2483 * zero in case of success and a negative error code in case of failure.
2485 * Note, the only reason we have not merged this function with the
2486 * 'ubifs_debugging_init()' function is because it is better to initialize
2487 * debugfs interfaces at the very end of the mount process, and remove them at
2488 * the very beginning of the mount process.
2490 int dbg_debugfs_init_fs(struct ubifs_info
*c
)
2494 struct dentry
*dent
;
2495 struct ubifs_debug_info
*d
= c
->dbg
;
2497 sprintf(d
->debugfs_dir_name
, "ubi%d_%d", c
->vi
.ubi_num
, c
->vi
.vol_id
);
2498 d
->debugfs_dir
= debugfs_create_dir(d
->debugfs_dir_name
,
2500 if (IS_ERR(d
->debugfs_dir
)) {
2501 err
= PTR_ERR(d
->debugfs_dir
);
2502 ubifs_err("cannot create \"%s\" debugfs directory, error %d\n",
2503 d
->debugfs_dir_name
, err
);
2507 fname
= "dump_lprops";
2508 dent
= debugfs_create_file(fname
, S_IWUGO
, d
->debugfs_dir
, c
,
2512 d
->dump_lprops
= dent
;
2514 fname
= "dump_budg";
2515 dent
= debugfs_create_file(fname
, S_IWUGO
, d
->debugfs_dir
, c
,
2519 d
->dump_budg
= dent
;
2522 dent
= debugfs_create_file(fname
, S_IWUGO
, d
->debugfs_dir
, c
,
2531 err
= PTR_ERR(dent
);
2532 ubifs_err("cannot create \"%s\" debugfs directory, error %d\n",
2534 debugfs_remove_recursive(d
->debugfs_dir
);
2540 * dbg_debugfs_exit_fs - remove all debugfs files.
2541 * @c: UBIFS file-system description object
2543 void dbg_debugfs_exit_fs(struct ubifs_info
*c
)
2545 debugfs_remove_recursive(c
->dbg
->debugfs_dir
);
2548 #endif /* CONFIG_UBIFS_FS_DEBUG */