[ALSA] atiixp - Add a parameter ac97_quirk
[linux-2.6/linux-2.6-openrd.git] / drivers / ide / cris / ide-cris.c
blob5797e0b5a1327f4e87a41e772bdd568d6180abce
1 /* $Id: cris-ide-driver.patch,v 1.1 2005/06/29 21:39:07 akpm Exp $
3 * Etrax specific IDE functions, like init and PIO-mode setting etc.
4 * Almost the entire ide.c is used for the rest of the Etrax ATA driver.
5 * Copyright (c) 2000-2005 Axis Communications AB
7 * Authors: Bjorn Wesen (initial version)
8 * Mikael Starvik (crisv32 port)
9 */
11 /* Regarding DMA:
13 * There are two forms of DMA - "DMA handshaking" between the interface and the drive,
14 * and DMA between the memory and the interface. We can ALWAYS use the latter, since it's
15 * something built-in in the Etrax. However only some drives support the DMA-mode handshaking
16 * on the ATA-bus. The normal PC driver and Triton interface disables memory-if DMA when the
17 * device can't do DMA handshaking for some stupid reason. We don't need to do that.
20 #undef REALLY_SLOW_IO /* most systems can safely undef this */
22 #include <linux/types.h>
23 #include <linux/kernel.h>
24 #include <linux/timer.h>
25 #include <linux/mm.h>
26 #include <linux/interrupt.h>
27 #include <linux/delay.h>
28 #include <linux/blkdev.h>
29 #include <linux/hdreg.h>
30 #include <linux/ide.h>
31 #include <linux/init.h>
33 #include <asm/io.h>
34 #include <asm/dma.h>
36 /* number of DMA descriptors */
37 #define MAX_DMA_DESCRS 64
39 /* number of times to retry busy-flags when reading/writing IDE-registers
40 * this can't be too high because a hung harddisk might cause the watchdog
41 * to trigger (sometimes INB and OUTB are called with irq's disabled)
44 #define IDE_REGISTER_TIMEOUT 300
46 #define LOWDB(x)
47 #define D(x)
49 enum /* Transfer types */
51 TYPE_PIO,
52 TYPE_DMA,
53 TYPE_UDMA
56 /* CRISv32 specifics */
57 #ifdef CONFIG_ETRAX_ARCH_V32
58 #include <asm/arch/hwregs/ata_defs.h>
59 #include <asm/arch/hwregs/dma_defs.h>
60 #include <asm/arch/hwregs/dma.h>
61 #include <asm/arch/pinmux.h>
63 #define ATA_UDMA2_CYC 2
64 #define ATA_UDMA2_DVS 3
65 #define ATA_UDMA1_CYC 2
66 #define ATA_UDMA1_DVS 4
67 #define ATA_UDMA0_CYC 4
68 #define ATA_UDMA0_DVS 6
69 #define ATA_DMA2_STROBE 7
70 #define ATA_DMA2_HOLD 1
71 #define ATA_DMA1_STROBE 8
72 #define ATA_DMA1_HOLD 3
73 #define ATA_DMA0_STROBE 25
74 #define ATA_DMA0_HOLD 19
75 #define ATA_PIO4_SETUP 3
76 #define ATA_PIO4_STROBE 7
77 #define ATA_PIO4_HOLD 1
78 #define ATA_PIO3_SETUP 3
79 #define ATA_PIO3_STROBE 9
80 #define ATA_PIO3_HOLD 3
81 #define ATA_PIO2_SETUP 3
82 #define ATA_PIO2_STROBE 13
83 #define ATA_PIO2_HOLD 5
84 #define ATA_PIO1_SETUP 5
85 #define ATA_PIO1_STROBE 23
86 #define ATA_PIO1_HOLD 9
87 #define ATA_PIO0_SETUP 9
88 #define ATA_PIO0_STROBE 39
89 #define ATA_PIO0_HOLD 9
91 int
92 cris_ide_ack_intr(ide_hwif_t* hwif)
94 reg_ata_rw_ctrl2 ctrl2 = REG_TYPE_CONV(reg_ata_rw_ctrl2,
95 int, hwif->io_ports[0]);
96 REG_WR_INT(ata, regi_ata, rw_ack_intr, 1 << ctrl2.sel);
97 return 1;
100 static inline int
101 cris_ide_busy(void)
103 reg_ata_rs_stat_data stat_data;
104 stat_data = REG_RD(ata, regi_ata, rs_stat_data);
105 return stat_data.busy;
108 static inline int
109 cris_ide_ready(void)
111 return !cris_ide_busy();
114 static inline int
115 cris_ide_data_available(unsigned short* data)
117 reg_ata_rs_stat_data stat_data;
118 stat_data = REG_RD(ata, regi_ata, rs_stat_data);
119 *data = stat_data.data;
120 return stat_data.dav;
123 static void
124 cris_ide_write_command(unsigned long command)
126 REG_WR_INT(ata, regi_ata, rw_ctrl2, command); /* write data to the drive's register */
129 static void
130 cris_ide_set_speed(int type, int setup, int strobe, int hold)
132 reg_ata_rw_ctrl0 ctrl0 = REG_RD(ata, regi_ata, rw_ctrl0);
133 reg_ata_rw_ctrl1 ctrl1 = REG_RD(ata, regi_ata, rw_ctrl1);
135 if (type == TYPE_PIO) {
136 ctrl0.pio_setup = setup;
137 ctrl0.pio_strb = strobe;
138 ctrl0.pio_hold = hold;
139 } else if (type == TYPE_DMA) {
140 ctrl0.dma_strb = strobe;
141 ctrl0.dma_hold = hold;
142 } else if (type == TYPE_UDMA) {
143 ctrl1.udma_tcyc = setup;
144 ctrl1.udma_tdvs = strobe;
