memcg: add inactive_anon_is_low()
[linux-2.6/linux-2.6-openrd.git] / kernel / cgroup.c
blob83ea4f524be545c12a83f2a7300ea08be0bd9960
1 /*
2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Copyright notices from the original cpuset code:
8 * --------------------------------------------------
9 * Copyright (C) 2003 BULL SA.
10 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
12 * Portions derived from Patrick Mochel's sysfs code.
13 * sysfs is Copyright (c) 2001-3 Patrick Mochel
15 * 2003-10-10 Written by Simon Derr.
16 * 2003-10-22 Updates by Stephen Hemminger.
17 * 2004 May-July Rework by Paul Jackson.
18 * ---------------------------------------------------
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
25 #include <linux/cgroup.h>
26 #include <linux/errno.h>
27 #include <linux/fs.h>
28 #include <linux/kernel.h>
29 #include <linux/list.h>
30 #include <linux/mm.h>
31 #include <linux/mutex.h>
32 #include <linux/mount.h>
33 #include <linux/pagemap.h>
34 #include <linux/proc_fs.h>
35 #include <linux/rcupdate.h>
36 #include <linux/sched.h>
37 #include <linux/backing-dev.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/magic.h>
41 #include <linux/spinlock.h>
42 #include <linux/string.h>
43 #include <linux/sort.h>
44 #include <linux/kmod.h>
45 #include <linux/delayacct.h>
46 #include <linux/cgroupstats.h>
47 #include <linux/hash.h>
48 #include <linux/namei.h>
50 #include <asm/atomic.h>
52 static DEFINE_MUTEX(cgroup_mutex);
54 /* Generate an array of cgroup subsystem pointers */
55 #define SUBSYS(_x) &_x ## _subsys,
57 static struct cgroup_subsys *subsys[] = {
58 #include <linux/cgroup_subsys.h>
62 * A cgroupfs_root represents the root of a cgroup hierarchy,
63 * and may be associated with a superblock to form an active
64 * hierarchy
66 struct cgroupfs_root {
67 struct super_block *sb;
70 * The bitmask of subsystems intended to be attached to this
71 * hierarchy
73 unsigned long subsys_bits;
75 /* The bitmask of subsystems currently attached to this hierarchy */
76 unsigned long actual_subsys_bits;
78 /* A list running through the attached subsystems */
79 struct list_head subsys_list;
81 /* The root cgroup for this hierarchy */
82 struct cgroup top_cgroup;
84 /* Tracks how many cgroups are currently defined in hierarchy.*/
85 int number_of_cgroups;
87 /* A list running through the active hierarchies */
88 struct list_head root_list;
90 /* Hierarchy-specific flags */
91 unsigned long flags;
93 /* The path to use for release notifications. */
94 char release_agent_path[PATH_MAX];
99 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
100 * subsystems that are otherwise unattached - it never has more than a
101 * single cgroup, and all tasks are part of that cgroup.
103 static struct cgroupfs_root rootnode;
105 /* The list of hierarchy roots */
107 static LIST_HEAD(roots);
108 static int root_count;
110 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
111 #define dummytop (&rootnode.top_cgroup)
113 /* This flag indicates whether tasks in the fork and exit paths should
114 * check for fork/exit handlers to call. This avoids us having to do
115 * extra work in the fork/exit path if none of the subsystems need to
116 * be called.
118 static int need_forkexit_callback __read_mostly;
120 /* convenient tests for these bits */
121 inline int cgroup_is_removed(const struct cgroup *cgrp)
123 return test_bit(CGRP_REMOVED, &cgrp->flags);
126 /* bits in struct cgroupfs_root flags field */
127 enum {
128 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
131 static int cgroup_is_releasable(const struct cgroup *cgrp)
133 const int bits =
134 (1 << CGRP_RELEASABLE) |
135 (1 << CGRP_NOTIFY_ON_RELEASE);
136 return (cgrp->flags & bits) == bits;
139 static int notify_on_release(const struct cgroup *cgrp)
141 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
145 * for_each_subsys() allows you to iterate on each subsystem attached to
146 * an active hierarchy
148 #define for_each_subsys(_root, _ss) \
149 list_for_each_entry(_ss, &_root->subsys_list, sibling)
151 /* for_each_active_root() allows you to iterate across the active hierarchies */
152 #define for_each_active_root(_root) \
153 list_for_each_entry(_root, &roots, root_list)
155 /* the list of cgroups eligible for automatic release. Protected by
156 * release_list_lock */
157 static LIST_HEAD(release_list);
158 static DEFINE_SPINLOCK(release_list_lock);
159 static void cgroup_release_agent(struct work_struct *work);
160 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
161 static void check_for_release(struct cgroup *cgrp);
163 /* Link structure for associating css_set objects with cgroups */
164 struct cg_cgroup_link {
166 * List running through cg_cgroup_links associated with a
167 * cgroup, anchored on cgroup->css_sets
169 struct list_head cgrp_link_list;
171 * List running through cg_cgroup_links pointing at a
172 * single css_set object, anchored on css_set->cg_links
174 struct list_head cg_link_list;
175 struct css_set *cg;
178 /* The default css_set - used by init and its children prior to any
179 * hierarchies being mounted. It contains a pointer to the root state
180 * for each subsystem. Also used to anchor the list of css_sets. Not
181 * reference-counted, to improve performance when child cgroups
182 * haven't been created.
185 static struct css_set init_css_set;
186 static struct cg_cgroup_link init_css_set_link;
188 /* css_set_lock protects the list of css_set objects, and the
189 * chain of tasks off each css_set. Nests outside task->alloc_lock
190 * due to cgroup_iter_start() */
191 static DEFINE_RWLOCK(css_set_lock);
192 static int css_set_count;
194 /* hash table for cgroup groups. This improves the performance to
195 * find an existing css_set */
196 #define CSS_SET_HASH_BITS 7
197 #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
198 static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
200 static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
202 int i;
203 int index;
204 unsigned long tmp = 0UL;
206 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
207 tmp += (unsigned long)css[i];
208 tmp = (tmp >> 16) ^ tmp;
210 index = hash_long(tmp, CSS_SET_HASH_BITS);
212 return &css_set_table[index];
215 /* We don't maintain the lists running through each css_set to its
216 * task until after the first call to cgroup_iter_start(). This
217 * reduces the fork()/exit() overhead for people who have cgroups
218 * compiled into their kernel but not actually in use */
219 static int use_task_css_set_links __read_mostly;
221 /* When we create or destroy a css_set, the operation simply
222 * takes/releases a reference count on all the cgroups referenced
223 * by subsystems in this css_set. This can end up multiple-counting
224 * some cgroups, but that's OK - the ref-count is just a
225 * busy/not-busy indicator; ensuring that we only count each cgroup
226 * once would require taking a global lock to ensure that no
227 * subsystems moved between hierarchies while we were doing so.
229 * Possible TODO: decide at boot time based on the number of
230 * registered subsystems and the number of CPUs or NUMA nodes whether
231 * it's better for performance to ref-count every subsystem, or to
232 * take a global lock and only add one ref count to each hierarchy.
236 * unlink a css_set from the list and free it
238 static void unlink_css_set(struct css_set *cg)
240 struct cg_cgroup_link *link;
241 struct cg_cgroup_link *saved_link;
243 hlist_del(&cg->hlist);
244 css_set_count--;
246 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
247 cg_link_list) {
248 list_del(&link->cg_link_list);
249 list_del(&link->cgrp_link_list);
250 kfree(link);
254 static void __put_css_set(struct css_set *cg, int taskexit)
256 int i;
258 * Ensure that the refcount doesn't hit zero while any readers
259 * can see it. Similar to atomic_dec_and_lock(), but for an
260 * rwlock
262 if (atomic_add_unless(&cg->refcount, -1, 1))
263 return;
264 write_lock(&css_set_lock);
265 if (!atomic_dec_and_test(&cg->refcount)) {
266 write_unlock(&css_set_lock);
267 return;
269 unlink_css_set(cg);
270 write_unlock(&css_set_lock);
272 rcu_read_lock();
273 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
274 struct cgroup *cgrp = rcu_dereference(cg->subsys[i]->cgroup);
275 if (atomic_dec_and_test(&cgrp->count) &&
276 notify_on_release(cgrp)) {
277 if (taskexit)
278 set_bit(CGRP_RELEASABLE, &cgrp->flags);
279 check_for_release(cgrp);
282 rcu_read_unlock();
283 kfree(cg);
287 * refcounted get/put for css_set objects
289 static inline void get_css_set(struct css_set *cg)
291 atomic_inc(&cg->refcount);
294 static inline void put_css_set(struct css_set *cg)
296 __put_css_set(cg, 0);
299 static inline void put_css_set_taskexit(struct css_set *cg)
301 __put_css_set(cg, 1);
305 * find_existing_css_set() is a helper for
306 * find_css_set(), and checks to see whether an existing
307 * css_set is suitable.
309 * oldcg: the cgroup group that we're using before the cgroup
310 * transition
312 * cgrp: the cgroup that we're moving into
314 * template: location in which to build the desired set of subsystem
315 * state objects for the new cgroup group
317 static struct css_set *find_existing_css_set(
318 struct css_set *oldcg,
319 struct cgroup *cgrp,
320 struct cgroup_subsys_state *template[])
322 int i;
323 struct cgroupfs_root *root = cgrp->root;
324 struct hlist_head *hhead;
325 struct hlist_node *node;
326 struct css_set *cg;
328 /* Built the set of subsystem state objects that we want to
329 * see in the new css_set */
330 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
331 if (root->subsys_bits & (1UL << i)) {
332 /* Subsystem is in this hierarchy. So we want
333 * the subsystem state from the new
334 * cgroup */
335 template[i] = cgrp->subsys[i];
336 } else {
337 /* Subsystem is not in this hierarchy, so we
338 * don't want to change the subsystem state */
339 template[i] = oldcg->subsys[i];
343 hhead = css_set_hash(template);
344 hlist_for_each_entry(cg, node, hhead, hlist) {
345 if (!memcmp(template, cg->subsys, sizeof(cg->subsys))) {
346 /* All subsystems matched */
347 return cg;
351 /* No existing cgroup group matched */
352 return NULL;
355 static void free_cg_links(struct list_head *tmp)
357 struct cg_cgroup_link *link;
358 struct cg_cgroup_link *saved_link;
360 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
361 list_del(&link->cgrp_link_list);
362 kfree(link);
367 * allocate_cg_links() allocates "count" cg_cgroup_link structures
368 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
369 * success or a negative error
371 static int allocate_cg_links(int count, struct list_head *tmp)
373 struct cg_cgroup_link *link;
374 int i;
375 INIT_LIST_HEAD(tmp);
376 for (i = 0; i < count; i++) {
377 link = kmalloc(sizeof(*link), GFP_KERNEL);
378 if (!link) {
379 free_cg_links(tmp);
380 return -ENOMEM;
382 list_add(&link->cgrp_link_list, tmp);
384 return 0;
388 * link_css_set - a helper function to link a css_set to a cgroup
389 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
390 * @cg: the css_set to be linked
391 * @cgrp: the destination cgroup
393 static void link_css_set(struct list_head *tmp_cg_links,
394 struct css_set *cg, struct cgroup *cgrp)
396 struct cg_cgroup_link *link;
398 BUG_ON(list_empty(tmp_cg_links));
399 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
400 cgrp_link_list);
401 link->cg = cg;
402 list_move(&link->cgrp_link_list, &cgrp->css_sets);
403 list_add(&link->cg_link_list, &cg->cg_links);
407 * find_css_set() takes an existing cgroup group and a
408 * cgroup object, and returns a css_set object that's
409 * equivalent to the old group, but with the given cgroup
410 * substituted into the appropriate hierarchy. Must be called with
411 * cgroup_mutex held
413 static struct css_set *find_css_set(
414 struct css_set *oldcg, struct cgroup *cgrp)
416 struct css_set *res;
417 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
418 int i;
420 struct list_head tmp_cg_links;
422 struct hlist_head *hhead;
424 /* First see if we already have a cgroup group that matches
425 * the desired set */
426 read_lock(&css_set_lock);
427 res = find_existing_css_set(oldcg, cgrp, template);
428 if (res)
429 get_css_set(res);
430 read_unlock(&css_set_lock);
432 if (res)
433 return res;
435 res = kmalloc(sizeof(*res), GFP_KERNEL);
436 if (!res)
437 return NULL;
439 /* Allocate all the cg_cgroup_link objects that we'll need */
440 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
441 kfree(res);
442 return NULL;
445 atomic_set(&res->refcount, 1);
446 INIT_LIST_HEAD(&res->cg_links);
447 INIT_LIST_HEAD(&res->tasks);
448 INIT_HLIST_NODE(&res->hlist);
450 /* Copy the set of subsystem state objects generated in
451 * find_existing_css_set() */
452 memcpy(res->subsys, template, sizeof(res->subsys));
454 write_lock(&css_set_lock);
455 /* Add reference counts and links from the new css_set. */
456 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
457 struct cgroup *cgrp = res->subsys[i]->cgroup;
458 struct cgroup_subsys *ss = subsys[i];
459 atomic_inc(&cgrp->count);
461 * We want to add a link once per cgroup, so we
462 * only do it for the first subsystem in each
463 * hierarchy
465 if (ss->root->subsys_list.next == &ss->sibling)
466 link_css_set(&tmp_cg_links, res, cgrp);
468 if (list_empty(&rootnode.subsys_list))
469 link_css_set(&tmp_cg_links, res, dummytop);
471 BUG_ON(!list_empty(&tmp_cg_links));
473 css_set_count++;
475 /* Add this cgroup group to the hash table */
476 hhead = css_set_hash(res->subsys);
477 hlist_add_head(&res->hlist, hhead);
479 write_unlock(&css_set_lock);
481 return res;
485 * There is one global cgroup mutex. We also require taking
486 * task_lock() when dereferencing a task's cgroup subsys pointers.
