2 * eCryptfs: Linux filesystem encryption layer
4 * Copyright (C) 1997-2004 Erez Zadok
5 * Copyright (C) 2001-2004 Stony Brook University
6 * Copyright (C) 2004-2007 International Business Machines Corp.
7 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8 * Michael C. Thompson <mcthomps@us.ibm.com>
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 of the
13 * License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/random.h>
30 #include <linux/compiler.h>
31 #include <linux/key.h>
32 #include <linux/namei.h>
33 #include <linux/crypto.h>
34 #include <linux/file.h>
35 #include <linux/scatterlist.h>
36 #include <asm/unaligned.h>
37 #include "ecryptfs_kernel.h"
40 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat
*crypt_stat
,
41 struct page
*dst_page
, int dst_offset
,
42 struct page
*src_page
, int src_offset
, int size
,
45 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat
*crypt_stat
,
46 struct page
*dst_page
, int dst_offset
,
47 struct page
*src_page
, int src_offset
, int size
,
52 * @dst: Buffer to take hex character representation of contents of
53 * src; must be at least of size (src_size * 2)
54 * @src: Buffer to be converted to a hex string respresentation
55 * @src_size: number of bytes to convert
57 void ecryptfs_to_hex(char *dst
, char *src
, size_t src_size
)
61 for (x
= 0; x
< src_size
; x
++)
62 sprintf(&dst
[x
* 2], "%.2x", (unsigned char)src
[x
]);
67 * @dst: Buffer to take the bytes from src hex; must be at least of
69 * @src: Buffer to be converted from a hex string respresentation to raw value
70 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
72 void ecryptfs_from_hex(char *dst
, char *src
, int dst_size
)
77 for (x
= 0; x
< dst_size
; x
++) {
79 tmp
[1] = src
[x
* 2 + 1];
80 dst
[x
] = (unsigned char)simple_strtol(tmp
, NULL
, 16);
85 * ecryptfs_calculate_md5 - calculates the md5 of @src
86 * @dst: Pointer to 16 bytes of allocated memory
87 * @crypt_stat: Pointer to crypt_stat struct for the current inode
88 * @src: Data to be md5'd
89 * @len: Length of @src
91 * Uses the allocated crypto context that crypt_stat references to
92 * generate the MD5 sum of the contents of src.
94 static int ecryptfs_calculate_md5(char *dst
,
95 struct ecryptfs_crypt_stat
*crypt_stat
,
98 struct scatterlist sg
;
99 struct hash_desc desc
= {
100 .tfm
= crypt_stat
->hash_tfm
,
101 .flags
= CRYPTO_TFM_REQ_MAY_SLEEP
105 mutex_lock(&crypt_stat
->cs_hash_tfm_mutex
);
106 sg_init_one(&sg
, (u8
*)src
, len
);
108 desc
.tfm
= crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH
, 0,
110 if (IS_ERR(desc
.tfm
)) {
111 rc
= PTR_ERR(desc
.tfm
);
112 ecryptfs_printk(KERN_ERR
, "Error attempting to "
113 "allocate crypto context; rc = [%d]\n",
117 crypt_stat
->hash_tfm
= desc
.tfm
;
119 rc
= crypto_hash_init(&desc
);
122 "%s: Error initializing crypto hash; rc = [%d]\n",
126 rc
= crypto_hash_update(&desc
, &sg
, len
);
129 "%s: Error updating crypto hash; rc = [%d]\n",
133 rc
= crypto_hash_final(&desc
, dst
);
136 "%s: Error finalizing crypto hash; rc = [%d]\n",
141 mutex_unlock(&crypt_stat
->cs_hash_tfm_mutex
);
145 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name
,
147 char *chaining_modifier
)
149 int cipher_name_len
= strlen(cipher_name
);
150 int chaining_modifier_len
= strlen(chaining_modifier
);
151 int algified_name_len
;
154 algified_name_len
= (chaining_modifier_len
+ cipher_name_len
+ 3);
155 (*algified_name
) = kmalloc(algified_name_len
, GFP_KERNEL
);
156 if (!(*algified_name
)) {
160 snprintf((*algified_name
), algified_name_len
, "%s(%s)",
161 chaining_modifier
, cipher_name
);
169 * @iv: destination for the derived iv vale
170 * @crypt_stat: Pointer to crypt_stat struct for the current inode
171 * @offset: Offset of the extent whose IV we are to derive
173 * Generate the initialization vector from the given root IV and page
176 * Returns zero on success; non-zero on error.
178 int ecryptfs_derive_iv(char *iv
, struct ecryptfs_crypt_stat
*crypt_stat
,
182 char dst
[MD5_DIGEST_SIZE
];
183 char src
[ECRYPTFS_MAX_IV_BYTES
+ 16];
185 if (unlikely(ecryptfs_verbosity
> 0)) {
186 ecryptfs_printk(KERN_DEBUG
, "root iv:\n");
187 ecryptfs_dump_hex(crypt_stat
->root_iv
, crypt_stat
->iv_bytes
);
189 /* TODO: It is probably secure to just cast the least
190 * significant bits of the root IV into an unsigned long and
191 * add the offset to that rather than go through all this
192 * hashing business. -Halcrow */
193 memcpy(src
, crypt_stat
->root_iv
, crypt_stat
->iv_bytes
);
194 memset((src
+ crypt_stat
->iv_bytes
), 0, 16);
195 snprintf((src
+ crypt_stat
->iv_bytes
), 16, "%lld", offset
);
196 if (unlikely(ecryptfs_verbosity
> 0)) {
197 ecryptfs_printk(KERN_DEBUG
, "source:\n");
198 ecryptfs_dump_hex(src
, (crypt_stat
->iv_bytes
+ 16));
200 rc
= ecryptfs_calculate_md5(dst
, crypt_stat
, src
,
201 (crypt_stat
->iv_bytes
+ 16));
203 ecryptfs_printk(KERN_WARNING
, "Error attempting to compute "
204 "MD5 while generating IV for a page\n");
207 memcpy(iv
, dst
, crypt_stat
->iv_bytes
);
208 if (unlikely(ecryptfs_verbosity
> 0)) {
209 ecryptfs_printk(KERN_DEBUG
, "derived iv:\n");
210 ecryptfs_dump_hex(iv
, crypt_stat
->iv_bytes
);
217 * ecryptfs_init_crypt_stat
218 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
220 * Initialize the crypt_stat structure.
223 ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat
*crypt_stat
)
225 memset((void *)crypt_stat
, 0, sizeof(struct ecryptfs_crypt_stat
));
226 INIT_LIST_HEAD(&crypt_stat
->keysig_list
);
227 mutex_init(&crypt_stat
->keysig_list_mutex
);
228 mutex_init(&crypt_stat
->cs_mutex
);
229 mutex_init(&crypt_stat
->cs_tfm_mutex
);
230 mutex_init(&crypt_stat
->cs_hash_tfm_mutex
);
231 crypt_stat
->flags
|= ECRYPTFS_STRUCT_INITIALIZED
;
235 * ecryptfs_destroy_crypt_stat
236 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
238 * Releases all memory associated with a crypt_stat struct.