146 REG_WR(ata, regi_ata, rw_ctrl0, ctrl0);
147 REG_WR(ata, regi_ata, rw_ctrl1, ctrl1);
150 static unsigned long
151 cris_ide_base_address(int bus)
153 reg_ata_rw_ctrl2 ctrl2 = {0};
154 ctrl2.sel = bus;
155 return REG_TYPE_CONV(int, reg_ata_rw_ctrl2, ctrl2);
158 static unsigned long
159 cris_ide_reg_addr(unsigned long addr, int cs0, int cs1)
161 reg_ata_rw_ctrl2 ctrl2 = {0};
162 ctrl2.addr = addr;
163 ctrl2.cs1 = cs1;
164 ctrl2.cs0 = cs0;
165 return REG_TYPE_CONV(int, reg_ata_rw_ctrl2, ctrl2);
168 static __init void
169 cris_ide_reset(unsigned val)
171 reg_ata_rw_ctrl0 ctrl0 = {0};
172 ctrl0.rst = val ? regk_ata_active : regk_ata_inactive;
173 REG_WR(ata, regi_ata, rw_ctrl0, ctrl0);
176 static __init void
177 cris_ide_init(void)
179 reg_ata_rw_ctrl0 ctrl0 = {0};
180 reg_ata_rw_intr_mask intr_mask = {0};
182 ctrl0.en = regk_ata_yes;
183 REG_WR(ata, regi_ata, rw_ctrl0, ctrl0);
185 intr_mask.bus0 = regk_ata_yes;
186 intr_mask.bus1 = regk_ata_yes;
187 intr_mask.bus2 = regk_ata_yes;
188 intr_mask.bus3 = regk_ata_yes;
190 REG_WR(ata, regi_ata, rw_intr_mask, intr_mask);
192 crisv32_request_dma(2, "ETRAX FS built-in ATA", DMA_VERBOSE_ON_ERROR, 0, dma_ata);
193 crisv32_request_dma(3, "ETRAX FS built-in ATA", DMA_VERBOSE_ON_ERROR, 0, dma_ata);
195 crisv32_pinmux_alloc_fixed(pinmux_ata);
196 crisv32_pinmux_alloc_fixed(pinmux_ata0);
197 crisv32_pinmux_alloc_fixed(pinmux_ata1);
198 crisv32_pinmux_alloc_fixed(pinmux_ata2);
199 crisv32_pinmux_alloc_fixed(pinmux_ata3);
201 DMA_RESET(regi_dma2);
202 DMA_ENABLE(regi_dma2);
203 DMA_RESET(regi_dma3);
204 DMA_ENABLE(regi_dma3);
206 DMA_WR_CMD (regi_dma2, regk_dma_set_w_size2);
207 DMA_WR_CMD (regi_dma3, regk_dma_set_w_size2);
210 static dma_descr_context mycontext __attribute__ ((__aligned__(32)));
212 #define cris_dma_descr_type dma_descr_data
213 #define cris_pio_read regk_ata_rd
214 #define cris_ultra_mask 0x7
215 #define MAX_DESCR_SIZE 0xffffffffUL
217 static unsigned long
218 cris_ide_get_reg(unsigned long reg)
220 return (reg & 0x0e000000) >> 25;
223 static void
224 cris_ide_fill_descriptor(cris_dma_descr_type *d, void* buf, unsigned int len, int last)
226 d->buf = (char*)virt_to_phys(buf);
227 d->after = d->buf + len;
228 d->eol = last;
231 static void
232 cris_ide_start_dma(ide_drive_t *drive, cris_dma_descr_type *d, int dir,int type,int len)
234 reg_ata_rw_ctrl2 ctrl2 = REG_TYPE_CONV(reg_ata_rw_ctrl2, int, IDE_DATA_REG);
235 reg_ata_rw_trf_cnt trf_cnt = {0};
237 mycontext.saved_data = (dma_descr_data*)virt_to_phys(d);
238 mycontext.saved_data_buf = d->buf;
239 /* start the dma channel */
240 DMA_START_CONTEXT(dir ? regi_dma3 : regi_dma2, virt_to_phys(&mycontext));
242 /* initiate a multi word dma read using PIO handshaking */
243 trf_cnt.cnt = len >> 1;
244 /* Due to a "feature" the transfer count has to be one extra word for UDMA. */
245 if (type == TYPE_UDMA)
246 trf_cnt.cnt++;
247 REG_WR(ata, regi_ata, rw_trf_cnt, trf_cnt);
249 ctrl2.rw = dir ? regk_ata_rd : regk_ata_wr;
250 ctrl2.trf_mode = regk_ata_dma;
251 ctrl2.hsh = type == TYPE_PIO ? regk_ata_pio :
252 type == TYPE_DMA ? regk_ata_dma : regk_ata_udma;
253 ctrl2.multi = regk_ata_yes;
254 ctrl2.dma_size = regk_ata_word;
255 REG_WR(ata, regi_ata, rw_ctrl2, ctrl2);
258 static void
259 cris_ide_wait_dma(int dir)
261 reg_dma_rw_stat status;
264 status = REG_RD(dma, dir ? regi_dma3 : regi_dma2, rw_stat);
265 } while(status.list_state != regk_dma_data_at_eol);
268 static int cris_dma_test_irq(ide_drive_t *drive)
270 int intr = REG_RD_INT(ata, regi_ata, r_intr);
271 reg_ata_rw_ctrl2 ctrl2 = REG_TYPE_CONV(reg_ata_rw_ctrl2, int, IDE_DATA_REG);
272 return intr & (1 << ctrl2.sel) ? 1 : 0;
275 static void cris_ide_initialize_dma(int dir)
279 #else
280 /* CRISv10 specifics */
281 #include <asm/arch/svinto.h>
282 #include <asm/arch/io_interface_mux.h>
284 /* PIO timing (in R_ATA_CONFIG)
286 * _____________________________
287 * ADDRESS : ________/
289 * _______________
290 * DIOR : ____________/ \__________
292 * _______________
293 * DATA : XXXXXXXXXXXXXXXX_______________XXXXXXXX
296 * DIOR is unbuffered while address and data is buffered.