487 * See "The task_lock() exception", at the end of this comment.
489 * A task must hold cgroup_mutex to modify cgroups.
491 * Any task can increment and decrement the count field without lock.
492 * So in general, code holding cgroup_mutex can't rely on the count
493 * field not changing. However, if the count goes to zero, then only
494 * cgroup_attach_task() can increment it again. Because a count of zero
495 * means that no tasks are currently attached, therefore there is no
496 * way a task attached to that cgroup can fork (the other way to
497 * increment the count). So code holding cgroup_mutex can safely
498 * assume that if the count is zero, it will stay zero. Similarly, if
499 * a task holds cgroup_mutex on a cgroup with zero count, it
500 * knows that the cgroup won't be removed, as cgroup_rmdir()
501 * needs that mutex.
503 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
504 * (usually) take cgroup_mutex. These are the two most performance
505 * critical pieces of code here. The exception occurs on cgroup_exit(),
506 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
507 * is taken, and if the cgroup count is zero, a usermode call made
508 * to the release agent with the name of the cgroup (path relative to
509 * the root of cgroup file system) as the argument.
511 * A cgroup can only be deleted if both its 'count' of using tasks
512 * is zero, and its list of 'children' cgroups is empty. Since all
513 * tasks in the system use _some_ cgroup, and since there is always at
514 * least one task in the system (init, pid == 1), therefore, top_cgroup
515 * always has either children cgroups and/or using tasks. So we don't
516 * need a special hack to ensure that top_cgroup cannot be deleted.
518 * The task_lock() exception
520 * The need for this exception arises from the action of
521 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
522 * another. It does so using cgroup_mutex, however there are
523 * several performance critical places that need to reference
524 * task->cgroup without the expense of grabbing a system global
525 * mutex. Therefore except as noted below, when dereferencing or, as
526 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
527 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
528 * the task_struct routinely used for such matters.
530 * P.S. One more locking exception. RCU is used to guard the
531 * update of a tasks cgroup pointer by cgroup_attach_task()
535 * cgroup_lock - lock out any changes to cgroup structures
538 void cgroup_lock(void)
540 mutex_lock(&cgroup_mutex);
544 * cgroup_unlock - release lock on cgroup changes
546 * Undo the lock taken in a previous cgroup_lock() call.
548 void cgroup_unlock(void)
550 mutex_unlock(&cgroup_mutex);
554 * A couple of forward declarations required, due to cyclic reference loop:
555 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
556 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
557 * -> cgroup_mkdir.
560 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
561 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
562 static int cgroup_populate_dir(struct cgroup *cgrp);
563 static struct inode_operations cgroup_dir_inode_operations;
564 static struct file_operations proc_cgroupstats_operations;
566 static struct backing_dev_info cgroup_backing_dev_info = {
567 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
570 static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
572 struct inode *inode = new_inode(sb);
574 if (inode) {
575 inode->i_mode = mode;
576 inode->i_uid = current_fsuid();
577 inode->i_gid = current_fsgid();
578 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
579 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
581 return inode;
585 * Call subsys's pre_destroy handler.
586 * This is called before css refcnt check.
588 static void cgroup_call_pre_destroy(struct cgroup *cgrp)
590 struct cgroup_subsys *ss;
591 for_each_subsys(cgrp->root, ss)
592 if (ss->pre_destroy)
593 ss->pre_destroy(ss, cgrp);
594 return;
597 static void free_cgroup_rcu(struct rcu_head *obj)
599 struct cgroup *cgrp = container_of(obj, struct cgroup, rcu_head);
601 kfree(cgrp);
604 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
606 /* is dentry a directory ? if so, kfree() associated cgroup */
607 if (S_ISDIR(inode->i_mode)) {
608 struct cgroup *cgrp = dentry->d_fsdata;
609 struct cgroup_subsys *ss;
610 BUG_ON(!(cgroup_is_removed(cgrp)));
611 /* It's possible for external users to be holding css
612 * reference counts on a cgroup; css_put() needs to
613 * be able to access the cgroup after decrementing
614 * the reference count in order to know if it needs to
615 * queue the cgroup to be handled by the release
616 * agent */
617 synchronize_rcu();
619 mutex_lock(&cgroup_mutex);
621 * Release the subsystem state objects.
623 for_each_subsys(cgrp->root, ss)
624 ss->destroy(ss, cgrp);
626 cgrp->root->number_of_cgroups--;
627 mutex_unlock(&cgroup_mutex);
630 * Drop the active superblock reference that we took when we
631 * created the cgroup
633 deactivate_super(cgrp->root->sb);
635 call_rcu(&cgrp->rcu_head, free_cgroup_rcu);
637 iput(inode);
640 static void remove_dir(struct dentry *d)
642 struct dentry *parent = dget(d->d_parent);
644 d_delete(d);
645 simple_rmdir(parent->d_inode, d);
646 dput(parent);
649 static void cgroup_clear_directory(struct dentry *dentry)
651 struct list_head *node;
653 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
654 spin_lock(&dcache_lock);
655 node = dentry->d_subdirs.next;
656 while (node != &dentry->d_subdirs) {
657 struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
658 list_del_init(node);
659 if (d->d_inode) {
660 /* This should never be called on a cgroup
661 * directory with child cgroups */
662 BUG_ON(d->d_inode->i_mode & S_IFDIR);
663 d = dget_locked(d);
664 spin_unlock(&dcache_lock);
665 d_delete(d);
666 simple_unlink(dentry->d_inode, d);
667 dput(d);
668 spin_lock(&dcache_lock);
670 node = dentry->d_subdirs.next;
672 spin_unlock(&dcache_lock);
676 * NOTE : the dentry must have been dget()'ed
678 static void cgroup_d_remove_dir(struct dentry *dentry)
680 cgroup_clear_directory(dentry);
682 spin_lock(&dcache_lock);
683 list_del_init(&dentry->d_u.d_child);
684 spin_unlock(&dcache_lock);
685 remove_dir(dentry);
688 static int rebind_subsystems(struct cgroupfs_root *root,
689 unsigned long final_bits)
691 unsigned long added_bits, removed_bits;
692 struct cgroup *cgrp = &root->top_cgroup;
693 int i;
695 removed_bits = root->actual_subsys_bits & ~final_bits;
696 added_bits = final_bits & ~root->actual_subsys_bits;
697 /* Check that any added subsystems are currently free */
698 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
699 unsigned long bit = 1UL << i;
700 struct cgroup_subsys *ss = subsys[i];
701 if (!(bit & added_bits))
702 continue;
703 if (ss->root != &rootnode) {
704 /* Subsystem isn't free */
705 return -EBUSY;
709 /* Currently we don't handle adding/removing subsystems when
710 * any child cgroups exist. This is theoretically supportable
711 * but involves complex error handling, so it's being left until
712 * later */
713 if (root->number_of_cgroups > 1)
714 return -EBUSY;
716 /* Process each subsystem */
717 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
718 struct cgroup_subsys *ss = subsys[i];
719 unsigned long bit = 1UL << i;
720 if (bit & added_bits) {
721 /* We're binding this subsystem to this hierarchy */
722 BUG_ON(cgrp->subsys[i]);
723 BUG_ON(!dummytop->subsys[i]);
724 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
725 cgrp->subsys[i] = dummytop->subsys[i];
726 cgrp->subsys[i]->cgroup = cgrp;
727 list_move(&ss->sibling, &root->subsys_list);
728 ss->root = root;
729 if (ss->bind)
730 ss->bind(ss, cgrp);
732 } else if (bit & removed_bits) {
733 /* We're removing this subsystem */
734 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
735 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
736 if (ss->bind)
737 ss->bind(ss, dummytop);
738 dummytop->subsys[i]->cgroup = dummytop;
739 cgrp->subsys[i] = NULL;
740 subsys[i]->root = &rootnode;
741 list_move(&ss->sibling, &rootnode.subsys_list);
742 } else if (bit & final_bits) {
743 /* Subsystem state should already exist */
744 BUG_ON(!cgrp->subsys[i]);
745 } else {
746 /* Subsystem state shouldn't exist */
747 BUG_ON(cgrp->subsys[i]);
750 root->subsys_bits = root->actual_subsys_bits = final_bits;
751 synchronize_rcu();
753 return 0;
756 static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
758 struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
759 struct cgroup_subsys *ss;
761 mutex_lock(&cgroup_mutex);
762 for_each_subsys(root, ss)
763 seq_printf(seq, ",%s", ss->name);
764 if (test_bit(ROOT_NOPREFIX, &root->flags))
765 seq_puts(seq, ",noprefix");
766 if (strlen(root->release_agent_path))
767 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
768 mutex_unlock(&cgroup_mutex);
769 return 0;
772 struct cgroup_sb_opts {
773 unsigned long subsys_bits;
774 unsigned long flags;
775 char *release_agent;
778 /* Convert a hierarchy specifier into a bitmask of subsystems and
779 * flags. */
780 static int parse_cgroupfs_options(char *data,
781 struct cgroup_sb_opts *opts)
783 char *token, *o = data ?: "all";
785 opts->subsys_bits = 0;
786 opts->flags = 0;
787 opts->release_agent = NULL;
789 while ((token = strsep(&o, ",")) != NULL) {
790 if (!*token)
791 return -EINVAL;
792 if (!strcmp(token, "all")) {
793 /* Add all non-disabled subsystems */
794 int i;
795 opts->subsys_bits = 0;
796 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