240 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat
*crypt_stat
)
242 struct ecryptfs_key_sig
*key_sig
, *key_sig_tmp
;
245 crypto_free_blkcipher(crypt_stat
->tfm
);
246 if (crypt_stat
->hash_tfm
)
247 crypto_free_hash(crypt_stat
->hash_tfm
);
248 list_for_each_entry_safe(key_sig
, key_sig_tmp
,
249 &crypt_stat
->keysig_list
, crypt_stat_list
) {
250 list_del(&key_sig
->crypt_stat_list
);
251 kmem_cache_free(ecryptfs_key_sig_cache
, key_sig
);
253 memset(crypt_stat
, 0, sizeof(struct ecryptfs_crypt_stat
));
256 void ecryptfs_destroy_mount_crypt_stat(
257 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
259 struct ecryptfs_global_auth_tok
*auth_tok
, *auth_tok_tmp
;
261 if (!(mount_crypt_stat
->flags
& ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED
))
263 mutex_lock(&mount_crypt_stat
->global_auth_tok_list_mutex
);
264 list_for_each_entry_safe(auth_tok
, auth_tok_tmp
,
265 &mount_crypt_stat
->global_auth_tok_list
,
266 mount_crypt_stat_list
) {
267 list_del(&auth_tok
->mount_crypt_stat_list
);
268 mount_crypt_stat
->num_global_auth_toks
--;
269 if (auth_tok
->global_auth_tok_key
270 && !(auth_tok
->flags
& ECRYPTFS_AUTH_TOK_INVALID
))
271 key_put(auth_tok
->global_auth_tok_key
);
272 kmem_cache_free(ecryptfs_global_auth_tok_cache
, auth_tok
);
274 mutex_unlock(&mount_crypt_stat
->global_auth_tok_list_mutex
);
275 memset(mount_crypt_stat
, 0, sizeof(struct ecryptfs_mount_crypt_stat
));
279 * virt_to_scatterlist
280 * @addr: Virtual address
281 * @size: Size of data; should be an even multiple of the block size
282 * @sg: Pointer to scatterlist array; set to NULL to obtain only
283 * the number of scatterlist structs required in array
284 * @sg_size: Max array size
286 * Fills in a scatterlist array with page references for a passed
289 * Returns the number of scatterlist structs in array used
291 int virt_to_scatterlist(const void *addr
, int size
, struct scatterlist
*sg
,
297 int remainder_of_page
;
299 sg_init_table(sg
, sg_size
);
301 while (size
> 0 && i
< sg_size
) {
302 pg
= virt_to_page(addr
);
303 offset
= offset_in_page(addr
);
305 sg_set_page(&sg
[i
], pg
, 0, offset
);
306 remainder_of_page
= PAGE_CACHE_SIZE
- offset
;
307 if (size
>= remainder_of_page
) {
309 sg
[i
].length
= remainder_of_page
;
310 addr
+= remainder_of_page
;
311 size
-= remainder_of_page
;
326 * encrypt_scatterlist
327 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
328 * @dest_sg: Destination of encrypted data
329 * @src_sg: Data to be encrypted
330 * @size: Length of data to be encrypted
331 * @iv: iv to use during encryption
333 * Returns the number of bytes encrypted; negative value on error
335 static int encrypt_scatterlist(struct ecryptfs_crypt_stat
*crypt_stat
,
336 struct scatterlist
*dest_sg
,
337 struct scatterlist
*src_sg
, int size
,
340 struct blkcipher_desc desc
= {
341 .tfm
= crypt_stat
->tfm
,
343 .flags
= CRYPTO_TFM_REQ_MAY_SLEEP
347 BUG_ON(!crypt_stat
|| !crypt_stat
->tfm
348 || !(crypt_stat
->flags
& ECRYPTFS_STRUCT_INITIALIZED
));
349 if (unlikely(ecryptfs_verbosity
> 0)) {
350 ecryptfs_printk(KERN_DEBUG
, "Key size [%d]; key:\n",
351 crypt_stat
->key_size
);
352 ecryptfs_dump_hex(crypt_stat
->key
,
353 crypt_stat
->key_size
);
355 /* Consider doing this once, when the file is opened */
356 mutex_lock(&crypt_stat
->cs_tfm_mutex
);
357 if (!(crypt_stat
->flags
& ECRYPTFS_KEY_SET
)) {
358 rc
= crypto_blkcipher_setkey(crypt_stat
->tfm
, crypt_stat
->key
,
359 crypt_stat
->key_size
);
360 crypt_stat
->flags
|= ECRYPTFS_KEY_SET
;
363 ecryptfs_printk(KERN_ERR
, "Error setting key; rc = [%d]\n",
365 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
369 ecryptfs_printk(KERN_DEBUG
, "Encrypting [%d] bytes.\n", size
);
370 crypto_blkcipher_encrypt_iv(&desc
, dest_sg
, src_sg
, size
);
371 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
377 * ecryptfs_lower_offset_for_extent
379 * Convert an eCryptfs page index into a lower byte offset
381 static void ecryptfs_lower_offset_for_extent(loff_t
*offset
, loff_t extent_num
,
382 struct ecryptfs_crypt_stat
*crypt_stat
)
384 (*offset
) = (crypt_stat
->num_header_bytes_at_front
385 + (crypt_stat
->extent_size
* extent_num
));
389 * ecryptfs_encrypt_extent
390 * @enc_extent_page: Allocated page into which to encrypt the data in
392 * @crypt_stat: crypt_stat containing cryptographic context for the
393 * encryption operation
394 * @page: Page containing plaintext data extent to encrypt
395 * @extent_offset: Page extent offset for use in generating IV
397 * Encrypts one extent of data.
399 * Return zero on success; non-zero otherwise
401 static int ecryptfs_encrypt_extent(struct page
*enc_extent_page
,
402 struct ecryptfs_crypt_stat
*crypt_stat
,
404 unsigned long extent_offset
)
407 char extent_iv
[ECRYPTFS_MAX_IV_BYTES
];
410 extent_base
= (((loff_t
)page
->index
)
411 * (PAGE_CACHE_SIZE
/ crypt_stat
->extent_size
));
412 rc
= ecryptfs_derive_iv(extent_iv
, crypt_stat
,
413 (extent_base
+ extent_offset
));
415 ecryptfs_printk(KERN_ERR
, "Error attempting to "
416 "derive IV for extent [0x%.16x]; "
417 "rc = [%d]\n", (extent_base
+ extent_offset
),
421 if (unlikely(ecryptfs_verbosity
> 0)) {
422 ecryptfs_printk(KERN_DEBUG
, "Encrypting extent "
424 ecryptfs_dump_hex(extent_iv
, crypt_stat
->iv_bytes
);
425 ecryptfs_printk(KERN_DEBUG
, "First 8 bytes before "
427 ecryptfs_dump_hex((char *)
429 + (extent_offset
* crypt_stat
->extent_size
)),
432 rc
= ecryptfs_encrypt_page_offset(crypt_stat
, enc_extent_page
, 0,
434 * crypt_stat
->extent_size
),
435 crypt_stat
->extent_size
, extent_iv
);
437 printk(KERN_ERR
"%s: Error attempting to encrypt page with "
438 "page->index = [%ld], extent_offset = [%ld]; "
439 "rc = [%d]\n", __func__
, page
->index
, extent_offset
,
444 if (unlikely(ecryptfs_verbosity
> 0)) {
445 ecryptfs_printk(KERN_DEBUG
, "Encrypt extent [0x%.16x]; "
446 "rc = [%d]\n", (extent_base
+ extent_offset
),
448 ecryptfs_printk(KERN_DEBUG
, "First 8 bytes after "
450 ecryptfs_dump_hex((char *)(page_address(enc_extent_page
)), 8);
457 * ecryptfs_encrypt_page
458 * @page: Page mapped from the eCryptfs inode for the file; contains
459 * decrypted content that needs to be encrypted (to a temporary
460 * page; not in place) and written out to the lower file
462 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
463 * that eCryptfs pages may straddle the lower pages -- for instance,
464 * if the file was created on a machine with an 8K page size
465 * (resulting in an 8K header), and then the file is copied onto a
466 * host with a 32K page size, then when reading page 0 of the eCryptfs
467 * file, 24K of page 0 of the lower file will be read and decrypted,
468 * and then 8K of page 1 of the lower file will be read and decrypted.
470 * Returns zero on success; negative on error
472 int ecryptfs_encrypt_page(struct page
*page
)
474 struct inode
*ecryptfs_inode
;
475 struct ecryptfs_crypt_stat
*crypt_stat
;
476 char *enc_extent_virt
;
477 struct page
*enc_extent_page
= NULL
;
478 loff_t extent_offset
;
481 ecryptfs_inode
= page
->mapping
->host
;
483 &(ecryptfs_inode_to_private(ecryptfs_inode
)->crypt_stat
);
484 BUG_ON(!(crypt_stat
->flags
& ECRYPTFS_ENCRYPTED
));
485 enc_extent_page
= alloc_page(GFP_USER
);
486 if (!enc_extent_page
) {
488 ecryptfs_printk(KERN_ERR
, "Error allocating memory for "
489 "encrypted extent\n");
492 enc_extent_virt
= kmap(enc_extent_page
);
493 for (extent_offset
= 0;
494 extent_offset
< (PAGE_CACHE_SIZE
/ crypt_stat
->extent_size
);
498 rc
= ecryptfs_encrypt_extent(enc_extent_page
, crypt_stat
, page
,
501 printk(KERN_ERR
"%s: Error encrypting extent; "
502 "rc = [%d]\n", __func__
, rc
);
505 ecryptfs_lower_offset_for_extent(
506 &offset
, ((((loff_t
)page
->index
)
508 / crypt_stat
->extent_size
))
509 + extent_offset
), crypt_stat
);
510 rc
= ecryptfs_write_lower(ecryptfs_inode
, enc_extent_virt
,
511 offset
, crypt_stat
->extent_size
);
513 ecryptfs_printk(KERN_ERR
, "Error attempting "
514 "to write lower page; rc = [%d]"
521 if (enc_extent_page
) {
522 kunmap(enc_extent_page
);
523 __free_page(enc_extent_page
);
528 static int ecryptfs_decrypt_extent(struct page
*page
,
529 struct ecryptfs_crypt_stat
*crypt_stat
,
530 struct page
*enc_extent_page
,
531 unsigned long extent_offset
)
534 char extent_iv
[ECRYPTFS_MAX_IV_BYTES
];
537 extent_base
= (((loff_t
)page
->index
)
538 * (PAGE_CACHE_SIZE
/ crypt_stat
->extent_size
));
539 rc
= ecryptfs_derive_iv(extent_iv
, crypt_stat
,
540 (extent_base
+ extent_offset
));
542 ecryptfs_printk(KERN_ERR
, "Error attempting to "
543 "derive IV for extent [0x%.16x]; "
544 "rc = [%d]\n", (extent_base
+ extent_offset
),
548 if (unlikely(ecryptfs_verbosity
> 0)) {
549 ecryptfs_printk(KERN_DEBUG
, "Decrypting extent "
551 ecryptfs_dump_hex(extent_iv
, crypt_stat
->iv_bytes
);
552 ecryptfs_printk(KERN_DEBUG
, "First 8 bytes before "
554 ecryptfs_dump_hex((char *)
555 (page_address(enc_extent_page
)
556 + (extent_offset
* crypt_stat
->extent_size
)),
559 rc
= ecryptfs_decrypt_page_offset(crypt_stat
, page
,
561 * crypt_stat
->extent_size
),
563 crypt_stat
->extent_size
, extent_iv
);
565 printk(KERN_ERR
"%s: Error attempting to decrypt to page with "
566 "page->index = [%ld], extent_offset = [%ld]; "
567 "rc = [%d]\n", __func__
, page
->index
, extent_offset
,
572 if (unlikely(ecryptfs_verbosity
> 0)) {
573 ecryptfs_printk(KERN_DEBUG
, "Decrypt extent [0x%.16x]; "
574 "rc = [%d]\n", (extent_base
+ extent_offset
),
576 ecryptfs_printk(KERN_DEBUG
, "First 8 bytes after "
578 ecryptfs_dump_hex((char *)(page_address(page
)
580 * crypt_stat
->extent_size
)), 8);
587 * ecryptfs_decrypt_page
588 * @page: Page mapped from the eCryptfs inode for the file; data read
589 * and decrypted from the lower file will be written into this
592 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
593 * that eCryptfs pages may straddle the lower pages -- for instance,
594 * if the file was created on a machine with an 8K page size
595 * (resulting in an 8K header), and then the file is copied onto a
596 * host with a 32K page size, then when reading page 0 of the eCryptfs
597 * file, 24K of page 0 of the lower file will be read and decrypted,
598 * and then 8K of page 1 of the lower file will be read and decrypted.