297 * This creates two problems:
298 * 1. The DIOR pulse is to early (because it is unbuffered)
299 * 2. The rise time of DIOR is long
301 * There are at least three different plausible solutions
302 * 1. Use a pad capable of larger currents in Etrax
303 * 2. Use an external buffer
304 * 3. Make the strobe pulse longer
306 * Some of the strobe timings below are modified to compensate
307 * for this. This implies a slight performance decrease.
309 * THIS SHOULD NEVER BE CHANGED!
311 * TODO: Is this true for the latest LX boards still ?
314 #define ATA_UDMA2_CYC 0 /* No UDMA supported, just to make it compile. */
315 #define ATA_UDMA2_DVS 0
316 #define ATA_UDMA1_CYC 0
317 #define ATA_UDMA1_DVS 0
318 #define ATA_UDMA0_CYC 0
319 #define ATA_UDMA0_DVS 0
320 #define ATA_DMA2_STROBE 4
321 #define ATA_DMA2_HOLD 0
322 #define ATA_DMA1_STROBE 4
323 #define ATA_DMA1_HOLD 1
324 #define ATA_DMA0_STROBE 12
325 #define ATA_DMA0_HOLD 9
326 #define ATA_PIO4_SETUP 1
327 #define ATA_PIO4_STROBE 5
328 #define ATA_PIO4_HOLD 0
329 #define ATA_PIO3_SETUP 1
330 #define ATA_PIO3_STROBE 5
331 #define ATA_PIO3_HOLD 1
332 #define ATA_PIO2_SETUP 1
333 #define ATA_PIO2_STROBE 6
334 #define ATA_PIO2_HOLD 2
335 #define ATA_PIO1_SETUP 2
336 #define ATA_PIO1_STROBE 11
337 #define ATA_PIO1_HOLD 4
338 #define ATA_PIO0_SETUP 4
339 #define ATA_PIO0_STROBE 19
340 #define ATA_PIO0_HOLD 4
343 cris_ide_ack_intr(ide_hwif_t* hwif)
345 return 1;
348 static inline int
349 cris_ide_busy(void)
351 return *R_ATA_STATUS_DATA & IO_MASK(R_ATA_STATUS_DATA, busy) ;
354 static inline int
355 cris_ide_ready(void)
357 return *R_ATA_STATUS_DATA & IO_MASK(R_ATA_STATUS_DATA, tr_rdy) ;
360 static inline int
361 cris_ide_data_available(unsigned short* data)
363 unsigned long status = *R_ATA_STATUS_DATA;
364 *data = (unsigned short)status;
365 return status & IO_MASK(R_ATA_STATUS_DATA, dav);
368 static void
369 cris_ide_write_command(unsigned long command)
371 *R_ATA_CTRL_DATA = command;
374 static void
375 cris_ide_set_speed(int type, int setup, int strobe, int hold)
377 static int pio_setup = ATA_PIO4_SETUP;
378 static int pio_strobe = ATA_PIO4_STROBE;
379 static int pio_hold = ATA_PIO4_HOLD;
380 static int dma_strobe = ATA_DMA2_STROBE;
381 static int dma_hold = ATA_DMA2_HOLD;
383 if (type == TYPE_PIO) {
384 pio_setup = setup;
385 pio_strobe = strobe;
386 pio_hold = hold;
387 } else if (type == TYPE_DMA) {
388 dma_strobe = strobe;
389 dma_hold = hold;
391 *R_ATA_CONFIG = ( IO_FIELD( R_ATA_CONFIG, enable, 1 ) |
392 IO_FIELD( R_ATA_CONFIG, dma_strobe, dma_strobe ) |
393 IO_FIELD( R_ATA_CONFIG, dma_hold, dma_hold ) |
394 IO_FIELD( R_ATA_CONFIG, pio_setup, pio_setup ) |
395 IO_FIELD( R_ATA_CONFIG, pio_strobe, pio_strobe ) |
396 IO_FIELD( R_ATA_CONFIG, pio_hold, pio_hold ) );
399 static unsigned long
400 cris_ide_base_address(int bus)
402 return IO_FIELD(R_ATA_CTRL_DATA, sel, bus);
405 static unsigned long
406 cris_ide_reg_addr(unsigned long addr, int cs0, int cs1)
408 return IO_FIELD(R_ATA_CTRL_DATA, addr, addr) |
409 IO_FIELD(R_ATA_CTRL_DATA, cs0, cs0) |
410 IO_FIELD(R_ATA_CTRL_DATA, cs1, cs1);
413 static __init void
414 cris_ide_reset(unsigned val)
416 #ifdef CONFIG_ETRAX_IDE_G27_RESET
417 REG_SHADOW_SET(R_PORT_G_DATA, port_g_data_shadow, 27, val);
418 #endif