797 struct cgroup_subsys *ss = subsys[i];
798 if (!ss->disabled)
799 opts->subsys_bits |= 1ul << i;
801 } else if (!strcmp(token, "noprefix")) {
802 set_bit(ROOT_NOPREFIX, &opts->flags);
803 } else if (!strncmp(token, "release_agent=", 14)) {
804 /* Specifying two release agents is forbidden */
805 if (opts->release_agent)
806 return -EINVAL;
807 opts->release_agent = kzalloc(PATH_MAX, GFP_KERNEL);
808 if (!opts->release_agent)
809 return -ENOMEM;
810 strncpy(opts->release_agent, token + 14, PATH_MAX - 1);
811 opts->release_agent[PATH_MAX - 1] = 0;
812 } else {
813 struct cgroup_subsys *ss;
814 int i;
815 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
816 ss = subsys[i];
817 if (!strcmp(token, ss->name)) {
818 if (!ss->disabled)
819 set_bit(i, &opts->subsys_bits);
820 break;
823 if (i == CGROUP_SUBSYS_COUNT)
824 return -ENOENT;
828 /* We can't have an empty hierarchy */
829 if (!opts->subsys_bits)
830 return -EINVAL;
832 return 0;
835 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
837 int ret = 0;
838 struct cgroupfs_root *root = sb->s_fs_info;
839 struct cgroup *cgrp = &root->top_cgroup;
840 struct cgroup_sb_opts opts;
842 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
843 mutex_lock(&cgroup_mutex);
845 /* See what subsystems are wanted */
846 ret = parse_cgroupfs_options(data, &opts);
847 if (ret)
848 goto out_unlock;
850 /* Don't allow flags to change at remount */
851 if (opts.flags != root->flags) {
852 ret = -EINVAL;
853 goto out_unlock;
856 ret = rebind_subsystems(root, opts.subsys_bits);
858 /* (re)populate subsystem files */
859 if (!ret)
860 cgroup_populate_dir(cgrp);
862 if (opts.release_agent)
863 strcpy(root->release_agent_path, opts.release_agent);
864 out_unlock:
865 if (opts.release_agent)
866 kfree(opts.release_agent);
867 mutex_unlock(&cgroup_mutex);
868 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
869 return ret;
872 static struct super_operations cgroup_ops = {
873 .statfs = simple_statfs,
874 .drop_inode = generic_delete_inode,
875 .show_options = cgroup_show_options,
876 .remount_fs = cgroup_remount,
879 static void init_cgroup_housekeeping(struct cgroup *cgrp)
881 INIT_LIST_HEAD(&cgrp->sibling);
882 INIT_LIST_HEAD(&cgrp->children);
883 INIT_LIST_HEAD(&cgrp->css_sets);
884 INIT_LIST_HEAD(&cgrp->release_list);
885 init_rwsem(&cgrp->pids_mutex);
887 static void init_cgroup_root(struct cgroupfs_root *root)
889 struct cgroup *cgrp = &root->top_cgroup;
890 INIT_LIST_HEAD(&root->subsys_list);
891 INIT_LIST_HEAD(&root->root_list);
892 root->number_of_cgroups = 1;
893 cgrp->root = root;
894 cgrp->top_cgroup = cgrp;
895 init_cgroup_housekeeping(cgrp);
898 static int cgroup_test_super(struct super_block *sb, void *data)
900 struct cgroupfs_root *new = data;
901 struct cgroupfs_root *root = sb->s_fs_info;
903 /* First check subsystems */
904 if (new->subsys_bits != root->subsys_bits)
905 return 0;
907 /* Next check flags */
908 if (new->flags != root->flags)
909 return 0;
911 return 1;
914 static int cgroup_set_super(struct super_block *sb, void *data)
916 int ret;
917 struct cgroupfs_root *root = data;
919 ret = set_anon_super(sb, NULL);
920 if (ret)
921 return ret;
923 sb->s_fs_info = root;
924 root->sb = sb;
926 sb->s_blocksize = PAGE_CACHE_SIZE;
927 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
928 sb->s_magic = CGROUP_SUPER_MAGIC;
929 sb->s_op = &cgroup_ops;
931 return 0;
934 static int cgroup_get_rootdir(struct super_block *sb)
936 struct inode *inode =
937 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
938 struct dentry *dentry;
940 if (!inode)
941 return -ENOMEM;
943 inode->i_fop = &simple_dir_operations;
944 inode->i_op = &cgroup_dir_inode_operations;
945 /* directories start off with i_nlink == 2 (for "." entry) */
946 inc_nlink(inode);
947 dentry = d_alloc_root(inode);
948 if (!dentry) {
949 iput(inode);
950 return -ENOMEM;
952 sb->s_root = dentry;
953 return 0;
956 static int cgroup_get_sb(struct file_system_type *fs_type,
957 int flags, const char *unused_dev_name,
958 void *data, struct vfsmount *mnt)
960 struct cgroup_sb_opts opts;
961 int ret = 0;
962 struct super_block *sb;
963 struct cgroupfs_root *root;
964 struct list_head tmp_cg_links;
966 /* First find the desired set of subsystems */
967 ret = parse_cgroupfs_options(data, &opts);
968 if (ret) {
969 if (opts.release_agent)
970 kfree(opts.release_agent);
971 return ret;
974 root = kzalloc(sizeof(*root), GFP_KERNEL);
975 if (!root) {
976 if (opts.release_agent)
977 kfree(opts.release_agent);
978 return -ENOMEM;
981 init_cgroup_root(root);
982 root->subsys_bits = opts.subsys_bits;
983 root->flags = opts.flags;
984 if (opts.release_agent) {
985 strcpy(root->release_agent_path, opts.release_agent);
986 kfree(opts.release_agent);
989 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, root);
991 if (IS_ERR(sb)) {
992 kfree(root);
993 return PTR_ERR(sb);
996 if (sb->s_fs_info != root) {
997 /* Reusing an existing superblock */
998 BUG_ON(sb->s_root == NULL);
999 kfree(root);
1000 root = NULL;
1001 } else {
1002 /* New superblock */
1003 struct cgroup *root_cgrp = &root->top_cgroup;
1004 struct inode *inode;
1005 int i;
1007 BUG_ON(sb->s_root != NULL);
1009 ret = cgroup_get_rootdir(sb);
1010 if (ret)
1011 goto drop_new_super;
1012 inode = sb->s_root->d_inode;
1014 mutex_lock(&inode->i_mutex);
1015 mutex_lock(&cgroup_mutex);
1018 * We're accessing css_set_count without locking
1019 * css_set_lock here, but that's OK - it can only be
1020 * increased by someone holding cgroup_lock, and
1021 * that's us. The worst that can happen is that we
1022 * have some link structures left over
1024 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1025 if (ret) {
1026 mutex_unlock(&cgroup_mutex);
1027 mutex_unlock(&inode->i_mutex);
1028 goto drop_new_super;
1031 ret = rebind_subsystems(root, root->subsys_bits);
1032 if (ret == -EBUSY) {
1033 mutex_unlock(&cgroup_mutex);
1034 mutex_unlock(&inode->i_mutex);
1035 goto free_cg_links;
1038 /* EBUSY should be the only error here */
1039 BUG_ON(ret);
1041 list_add(&root->root_list, &roots);
1042 root_count++;
1044 sb->s_root->d_fsdata = root_cgrp;
1045 root->top_cgroup.dentry = sb->s_root;
1047 /* Link the top cgroup in this hierarchy into all
1048 * the css_set objects */
1049 write_lock(&css_set_lock);
1050 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1051 struct hlist_head *hhead = &css_set_table[i];
1052 struct hlist_node *node;
1053 struct css_set *cg;
1055 hlist_for_each_entry(cg, node, hhead, hlist)
1056 link_css_set(&tmp_cg_links, cg, root_cgrp);
1058 write_unlock(&css_set_lock);
1060 free_cg_links(&tmp_cg_links);
1062 BUG_ON(!list_empty(&root_cgrp->sibling));
1063 BUG_ON(!list_empty(&root_cgrp->children));
1064 BUG_ON(root->number_of_cgroups != 1);
1066 cgroup_populate_dir(root_cgrp);
1067 mutex_unlock(&inode->i_mutex);
1068 mutex_unlock(&cgroup_mutex);
1071 return simple_set_mnt(mnt, sb);
1073 free_cg_links:
1074 free_cg_links(&tmp_cg_links);
1075 drop_new_super:
1076 up_write(&sb->s_umount);
1077 deactivate_super(sb);
1078 return ret;
1081 static void cgroup_kill_sb(struct super_block *sb) {
1082 struct cgroupfs_root *root = sb->s_fs_info;
1083 struct cgroup *cgrp = &root->top_cgroup;
1084 int ret;
1085 struct cg_cgroup_link *link;
1086 struct cg_cgroup_link *saved_link;
1088 BUG_ON(!root);
1090 BUG_ON(root->number_of_cgroups != 1);
1091 BUG_ON(!list_empty(&cgrp->children));
1092 BUG_ON(!list_empty(&cgrp->sibling));
1094 mutex_lock(&cgroup_mutex);
1096 /* Rebind all subsystems back to the default hierarchy */
1097 ret = rebind_subsystems(root, 0);
1098 /* Shouldn't be able to fail ... */
1099 BUG_ON(ret);
1102 * Release all the links from css_sets to this hierarchy's
1103 * root cgroup
1105 write_lock(&css_set_lock);
1107 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1108 cgrp_link_list) {
1109 list_del(&link->cg_link_list);
1110 list_del(&link->cgrp_link_list);
1111 kfree(link);
1113 write_unlock(&css_set_lock);
1115 list_del(&root->root_list);
1116 root_count--;
1118 mutex_unlock(&cgroup_mutex);
1120 kfree(root);
1121 kill_litter_super(sb);
1124 static struct file_system_type cgroup_fs_type = {
1125 .name = "cgroup",
1126 .get_sb = cgroup_get_sb,
1127 .kill_sb = cgroup_kill_sb,
1130 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1132 return dentry->d_fsdata;
1135 static inline struct cftype *__d_cft(struct dentry *dentry)
1137 return dentry->d_fsdata;
1141 * cgroup_path - generate the path of a cgroup
1142 * @cgrp: the cgroup in question
1143 * @buf: the buffer to write the path into
1144 * @buflen: the length of the buffer
1146 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1147 * reference. Writes path of cgroup into buf. Returns 0 on success,
1148 * -errno on error.
1150 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1152 char *start;
1153 struct dentry *dentry = rcu_dereference(cgrp->dentry);
1155 if (!dentry || cgrp == dummytop) {
1157 * Inactive subsystems have no dentry for their root
1158 * cgroup
1160 strcpy(buf, "/");
1161 return 0;
1164 start = buf + buflen;
1166 *--start = '\0';
1167 for (;;) {
1168 int len = dentry->d_name.len;
1169 if ((start -= len) < buf)
1170 return -ENAMETOOLONG;
1171 memcpy(start, cgrp->dentry->d_name.name, len);
1172 cgrp = cgrp->parent;
1173 if (!cgrp)
1174 break;
1175 dentry = rcu_dereference(cgrp->dentry);
1176 if (!cgrp->parent)
1177 continue;
1178 if (--start < buf)
1179 return -ENAMETOOLONG;
1180 *start = '/';
1182 memmove(buf, start, buf + buflen - start);
1183 return 0;
1187 * Return the first subsystem attached to a cgroup's hierarchy, and
1188 * its subsystem id.