600 * Returns zero on success; negative on error
602 int ecryptfs_decrypt_page(struct page
*page
)
604 struct inode
*ecryptfs_inode
;
605 struct ecryptfs_crypt_stat
*crypt_stat
;
606 char *enc_extent_virt
;
607 struct page
*enc_extent_page
= NULL
;
608 unsigned long extent_offset
;
611 ecryptfs_inode
= page
->mapping
->host
;
613 &(ecryptfs_inode_to_private(ecryptfs_inode
)->crypt_stat
);
614 BUG_ON(!(crypt_stat
->flags
& ECRYPTFS_ENCRYPTED
));
615 enc_extent_page
= alloc_page(GFP_USER
);
616 if (!enc_extent_page
) {
618 ecryptfs_printk(KERN_ERR
, "Error allocating memory for "
619 "encrypted extent\n");
622 enc_extent_virt
= kmap(enc_extent_page
);
623 for (extent_offset
= 0;
624 extent_offset
< (PAGE_CACHE_SIZE
/ crypt_stat
->extent_size
);
628 ecryptfs_lower_offset_for_extent(
629 &offset
, ((page
->index
* (PAGE_CACHE_SIZE
630 / crypt_stat
->extent_size
))
631 + extent_offset
), crypt_stat
);
632 rc
= ecryptfs_read_lower(enc_extent_virt
, offset
,
633 crypt_stat
->extent_size
,
636 ecryptfs_printk(KERN_ERR
, "Error attempting "
637 "to read lower page; rc = [%d]"
641 rc
= ecryptfs_decrypt_extent(page
, crypt_stat
, enc_extent_page
,
644 printk(KERN_ERR
"%s: Error encrypting extent; "
645 "rc = [%d]\n", __func__
, rc
);
650 if (enc_extent_page
) {
651 kunmap(enc_extent_page
);
652 __free_page(enc_extent_page
);
658 * decrypt_scatterlist
659 * @crypt_stat: Cryptographic context
660 * @dest_sg: The destination scatterlist to decrypt into
661 * @src_sg: The source scatterlist to decrypt from
662 * @size: The number of bytes to decrypt
663 * @iv: The initialization vector to use for the decryption
665 * Returns the number of bytes decrypted; negative value on error
667 static int decrypt_scatterlist(struct ecryptfs_crypt_stat
*crypt_stat
,
668 struct scatterlist
*dest_sg
,
669 struct scatterlist
*src_sg
, int size
,
672 struct blkcipher_desc desc
= {
673 .tfm
= crypt_stat
->tfm
,
675 .flags
= CRYPTO_TFM_REQ_MAY_SLEEP
679 /* Consider doing this once, when the file is opened */
680 mutex_lock(&crypt_stat
->cs_tfm_mutex
);
681 rc
= crypto_blkcipher_setkey(crypt_stat
->tfm
, crypt_stat
->key
,
682 crypt_stat
->key_size
);
684 ecryptfs_printk(KERN_ERR
, "Error setting key; rc = [%d]\n",
686 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
690 ecryptfs_printk(KERN_DEBUG
, "Decrypting [%d] bytes.\n", size
);
691 rc
= crypto_blkcipher_decrypt_iv(&desc
, dest_sg
, src_sg
, size
);
692 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
694 ecryptfs_printk(KERN_ERR
, "Error decrypting; rc = [%d]\n",
704 * ecryptfs_encrypt_page_offset
705 * @crypt_stat: The cryptographic context
706 * @dst_page: The page to encrypt into
707 * @dst_offset: The offset in the page to encrypt into
708 * @src_page: The page to encrypt from
709 * @src_offset: The offset in the page to encrypt from
710 * @size: The number of bytes to encrypt
711 * @iv: The initialization vector to use for the encryption
713 * Returns the number of bytes encrypted
716 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat
*crypt_stat
,
717 struct page
*dst_page
, int dst_offset
,
718 struct page
*src_page
, int src_offset
, int size
,
721 struct scatterlist src_sg
, dst_sg
;
723 sg_init_table(&src_sg
, 1);
724 sg_init_table(&dst_sg
, 1);
726 sg_set_page(&src_sg
, src_page
, size
, src_offset
);
727 sg_set_page(&dst_sg
, dst_page
, size
, dst_offset
);
728 return encrypt_scatterlist(crypt_stat
, &dst_sg
, &src_sg
, size
, iv
);
732 * ecryptfs_decrypt_page_offset
733 * @crypt_stat: The cryptographic context
734 * @dst_page: The page to decrypt into
735 * @dst_offset: The offset in the page to decrypt into
736 * @src_page: The page to decrypt from
737 * @src_offset: The offset in the page to decrypt from
738 * @size: The number of bytes to decrypt
739 * @iv: The initialization vector to use for the decryption
741 * Returns the number of bytes decrypted
744 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat
*crypt_stat
,
745 struct page
*dst_page
, int dst_offset
,
746 struct page
*src_page
, int src_offset
, int size
,
749 struct scatterlist src_sg
, dst_sg
;
751 sg_init_table(&src_sg
, 1);
752 sg_set_page(&src_sg
, src_page
, size
, src_offset
);
754 sg_init_table(&dst_sg
, 1);
755 sg_set_page(&dst_sg
, dst_page
, size
, dst_offset
);
757 return decrypt_scatterlist(crypt_stat
, &dst_sg
, &src_sg
, size
, iv
);
760 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
763 * ecryptfs_init_crypt_ctx
764 * @crypt_stat: Uninitilized crypt stats structure
766 * Initialize the crypto context.
768 * TODO: Performance: Keep a cache of initialized cipher contexts;
769 * only init if needed
771 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat
*crypt_stat
)
776 if (!crypt_stat
->cipher
) {
777 ecryptfs_printk(KERN_ERR
, "No cipher specified\n");
780 ecryptfs_printk(KERN_DEBUG
,
781 "Initializing cipher [%s]; strlen = [%d]; "
782 "key_size_bits = [%d]\n",
783 crypt_stat
->cipher
, (int)strlen(crypt_stat
->cipher
),
784 crypt_stat
->key_size
<< 3);
785 if (crypt_stat
->tfm
) {
789 mutex_lock(&crypt_stat
->cs_tfm_mutex
);
790 rc
= ecryptfs_crypto_api_algify_cipher_name(&full_alg_name
,
791 crypt_stat
->cipher
, "cbc");
794 crypt_stat
->tfm
= crypto_alloc_blkcipher(full_alg_name
, 0,
796 kfree(full_alg_name
);
797 if (IS_ERR(crypt_stat
->tfm
)) {
798 rc
= PTR_ERR(crypt_stat
->tfm
);
799 crypt_stat
->tfm
= NULL
;
800 ecryptfs_printk(KERN_ERR
, "cryptfs: init_crypt_ctx(): "
801 "Error initializing cipher [%s]\n",
805 crypto_blkcipher_set_flags(crypt_stat
->tfm
, CRYPTO_TFM_REQ_WEAK_KEY
);
808 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
813 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat
*crypt_stat
)
817 crypt_stat
->extent_mask
= 0xFFFFFFFF;
818 crypt_stat
->extent_shift
= 0;
819 if (crypt_stat
->extent_size
== 0)
821 extent_size_tmp
= crypt_stat
->extent_size
;
822 while ((extent_size_tmp
& 0x01) == 0) {
823 extent_size_tmp
>>= 1;
824 crypt_stat
->extent_mask
<<= 1;
825 crypt_stat
->extent_shift
++;
829 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat
*crypt_stat
)
831 /* Default values; may be overwritten as we are parsing the
833 crypt_stat
->extent_size
= ECRYPTFS_DEFAULT_EXTENT_SIZE
;
834 set_extent_mask_and_shift(crypt_stat
);
835 crypt_stat
->iv_bytes
= ECRYPTFS_DEFAULT_IV_BYTES
;
836 if (crypt_stat
->flags
& ECRYPTFS_METADATA_IN_XATTR
)
837 crypt_stat
->num_header_bytes_at_front
= 0;
839 if (PAGE_CACHE_SIZE
<= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
)
840 crypt_stat
->num_header_bytes_at_front
=
841 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
;
843 crypt_stat
->num_header_bytes_at_front
= PAGE_CACHE_SIZE
;
848 * ecryptfs_compute_root_iv
851 * On error, sets the root IV to all 0's.