419 #ifdef CONFIG_ETRAX_IDE_CSE1_16_RESET
420 REG_SHADOW_SET(port_cse1_addr, port_cse1_shadow, 16, val);
421 #endif
422 #ifdef CONFIG_ETRAX_IDE_CSP0_8_RESET
423 REG_SHADOW_SET(port_csp0_addr, port_csp0_shadow, 8, val);
424 #endif
425 #ifdef CONFIG_ETRAX_IDE_PB7_RESET
426 port_pb_dir_shadow = port_pb_dir_shadow |
427 IO_STATE(R_PORT_PB_DIR, dir7, output);
428 *R_PORT_PB_DIR = port_pb_dir_shadow;
429 REG_SHADOW_SET(R_PORT_PB_DATA, port_pb_data_shadow, 7, val);
430 #endif
433 static __init void
434 cris_ide_init(void)
436 volatile unsigned int dummy;
438 *R_ATA_CTRL_DATA = 0;
439 *R_ATA_TRANSFER_CNT = 0;
440 *R_ATA_CONFIG = 0;
442 if (cris_request_io_interface(if_ata, "ETRAX100LX IDE")) {
443 printk(KERN_CRIT "ide: Failed to get IO interface\n");
444 return;
445 } else if (cris_request_dma(ATA_TX_DMA_NBR,
446 "ETRAX100LX IDE TX",
447 DMA_VERBOSE_ON_ERROR,
448 dma_ata)) {
449 cris_free_io_interface(if_ata);
450 printk(KERN_CRIT "ide: Failed to get Tx DMA channel\n");
451 return;
452 } else if (cris_request_dma(ATA_RX_DMA_NBR,
453 "ETRAX100LX IDE RX",
454 DMA_VERBOSE_ON_ERROR,
455 dma_ata)) {
456 cris_free_dma(ATA_TX_DMA_NBR, "ETRAX100LX IDE Tx");
457 cris_free_io_interface(if_ata);
458 printk(KERN_CRIT "ide: Failed to get Rx DMA channel\n");
459 return;
462 /* make a dummy read to set the ata controller in a proper state */
463 dummy = *R_ATA_STATUS_DATA;
465 *R_ATA_CONFIG = ( IO_FIELD( R_ATA_CONFIG, enable, 1 ));
466 *R_ATA_CTRL_DATA = ( IO_STATE( R_ATA_CTRL_DATA, rw, read) |
467 IO_FIELD( R_ATA_CTRL_DATA, addr, 1 ) );
469 while(*R_ATA_STATUS_DATA & IO_MASK(R_ATA_STATUS_DATA, busy)); /* wait for busy flag*/
471 *R_IRQ_MASK0_SET = ( IO_STATE( R_IRQ_MASK0_SET, ata_irq0, set ) |
472 IO_STATE( R_IRQ_MASK0_SET, ata_irq1, set ) |
473 IO_STATE( R_IRQ_MASK0_SET, ata_irq2, set ) |
474 IO_STATE( R_IRQ_MASK0_SET, ata_irq3, set ) );
476 /* reset the dma channels we will use */
478 RESET_DMA(ATA_TX_DMA_NBR);
479 RESET_DMA(ATA_RX_DMA_NBR);
480 WAIT_DMA(ATA_TX_DMA_NBR);
481 WAIT_DMA(ATA_RX_DMA_NBR);
484 #define cris_dma_descr_type etrax_dma_descr
485 #define cris_pio_read IO_STATE(R_ATA_CTRL_DATA, rw, read)
486 #define cris_ultra_mask 0x0
487 #define MAX_DESCR_SIZE 0x10000UL
489 static unsigned long
490 cris_ide_get_reg(unsigned long reg)
492 return (reg & 0x0e000000) >> 25;
495 static void
496 cris_ide_fill_descriptor(cris_dma_descr_type *d, void* buf, unsigned int len, int last)
498 d->buf = virt_to_phys(buf);
499 d->sw_len = len == MAX_DESCR_SIZE ? 0 : len;
500 if (last)
501 d->ctrl |= d_eol;
504 static void cris_ide_start_dma(ide_drive_t *drive, cris_dma_descr_type *d, int dir, int type, int len)
506 unsigned long cmd;
508 if (dir) {
509 /* need to do this before RX DMA due to a chip bug
510 * it is enough to just flush the part of the cache that
511 * corresponds to the buffers we start, but since HD transfers
512 * usually are more than 8 kB, it is easier to optimize for the
513 * normal case and just flush the entire cache. its the only
514 * way to be sure! (OB movie quote)
516 flush_etrax_cache();
517 *R_DMA_CH3_FIRST = virt_to_phys(d);
518 *R_DMA_CH3_CMD = IO_STATE(R_DMA_CH3_CMD, cmd, start);
520 } else {
521 *R_DMA_CH2_FIRST = virt_to_phys(d);
522 *R_DMA_CH2_CMD = IO_STATE(R_DMA_CH2_CMD, cmd, start);