1191 static void get_first_subsys(const struct cgroup *cgrp,
1192 struct cgroup_subsys_state **css, int *subsys_id)
1194 const struct cgroupfs_root *root = cgrp->root;
1195 const struct cgroup_subsys *test_ss;
1196 BUG_ON(list_empty(&root->subsys_list));
1197 test_ss = list_entry(root->subsys_list.next,
1198 struct cgroup_subsys, sibling);
1199 if (css) {
1200 *css = cgrp->subsys[test_ss->subsys_id];
1201 BUG_ON(!*css);
1203 if (subsys_id)
1204 *subsys_id = test_ss->subsys_id;
1208 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1209 * @cgrp: the cgroup the task is attaching to
1210 * @tsk: the task to be attached
1212 * Call holding cgroup_mutex. May take task_lock of
1213 * the task 'tsk' during call.
1215 int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1217 int retval = 0;
1218 struct cgroup_subsys *ss;
1219 struct cgroup *oldcgrp;
1220 struct css_set *cg;
1221 struct css_set *newcg;
1222 struct cgroupfs_root *root = cgrp->root;
1223 int subsys_id;
1225 get_first_subsys(cgrp, NULL, &subsys_id);
1227 /* Nothing to do if the task is already in that cgroup */
1228 oldcgrp = task_cgroup(tsk, subsys_id);
1229 if (cgrp == oldcgrp)
1230 return 0;
1232 for_each_subsys(root, ss) {
1233 if (ss->can_attach) {
1234 retval = ss->can_attach(ss, cgrp, tsk);
1235 if (retval)
1236 return retval;
1240 task_lock(tsk);
1241 cg = tsk->cgroups;
1242 get_css_set(cg);
1243 task_unlock(tsk);
1245 * Locate or allocate a new css_set for this task,
1246 * based on its final set of cgroups
1248 newcg = find_css_set(cg, cgrp);
1249 put_css_set(cg);
1250 if (!newcg)
1251 return -ENOMEM;
1253 task_lock(tsk);
1254 if (tsk->flags & PF_EXITING) {
1255 task_unlock(tsk);
1256 put_css_set(newcg);
1257 return -ESRCH;
1259 rcu_assign_pointer(tsk->cgroups, newcg);
1260 task_unlock(tsk);
1262 /* Update the css_set linked lists if we're using them */
1263 write_lock(&css_set_lock);
1264 if (!list_empty(&tsk->cg_list)) {
1265 list_del(&tsk->cg_list);
1266 list_add(&tsk->cg_list, &newcg->tasks);
1268 write_unlock(&css_set_lock);
1270 for_each_subsys(root, ss) {
1271 if (ss->attach)
1272 ss->attach(ss, cgrp, oldcgrp, tsk);
1274 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1275 synchronize_rcu();
1276 put_css_set(cg);
1277 return 0;
1281 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
1282 * held. May take task_lock of task
1284 static int attach_task_by_pid(struct cgroup *cgrp, u64 pid)
1286 struct task_struct *tsk;
1287 const struct cred *cred = current_cred(), *tcred;
1288 int ret;
1290 if (pid) {
1291 rcu_read_lock();
1292 tsk = find_task_by_vpid(pid);
1293 if (!tsk || tsk->flags & PF_EXITING) {
1294 rcu_read_unlock();
1295 return -ESRCH;
1298 tcred = __task_cred(tsk);
1299 if (cred->euid &&
1300 cred->euid != tcred->uid &&
1301 cred->euid != tcred->suid) {
1302 rcu_read_unlock();
1303 return -EACCES;
1305 get_task_struct(tsk);
1306 rcu_read_unlock();
1307 } else {
1308 tsk = current;
1309 get_task_struct(tsk);
1312 ret = cgroup_attach_task(cgrp, tsk);
1313 put_task_struct(tsk);
1314 return ret;
1317 static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
1319 int ret;
1320 if (!cgroup_lock_live_group(cgrp))
1321 return -ENODEV;
1322 ret = attach_task_by_pid(cgrp, pid);
1323 cgroup_unlock();
1324 return ret;
1327 /* The various types of files and directories in a cgroup file system */
1328 enum cgroup_filetype {
1329 FILE_ROOT,
1330 FILE_DIR,
1331 FILE_TASKLIST,
1332 FILE_NOTIFY_ON_RELEASE,
1333 FILE_RELEASE_AGENT,
1337 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
1338 * @cgrp: the cgroup to be checked for liveness
1340 * On success, returns true; the lock should be later released with
1341 * cgroup_unlock(). On failure returns false with no lock held.
1343 bool cgroup_lock_live_group(struct cgroup *cgrp)
1345 mutex_lock(&cgroup_mutex);
1346 if (cgroup_is_removed(cgrp)) {
1347 mutex_unlock(&cgroup_mutex);
1348 return false;
1350 return true;
1353 static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
1354 const char *buffer)
1356 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
1357 if (!cgroup_lock_live_group(cgrp))
1358 return -ENODEV;
1359 strcpy(cgrp->root->release_agent_path, buffer);
1360 cgroup_unlock();
1361 return 0;
1364 static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
1365 struct seq_file *seq)
1367 if (!cgroup_lock_live_group(cgrp))
1368 return -ENODEV;
1369 seq_puts(seq, cgrp->root->release_agent_path);
1370 seq_putc(seq, '\n');
1371 cgroup_unlock();
1372 return 0;
1375 /* A buffer size big enough for numbers or short strings */
1376 #define CGROUP_LOCAL_BUFFER_SIZE 64
1378 static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
1379 struct file *file,
1380 const char __user *userbuf,
1381 size_t nbytes, loff_t *unused_ppos)
1383 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
1384 int retval = 0;
1385 char *end;
1387 if (!nbytes)
1388 return -EINVAL;
1389 if (nbytes >= sizeof(buffer))
1390 return -E2BIG;
1391 if (copy_from_user(buffer, userbuf, nbytes))
1392 return -EFAULT;
1394 buffer[nbytes] = 0; /* nul-terminate */
1395 strstrip(buffer);
1396 if (cft->write_u64) {
1397 u64 val = simple_strtoull(buffer, &end, 0);
1398 if (*end)
1399 return -EINVAL;
1400 retval = cft->write_u64(cgrp, cft, val);
1401 } else {
1402 s64 val = simple_strtoll(buffer, &end, 0);
1403 if (*end)
1404 return -EINVAL;
1405 retval = cft->write_s64(cgrp, cft, val);
1407 if (!retval)
1408 retval = nbytes;
1409 return retval;
1412 static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
1413 struct file *file,
1414 const char __user *userbuf,
1415 size_t nbytes, loff_t *unused_ppos)
1417 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
1418 int retval = 0;
1419 size_t max_bytes = cft->max_write_len;
1420 char *buffer = local_buffer;
1422 if (!max_bytes)
1423 max_bytes = sizeof(local_buffer) - 1;
1424 if (nbytes >= max_bytes)
1425 return -E2BIG;
1426 /* Allocate a dynamic buffer if we need one */
1427 if (nbytes >= sizeof(local_buffer)) {
1428 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
1429 if (buffer == NULL)
1430 return -ENOMEM;
1432 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
1433 retval = -EFAULT;
1434 goto out;
1437 buffer[nbytes] = 0; /* nul-terminate */
1438 strstrip(buffer);
1439 retval = cft->write_string(cgrp, cft, buffer);
1440 if (!retval)
1441 retval = nbytes;
1442 out:
1443 if (buffer != local_buffer)
1444 kfree(buffer);
1445 return retval;
1448 static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
1449 size_t nbytes, loff_t *ppos)
1451 struct cftype *cft = __d_cft(file->f_dentry);
1452 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1454 if (cgroup_is_removed(cgrp))
1455 return -ENODEV;
1456 if (cft->write)
1457 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
1458 if (cft->write_u64 || cft->write_s64)
1459 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
1460 if (cft->write_string)
1461 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
1462 if (cft->trigger) {
1463 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
1464 return ret ? ret : nbytes;
1466 return -EINVAL;
1469 static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
1470 struct file *file,
1471 char __user *buf, size_t nbytes,
1472 loff_t *ppos)
1474 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
1475 u64 val = cft->read_u64(cgrp, cft);
1476 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
1478 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
1481 static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
1482 struct file *file,
1483 char __user *buf, size_t nbytes,
1484 loff_t *ppos)
1486 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
1487 s64 val = cft->read_s64(cgrp, cft);
1488 int len = sprintf(tmp, "%lld\n", (long long) val);
1490 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
1493 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
1494 size_t nbytes, loff_t *ppos)
1496 struct cftype *cft = __d_cft(file->f_dentry);
1497 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1499 if (cgroup_is_removed(cgrp))
1500 return -ENODEV;
1502 if (cft->read)
1503 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
1504 if (cft->read_u64)
1505 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
1506 if (cft->read_s64)
1507 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
1508 return -EINVAL;
1512 * seqfile ops/methods for returning structured data. Currently just
1513 * supports string->u64 maps, but can be extended in future.
1516 struct cgroup_seqfile_state {
1517 struct cftype *cft;
1518 struct cgroup *cgroup;
1521 static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
1523 struct seq_file *sf = cb->state;
1524 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
1527 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
1529 struct cgroup_seqfile_state *state = m->private;
1530 struct cftype *cft = state->cft;
1531 if (cft->read_map) {
1532 struct cgroup_map_cb cb = {
1533 .fill = cgroup_map_add,
1534 .state = m,
1536 return cft->read_map(state->cgroup, cft, &cb);
1538 return cft->read_seq_string(state->cgroup, cft, m);
1541 static int cgroup_seqfile_release(struct inode *inode, struct file *file)
1543 struct seq_file *seq = file->private_data;
1544 kfree(seq->private);
1545 return single_release(inode, file);
1548 static struct file_operations cgroup_seqfile_operations = {
1549 .read = seq_read,
1550 .write = cgroup_file_write,
1551 .llseek = seq_lseek,
1552 .release = cgroup_seqfile_release,
1555 static int cgroup_file_open(struct inode *inode, struct file *file)
1557 int err;
1558 struct cftype *cft;
1560 err = generic_file_open(inode, file);
1561 if (err)
1562 return err;
1563 cft = __d_cft(file->f_dentry);
1565 if (cft->read_map || cft->read_seq_string) {
1566 struct cgroup_seqfile_state *state =
1567 kzalloc(sizeof(*state), GFP_USER);
1568 if (!state)
1569 return -ENOMEM;
1570 state->cft = cft;
1571 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
1572 file->f_op = &cgroup_seqfile_operations;
1573 err = single_open(file, cgroup_seqfile_show, state);
1574 if (err < 0)
1575 kfree(state);
1576 } else if (cft->open)
1577 err = cft->open(inode, file);
1578 else
1579 err = 0;
1581 return err;
1584 static int cgroup_file_release(struct inode *inode, struct file *file)
1586 struct cftype *cft = __d_cft(file->f_dentry);
1587 if (cft->release)
1588 return cft->release(inode, file);
1589 return 0;
1593 * cgroup_rename - Only allow simple rename of directories in place.