853 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat
*crypt_stat
)
856 char dst
[MD5_DIGEST_SIZE
];
858 BUG_ON(crypt_stat
->iv_bytes
> MD5_DIGEST_SIZE
);
859 BUG_ON(crypt_stat
->iv_bytes
<= 0);
860 if (!(crypt_stat
->flags
& ECRYPTFS_KEY_VALID
)) {
862 ecryptfs_printk(KERN_WARNING
, "Session key not valid; "
863 "cannot generate root IV\n");
866 rc
= ecryptfs_calculate_md5(dst
, crypt_stat
, crypt_stat
->key
,
867 crypt_stat
->key_size
);
869 ecryptfs_printk(KERN_WARNING
, "Error attempting to compute "
870 "MD5 while generating root IV\n");
873 memcpy(crypt_stat
->root_iv
, dst
, crypt_stat
->iv_bytes
);
876 memset(crypt_stat
->root_iv
, 0, crypt_stat
->iv_bytes
);
877 crypt_stat
->flags
|= ECRYPTFS_SECURITY_WARNING
;
882 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat
*crypt_stat
)
884 get_random_bytes(crypt_stat
->key
, crypt_stat
->key_size
);
885 crypt_stat
->flags
|= ECRYPTFS_KEY_VALID
;
886 ecryptfs_compute_root_iv(crypt_stat
);
887 if (unlikely(ecryptfs_verbosity
> 0)) {
888 ecryptfs_printk(KERN_DEBUG
, "Generated new session key:\n");
889 ecryptfs_dump_hex(crypt_stat
->key
,
890 crypt_stat
->key_size
);
895 * ecryptfs_copy_mount_wide_flags_to_inode_flags
896 * @crypt_stat: The inode's cryptographic context
897 * @mount_crypt_stat: The mount point's cryptographic context
899 * This function propagates the mount-wide flags to individual inode
902 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
903 struct ecryptfs_crypt_stat
*crypt_stat
,
904 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
906 if (mount_crypt_stat
->flags
& ECRYPTFS_XATTR_METADATA_ENABLED
)
907 crypt_stat
->flags
|= ECRYPTFS_METADATA_IN_XATTR
;
908 if (mount_crypt_stat
->flags
& ECRYPTFS_ENCRYPTED_VIEW_ENABLED
)
909 crypt_stat
->flags
|= ECRYPTFS_VIEW_AS_ENCRYPTED
;
910 if (mount_crypt_stat
->flags
& ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES
) {
911 crypt_stat
->flags
|= ECRYPTFS_ENCRYPT_FILENAMES
;
912 if (mount_crypt_stat
->flags
913 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK
)
914 crypt_stat
->flags
|= ECRYPTFS_ENCFN_USE_MOUNT_FNEK
;
915 else if (mount_crypt_stat
->flags
916 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK
)
917 crypt_stat
->flags
|= ECRYPTFS_ENCFN_USE_FEK
;
921 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
922 struct ecryptfs_crypt_stat
*crypt_stat
,
923 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
925 struct ecryptfs_global_auth_tok
*global_auth_tok
;
928 mutex_lock(&crypt_stat
->keysig_list_mutex
);
929 mutex_lock(&mount_crypt_stat
->global_auth_tok_list_mutex
);
931 list_for_each_entry(global_auth_tok
,
932 &mount_crypt_stat
->global_auth_tok_list
,
933 mount_crypt_stat_list
) {
934 if (global_auth_tok
->flags
& ECRYPTFS_AUTH_TOK_FNEK
)
936 rc
= ecryptfs_add_keysig(crypt_stat
, global_auth_tok
->sig
);
938 printk(KERN_ERR
"Error adding keysig; rc = [%d]\n", rc
);
944 mutex_unlock(&mount_crypt_stat
->global_auth_tok_list_mutex
);
945 mutex_unlock(&crypt_stat
->keysig_list_mutex
);
950 * ecryptfs_set_default_crypt_stat_vals
951 * @crypt_stat: The inode's cryptographic context
952 * @mount_crypt_stat: The mount point's cryptographic context
954 * Default values in the event that policy does not override them.
956 static void ecryptfs_set_default_crypt_stat_vals(
957 struct ecryptfs_crypt_stat
*crypt_stat
,
958 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
960 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat
,
962 ecryptfs_set_default_sizes(crypt_stat
);
963 strcpy(crypt_stat
->cipher
, ECRYPTFS_DEFAULT_CIPHER
);
964 crypt_stat
->key_size
= ECRYPTFS_DEFAULT_KEY_BYTES
;
965 crypt_stat
->flags
&= ~(ECRYPTFS_KEY_VALID
);
966 crypt_stat
->file_version
= ECRYPTFS_FILE_VERSION
;
967 crypt_stat
->mount_crypt_stat
= mount_crypt_stat
;
971 * ecryptfs_new_file_context
972 * @ecryptfs_dentry: The eCryptfs dentry
974 * If the crypto context for the file has not yet been established,
975 * this is where we do that. Establishing a new crypto context
976 * involves the following decisions:
977 * - What cipher to use?
978 * - What set of authentication tokens to use?
979 * Here we just worry about getting enough information into the
980 * authentication tokens so that we know that they are available.
981 * We associate the available authentication tokens with the new file
982 * via the set of signatures in the crypt_stat struct. Later, when
983 * the headers are actually written out, we may again defer to
984 * userspace to perform the encryption of the session key; for the
985 * foreseeable future, this will be the case with public key packets.
987 * Returns zero on success; non-zero otherwise
989 int ecryptfs_new_file_context(struct dentry
*ecryptfs_dentry
)
991 struct ecryptfs_crypt_stat
*crypt_stat
=
992 &ecryptfs_inode_to_private(ecryptfs_dentry
->d_inode
)->crypt_stat
;
993 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
=
994 &ecryptfs_superblock_to_private(
995 ecryptfs_dentry
->d_sb
)->mount_crypt_stat
;
999 ecryptfs_set_default_crypt_stat_vals(crypt_stat
, mount_crypt_stat
);
1000 crypt_stat
->flags
|= (ECRYPTFS_ENCRYPTED
| ECRYPTFS_KEY_VALID
);
1001 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat
,
1003 rc
= ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat
,
1006 printk(KERN_ERR
"Error attempting to copy mount-wide key sigs "
1007 "to the inode key sigs; rc = [%d]\n", rc
);
1011 strlen(mount_crypt_stat
->global_default_cipher_name
);
1012 memcpy(crypt_stat
->cipher
,
1013 mount_crypt_stat
->global_default_cipher_name
,
1015 crypt_stat
->cipher
[cipher_name_len
] = '\0';
1016 crypt_stat
->key_size
=
1017 mount_crypt_stat
->global_default_cipher_key_size
;
1018 ecryptfs_generate_new_key(crypt_stat
);
1019 rc
= ecryptfs_init_crypt_ctx(crypt_stat
);
1021 ecryptfs_printk(KERN_ERR
, "Error initializing cryptographic "
1022 "context for cipher [%s]: rc = [%d]\n",
1023 crypt_stat
->cipher
, rc
);
1029 * contains_ecryptfs_marker - check for the ecryptfs marker
1030 * @data: The data block in which to check
1032 * Returns one if marker found; zero if not found
1034 static int contains_ecryptfs_marker(char *data
)
1038 m_1
= get_unaligned_be32(data
);
1039 m_2
= get_unaligned_be32(data
+ 4);
1040 if ((m_1
^ MAGIC_ECRYPTFS_MARKER
) == m_2
)
1042 ecryptfs_printk(KERN_DEBUG
, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
1043 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1
, m_2
,
1044 MAGIC_ECRYPTFS_MARKER
);
1045 ecryptfs_printk(KERN_DEBUG
, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
1046 "[0x%.8x]\n", (m_1
^ MAGIC_ECRYPTFS_MARKER
));
1050 struct ecryptfs_flag_map_elem
{
1055 /* Add support for additional flags by adding elements here. */
1056 static struct ecryptfs_flag_map_elem ecryptfs_flag_map
[] = {
1057 {0x00000001, ECRYPTFS_ENABLE_HMAC
},
1058 {0x00000002, ECRYPTFS_ENCRYPTED
},
1059 {0x00000004, ECRYPTFS_METADATA_IN_XATTR
},
1060 {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES
}
1064 * ecryptfs_process_flags
1065 * @crypt_stat: The cryptographic context
1066 * @page_virt: Source data to be parsed
1067 * @bytes_read: Updated with the number of bytes read
1069 * Returns zero on success; non-zero if the flag set is invalid
1071 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat
*crypt_stat
,
1072 char *page_virt
, int *bytes_read
)
1078 flags
= get_unaligned_be32(page_virt
);
1079 for (i
= 0; i
< ((sizeof(ecryptfs_flag_map
)
1080 / sizeof(struct ecryptfs_flag_map_elem
))); i
++)
1081 if (flags
& ecryptfs_flag_map
[i
].file_flag
) {
1082 crypt_stat
->flags
|= ecryptfs_flag_map
[i
].local_flag
;
1084 crypt_stat
->flags
&= ~(ecryptfs_flag_map
[i
].local_flag
);
1085 /* Version is in top 8 bits of the 32-bit flag vector */
1086 crypt_stat
->file_version
= ((flags
>> 24) & 0xFF);
1092 * write_ecryptfs_marker
1093 * @page_virt: The pointer to in a page to begin writing the marker
1094 * @written: Number of bytes written
1096 * Marker = 0x3c81b7f5
1098 static void write_ecryptfs_marker(char *page_virt
, size_t *written
)
1102 get_random_bytes(&m_1
, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES
/ 2));
1103 m_2
= (m_1
^ MAGIC_ECRYPTFS_MARKER
);
1104 put_unaligned_be32(m_1
, page_virt
);
1105 page_virt
+= (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES
/ 2);
1106 put_unaligned_be32(m_2
, page_virt
);
1107 (*written
) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES
;
1111 write_ecryptfs_flags(char *page_virt
, struct ecryptfs_crypt_stat
*crypt_stat
,
1117 for (i
= 0; i
< ((sizeof(ecryptfs_flag_map
)
1118 / sizeof(struct ecryptfs_flag_map_elem
))); i
++)
1119 if (crypt_stat
->flags
& ecryptfs_flag_map
[i
].local_flag
)
1120 flags
|= ecryptfs_flag_map
[i
].file_flag
;
1121 /* Version is in top 8 bits of the 32-bit flag vector */
1122 flags
|= ((((u8
)crypt_stat
->file_version
) << 24) & 0xFF000000);
1123 put_unaligned_be32(flags
, page_virt
);
1127 struct ecryptfs_cipher_code_str_map_elem
{
1128 char cipher_str
[16];
1132 /* Add support for additional ciphers by adding elements here. The
1133 * cipher_code is whatever OpenPGP applicatoins use to identify the
1134 * ciphers. List in order of probability. */
1135 static struct ecryptfs_cipher_code_str_map_elem
1136 ecryptfs_cipher_code_str_map
[] = {
1137 {"aes",RFC2440_CIPHER_AES_128
},
1138 {"blowfish", RFC2440_CIPHER_BLOWFISH
},
1139 {"des3_ede", RFC2440_CIPHER_DES3_EDE
},
1140 {"cast5", RFC2440_CIPHER_CAST_5
},
1141 {"twofish", RFC2440_CIPHER_TWOFISH
},
1142 {"cast6", RFC2440_CIPHER_CAST_6
},
1143 {"aes", RFC2440_CIPHER_AES_192
},
1144 {"aes", RFC2440_CIPHER_AES_256
}
1148 * ecryptfs_code_for_cipher_string
1149 * @cipher_name: The string alias for the cipher
1150 * @key_bytes: Length of key in bytes; used for AES code selection
1152 * Returns zero on no match, or the cipher code on match
1154 u8
ecryptfs_code_for_cipher_string(char *cipher_name
, size_t key_bytes
)
1158 struct ecryptfs_cipher_code_str_map_elem
*map
=
1159 ecryptfs_cipher_code_str_map
;
1161 if (strcmp(cipher_name
, "aes") == 0) {
1162 switch (key_bytes
) {
1164 code
= RFC2440_CIPHER_AES_128
;
1167 code
= RFC2440_CIPHER_AES_192
;
1170 code
= RFC2440_CIPHER_AES_256
;
1173 for (i
= 0; i
< ARRAY_SIZE(ecryptfs_cipher_code_str_map
); i
++)
1174 if (strcmp(cipher_name
, map
[i
].cipher_str
) == 0) {
1175 code
= map
[i
].cipher_code
;
1183 * ecryptfs_cipher_code_to_string
1184 * @str: Destination to write out the cipher name
1185 * @cipher_code: The code to convert to cipher name string
1187 * Returns zero on success
1189 int ecryptfs_cipher_code_to_string(char *str
, u8 cipher_code
)
1195 for (i
= 0; i
< ARRAY_SIZE(ecryptfs_cipher_code_str_map
); i
++)
1196 if (cipher_code
== ecryptfs_cipher_code_str_map
[i
].cipher_code
)
1197 strcpy(str
, ecryptfs_cipher_code_str_map
[i
].cipher_str
);
1198 if (str
[0] == '\0') {
1199 ecryptfs_printk(KERN_WARNING
, "Cipher code not recognized: "
1200 "[%d]\n", cipher_code
);
1206 int ecryptfs_read_and_validate_header_region(char *data
,
1207 struct inode
*ecryptfs_inode
)
1209 struct ecryptfs_crypt_stat
*crypt_stat
=
1210 &(ecryptfs_inode_to_private(ecryptfs_inode
)->crypt_stat
);
1213 if (crypt_stat
->extent_size
== 0)
1214 crypt_stat
->extent_size
= ECRYPTFS_DEFAULT_EXTENT_SIZE
;
1215 rc
= ecryptfs_read_lower(data
, 0, crypt_stat
->extent_size
,
1218 printk(KERN_ERR
"%s: Error reading header region; rc = [%d]\n",
1222 if (!contains_ecryptfs_marker(data
+ ECRYPTFS_FILE_SIZE_BYTES
)) {
1231 ecryptfs_write_header_metadata(char *virt
,
1232 struct ecryptfs_crypt_stat
*crypt_stat
,
1235 u32 header_extent_size
;
1236 u16 num_header_extents_at_front
;
1238 header_extent_size
= (u32
)crypt_stat
->extent_size
;
1239 num_header_extents_at_front
=
1240 (u16
)(crypt_stat
->num_header_bytes_at_front
1241 / crypt_stat
->extent_size
);
1242 put_unaligned_be32(header_extent_size
, virt
);
1244 put_unaligned_be16(num_header_extents_at_front
, virt
);
1248 struct kmem_cache
*ecryptfs_header_cache_1
;
1249 struct kmem_cache
*ecryptfs_header_cache_2
;
1252 * ecryptfs_write_headers_virt
1253 * @page_virt: The virtual address to write the headers to
1254 * @max: The size of memory allocated at page_virt
1255 * @size: Set to the number of bytes written by this function
1256 * @crypt_stat: The cryptographic context
1257 * @ecryptfs_dentry: The eCryptfs dentry
1262 * Octets 0-7: Unencrypted file size (big-endian)
1263 * Octets 8-15: eCryptfs special marker
1264 * Octets 16-19: Flags
1265 * Octet 16: File format version number (between 0 and 255)
1266 * Octets 17-18: Reserved
1267 * Octet 19: Bit 1 (lsb): Reserved
1269 * Bits 3-8: Reserved
1270 * Octets 20-23: Header extent size (big-endian)
1271 * Octets 24-25: Number of header extents at front of file
1273 * Octet 26: Begin RFC 2440 authentication token packet set
1275 * Lower data (CBC encrypted)
1277 * Lower data (CBC encrypted)
1280 * Returns zero on success
1282 static int ecryptfs_write_headers_virt(char *page_virt
, size_t max
,
1284 struct ecryptfs_crypt_stat
*crypt_stat
,
1285 struct dentry
*ecryptfs_dentry
)
1291 offset
= ECRYPTFS_FILE_SIZE_BYTES
;
1292 write_ecryptfs_marker((page_virt
+ offset
), &written
);
1294 write_ecryptfs_flags((page_virt
+ offset
), crypt_stat
, &written
);
1296 ecryptfs_write_header_metadata((page_virt
+ offset
), crypt_stat
,
1299 rc
= ecryptfs_generate_key_packet_set((page_virt
+ offset
), crypt_stat
,
1300 ecryptfs_dentry
, &written
,
1303 ecryptfs_printk(KERN_WARNING
, "Error generating key packet "
1304 "set; rc = [%d]\n", rc
);
1313 ecryptfs_write_metadata_to_contents(struct dentry
*ecryptfs_dentry
,
1314 char *virt
, size_t virt_len
)
1318 rc
= ecryptfs_write_lower(ecryptfs_dentry
->d_inode
, virt
,
1321 printk(KERN_ERR
"%s: Error attempting to write header "
1322 "information to lower file; rc = [%d]\n", __func__
, rc
);
1329 ecryptfs_write_metadata_to_xattr(struct dentry
*ecryptfs_dentry
,
1330 char *page_virt
, size_t size
)
1334 rc
= ecryptfs_setxattr(ecryptfs_dentry
, ECRYPTFS_XATTR_NAME
, page_virt
,
1339 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask
,
1344 page
= alloc_pages(gfp_mask
| __GFP_ZERO
, order
);
1346 return (unsigned long) page_address(page
);
1351 * ecryptfs_write_metadata
1352 * @ecryptfs_dentry: The eCryptfs dentry
1354 * Write the file headers out. This will likely involve a userspace
1355 * callout, in which the session key is encrypted with one or more
1356 * public keys and/or the passphrase necessary to do the encryption is
1357 * retrieved via a prompt. Exactly what happens at this point should
1358 * be policy-dependent.