525 /* initiate a multi word dma read using DMA handshaking */
527 *R_ATA_TRANSFER_CNT =
528 IO_FIELD(R_ATA_TRANSFER_CNT, count, len >> 1);
530 cmd = dir ? IO_STATE(R_ATA_CTRL_DATA, rw, read) : IO_STATE(R_ATA_CTRL_DATA, rw, write);
531 cmd |= type == TYPE_PIO ? IO_STATE(R_ATA_CTRL_DATA, handsh, pio) :
532 IO_STATE(R_ATA_CTRL_DATA, handsh, dma);
533 *R_ATA_CTRL_DATA =
534 cmd |
535 IO_FIELD(R_ATA_CTRL_DATA, data, IDE_DATA_REG) |
536 IO_STATE(R_ATA_CTRL_DATA, src_dst, dma) |
537 IO_STATE(R_ATA_CTRL_DATA, multi, on) |
538 IO_STATE(R_ATA_CTRL_DATA, dma_size, word);
541 static void
542 cris_ide_wait_dma(int dir)
544 if (dir)
545 WAIT_DMA(ATA_RX_DMA_NBR);
546 else
547 WAIT_DMA(ATA_TX_DMA_NBR);
550 static int cris_dma_test_irq(ide_drive_t *drive)
552 int intr = *R_IRQ_MASK0_RD;
553 int bus = IO_EXTRACT(R_ATA_CTRL_DATA, sel, IDE_DATA_REG);
554 return intr & (1 << (bus + IO_BITNR(R_IRQ_MASK0_RD, ata_irq0))) ? 1 : 0;
558 static void cris_ide_initialize_dma(int dir)
560 if (dir)
562 RESET_DMA(ATA_RX_DMA_NBR); /* sometimes the DMA channel get stuck so we need to do this */
563 WAIT_DMA(ATA_RX_DMA_NBR);
565 else
567 RESET_DMA(ATA_TX_DMA_NBR); /* sometimes the DMA channel get stuck so we need to do this */
568 WAIT_DMA(ATA_TX_DMA_NBR);
572 #endif
574 void
575 cris_ide_outw(unsigned short data, unsigned long reg) {
576 int timeleft;
578 LOWDB(printk("ow: data 0x%x, reg 0x%x\n", data, reg));
580 /* note the lack of handling any timeouts. we stop waiting, but we don't
581 * really notify anybody.
584 timeleft = IDE_REGISTER_TIMEOUT;
585 /* wait for busy flag */
586 do {
587 timeleft--;
588 } while(timeleft && cris_ide_busy());
591 * Fall through at a timeout, so the ongoing command will be
592 * aborted by the write below, which is expected to be a dummy
593 * command to the command register. This happens when a faulty
594 * drive times out on a command. See comment on timeout in
595 * INB.
597 if(!timeleft)
598 printk("ATA timeout reg 0x%lx := 0x%x\n", reg, data);
600 cris_ide_write_command(reg|data); /* write data to the drive's register */
602 timeleft = IDE_REGISTER_TIMEOUT;
603 /* wait for transmitter ready */
604 do {
605 timeleft--;
606 } while(timeleft && !cris_ide_ready());
609 void
610 cris_ide_outb(unsigned char data, unsigned long reg)
612 cris_ide_outw(data, reg);
615 void
616 cris_ide_outbsync(ide_drive_t *drive, u8 addr, unsigned long port)
618 cris_ide_outw(addr, port);
621 unsigned short
622 cris_ide_inw(unsigned long reg) {
623 int timeleft;
624 unsigned short val;
626 timeleft = IDE_REGISTER_TIMEOUT;
627 /* wait for busy flag */
628 do {
629 timeleft--;
630 } while(timeleft && cris_ide_busy());
632 if(!timeleft) {
634 * If we're asked to read the status register, like for
635 * example when a command does not complete for an
636 * extended time, but the ATA interface is stuck in a
637 * busy state at the *ETRAX* ATA interface level (as has
638 * happened repeatedly with at least one bad disk), then
639 * the best thing to do is to pretend that we read
640 * "busy" in the status register, so the IDE driver will
641 * time-out, abort the ongoing command and perform a
642 * reset sequence. Note that the subsequent OUT_BYTE
643 * call will also timeout on busy, but as long as the
644 * write is still performed, everything will be fine.