1595 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
1596 struct inode *new_dir, struct dentry *new_dentry)
1598 if (!S_ISDIR(old_dentry->d_inode->i_mode))
1599 return -ENOTDIR;
1600 if (new_dentry->d_inode)
1601 return -EEXIST;
1602 if (old_dir != new_dir)
1603 return -EIO;
1604 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
1607 static struct file_operations cgroup_file_operations = {
1608 .read = cgroup_file_read,
1609 .write = cgroup_file_write,
1610 .llseek = generic_file_llseek,
1611 .open = cgroup_file_open,
1612 .release = cgroup_file_release,
1615 static struct inode_operations cgroup_dir_inode_operations = {
1616 .lookup = simple_lookup,
1617 .mkdir = cgroup_mkdir,
1618 .rmdir = cgroup_rmdir,
1619 .rename = cgroup_rename,
1622 static int cgroup_create_file(struct dentry *dentry, int mode,
1623 struct super_block *sb)
1625 static struct dentry_operations cgroup_dops = {
1626 .d_iput = cgroup_diput,
1629 struct inode *inode;
1631 if (!dentry)
1632 return -ENOENT;
1633 if (dentry->d_inode)
1634 return -EEXIST;
1636 inode = cgroup_new_inode(mode, sb);
1637 if (!inode)
1638 return -ENOMEM;
1640 if (S_ISDIR(mode)) {
1641 inode->i_op = &cgroup_dir_inode_operations;
1642 inode->i_fop = &simple_dir_operations;
1644 /* start off with i_nlink == 2 (for "." entry) */
1645 inc_nlink(inode);
1647 /* start with the directory inode held, so that we can
1648 * populate it without racing with another mkdir */
1649 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1650 } else if (S_ISREG(mode)) {
1651 inode->i_size = 0;
1652 inode->i_fop = &cgroup_file_operations;
1654 dentry->d_op = &cgroup_dops;
1655 d_instantiate(dentry, inode);
1656 dget(dentry); /* Extra count - pin the dentry in core */
1657 return 0;
1661 * cgroup_create_dir - create a directory for an object.
1662 * @cgrp: the cgroup we create the directory for. It must have a valid
1663 * ->parent field. And we are going to fill its ->dentry field.
1664 * @dentry: dentry of the new cgroup
1665 * @mode: mode to set on new directory.
1667 static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
1668 int mode)
1670 struct dentry *parent;
1671 int error = 0;
1673 parent = cgrp->parent->dentry;
1674 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
1675 if (!error) {
1676 dentry->d_fsdata = cgrp;
1677 inc_nlink(parent->d_inode);
1678 rcu_assign_pointer(cgrp->dentry, dentry);
1679 dget(dentry);
1681 dput(dentry);
1683 return error;
1686 int cgroup_add_file(struct cgroup *cgrp,
1687 struct cgroup_subsys *subsys,
1688 const struct cftype *cft)
1690 struct dentry *dir = cgrp->dentry;
1691 struct dentry *dentry;
1692 int error;
1694 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
1695 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
1696 strcpy(name, subsys->name);
1697 strcat(name, ".");
1699 strcat(name, cft->name);
1700 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
1701 dentry = lookup_one_len(name, dir, strlen(name));
1702 if (!IS_ERR(dentry)) {
1703 error = cgroup_create_file(dentry, 0644 | S_IFREG,
1704 cgrp->root->sb);
1705 if (!error)
1706 dentry->d_fsdata = (void *)cft;
1707 dput(dentry);
1708 } else
1709 error = PTR_ERR(dentry);
1710 return error;
1713 int cgroup_add_files(struct cgroup *cgrp,
1714 struct cgroup_subsys *subsys,
1715 const struct cftype cft[],
1716 int count)
1718 int i, err;
1719 for (i = 0; i < count; i++) {
1720 err = cgroup_add_file(cgrp, subsys, &cft[i]);
1721 if (err)
1722 return err;
1724 return 0;
1728 * cgroup_task_count - count the number of tasks in a cgroup.
1729 * @cgrp: the cgroup in question
1731 * Return the number of tasks in the cgroup.
1733 int cgroup_task_count(const struct cgroup *cgrp)
1735 int count = 0;
1736 struct cg_cgroup_link *link;
1738 read_lock(&css_set_lock);
1739 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
1740 count += atomic_read(&link->cg->refcount);
1742 read_unlock(&css_set_lock);
1743 return count;
1747 * Advance a list_head iterator. The iterator should be positioned at
1748 * the start of a css_set
1750 static void cgroup_advance_iter(struct cgroup *cgrp,
1751 struct cgroup_iter *it)
1753 struct list_head *l = it->cg_link;
1754 struct cg_cgroup_link *link;
1755 struct css_set *cg;
1757 /* Advance to the next non-empty css_set */
1758 do {
1759 l = l->next;
1760 if (l == &cgrp->css_sets) {
1761 it->cg_link = NULL;
1762 return;
1764 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
1765 cg = link->cg;
1766 } while (list_empty(&cg->tasks));
1767 it->cg_link = l;
1768 it->task = cg->tasks.next;
1772 * To reduce the fork() overhead for systems that are not actually
1773 * using their cgroups capability, we don't maintain the lists running
1774 * through each css_set to its tasks until we see the list actually
1775 * used - in other words after the first call to cgroup_iter_start().
1777 * The tasklist_lock is not held here, as do_each_thread() and
1778 * while_each_thread() are protected by RCU.
1780 static void cgroup_enable_task_cg_lists(void)
1782 struct task_struct *p, *g;
1783 write_lock(&css_set_lock);
1784 use_task_css_set_links = 1;
1785 do_each_thread(g, p) {
1786 task_lock(p);
1788 * We should check if the process is exiting, otherwise
1789 * it will race with cgroup_exit() in that the list
1790 * entry won't be deleted though the process has exited.
1792 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
1793 list_add(&p->cg_list, &p->cgroups->tasks);
1794 task_unlock(p);
1795 } while_each_thread(g, p);
1796 write_unlock(&css_set_lock);
1799 void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
1802 * The first time anyone tries to iterate across a cgroup,
1803 * we need to enable the list linking each css_set to its
1804 * tasks, and fix up all existing tasks.
1806 if (!use_task_css_set_links)
1807 cgroup_enable_task_cg_lists();
1809 read_lock(&css_set_lock);
1810 it->cg_link = &cgrp->css_sets;
1811 cgroup_advance_iter(cgrp, it);
1814 struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
1815 struct cgroup_iter *it)
1817 struct task_struct *res;
1818 struct list_head *l = it->task;
1819 struct cg_cgroup_link *link;
1821 /* If the iterator cg is NULL, we have no tasks */
1822 if (!it->cg_link)
1823 return NULL;
1824 res = list_entry(l, struct task_struct, cg_list);
1825 /* Advance iterator to find next entry */
1826 l = l->next;
1827 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
1828 if (l == &link->cg->tasks) {
1829 /* We reached the end of this task list - move on to
1830 * the next cg_cgroup_link */
1831 cgroup_advance_iter(cgrp, it);
1832 } else {
1833 it->task = l;
1835 return res;
1838 void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
1840 read_unlock(&css_set_lock);
1843 static inline int started_after_time(struct task_struct *t1,
1844 struct timespec *time,
1845 struct task_struct *t2)
1847 int start_diff = timespec_compare(&t1->start_time, time);
1848 if (start_diff > 0) {
1849 return 1;
1850 } else if (start_diff < 0) {
1851 return 0;
1852 } else {
1854 * Arbitrarily, if two processes started at the same
1855 * time, we'll say that the lower pointer value
1856 * started first. Note that t2 may have exited by now
1857 * so this may not be a valid pointer any longer, but
1858 * that's fine - it still serves to distinguish
1859 * between two tasks started (effectively) simultaneously.
1861 return t1 > t2;
1866 * This function is a callback from heap_insert() and is used to order
1867 * the heap.
1868 * In this case we order the heap in descending task start time.
1870 static inline int started_after(void *p1, void *p2)
1872 struct task_struct *t1 = p1;
1873 struct task_struct *t2 = p2;
1874 return started_after_time(t1, &t2->start_time, t2);
1878 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
1879 * @scan: struct cgroup_scanner containing arguments for the scan
1881 * Arguments include pointers to callback functions test_task() and
1882 * process_task().
1883 * Iterate through all the tasks in a cgroup, calling test_task() for each,
1884 * and if it returns true, call process_task() for it also.
1885 * The test_task pointer may be NULL, meaning always true (select all tasks).
1886 * Effectively duplicates cgroup_iter_{start,next,end}()
1887 * but does not lock css_set_lock for the call to process_task().
1888 * The struct cgroup_scanner may be embedded in any structure of the caller's
1889 * creation.
1890 * It is guaranteed that process_task() will act on every task that
1891 * is a member of the cgroup for the duration of this call. This
1892 * function may or may not call process_task() for tasks that exit
1893 * or move to a different cgroup during the call, or are forked or
1894 * move into the cgroup during the call.
1896 * Note that test_task() may be called with locks held, and may in some
1897 * situations be called multiple times for the same task, so it should
1898 * be cheap.
1899 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
1900 * pre-allocated and will be used for heap operations (and its "gt" member will
1901 * be overwritten), else a temporary heap will be used (allocation of which
1902 * may cause this function to fail).
1904 int cgroup_scan_tasks(struct cgroup_scanner *scan)
1906 int retval, i;
1907 struct cgroup_iter it;
1908 struct task_struct *p, *dropped;
1909 /* Never dereference latest_task, since it's not refcounted */
1910 struct task_struct *latest_task = NULL;
1911 struct ptr_heap tmp_heap;
1912 struct ptr_heap *heap;
1913 struct timespec latest_time = { 0, 0 };
1915 if (scan->heap) {
1916 /* The caller supplied our heap and pre-allocated its memory */
1917 heap = scan->heap;
1918 heap->gt = &started_after;
1919 } else {
1920 /* We need to allocate our own heap memory */
1921 heap = &tmp_heap;
1922 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
1923 if (retval)
1924 /* cannot allocate the heap */
1925 return retval;
1928 again:
1930 * Scan tasks in the cgroup, using the scanner's "test_task" callback
1931 * to determine which are of interest, and using the scanner's
1932 * "process_task" callback to process any of them that need an update.
1933 * Since we don't want to hold any locks during the task updates,
1934 * gather tasks to be processed in a heap structure.
1935 * The heap is sorted by descending task start time.
1936 * If the statically-sized heap fills up, we overflow tasks that
1937 * started later, and in future iterations only consider tasks that
1938 * started after the latest task in the previous pass. This
1939 * guarantees forward progress and that we don't miss any tasks.
1941 heap->size = 0;
1942 cgroup_iter_start(scan->cg, &it);
1943 while ((p = cgroup_iter_next(scan->cg, &it))) {
1945 * Only affect tasks that qualify per the caller's callback,
1946 * if he provided one
1948 if (scan->test_task && !scan->test_task(p, scan))
1949 continue;
1951 * Only process tasks that started after the last task
1952 * we processed
1954 if (!started_after_time(p, &latest_time, latest_task))
1955 continue;
1956 dropped = heap_insert(heap, p);
1957 if (dropped == NULL) {
1959 * The new task was inserted; the heap wasn't
1960 * previously full
1962 get_task_struct(p);
1963 } else if (dropped != p) {
1965 * The new task was inserted, and pushed out a
1966 * different task
1968 get_task_struct(p);
1969 put_task_struct(dropped);
1972 * Else the new task was newer than anything already in
1973 * the heap and wasn't inserted
1976 cgroup_iter_end(scan->cg, &it);
1978 if (heap->size) {
1979 for (i = 0; i < heap->size; i++) {
1980 struct task_struct *q = heap->ptrs[i];
1981 if (i == 0) {
1982 latest_time = q->start_time;
1983 latest_task = q;
1985 /* Process the task per the caller's callback */
1986 scan->process_task(q, scan);
1987 put_task_struct(q);
1990 * If we had to process any tasks at all, scan again
1991 * in case some of them were in the middle of forking
1992 * children that didn't get processed.
1993 * Not the most efficient way to do it, but it avoids
1994 * having to take callback_mutex in the fork path
1996 goto again;
1998 if (heap == &tmp_heap)
1999 heap_free(&tmp_heap);
2000 return 0;
2004 * Stuff for reading the 'tasks' file.