1360 * Returns zero on success; non-zero on error
1362 int ecryptfs_write_metadata(struct dentry
*ecryptfs_dentry
)
1364 struct ecryptfs_crypt_stat
*crypt_stat
=
1365 &ecryptfs_inode_to_private(ecryptfs_dentry
->d_inode
)->crypt_stat
;
1372 if (likely(crypt_stat
->flags
& ECRYPTFS_ENCRYPTED
)) {
1373 if (!(crypt_stat
->flags
& ECRYPTFS_KEY_VALID
)) {
1374 printk(KERN_ERR
"Key is invalid; bailing out\n");
1379 printk(KERN_WARNING
"%s: Encrypted flag not set\n",
1384 virt_len
= crypt_stat
->num_header_bytes_at_front
;
1385 order
= get_order(virt_len
);
1386 /* Released in this function */
1387 virt
= (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL
, order
);
1389 printk(KERN_ERR
"%s: Out of memory\n", __func__
);
1393 rc
= ecryptfs_write_headers_virt(virt
, virt_len
, &size
, crypt_stat
,
1396 printk(KERN_ERR
"%s: Error whilst writing headers; rc = [%d]\n",
1400 if (crypt_stat
->flags
& ECRYPTFS_METADATA_IN_XATTR
)
1401 rc
= ecryptfs_write_metadata_to_xattr(ecryptfs_dentry
, virt
,
1404 rc
= ecryptfs_write_metadata_to_contents(ecryptfs_dentry
, virt
,
1407 printk(KERN_ERR
"%s: Error writing metadata out to lower file; "
1408 "rc = [%d]\n", __func__
, rc
);
1412 free_pages((unsigned long)virt
, order
);
1417 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1418 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1419 static int parse_header_metadata(struct ecryptfs_crypt_stat
*crypt_stat
,
1420 char *virt
, int *bytes_read
,
1421 int validate_header_size
)
1424 u32 header_extent_size
;
1425 u16 num_header_extents_at_front
;
1427 header_extent_size
= get_unaligned_be32(virt
);
1428 virt
+= sizeof(__be32
);
1429 num_header_extents_at_front
= get_unaligned_be16(virt
);
1430 crypt_stat
->num_header_bytes_at_front
=
1431 (((size_t)num_header_extents_at_front
1432 * (size_t)header_extent_size
));
1433 (*bytes_read
) = (sizeof(__be32
) + sizeof(__be16
));
1434 if ((validate_header_size
== ECRYPTFS_VALIDATE_HEADER_SIZE
)
1435 && (crypt_stat
->num_header_bytes_at_front
1436 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
)) {
1438 printk(KERN_WARNING
"Invalid header size: [%zd]\n",
1439 crypt_stat
->num_header_bytes_at_front
);
1445 * set_default_header_data
1446 * @crypt_stat: The cryptographic context
1448 * For version 0 file format; this function is only for backwards
1449 * compatibility for files created with the prior versions of
1452 static void set_default_header_data(struct ecryptfs_crypt_stat
*crypt_stat
)
1454 crypt_stat
->num_header_bytes_at_front
=
1455 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
;
1459 * ecryptfs_read_headers_virt
1460 * @page_virt: The virtual address into which to read the headers
1461 * @crypt_stat: The cryptographic context
1462 * @ecryptfs_dentry: The eCryptfs dentry
1463 * @validate_header_size: Whether to validate the header size while reading
1465 * Read/parse the header data. The header format is detailed in the
1466 * comment block for the ecryptfs_write_headers_virt() function.
1468 * Returns zero on success
1470 static int ecryptfs_read_headers_virt(char *page_virt
,
1471 struct ecryptfs_crypt_stat
*crypt_stat
,
1472 struct dentry
*ecryptfs_dentry
,
1473 int validate_header_size
)
1479 ecryptfs_set_default_sizes(crypt_stat
);
1480 crypt_stat
->mount_crypt_stat
= &ecryptfs_superblock_to_private(
1481 ecryptfs_dentry
->d_sb
)->mount_crypt_stat
;
1482 offset
= ECRYPTFS_FILE_SIZE_BYTES
;
1483 rc
= contains_ecryptfs_marker(page_virt
+ offset
);
1488 offset
+= MAGIC_ECRYPTFS_MARKER_SIZE_BYTES
;
1489 rc
= ecryptfs_process_flags(crypt_stat
, (page_virt
+ offset
),
1492 ecryptfs_printk(KERN_WARNING
, "Error processing flags\n");
1495 if (crypt_stat
->file_version
> ECRYPTFS_SUPPORTED_FILE_VERSION
) {
1496 ecryptfs_printk(KERN_WARNING
, "File version is [%d]; only "
1497 "file version [%d] is supported by this "
1498 "version of eCryptfs\n",
1499 crypt_stat
->file_version
,
1500 ECRYPTFS_SUPPORTED_FILE_VERSION
);
1504 offset
+= bytes_read
;
1505 if (crypt_stat
->file_version
>= 1) {
1506 rc
= parse_header_metadata(crypt_stat
, (page_virt
+ offset
),
1507 &bytes_read
, validate_header_size
);
1509 ecryptfs_printk(KERN_WARNING
, "Error reading header "
1510 "metadata; rc = [%d]\n", rc
);
1512 offset
+= bytes_read
;
1514 set_default_header_data(crypt_stat
);
1515 rc
= ecryptfs_parse_packet_set(crypt_stat
, (page_virt
+ offset
),
1522 * ecryptfs_read_xattr_region
1523 * @page_virt: The vitual address into which to read the xattr data
1524 * @ecryptfs_inode: The eCryptfs inode
1526 * Attempts to read the crypto metadata from the extended attribute
1527 * region of the lower file.
1529 * Returns zero on success; non-zero on error
1531 int ecryptfs_read_xattr_region(char *page_virt
, struct inode
*ecryptfs_inode
)
1533 struct dentry
*lower_dentry
=
1534 ecryptfs_inode_to_private(ecryptfs_inode
)->lower_file
->f_dentry
;
1538 size
= ecryptfs_getxattr_lower(lower_dentry
, ECRYPTFS_XATTR_NAME
,
1539 page_virt
, ECRYPTFS_DEFAULT_EXTENT_SIZE
);
1541 if (unlikely(ecryptfs_verbosity
> 0))
1542 printk(KERN_INFO
"Error attempting to read the [%s] "
1543 "xattr from the lower file; return value = "
1544 "[%zd]\n", ECRYPTFS_XATTR_NAME
, size
);
1552 int ecryptfs_read_and_validate_xattr_region(char *page_virt
,
1553 struct dentry
*ecryptfs_dentry
)
1557 rc
= ecryptfs_read_xattr_region(page_virt
, ecryptfs_dentry
->d_inode
);
1560 if (!contains_ecryptfs_marker(page_virt
+ ECRYPTFS_FILE_SIZE_BYTES
)) {
1561 printk(KERN_WARNING
"Valid data found in [%s] xattr, but "
1562 "the marker is invalid\n", ECRYPTFS_XATTR_NAME
);
1570 * ecryptfs_read_metadata
1572 * Common entry point for reading file metadata. From here, we could
1573 * retrieve the header information from the header region of the file,
1574 * the xattr region of the file, or some other repostory that is
1575 * stored separately from the file itself. The current implementation
1576 * supports retrieving the metadata information from the file contents
1577 * and from the xattr region.
1579 * Returns zero if valid headers found and parsed; non-zero otherwise
1581 int ecryptfs_read_metadata(struct dentry
*ecryptfs_dentry
)
1584 char *page_virt
= NULL
;
1585 struct inode
*ecryptfs_inode
= ecryptfs_dentry
->d_inode
;
1586 struct ecryptfs_crypt_stat
*crypt_stat
=
1587 &ecryptfs_inode_to_private(ecryptfs_inode
)->crypt_stat
;
1588 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
=
1589 &ecryptfs_superblock_to_private(
1590 ecryptfs_dentry
->d_sb
)->mount_crypt_stat
;
1592 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat
,
1594 /* Read the first page from the underlying file */
1595 page_virt
= kmem_cache_alloc(ecryptfs_header_cache_1
, GFP_USER
);
1598 printk(KERN_ERR
"%s: Unable to allocate page_virt\n",
1602 rc
= ecryptfs_read_lower(page_virt
, 0, crypt_stat
->extent_size
,
1605 rc
= ecryptfs_read_headers_virt(page_virt
, crypt_stat
,
1607 ECRYPTFS_VALIDATE_HEADER_SIZE
);
1609 rc
= ecryptfs_read_xattr_region(page_virt
, ecryptfs_inode
);
1611 printk(KERN_DEBUG
"Valid eCryptfs headers not found in "
1612 "file header region or xattr region\n");
1616 rc
= ecryptfs_read_headers_virt(page_virt
, crypt_stat
,
1618 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE
);
1620 printk(KERN_DEBUG
"Valid eCryptfs headers not found in "
1621 "file xattr region either\n");
1624 if (crypt_stat
->mount_crypt_stat
->flags
1625 & ECRYPTFS_XATTR_METADATA_ENABLED
) {
1626 crypt_stat
->flags
|= ECRYPTFS_METADATA_IN_XATTR
;
1628 printk(KERN_WARNING
"Attempt to access file with "
1629 "crypto metadata only in the extended attribute "
1630 "region, but eCryptfs was mounted without "
1631 "xattr support enabled. eCryptfs will not treat "
1632 "this like an encrypted file.\n");
1638 memset(page_virt
, 0, PAGE_CACHE_SIZE
);
1639 kmem_cache_free(ecryptfs_header_cache_1
, page_virt
);
1645 * ecryptfs_encrypt_filename - encrypt filename
1647 * CBC-encrypts the filename. We do not want to encrypt the same
1648 * filename with the same key and IV, which may happen with hard
1649 * links, so we prepend random bits to each filename.