646 if (cris_ide_get_reg(reg) == IDE_STATUS_OFFSET)
647 return BUSY_STAT;
648 else
649 /* For other rare cases we assume 0 is good enough. */
650 return 0;
653 cris_ide_write_command(reg | cris_pio_read);
655 timeleft = IDE_REGISTER_TIMEOUT;
656 /* wait for available */
657 do {
658 timeleft--;
659 } while(timeleft && !cris_ide_data_available(&val));
661 if(!timeleft)
662 return 0;
664 LOWDB(printk("inb: 0x%x from reg 0x%x\n", val & 0xff, reg));
666 return val;
669 unsigned char
670 cris_ide_inb(unsigned long reg)
672 return (unsigned char)cris_ide_inw(reg);
675 static int cris_dma_check (ide_drive_t *drive);
676 static int cris_dma_end (ide_drive_t *drive);
677 static int cris_dma_setup (ide_drive_t *drive);
678 static void cris_dma_exec_cmd (ide_drive_t *drive, u8 command);
679 static int cris_dma_test_irq(ide_drive_t *drive);
680 static void cris_dma_start(ide_drive_t *drive);
681 static void cris_ide_input_data (ide_drive_t *drive, void *, unsigned int);
682 static void cris_ide_output_data (ide_drive_t *drive, void *, unsigned int);
683 static void cris_atapi_input_bytes(ide_drive_t *drive, void *, unsigned int);
684 static void cris_atapi_output_bytes(ide_drive_t *drive, void *, unsigned int);
685 static int cris_dma_off (ide_drive_t *drive);
686 static int cris_dma_on (ide_drive_t *drive);
688 static void tune_cris_ide(ide_drive_t *drive, u8 pio)
690 int setup, strobe, hold;
692 switch(pio)
694 case 0:
695 setup = ATA_PIO0_SETUP;
696 strobe = ATA_PIO0_STROBE;
697 hold = ATA_PIO0_HOLD;
698 break;
699 case 1:
700 setup = ATA_PIO1_SETUP;
701 strobe = ATA_PIO1_STROBE;
702 hold = ATA_PIO1_HOLD;
703 break;
704 case 2:
705 setup = ATA_PIO2_SETUP;
706 strobe = ATA_PIO2_STROBE;
707 hold = ATA_PIO2_HOLD;
708 break;
709 case 3:
710 setup = ATA_PIO3_SETUP;
711 strobe = ATA_PIO3_STROBE;
712 hold = ATA_PIO3_HOLD;
713 break;
714 case 4:
715 setup = ATA_PIO4_SETUP;
716 strobe = ATA_PIO4_STROBE;
717 hold = ATA_PIO4_HOLD;
718 break;
719 default:
720 return;
723 cris_ide_set_speed(TYPE_PIO, setup, strobe, hold);
726 static int speed_cris_ide(ide_drive_t *drive, u8 speed)
728 int cyc = 0, dvs = 0, strobe = 0, hold = 0;
730 if (speed >= XFER_PIO_0 && speed <= XFER_PIO_4) {
731 tune_cris_ide(drive, speed - XFER_PIO_0);
732 return 0;
735 switch(speed)
737 case XFER_UDMA_0:
738 cyc = ATA_UDMA0_CYC;
739 dvs = ATA_UDMA0_DVS;
740 break;
741 case XFER_UDMA_1:
742 cyc = ATA_UDMA1_CYC;
743 dvs = ATA_UDMA1_DVS;
744 break;
745 case XFER_UDMA_2:
746 cyc = ATA_UDMA2_CYC;
747 dvs = ATA_UDMA2_DVS;
748 break;
749 case XFER_MW_DMA_0:
750 strobe = ATA_DMA0_STROBE;
751 hold = ATA_DMA0_HOLD;
752 break;
753 case XFER_MW_DMA_1:
754 strobe = ATA_DMA1_STROBE;
755 hold = ATA_DMA1_HOLD;
756 break;
757 case XFER_MW_DMA_2:
758 strobe = ATA_DMA2_STROBE;
759 hold = ATA_DMA2_HOLD;
760 break;
761 default:
762 return 0;
765 if (speed >= XFER_UDMA_0)
766 cris_ide_set_speed(TYPE_UDMA, cyc, dvs, 0);
767 else
768 cris_ide_set_speed(TYPE_DMA, 0, strobe, hold);
770 return 0;
773 void __init
774 init_e100_ide (void)
776 hw_regs_t hw;
777 int ide_offsets[IDE_NR_PORTS];
778 int h;
779 int i;
781 printk("ide: ETRAX FS built-in ATA DMA controller\n");
783 for (i = IDE_DATA_OFFSET; i <= IDE_STATUS_OFFSET; i++)
784 ide_offsets[i] = cris_ide_reg_addr(i, 0, 1);
786 /* the IDE control register is at ATA address 6, with CS1 active instead of CS0 */
787 ide_offsets[IDE_CONTROL_OFFSET] = cris_ide_reg_addr(6, 1, 0);
789 /* first fill in some stuff in the ide_hwifs fields */
791 for(h = 0; h < MAX_HWIFS; h++) {
792 ide_hwif_t *hwif = &ide_hwifs[h];
793 ide_setup_ports(&hw, cris_ide_base_address(h),
794 ide_offsets,
795 0, 0, cris_ide_ack_intr,
796 ide_default_irq(0));
797 ide_register_hw(&hw, &hwif);
798 hwif->mmio = 2;
799 hwif->chipset = ide_etrax100;
800 hwif->tuneproc = &tune_cris_ide;
801 hwif->speedproc = &speed_cris_ide;
802 hwif->ata_input_data = &cris_ide_input_data;
803 hwif->ata_output_data = &cris_ide_output_data;
804 hwif->atapi_input_bytes = &cris_atapi_input_bytes;
805 hwif->atapi_output_bytes = &cris_atapi_output_bytes;
806 hwif->ide_dma_check = &cris_dma_check;