2006 * Reading this file can return large amounts of data if a cgroup has
2007 * *lots* of attached tasks. So it may need several calls to read(),
2008 * but we cannot guarantee that the information we produce is correct
2009 * unless we produce it entirely atomically.
2014 * Load into 'pidarray' up to 'npids' of the tasks using cgroup
2015 * 'cgrp'. Return actual number of pids loaded. No need to
2016 * task_lock(p) when reading out p->cgroup, since we're in an RCU
2017 * read section, so the css_set can't go away, and is
2018 * immutable after creation.
2020 static int pid_array_load(pid_t *pidarray, int npids, struct cgroup *cgrp)
2022 int n = 0, pid;
2023 struct cgroup_iter it;
2024 struct task_struct *tsk;
2025 cgroup_iter_start(cgrp, &it);
2026 while ((tsk = cgroup_iter_next(cgrp, &it))) {
2027 if (unlikely(n == npids))
2028 break;
2029 pid = task_pid_vnr(tsk);
2030 if (pid > 0)
2031 pidarray[n++] = pid;
2033 cgroup_iter_end(cgrp, &it);
2034 return n;
2038 * cgroupstats_build - build and fill cgroupstats
2039 * @stats: cgroupstats to fill information into
2040 * @dentry: A dentry entry belonging to the cgroup for which stats have
2041 * been requested.
2043 * Build and fill cgroupstats so that taskstats can export it to user
2044 * space.
2046 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
2048 int ret = -EINVAL;
2049 struct cgroup *cgrp;
2050 struct cgroup_iter it;
2051 struct task_struct *tsk;
2054 * Validate dentry by checking the superblock operations,
2055 * and make sure it's a directory.
2057 if (dentry->d_sb->s_op != &cgroup_ops ||
2058 !S_ISDIR(dentry->d_inode->i_mode))
2059 goto err;
2061 ret = 0;
2062 cgrp = dentry->d_fsdata;
2064 cgroup_iter_start(cgrp, &it);
2065 while ((tsk = cgroup_iter_next(cgrp, &it))) {
2066 switch (tsk->state) {
2067 case TASK_RUNNING:
2068 stats->nr_running++;
2069 break;
2070 case TASK_INTERRUPTIBLE:
2071 stats->nr_sleeping++;
2072 break;
2073 case TASK_UNINTERRUPTIBLE:
2074 stats->nr_uninterruptible++;
2075 break;
2076 case TASK_STOPPED:
2077 stats->nr_stopped++;
2078 break;
2079 default:
2080 if (delayacct_is_task_waiting_on_io(tsk))
2081 stats->nr_io_wait++;
2082 break;
2085 cgroup_iter_end(cgrp, &it);
2087 err:
2088 return ret;
2091 static int cmppid(const void *a, const void *b)
2093 return *(pid_t *)a - *(pid_t *)b;
2098 * seq_file methods for the "tasks" file. The seq_file position is the
2099 * next pid to display; the seq_file iterator is a pointer to the pid
2100 * in the cgroup->tasks_pids array.
2103 static void *cgroup_tasks_start(struct seq_file *s, loff_t *pos)
2106 * Initially we receive a position value that corresponds to
2107 * one more than the last pid shown (or 0 on the first call or
2108 * after a seek to the start). Use a binary-search to find the
2109 * next pid to display, if any
2111 struct cgroup *cgrp = s->private;
2112 int index = 0, pid = *pos;
2113 int *iter;
2115 down_read(&cgrp->pids_mutex);
2116 if (pid) {
2117 int end = cgrp->pids_length;
2119 while (index < end) {
2120 int mid = (index + end) / 2;
2121 if (cgrp->tasks_pids[mid] == pid) {
2122 index = mid;
2123 break;
2124 } else if (cgrp->tasks_pids[mid] <= pid)
2125 index = mid + 1;
2126 else
2127 end = mid;
2130 /* If we're off the end of the array, we're done */
2131 if (index >= cgrp->pids_length)
2132 return NULL;
2133 /* Update the abstract position to be the actual pid that we found */
2134 iter = cgrp->tasks_pids + index;
2135 *pos = *iter;
2136 return iter;
2139 static void cgroup_tasks_stop(struct seq_file *s, void *v)
2141 struct cgroup *cgrp = s->private;
2142 up_read(&cgrp->pids_mutex);
2145 static void *cgroup_tasks_next(struct seq_file *s, void *v, loff_t *pos)
2147 struct cgroup *cgrp = s->private;
2148 int *p = v;
2149 int *end = cgrp->tasks_pids + cgrp->pids_length;
2152 * Advance to the next pid in the array. If this goes off the
2153 * end, we're done
2155 p++;
2156 if (p >= end) {
2157 return NULL;
2158 } else {
2159 *pos = *p;
2160 return p;
2164 static int cgroup_tasks_show(struct seq_file *s, void *v)
2166 return seq_printf(s, "%d\n", *(int *)v);
2169 static struct seq_operations cgroup_tasks_seq_operations = {
2170 .start = cgroup_tasks_start,
2171 .stop = cgroup_tasks_stop,
2172 .next = cgroup_tasks_next,
2173 .show = cgroup_tasks_show,
2176 static void release_cgroup_pid_array(struct cgroup *cgrp)
2178 down_write(&cgrp->pids_mutex);
2179 BUG_ON(!cgrp->pids_use_count);
2180 if (!--cgrp->pids_use_count) {
2181 kfree(cgrp->tasks_pids);
2182 cgrp->tasks_pids = NULL;
2183 cgrp->pids_length = 0;
2185 up_write(&cgrp->pids_mutex);
2188 static int cgroup_tasks_release(struct inode *inode, struct file *file)
2190 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2192 if (!(file->f_mode & FMODE_READ))
2193 return 0;
2195 release_cgroup_pid_array(cgrp);
2196 return seq_release(inode, file);
2199 static struct file_operations cgroup_tasks_operations = {
2200 .read = seq_read,
2201 .llseek = seq_lseek,
2202 .write = cgroup_file_write,
2203 .release = cgroup_tasks_release,
2207 * Handle an open on 'tasks' file. Prepare an array containing the
2208 * process id's of tasks currently attached to the cgroup being opened.
2211 static int cgroup_tasks_open(struct inode *unused, struct file *file)
2213 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2214 pid_t *pidarray;
2215 int npids;
2216 int retval;
2218 /* Nothing to do for write-only files */
2219 if (!(file->f_mode & FMODE_READ))
2220 return 0;
2223 * If cgroup gets more users after we read count, we won't have
2224 * enough space - tough. This race is indistinguishable to the
2225 * caller from the case that the additional cgroup users didn't
2226 * show up until sometime later on.
2228 npids = cgroup_task_count(cgrp);
2229 pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
2230 if (!pidarray)
2231 return -ENOMEM;
2232 npids = pid_array_load(pidarray, npids, cgrp);
2233 sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
2236 * Store the array in the cgroup, freeing the old
2237 * array if necessary
2239 down_write(&cgrp->pids_mutex);
2240 kfree(cgrp->tasks_pids);
2241 cgrp->tasks_pids = pidarray;
2242 cgrp->pids_length = npids;
2243 cgrp->pids_use_count++;
2244 up_write(&cgrp->pids_mutex);
2246 file->f_op = &cgroup_tasks_operations;
2248 retval = seq_open(file, &cgroup_tasks_seq_operations);
2249 if (retval) {
2250 release_cgroup_pid_array(cgrp);
2251 return retval;
2253 ((struct seq_file *)file->private_data)->private = cgrp;
2254 return 0;
2257 static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
2258 struct cftype *cft)
2260 return notify_on_release(cgrp);
2263 static int cgroup_write_notify_on_release(struct cgroup *cgrp,
2264 struct cftype *cft,
2265 u64 val)
2267 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
2268 if (val)
2269 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
2270 else
2271 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
2272 return 0;
2276 * for the common functions, 'private' gives the type of file
2278 static struct cftype files[] = {
2280 .name = "tasks",
2281 .open = cgroup_tasks_open,
2282 .write_u64 = cgroup_tasks_write,
2283 .release = cgroup_tasks_release,
2284 .private = FILE_TASKLIST,
2288 .name = "notify_on_release",
2289 .read_u64 = cgroup_read_notify_on_release,
2290 .write_u64 = cgroup_write_notify_on_release,
2291 .private = FILE_NOTIFY_ON_RELEASE,
2295 static struct cftype cft_release_agent = {
2296 .name = "release_agent",
2297 .read_seq_string = cgroup_release_agent_show,
2298 .write_string = cgroup_release_agent_write,
2299 .max_write_len = PATH_MAX,
2300 .private = FILE_RELEASE_AGENT,
2303 static int cgroup_populate_dir(struct cgroup *cgrp)
2305 int err;
2306 struct cgroup_subsys *ss;
2308 /* First clear out any existing files */
2309 cgroup_clear_directory(cgrp->dentry);
2311 err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
2312 if (err < 0)
2313 return err;
2315 if (cgrp == cgrp->top_cgroup) {
2316 if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
2317 return err;
2320 for_each_subsys(cgrp->root, ss) {
2321 if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
2322 return err;
2325 return 0;
2328 static void init_cgroup_css(struct cgroup_subsys_state *css,
2329 struct cgroup_subsys *ss,
2330 struct cgroup *cgrp)
2332 css->cgroup = cgrp;
2333 atomic_set(&css->refcnt, 0);
2334 css->flags = 0;
2335 if (cgrp == dummytop)
2336 set_bit(CSS_ROOT, &css->flags);
2337 BUG_ON(cgrp->subsys[ss->subsys_id]);
2338 cgrp->subsys[ss->subsys_id] = css;
2342 * cgroup_create - create a cgroup
2343 * @parent: cgroup that will be parent of the new cgroup
2344 * @dentry: dentry of the new cgroup
2345 * @mode: mode to set on new inode
2347 * Must be called with the mutex on the parent inode held
2349 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
2350 int mode)
2352 struct cgroup *cgrp;
2353 struct cgroupfs_root *root = parent->root;
2354 int err = 0;
2355 struct cgroup_subsys *ss;
2356 struct super_block *sb = root->sb;
2358 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
2359 if (!cgrp)
2360 return -ENOMEM;
2362 /* Grab a reference on the superblock so the hierarchy doesn't
2363 * get deleted on unmount if there are child cgroups. This
2364 * can be done outside cgroup_mutex, since the sb can't
2365 * disappear while someone has an open control file on the
2366 * fs */
2367 atomic_inc(&sb->s_active);
2369 mutex_lock(&cgroup_mutex);
2371 init_cgroup_housekeeping(cgrp);
2373 cgrp->parent = parent;
2374 cgrp->root = parent->root;
2375 cgrp->top_cgroup = parent->top_cgroup;
2377 if (notify_on_release(parent))
2378 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
2380 for_each_subsys(root, ss) {
2381 struct cgroup_subsys_state *css = ss->create(ss, cgrp);
2382 if (IS_ERR(css)) {
2383 err = PTR_ERR(css);
2384 goto err_destroy;
2386 init_cgroup_css(css, ss, cgrp);
2389 list_add(&cgrp->sibling, &cgrp->parent->children);
2390 root->number_of_cgroups++;
2392 err = cgroup_create_dir(cgrp, dentry, mode);
2393 if (err < 0)
2394 goto err_remove;
2396 /* The cgroup directory was pre-locked for us */
2397 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
2399 err = cgroup_populate_dir(cgrp);
2400 /* If err < 0, we have a half-filled directory - oh well ;) */
2402 mutex_unlock(&cgroup_mutex);
2403 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
2405 return 0;
2407 err_remove:
2409 list_del(&cgrp->sibling);
2410 root->number_of_cgroups--;
2412 err_destroy:
2414 for_each_subsys(root, ss) {
2415 if (cgrp->subsys[ss->subsys_id])
2416 ss->destroy(ss, cgrp);
2419 mutex_unlock(&cgroup_mutex);
2421 /* Release the reference count that we took on the superblock */
2422 deactivate_super(sb);
2424 kfree(cgrp);
2425 return err;
2428 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2430 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
2432 /* the vfs holds inode->i_mutex already */
2433 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
2436 static int cgroup_has_css_refs(struct cgroup *cgrp)
2438 /* Check the reference count on each subsystem. Since we
2439 * already established that there are no tasks in the
2440 * cgroup, if the css refcount is also 0, then there should
2441 * be no outstanding references, so the subsystem is safe to
2442 * destroy. We scan across all subsystems rather than using
2443 * the per-hierarchy linked list of mounted subsystems since
2444 * we can be called via check_for_release() with no
2445 * synchronization other than RCU, and the subsystem linked
2446 * list isn't RCU-safe */
2447 int i;
2448 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2449 struct cgroup_subsys *ss = subsys[i];
2450 struct cgroup_subsys_state *css;
2451 /* Skip subsystems not in this hierarchy */
2452 if (ss->root != cgrp->root)
2453 continue;
2454 css = cgrp->subsys[ss->subsys_id];
2455 /* When called from check_for_release() it's possible
2456 * that by this point the cgroup has been removed
2457 * and the css deleted. But a false-positive doesn't
2458 * matter, since it can only happen if the cgroup
2459 * has been deleted and hence no longer needs the
2460 * release agent to be called anyway. */
2461 if (css && atomic_read(&css->refcnt))
2462 return 1;
2464 return 0;
2467 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
2469 struct cgroup *cgrp = dentry->d_fsdata;
2470 struct dentry *d;
2471 struct cgroup *parent;
2473 /* the vfs holds both inode->i_mutex already */
2475 mutex_lock(&cgroup_mutex);
2476 if (atomic_read(&cgrp->count) != 0) {
2477 mutex_unlock(&cgroup_mutex);
2478 return -EBUSY;
2480 if (!list_empty(&cgrp->children)) {
2481 mutex_unlock(&cgroup_mutex);
2482 return -EBUSY;
2484 mutex_unlock(&cgroup_mutex);
2487 * Call pre_destroy handlers of subsys. Notify subsystems
2488 * that rmdir() request comes.