1651 * Returns zero on success; non-zero otherwise
1654 ecryptfs_encrypt_filename(struct ecryptfs_filename
*filename
,
1655 struct ecryptfs_crypt_stat
*crypt_stat
,
1656 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
1660 filename
->encrypted_filename
= NULL
;
1661 filename
->encrypted_filename_size
= 0;
1662 if ((crypt_stat
&& (crypt_stat
->flags
& ECRYPTFS_ENCFN_USE_MOUNT_FNEK
))
1663 || (mount_crypt_stat
&& (mount_crypt_stat
->flags
1664 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK
))) {
1666 size_t remaining_bytes
;
1668 rc
= ecryptfs_write_tag_70_packet(
1670 &filename
->encrypted_filename_size
,
1671 mount_crypt_stat
, NULL
,
1672 filename
->filename_size
);
1674 printk(KERN_ERR
"%s: Error attempting to get packet "
1675 "size for tag 72; rc = [%d]\n", __func__
,
1677 filename
->encrypted_filename_size
= 0;
1680 filename
->encrypted_filename
=
1681 kmalloc(filename
->encrypted_filename_size
, GFP_KERNEL
);
1682 if (!filename
->encrypted_filename
) {
1683 printk(KERN_ERR
"%s: Out of memory whilst attempting "
1684 "to kmalloc [%zd] bytes\n", __func__
,
1685 filename
->encrypted_filename_size
);
1689 remaining_bytes
= filename
->encrypted_filename_size
;
1690 rc
= ecryptfs_write_tag_70_packet(filename
->encrypted_filename
,
1695 filename
->filename_size
);
1697 printk(KERN_ERR
"%s: Error attempting to generate "
1698 "tag 70 packet; rc = [%d]\n", __func__
,
1700 kfree(filename
->encrypted_filename
);
1701 filename
->encrypted_filename
= NULL
;
1702 filename
->encrypted_filename_size
= 0;
1705 filename
->encrypted_filename_size
= packet_size
;
1707 printk(KERN_ERR
"%s: No support for requested filename "
1708 "encryption method in this release\n", __func__
);
1716 static int ecryptfs_copy_filename(char **copied_name
, size_t *copied_name_size
,
1717 const char *name
, size_t name_size
)
1721 (*copied_name
) = kmalloc((name_size
+ 1), GFP_KERNEL
);
1722 if (!(*copied_name
)) {
1726 memcpy((void *)(*copied_name
), (void *)name
, name_size
);
1727 (*copied_name
)[(name_size
)] = '\0'; /* Only for convenience
1728 * in printing out the
1731 (*copied_name_size
) = name_size
;
1737 * ecryptfs_process_key_cipher - Perform key cipher initialization.
1738 * @key_tfm: Crypto context for key material, set by this function
1739 * @cipher_name: Name of the cipher
1740 * @key_size: Size of the key in bytes
1742 * Returns zero on success. Any crypto_tfm structs allocated here
1743 * should be released by other functions, such as on a superblock put
1744 * event, regardless of whether this function succeeds for fails.
1747 ecryptfs_process_key_cipher(struct crypto_blkcipher
**key_tfm
,
1748 char *cipher_name
, size_t *key_size
)
1750 char dummy_key
[ECRYPTFS_MAX_KEY_BYTES
];
1751 char *full_alg_name
;
1755 if (*key_size
> ECRYPTFS_MAX_KEY_BYTES
) {
1757 printk(KERN_ERR
"Requested key size is [%zd] bytes; maximum "
1758 "allowable is [%d]\n", *key_size
, ECRYPTFS_MAX_KEY_BYTES
);
1761 rc
= ecryptfs_crypto_api_algify_cipher_name(&full_alg_name
, cipher_name
,
1765 *key_tfm
= crypto_alloc_blkcipher(full_alg_name
, 0, CRYPTO_ALG_ASYNC
);
1766 kfree(full_alg_name
);
1767 if (IS_ERR(*key_tfm
)) {
1768 rc
= PTR_ERR(*key_tfm
);
1769 printk(KERN_ERR
"Unable to allocate crypto cipher with name "
1770 "[%s]; rc = [%d]\n", full_alg_name
, rc
);
1773 crypto_blkcipher_set_flags(*key_tfm
, CRYPTO_TFM_REQ_WEAK_KEY
);
1774 if (*key_size
== 0) {
1775 struct blkcipher_alg
*alg
= crypto_blkcipher_alg(*key_tfm
);
1777 *key_size
= alg
->max_keysize
;
1779 get_random_bytes(dummy_key
, *key_size
);
1780 rc
= crypto_blkcipher_setkey(*key_tfm
, dummy_key
, *key_size
);
1782 printk(KERN_ERR
"Error attempting to set key of size [%zd] for "
1783 "cipher [%s]; rc = [%d]\n", *key_size
, full_alg_name
,
1792 struct kmem_cache
*ecryptfs_key_tfm_cache
;
1793 static struct list_head key_tfm_list
;
1794 struct mutex key_tfm_list_mutex
;
1796 int ecryptfs_init_crypto(void)
1798 mutex_init(&key_tfm_list_mutex
);
1799 INIT_LIST_HEAD(&key_tfm_list
);
1804 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1806 * Called only at module unload time
1808 int ecryptfs_destroy_crypto(void)
1810 struct ecryptfs_key_tfm
*key_tfm
, *key_tfm_tmp
;
1812 mutex_lock(&key_tfm_list_mutex
);
1813 list_for_each_entry_safe(key_tfm
, key_tfm_tmp
, &key_tfm_list
,
1815 list_del(&key_tfm
->key_tfm_list
);
1816 if (key_tfm
->key_tfm
)
1817 crypto_free_blkcipher(key_tfm
->key_tfm
);
1818 kmem_cache_free(ecryptfs_key_tfm_cache
, key_tfm
);
1820 mutex_unlock(&key_tfm_list_mutex
);
1825 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm
**key_tfm
, char *cipher_name
,
1828 struct ecryptfs_key_tfm
*tmp_tfm
;
1831 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex
));
1833 tmp_tfm
= kmem_cache_alloc(ecryptfs_key_tfm_cache
, GFP_KERNEL
);
1834 if (key_tfm
!= NULL
)
1835 (*key_tfm
) = tmp_tfm
;
1838 printk(KERN_ERR
"Error attempting to allocate from "
1839 "ecryptfs_key_tfm_cache\n");
1842 mutex_init(&tmp_tfm
->key_tfm_mutex
);
1843 strncpy(tmp_tfm
->cipher_name
, cipher_name
,
1844 ECRYPTFS_MAX_CIPHER_NAME_SIZE
);
1845 tmp_tfm
->cipher_name
[ECRYPTFS_MAX_CIPHER_NAME_SIZE
] = '\0';
1846 tmp_tfm
->key_size
= key_size
;
1847 rc
= ecryptfs_process_key_cipher(&tmp_tfm
->key_tfm
,
1848 tmp_tfm
->cipher_name
,
1849 &tmp_tfm
->key_size
);
1851 printk(KERN_ERR
"Error attempting to initialize key TFM "
1852 "cipher with name = [%s]; rc = [%d]\n",
1853 tmp_tfm
->cipher_name
, rc
);
1854 kmem_cache_free(ecryptfs_key_tfm_cache
, tmp_tfm
);
1855 if (key_tfm
!= NULL
)
1859 list_add(&tmp_tfm
->key_tfm_list
, &key_tfm_list
);
1865 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1866 * @cipher_name: the name of the cipher to search for
1867 * @key_tfm: set to corresponding tfm if found
1869 * Searches for cached key_tfm matching @cipher_name
1870 * Must be called with &key_tfm_list_mutex held
1871 * Returns 1 if found, with @key_tfm set
1872 * Returns 0 if not found, with @key_tfm set to NULL
1874 int ecryptfs_tfm_exists(char *cipher_name
, struct ecryptfs_key_tfm
**key_tfm
)
1876 struct ecryptfs_key_tfm
*tmp_key_tfm
;
1878 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex
));
1880 list_for_each_entry(tmp_key_tfm
, &key_tfm_list
, key_tfm_list
) {
1881 if (strcmp(tmp_key_tfm
->cipher_name
, cipher_name
) == 0) {
1883 (*key_tfm
) = tmp_key_tfm
;
1893 * ecryptfs_get_tfm_and_mutex_for_cipher_name
1895 * @tfm: set to cached tfm found, or new tfm created
1896 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1897 * @cipher_name: the name of the cipher to search for and/or add
1899 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1900 * Searches for cached item first, and creates new if not found.
1901 * Returns 0 on success, non-zero if adding new cipher failed
1903 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher
**tfm
,
1904 struct mutex
**tfm_mutex
,
1907 struct ecryptfs_key_tfm
*key_tfm
;
1911 (*tfm_mutex
) = NULL
;
1913 mutex_lock(&key_tfm_list_mutex
);
1914 if (!ecryptfs_tfm_exists(cipher_name
, &key_tfm
)) {
1915 rc
= ecryptfs_add_new_key_tfm(&key_tfm
, cipher_name
, 0);
1917 printk(KERN_ERR
"Error adding new key_tfm to list; "
1922 (*tfm
) = key_tfm
->key_tfm
;
1923 (*tfm_mutex
) = &key_tfm
->key_tfm_mutex
;
1925 mutex_unlock(&key_tfm_list_mutex
);
1929 /* 64 characters forming a 6-bit target field */
1930 static unsigned char *portable_filename_chars
= ("-.0123456789ABCD"
1933 "klmnopqrstuvwxyz");
1935 /* We could either offset on every reverse map or just pad some 0x00's
1936 * at the front here */
1937 static const unsigned char filename_rev_map
[] = {
1938 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1939 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1940 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1941 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1942 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1943 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1944 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1945 0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1946 0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1947 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1948 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1949 0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1950 0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1951 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1952 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1957 * ecryptfs_encode_for_filename
1958 * @dst: Destination location for encoded filename
1959 * @dst_size: Size of the encoded filename in bytes
1960 * @src: Source location for the filename to encode
1961 * @src_size: Size of the source in bytes
1963 void ecryptfs_encode_for_filename(unsigned char *dst
, size_t *dst_size
,
1964 unsigned char *src
, size_t src_size
)
1967 size_t block_num
= 0;
1968 size_t dst_offset
= 0;
1969 unsigned char last_block
[3];
1971 if (src_size
== 0) {
1975 num_blocks
= (src_size
/ 3);
1976 if ((src_size
% 3) == 0) {
1977 memcpy(last_block
, (&src
[src_size
- 3]), 3);
1980 last_block
[2] = 0x00;
1981 switch (src_size
% 3) {
1983 last_block
[0] = src
[src_size
- 1];
1984 last_block
[1] = 0x00;
1987 last_block
[0] = src
[src_size
- 2];
1988 last_block
[1] = src
[src_size
- 1];
1991 (*dst_size
) = (num_blocks
* 4);
1994 while (block_num
< num_blocks
) {
1995 unsigned char *src_block
;
1996 unsigned char dst_block
[4];
1998 if (block_num
== (num_blocks
- 1))
1999 src_block
= last_block
;
2001 src_block
= &src
[block_num
* 3];
2002 dst_block
[0] = ((src_block
[0] >> 2) & 0x3F);
2003 dst_block
[1] = (((src_block
[0] << 4) & 0x30)
2004 | ((src_block
[1] >> 4) & 0x0F));
2005 dst_block
[2] = (((src_block
[1] << 2) & 0x3C)
2006 | ((src_block
[2] >> 6) & 0x03));
2007 dst_block
[3] = (src_block
[2] & 0x3F);
2008 dst
[dst_offset
++] = portable_filename_chars
[dst_block
[0]];
2009 dst
[dst_offset
++] = portable_filename_chars
[dst_block
[1]];
2010 dst
[dst_offset
++] = portable_filename_chars
[dst_block
[2]];
2011 dst
[dst_offset
++] = portable_filename_chars
[dst_block
[3]];
2019 * ecryptfs_decode_from_filename
2020 * @dst: If NULL, this function only sets @dst_size and returns. If
2021 * non-NULL, this function decodes the encoded octets in @src
2022 * into the memory that @dst points to.