807 hwif->ide_dma_end = &cris_dma_end;
808 hwif->dma_setup = &cris_dma_setup;
809 hwif->dma_exec_cmd = &cris_dma_exec_cmd;
810 hwif->ide_dma_test_irq = &cris_dma_test_irq;
811 hwif->dma_start = &cris_dma_start;
812 hwif->OUTB = &cris_ide_outb;
813 hwif->OUTW = &cris_ide_outw;
814 hwif->OUTBSYNC = &cris_ide_outbsync;
815 hwif->INB = &cris_ide_inb;
816 hwif->INW = &cris_ide_inw;
817 hwif->ide_dma_host_off = &cris_dma_off;
818 hwif->ide_dma_host_on = &cris_dma_on;
819 hwif->ide_dma_off_quietly = &cris_dma_off;
820 hwif->udma_four = 0;
821 hwif->ultra_mask = cris_ultra_mask;
822 hwif->mwdma_mask = 0x07; /* Multiword DMA 0-2 */
823 hwif->swdma_mask = 0x07; /* Singleword DMA 0-2 */
826 /* Reset pulse */
827 cris_ide_reset(0);
828 udelay(25);
829 cris_ide_reset(1);
831 cris_ide_init();
833 cris_ide_set_speed(TYPE_PIO, ATA_PIO4_SETUP, ATA_PIO4_STROBE, ATA_PIO4_HOLD);
834 cris_ide_set_speed(TYPE_DMA, 0, ATA_DMA2_STROBE, ATA_DMA2_HOLD);
835 cris_ide_set_speed(TYPE_UDMA, ATA_UDMA2_CYC, ATA_UDMA2_DVS, 0);
838 static int cris_dma_off (ide_drive_t *drive)
840 return 0;
843 static int cris_dma_on (ide_drive_t *drive)
845 return 0;
849 static cris_dma_descr_type mydescr __attribute__ ((__aligned__(16)));
852 * The following routines are mainly used by the ATAPI drivers.
854 * These routines will round up any request for an odd number of bytes,
855 * so if an odd bytecount is specified, be sure that there's at least one
856 * extra byte allocated for the buffer.
858 static void
859 cris_atapi_input_bytes (ide_drive_t *drive, void *buffer, unsigned int bytecount)
861 D(printk("atapi_input_bytes, buffer 0x%x, count %d\n",
862 buffer, bytecount));
864 if(bytecount & 1) {
865 printk("warning, odd bytecount in cdrom_in_bytes = %d.\n", bytecount);
866 bytecount++; /* to round off */
869 /* setup DMA and start transfer */
871 cris_ide_fill_descriptor(&mydescr, buffer, bytecount, 1);
872 cris_ide_start_dma(drive, &mydescr, 1, TYPE_PIO, bytecount);
874 /* wait for completion */
875 LED_DISK_READ(1);
876 cris_ide_wait_dma(1);
877 LED_DISK_READ(0);
880 static void
881 cris_atapi_output_bytes (ide_drive_t *drive, void *buffer, unsigned int bytecount)
883 D(printk("atapi_output_bytes, buffer 0x%x, count %d\n",
884 buffer, bytecount));
886 if(bytecount & 1) {
887 printk("odd bytecount %d in atapi_out_bytes!\n", bytecount);
888 bytecount++;
891 cris_ide_fill_descriptor(&mydescr, buffer, bytecount, 1);
892 cris_ide_start_dma(drive, &mydescr, 0, TYPE_PIO, bytecount);
894 /* wait for completion */
896 LED_DISK_WRITE(1);
897 LED_DISK_READ(1);
898 cris_ide_wait_dma(0);
899 LED_DISK_WRITE(0);
903 * This is used for most PIO data transfers *from* the IDE interface
905 static void
906 cris_ide_input_data (ide_drive_t *drive, void *buffer, unsigned int wcount)
908 cris_atapi_input_bytes(drive, buffer, wcount << 2);
912 * This is used for most PIO data transfers *to* the IDE interface
914 static void
915 cris_ide_output_data (ide_drive_t *drive, void *buffer, unsigned int wcount)
917 cris_atapi_output_bytes(drive, buffer, wcount << 2);
920 /* we only have one DMA channel on the chip for ATA, so we can keep these statically */
921 static cris_dma_descr_type ata_descrs[MAX_DMA_DESCRS] __attribute__ ((__aligned__(16)));
922 static unsigned int ata_tot_size;
925 * cris_ide_build_dmatable() prepares a dma request.
926 * Returns 0 if all went okay, returns 1 otherwise.
928 static int cris_ide_build_dmatable (ide_drive_t *drive)
930 ide_hwif_t *hwif = drive->hwif;
931 struct scatterlist* sg;
932 struct request *rq = drive->hwif->hwgroup->rq;
933 unsigned long size, addr;
934 unsigned int count = 0;
935 int i = 0;
937 sg = hwif->sg_table;
939 ata_tot_size = 0;
941 ide_map_sg(drive, rq);
942 i = hwif->sg_nents;
944 while(i) {
946 * Determine addr and size of next buffer area. We assume that
947 * individual virtual buffers are always composed linearly in
948 * physical memory. For example, we assume that any 8kB buffer
949 * is always composed of two adjacent physical 4kB pages rather
950 * than two possibly non-adjacent physical 4kB pages.