2490 cgroup_call_pre_destroy(cgrp);
2492 mutex_lock(&cgroup_mutex);
2493 parent = cgrp->parent;
2495 if (atomic_read(&cgrp->count)
2496 || !list_empty(&cgrp->children)
2497 || cgroup_has_css_refs(cgrp)) {
2498 mutex_unlock(&cgroup_mutex);
2499 return -EBUSY;
2502 spin_lock(&release_list_lock);
2503 set_bit(CGRP_REMOVED, &cgrp->flags);
2504 if (!list_empty(&cgrp->release_list))
2505 list_del(&cgrp->release_list);
2506 spin_unlock(&release_list_lock);
2507 /* delete my sibling from parent->children */
2508 list_del(&cgrp->sibling);
2509 spin_lock(&cgrp->dentry->d_lock);
2510 d = dget(cgrp->dentry);
2511 spin_unlock(&d->d_lock);
2513 cgroup_d_remove_dir(d);
2514 dput(d);
2516 set_bit(CGRP_RELEASABLE, &parent->flags);
2517 check_for_release(parent);
2519 mutex_unlock(&cgroup_mutex);
2520 return 0;
2523 static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
2525 struct cgroup_subsys_state *css;
2527 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
2529 /* Create the top cgroup state for this subsystem */
2530 list_add(&ss->sibling, &rootnode.subsys_list);
2531 ss->root = &rootnode;
2532 css = ss->create(ss, dummytop);
2533 /* We don't handle early failures gracefully */
2534 BUG_ON(IS_ERR(css));
2535 init_cgroup_css(css, ss, dummytop);
2537 /* Update the init_css_set to contain a subsys
2538 * pointer to this state - since the subsystem is
2539 * newly registered, all tasks and hence the
2540 * init_css_set is in the subsystem's top cgroup. */
2541 init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
2543 need_forkexit_callback |= ss->fork || ss->exit;
2545 /* At system boot, before all subsystems have been
2546 * registered, no tasks have been forked, so we don't
2547 * need to invoke fork callbacks here. */
2548 BUG_ON(!list_empty(&init_task.tasks));
2550 ss->active = 1;
2554 * cgroup_init_early - cgroup initialization at system boot
2556 * Initialize cgroups at system boot, and initialize any
2557 * subsystems that request early init.
2559 int __init cgroup_init_early(void)
2561 int i;
2562 atomic_set(&init_css_set.refcount, 1);
2563 INIT_LIST_HEAD(&init_css_set.cg_links);
2564 INIT_LIST_HEAD(&init_css_set.tasks);
2565 INIT_HLIST_NODE(&init_css_set.hlist);
2566 css_set_count = 1;
2567 init_cgroup_root(&rootnode);
2568 root_count = 1;
2569 init_task.cgroups = &init_css_set;
2571 init_css_set_link.cg = &init_css_set;
2572 list_add(&init_css_set_link.cgrp_link_list,
2573 &rootnode.top_cgroup.css_sets);
2574 list_add(&init_css_set_link.cg_link_list,
2575 &init_css_set.cg_links);
2577 for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
2578 INIT_HLIST_HEAD(&css_set_table[i]);
2580 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2581 struct cgroup_subsys *ss = subsys[i];
2583 BUG_ON(!ss->name);
2584 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
2585 BUG_ON(!ss->create);
2586 BUG_ON(!ss->destroy);
2587 if (ss->subsys_id != i) {
2588 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
2589 ss->name, ss->subsys_id);
2590 BUG();
2593 if (ss->early_init)
2594 cgroup_init_subsys(ss);
2596 return 0;
2600 * cgroup_init - cgroup initialization
2602 * Register cgroup filesystem and /proc file, and initialize
2603 * any subsystems that didn't request early init.
2605 int __init cgroup_init(void)
2607 int err;
2608 int i;
2609 struct hlist_head *hhead;
2611 err = bdi_init(&cgroup_backing_dev_info);
2612 if (err)
2613 return err;
2615 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2616 struct cgroup_subsys *ss = subsys[i];
2617 if (!ss->early_init)
2618 cgroup_init_subsys(ss);
2621 /* Add init_css_set to the hash table */
2622 hhead = css_set_hash(init_css_set.subsys);
2623 hlist_add_head(&init_css_set.hlist, hhead);
2625 err = register_filesystem(&cgroup_fs_type);
2626 if (err < 0)
2627 goto out;
2629 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
2631 out:
2632 if (err)
2633 bdi_destroy(&cgroup_backing_dev_info);
2635 return err;
2639 * proc_cgroup_show()
2640 * - Print task's cgroup paths into seq_file, one line for each hierarchy
2641 * - Used for /proc/<pid>/cgroup.
2642 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
2643 * doesn't really matter if tsk->cgroup changes after we read it,
2644 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
2645 * anyway. No need to check that tsk->cgroup != NULL, thanks to
2646 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
2647 * cgroup to top_cgroup.
2650 /* TODO: Use a proper seq_file iterator */
2651 static int proc_cgroup_show(struct seq_file *m, void *v)
2653 struct pid *pid;
2654 struct task_struct *tsk;
2655 char *buf;
2656 int retval;
2657 struct cgroupfs_root *root;
2659 retval = -ENOMEM;
2660 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2661 if (!buf)
2662 goto out;
2664 retval = -ESRCH;
2665 pid = m->private;
2666 tsk = get_pid_task(pid, PIDTYPE_PID);
2667 if (!tsk)
2668 goto out_free;
2670 retval = 0;
2672 mutex_lock(&cgroup_mutex);
2674 for_each_active_root(root) {
2675 struct cgroup_subsys *ss;
2676 struct cgroup *cgrp;
2677 int subsys_id;
2678 int count = 0;
2680 seq_printf(m, "%lu:", root->subsys_bits);
2681 for_each_subsys(root, ss)
2682 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
2683 seq_putc(m, ':');
2684 get_first_subsys(&root->top_cgroup, NULL, &subsys_id);
2685 cgrp = task_cgroup(tsk, subsys_id);
2686 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
2687 if (retval < 0)
2688 goto out_unlock;
2689 seq_puts(m, buf);
2690 seq_putc(m, '\n');
2693 out_unlock:
2694 mutex_unlock(&cgroup_mutex);
2695 put_task_struct(tsk);
2696 out_free:
2697 kfree(buf);
2698 out:
2699 return retval;
2702 static int cgroup_open(struct inode *inode, struct file *file)
2704 struct pid *pid = PROC_I(inode)->pid;
2705 return single_open(file, proc_cgroup_show, pid);
2708 struct file_operations proc_cgroup_operations = {
2709 .open = cgroup_open,
2710 .read = seq_read,
2711 .llseek = seq_lseek,
2712 .release = single_release,
2715 /* Display information about each subsystem and each hierarchy */
2716 static int proc_cgroupstats_show(struct seq_file *m, void *v)
2718 int i;
2720 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
2721 mutex_lock(&cgroup_mutex);
2722 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2723 struct cgroup_subsys *ss = subsys[i];
2724 seq_printf(m, "%s\t%lu\t%d\t%d\n",
2725 ss->name, ss->root->subsys_bits,
2726 ss->root->number_of_cgroups, !ss->disabled);
2728 mutex_unlock(&cgroup_mutex);
2729 return 0;
2732 static int cgroupstats_open(struct inode *inode, struct file *file)
2734 return single_open(file, proc_cgroupstats_show, NULL);
2737 static struct file_operations proc_cgroupstats_operations = {
2738 .open = cgroupstats_open,
2739 .read = seq_read,
2740 .llseek = seq_lseek,
2741 .release = single_release,
2745 * cgroup_fork - attach newly forked task to its parents cgroup.
2746 * @child: pointer to task_struct of forking parent process.
2748 * Description: A task inherits its parent's cgroup at fork().
2750 * A pointer to the shared css_set was automatically copied in
2751 * fork.c by dup_task_struct(). However, we ignore that copy, since
2752 * it was not made under the protection of RCU or cgroup_mutex, so
2753 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
2754 * have already changed current->cgroups, allowing the previously
2755 * referenced cgroup group to be removed and freed.
2757 * At the point that cgroup_fork() is called, 'current' is the parent
2758 * task, and the passed argument 'child' points to the child task.
2760 void cgroup_fork(struct task_struct *child)
2762 task_lock(current);
2763 child->cgroups = current->cgroups;
2764 get_css_set(child->cgroups);
2765 task_unlock(current);
2766 INIT_LIST_HEAD(&child->cg_list);
2770 * cgroup_fork_callbacks - run fork callbacks
2771 * @child: the new task
2773 * Called on a new task very soon before adding it to the
2774 * tasklist. No need to take any locks since no-one can
2775 * be operating on this task.
2777 void cgroup_fork_callbacks(struct task_struct *child)
2779 if (need_forkexit_callback) {
2780 int i;
2781 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2782 struct cgroup_subsys *ss = subsys[i];
2783 if (ss->fork)
2784 ss->fork(ss, child);
2790 * cgroup_post_fork - called on a new task after adding it to the task list
2791 * @child: the task in question
2793 * Adds the task to the list running through its css_set if necessary.