2023 * @dst_size: Set to the size of the decoded string.
2024 * @src: The encoded set of octets to decode.
2025 * @src_size: The size of the encoded set of octets to decode.
2028 ecryptfs_decode_from_filename(unsigned char *dst
, size_t *dst_size
,
2029 const unsigned char *src
, size_t src_size
)
2031 u8 current_bit_offset
= 0;
2032 size_t src_byte_offset
= 0;
2033 size_t dst_byte_offset
= 0;
2036 /* Not exact; conservatively long. Every block of 4
2037 * encoded characters decodes into a block of 3
2038 * decoded characters. This segment of code provides
2039 * the caller with the maximum amount of allocated
2040 * space that @dst will need to point to in a
2041 * subsequent call. */
2042 (*dst_size
) = (((src_size
+ 1) * 3) / 4);
2045 while (src_byte_offset
< src_size
) {
2046 unsigned char src_byte
=
2047 filename_rev_map
[(int)src
[src_byte_offset
]];
2049 switch (current_bit_offset
) {
2051 dst
[dst_byte_offset
] = (src_byte
<< 2);
2052 current_bit_offset
= 6;
2055 dst
[dst_byte_offset
++] |= (src_byte
>> 4);
2056 dst
[dst_byte_offset
] = ((src_byte
& 0xF)
2058 current_bit_offset
= 4;
2061 dst
[dst_byte_offset
++] |= (src_byte
>> 2);
2062 dst
[dst_byte_offset
] = (src_byte
<< 6);
2063 current_bit_offset
= 2;
2066 dst
[dst_byte_offset
++] |= (src_byte
);
2067 dst
[dst_byte_offset
] = 0;
2068 current_bit_offset
= 0;
2073 (*dst_size
) = dst_byte_offset
;
2079 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
2080 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
2081 * @name: The plaintext name
2082 * @length: The length of the plaintext
2083 * @encoded_name: The encypted name
2085 * Encrypts and encodes a filename into something that constitutes a
2086 * valid filename for a filesystem, with printable characters.
2088 * We assume that we have a properly initialized crypto context,
2089 * pointed to by crypt_stat->tfm.
2091 * Returns zero on success; non-zero on otherwise
2093 int ecryptfs_encrypt_and_encode_filename(
2094 char **encoded_name
,
2095 size_t *encoded_name_size
,
2096 struct ecryptfs_crypt_stat
*crypt_stat
,
2097 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
,
2098 const char *name
, size_t name_size
)
2100 size_t encoded_name_no_prefix_size
;
2103 (*encoded_name
) = NULL
;
2104 (*encoded_name_size
) = 0;
2105 if ((crypt_stat
&& (crypt_stat
->flags
& ECRYPTFS_ENCRYPT_FILENAMES
))
2106 || (mount_crypt_stat
&& (mount_crypt_stat
->flags
2107 & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES
))) {
2108 struct ecryptfs_filename
*filename
;
2110 filename
= kzalloc(sizeof(*filename
), GFP_KERNEL
);
2112 printk(KERN_ERR
"%s: Out of memory whilst attempting "
2113 "to kzalloc [%zd] bytes\n", __func__
,
2118 filename
->filename
= (char *)name
;
2119 filename
->filename_size
= name_size
;
2120 rc
= ecryptfs_encrypt_filename(filename
, crypt_stat
,
2123 printk(KERN_ERR
"%s: Error attempting to encrypt "
2124 "filename; rc = [%d]\n", __func__
, rc
);
2128 ecryptfs_encode_for_filename(
2129 NULL
, &encoded_name_no_prefix_size
,
2130 filename
->encrypted_filename
,
2131 filename
->encrypted_filename_size
);
2132 if ((crypt_stat
&& (crypt_stat
->flags
2133 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK
))
2134 || (mount_crypt_stat
2135 && (mount_crypt_stat
->flags
2136 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK
)))
2137 (*encoded_name_size
) =
2138 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2139 + encoded_name_no_prefix_size
);
2141 (*encoded_name_size
) =
2142 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2143 + encoded_name_no_prefix_size
);
2144 (*encoded_name
) = kmalloc((*encoded_name_size
) + 1, GFP_KERNEL
);
2145 if (!(*encoded_name
)) {
2146 printk(KERN_ERR
"%s: Out of memory whilst attempting "
2147 "to kzalloc [%zd] bytes\n", __func__
,
2148 (*encoded_name_size
));
2150 kfree(filename
->encrypted_filename
);
2154 if ((crypt_stat
&& (crypt_stat
->flags
2155 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK
))
2156 || (mount_crypt_stat
2157 && (mount_crypt_stat
->flags
2158 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK
))) {
2159 memcpy((*encoded_name
),
2160 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX
,
2161 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
);
2162 ecryptfs_encode_for_filename(
2164 + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
),
2165 &encoded_name_no_prefix_size
,
2166 filename
->encrypted_filename
,
2167 filename
->encrypted_filename_size
);
2168 (*encoded_name_size
) =
2169 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2170 + encoded_name_no_prefix_size
);
2171 (*encoded_name
)[(*encoded_name_size
)] = '\0';
2172 (*encoded_name_size
)++;
2177 printk(KERN_ERR
"%s: Error attempting to encode "
2178 "encrypted filename; rc = [%d]\n", __func__
,
2180 kfree((*encoded_name
));
2181 (*encoded_name
) = NULL
;
2182 (*encoded_name_size
) = 0;
2184 kfree(filename
->encrypted_filename
);
2187 rc
= ecryptfs_copy_filename(encoded_name
,
2196 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2197 * @plaintext_name: The plaintext name
2198 * @plaintext_name_size: The plaintext name size
2199 * @ecryptfs_dir_dentry: eCryptfs directory dentry
2200 * @name: The filename in cipher text
2201 * @name_size: The cipher text name size
2203 * Decrypts and decodes the filename.
2205 * Returns zero on error; non-zero otherwise
2207 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name
,
2208 size_t *plaintext_name_size
,
2209 struct dentry
*ecryptfs_dir_dentry
,
2210 const char *name
, size_t name_size
)
2212 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
=
2213 &ecryptfs_superblock_to_private(
2214 ecryptfs_dir_dentry
->d_sb
)->mount_crypt_stat
;
2216 size_t decoded_name_size
;
2220 if ((mount_crypt_stat
->flags
& ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES
)
2221 && !(mount_crypt_stat
->flags
& ECRYPTFS_ENCRYPTED_VIEW_ENABLED
)
2222 && (name_size
> ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
)
2223 && (strncmp(name
, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX
,
2224 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
) == 0)) {
2225 const char *orig_name
= name
;
2226 size_t orig_name_size
= name_size
;
2228 name
+= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
;
2229 name_size
-= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
;
2230 ecryptfs_decode_from_filename(NULL
, &decoded_name_size
,
2232 decoded_name
= kmalloc(decoded_name_size
, GFP_KERNEL
);
2233 if (!decoded_name
) {
2234 printk(KERN_ERR
"%s: Out of memory whilst attempting "
2235 "to kmalloc [%zd] bytes\n", __func__
,
2240 ecryptfs_decode_from_filename(decoded_name
, &decoded_name_size
,
2242 rc
= ecryptfs_parse_tag_70_packet(plaintext_name
,
2243 plaintext_name_size
,
2249 printk(KERN_INFO
"%s: Could not parse tag 70 packet "
2250 "from filename; copying through filename "
2251 "as-is\n", __func__
);
2252 rc
= ecryptfs_copy_filename(plaintext_name
,
2253 plaintext_name_size
,
2254 orig_name
, orig_name_size
);
2258 rc
= ecryptfs_copy_filename(plaintext_name
,
2259 plaintext_name_size
,
2264 kfree(decoded_name
);