952 /* group sequential buffers into one large buffer */
953 addr = page_to_phys(sg->page) + sg->offset;
954 size = sg_dma_len(sg);
955 while (sg++, --i) {
956 if ((addr + size) != page_to_phys(sg->page) + sg->offset)
957 break;
958 size += sg_dma_len(sg);
961 /* did we run out of descriptors? */
963 if(count >= MAX_DMA_DESCRS) {
964 printk("%s: too few DMA descriptors\n", drive->name);
965 return 1;
968 /* however, this case is more difficult - rw_trf_cnt cannot be more
969 than 65536 words per transfer, so in that case we need to either
970 1) use a DMA interrupt to re-trigger rw_trf_cnt and continue with
971 the descriptors, or
972 2) simply do the request here, and get dma_intr to only ide_end_request on
973 those blocks that were actually set-up for transfer.
976 if(ata_tot_size + size > 131072) {
977 printk("too large total ATA DMA request, %d + %d!\n", ata_tot_size, (int)size);
978 return 1;
981 /* If size > MAX_DESCR_SIZE it has to be splitted into new descriptors. Since we
982 don't handle size > 131072 only one split is necessary */
984 if(size > MAX_DESCR_SIZE) {
985 cris_ide_fill_descriptor(&ata_descrs[count], (void*)addr, MAX_DESCR_SIZE, 0);
986 count++;
987 ata_tot_size += MAX_DESCR_SIZE;
988 size -= MAX_DESCR_SIZE;
989 addr += MAX_DESCR_SIZE;
992 cris_ide_fill_descriptor(&ata_descrs[count], (void*)addr, size,i ? 0 : 1);
993 count++;
994 ata_tot_size += size;
997 if (count) {
998 /* return and say all is ok */
999 return 0;
1002 printk("%s: empty DMA table?\n", drive->name);
1003 return 1; /* let the PIO routines handle this weirdness */
1006 static int cris_config_drive_for_dma (ide_drive_t *drive)
1008 u8 speed = ide_dma_speed(drive, 1);
1010 if (!speed)
1011 return 0;
1013 speed_cris_ide(drive, speed);
1014 ide_config_drive_speed(drive, speed);
1016 return ide_dma_enable(drive);
1020 * cris_dma_intr() is the handler for disk read/write DMA interrupts
1022 static ide_startstop_t cris_dma_intr (ide_drive_t *drive)
1024 LED_DISK_READ(0);
1025 LED_DISK_WRITE(0);
1027 return ide_dma_intr(drive);
1031 * Functions below initiates/aborts DMA read/write operations on a drive.
1033 * The caller is assumed to have selected the drive and programmed the drive's
1034 * sector address using CHS or LBA. All that remains is to prepare for DMA
1035 * and then issue the actual read/write DMA/PIO command to the drive.
1037 * For ATAPI devices, we just prepare for DMA and return. The caller should
1038 * then issue the packet command to the drive and call us again with
1039 * cris_dma_start afterwards.
1041 * Returns 0 if all went well.
1042 * Returns 1 if DMA read/write could not be started, in which case
1043 * the caller should revert to PIO for the current request.
1046 static int cris_dma_check(ide_drive_t *drive)
1048 ide_hwif_t *hwif = drive->hwif;
1049 struct hd_driveid* id = drive->id;
1051 if (id && (id->capability & 1)) {
1052 if (ide_use_dma(drive)) {
1053 if (cris_config_drive_for_dma(drive))
1054 return hwif->ide_dma_on(drive);
1058 return hwif->ide_dma_off_quietly(drive);
1061 static int cris_dma_end(ide_drive_t *drive)
1063 drive->waiting_for_dma = 0;
1064 return 0;
1067 static int cris_dma_setup(ide_drive_t *drive)
1069 struct request *rq = drive->hwif->hwgroup->rq;
1071 cris_ide_initialize_dma(!rq_data_dir(rq));
1072 if (cris_ide_build_dmatable (drive)) {
1073 ide_map_sg(drive, rq);
1074 return 1;
1077 drive->waiting_for_dma = 1;
1078 return 0;
1081 static void cris_dma_exec_cmd(ide_drive_t *drive, u8 command)
1083 /* set the irq handler which will finish the request when DMA is done */
1084 ide_set_handler(drive, &cris_dma_intr, WAIT_CMD, NULL);
1086 /* issue cmd to drive */
1087 cris_ide_outb(command, IDE_COMMAND_REG);
1090 static void cris_dma_start(ide_drive_t *drive)
1092 struct request *rq = drive->hwif->hwgroup->rq;
1093 int writing = rq_data_dir(rq);
1094 int type = TYPE_DMA;
1096 if (drive->current_speed >= XFER_UDMA_0)
1097 type = TYPE_UDMA;
1099 cris_ide_start_dma(drive, &ata_descrs[0], writing ? 0 : 1, type, ata_tot_size);
1101 if (writing) {
1102 LED_DISK_WRITE(1);
1103 } else {
1104 LED_DISK_READ(1);