2794 * Has to be after the task is visible on the task list in case we race
2795 * with the first call to cgroup_iter_start() - to guarantee that the
2796 * new task ends up on its list.
2798 void cgroup_post_fork(struct task_struct *child)
2800 if (use_task_css_set_links) {
2801 write_lock(&css_set_lock);
2802 task_lock(child);
2803 if (list_empty(&child->cg_list))
2804 list_add(&child->cg_list, &child->cgroups->tasks);
2805 task_unlock(child);
2806 write_unlock(&css_set_lock);
2810 * cgroup_exit - detach cgroup from exiting task
2811 * @tsk: pointer to task_struct of exiting process
2812 * @run_callback: run exit callbacks?
2814 * Description: Detach cgroup from @tsk and release it.
2816 * Note that cgroups marked notify_on_release force every task in
2817 * them to take the global cgroup_mutex mutex when exiting.
2818 * This could impact scaling on very large systems. Be reluctant to
2819 * use notify_on_release cgroups where very high task exit scaling
2820 * is required on large systems.
2822 * the_top_cgroup_hack:
2824 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
2826 * We call cgroup_exit() while the task is still competent to
2827 * handle notify_on_release(), then leave the task attached to the
2828 * root cgroup in each hierarchy for the remainder of its exit.
2830 * To do this properly, we would increment the reference count on
2831 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
2832 * code we would add a second cgroup function call, to drop that
2833 * reference. This would just create an unnecessary hot spot on
2834 * the top_cgroup reference count, to no avail.
2836 * Normally, holding a reference to a cgroup without bumping its
2837 * count is unsafe. The cgroup could go away, or someone could
2838 * attach us to a different cgroup, decrementing the count on
2839 * the first cgroup that we never incremented. But in this case,
2840 * top_cgroup isn't going away, and either task has PF_EXITING set,
2841 * which wards off any cgroup_attach_task() attempts, or task is a failed
2842 * fork, never visible to cgroup_attach_task.
2844 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
2846 int i;
2847 struct css_set *cg;
2849 if (run_callbacks && need_forkexit_callback) {
2850 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2851 struct cgroup_subsys *ss = subsys[i];
2852 if (ss->exit)
2853 ss->exit(ss, tsk);
2858 * Unlink from the css_set task list if necessary.
2859 * Optimistically check cg_list before taking
2860 * css_set_lock
2862 if (!list_empty(&tsk->cg_list)) {
2863 write_lock(&css_set_lock);
2864 if (!list_empty(&tsk->cg_list))
2865 list_del(&tsk->cg_list);
2866 write_unlock(&css_set_lock);
2869 /* Reassign the task to the init_css_set. */
2870 task_lock(tsk);
2871 cg = tsk->cgroups;
2872 tsk->cgroups = &init_css_set;
2873 task_unlock(tsk);
2874 if (cg)
2875 put_css_set_taskexit(cg);
2879 * cgroup_clone - clone the cgroup the given subsystem is attached to
2880 * @tsk: the task to be moved
2881 * @subsys: the given subsystem
2882 * @nodename: the name for the new cgroup
2884 * Duplicate the current cgroup in the hierarchy that the given
2885 * subsystem is attached to, and move this task into the new
2886 * child.
2888 int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys,
2889 char *nodename)
2891 struct dentry *dentry;
2892 int ret = 0;
2893 struct cgroup *parent, *child;
2894 struct inode *inode;
2895 struct css_set *cg;
2896 struct cgroupfs_root *root;
2897 struct cgroup_subsys *ss;
2899 /* We shouldn't be called by an unregistered subsystem */
2900 BUG_ON(!subsys->active);
2902 /* First figure out what hierarchy and cgroup we're dealing
2903 * with, and pin them so we can drop cgroup_mutex */
2904 mutex_lock(&cgroup_mutex);
2905 again:
2906 root = subsys->root;
2907 if (root == &rootnode) {
2908 mutex_unlock(&cgroup_mutex);
2909 return 0;
2911 task_lock(tsk);
2912 cg = tsk->cgroups;
2913 parent = task_cgroup(tsk, subsys->subsys_id);
2915 /* Pin the hierarchy */
2916 if (!atomic_inc_not_zero(&parent->root->sb->s_active)) {
2917 /* We race with the final deactivate_super() */
2918 mutex_unlock(&cgroup_mutex);
2919 return 0;
2922 /* Keep the cgroup alive */
2923 get_css_set(cg);
2924 task_unlock(tsk);
2925 mutex_unlock(&cgroup_mutex);
2927 /* Now do the VFS work to create a cgroup */
2928 inode = parent->dentry->d_inode;
2930 /* Hold the parent directory mutex across this operation to
2931 * stop anyone else deleting the new cgroup */
2932 mutex_lock(&inode->i_mutex);
2933 dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
2934 if (IS_ERR(dentry)) {
2935 printk(KERN_INFO
2936 "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
2937 PTR_ERR(dentry));
2938 ret = PTR_ERR(dentry);
2939 goto out_release;
2942 /* Create the cgroup directory, which also creates the cgroup */
2943 ret = vfs_mkdir(inode, dentry, 0755);
2944 child = __d_cgrp(dentry);
2945 dput(dentry);
2946 if (ret) {
2947 printk(KERN_INFO
2948 "Failed to create cgroup %s: %d\n", nodename,
2949 ret);
2950 goto out_release;
2953 /* The cgroup now exists. Retake cgroup_mutex and check
2954 * that we're still in the same state that we thought we
2955 * were. */
2956 mutex_lock(&cgroup_mutex);
2957 if ((root != subsys->root) ||
2958 (parent != task_cgroup(tsk, subsys->subsys_id))) {
2959 /* Aargh, we raced ... */
2960 mutex_unlock(&inode->i_mutex);
2961 put_css_set(cg);
2963 deactivate_super(parent->root->sb);
2964 /* The cgroup is still accessible in the VFS, but
2965 * we're not going to try to rmdir() it at this
2966 * point. */
2967 printk(KERN_INFO
2968 "Race in cgroup_clone() - leaking cgroup %s\n",
2969 nodename);
2970 goto again;
2973 /* do any required auto-setup */
2974 for_each_subsys(root, ss) {
2975 if (ss->post_clone)
2976 ss->post_clone(ss, child);
2979 /* All seems fine. Finish by moving the task into the new cgroup */
2980 ret = cgroup_attach_task(child, tsk);
2981 mutex_unlock(&cgroup_mutex);
2983 out_release:
2984 mutex_unlock(&inode->i_mutex);
2986 mutex_lock(&cgroup_mutex);
2987 put_css_set(cg);
2988 mutex_unlock(&cgroup_mutex);
2989 deactivate_super(parent->root->sb);
2990 return ret;
2994 * cgroup_is_descendant - see if @cgrp is a descendant of current task's cgrp
2995 * @cgrp: the cgroup in question
2997 * See if @cgrp is a descendant of the current task's cgroup in
2998 * the appropriate hierarchy.
3000 * If we are sending in dummytop, then presumably we are creating
3001 * the top cgroup in the subsystem.
3003 * Called only by the ns (nsproxy) cgroup.
3005 int cgroup_is_descendant(const struct cgroup *cgrp)
3007 int ret;
3008 struct cgroup *target;
3009 int subsys_id;
3011 if (cgrp == dummytop)
3012 return 1;
3014 get_first_subsys(cgrp, NULL, &subsys_id);
3015 target = task_cgroup(current, subsys_id);
3016 while (cgrp != target && cgrp!= cgrp->top_cgroup)
3017 cgrp = cgrp->parent;
3018 ret = (cgrp == target);
3019 return ret;
3022 static void check_for_release(struct cgroup *cgrp)
3024 /* All of these checks rely on RCU to keep the cgroup
3025 * structure alive */
3026 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
3027 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
3028 /* Control Group is currently removeable. If it's not
3029 * already queued for a userspace notification, queue
3030 * it now */
3031 int need_schedule_work = 0;
3032 spin_lock(&release_list_lock);
3033 if (!cgroup_is_removed(cgrp) &&
3034 list_empty(&cgrp->release_list)) {
3035 list_add(&cgrp->release_list, &release_list);
3036 need_schedule_work = 1;
3038 spin_unlock(&release_list_lock);
3039 if (need_schedule_work)
3040 schedule_work(&release_agent_work);
3044 void __css_put(struct cgroup_subsys_state *css)
3046 struct cgroup *cgrp = css->cgroup;
3047 rcu_read_lock();
3048 if (atomic_dec_and_test(&css->refcnt) && notify_on_release(cgrp)) {
3049 set_bit(CGRP_RELEASABLE, &cgrp->flags);
3050 check_for_release(cgrp);
3052 rcu_read_unlock();
3056 * Notify userspace when a cgroup is released, by running the
3057 * configured release agent with the name of the cgroup (path
3058 * relative to the root of cgroup file system) as the argument.
3060 * Most likely, this user command will try to rmdir this cgroup.
3062 * This races with the possibility that some other task will be
3063 * attached to this cgroup before it is removed, or that some other
3064 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
3065 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
3066 * unused, and this cgroup will be reprieved from its death sentence,
3067 * to continue to serve a useful existence. Next time it's released,
3068 * we will get notified again, if it still has 'notify_on_release' set.
3070 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
3071 * means only wait until the task is successfully execve()'d. The
3072 * separate release agent task is forked by call_usermodehelper(),
3073 * then control in this thread returns here, without waiting for the
3074 * release agent task. We don't bother to wait because the caller of
3075 * this routine has no use for the exit status of the release agent
3076 * task, so no sense holding our caller up for that.
3078 static void cgroup_release_agent(struct work_struct *work)
3080 BUG_ON(work != &release_agent_work);
3081 mutex_lock(&cgroup_mutex);
3082 spin_lock(&release_list_lock);
3083 while (!list_empty(&release_list)) {
3084 char *argv[3], *envp[3];
3085 int i;
3086 char *pathbuf = NULL, *agentbuf = NULL;
3087 struct cgroup *cgrp = list_entry(release_list.next,
3088 struct cgroup,
3089 release_list);
3090 list_del_init(&cgrp->release_list);
3091 spin_unlock(&release_list_lock);
3092 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3093 if (!pathbuf)
3094 goto continue_free;
3095 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
3096 goto continue_free;
3097 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
3098 if (!agentbuf)
3099 goto continue_free;
3101 i = 0;
3102 argv[i++] = agentbuf;
3103 argv[i++] = pathbuf;
3104 argv[i] = NULL;
3106 i = 0;
3107 /* minimal command environment */
3108 envp[i++] = "HOME=/";
3109 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
3110 envp[i] = NULL;
3112 /* Drop the lock while we invoke the usermode helper,
3113 * since the exec could involve hitting disk and hence
3114 * be a slow process */
3115 mutex_unlock(&cgroup_mutex);
3116 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
3117 mutex_lock(&cgroup_mutex);
3118 continue_free:
3119 kfree(pathbuf);
3120 kfree(agentbuf);
3121 spin_lock(&release_list_lock);
3123 spin_unlock(&release_list_lock);
3124 mutex_unlock(&cgroup_mutex);
3127 static int __init cgroup_disable(char *str)
3129 int i;
3130 char *token;
3132 while ((token = strsep(&str, ",")) != NULL) {
3133 if (!*token)
3134 continue;
3136 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3137 struct cgroup_subsys *ss = subsys[i];
3139 if (!strcmp(token, ss->name)) {
3140 ss->disabled = 1;
3141 printk(KERN_INFO "Disabling %s control group"
3142 " subsystem\n", ss->name);
3143 break;
3147 return 1;
3149 __setup("cgroup_disable=", cgroup_disable);