2 * Driver for Atmel AT32 and AT91 SPI Controllers
4 * Copyright (C) 2006 Atmel Corporation
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/clk.h>
14 #include <linux/module.h>
15 #include <linux/platform_device.h>
16 #include <linux/delay.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/err.h>
19 #include <linux/interrupt.h>
20 #include <linux/spi/spi.h>
23 #include <mach/board.h>
24 #include <mach/gpio.h>
27 #include "atmel_spi.h"
30 * The core SPI transfer engine just talks to a register bank to set up
31 * DMA transfers; transfer queue progress is driven by IRQs. The clock
32 * framework provides the base clock, subdivided for each spi_device.
40 struct platform_device
*pdev
;
41 struct spi_device
*stay
;
44 struct list_head queue
;
45 struct spi_transfer
*current_transfer
;
46 unsigned long current_remaining_bytes
;
47 struct spi_transfer
*next_transfer
;
48 unsigned long next_remaining_bytes
;
51 dma_addr_t buffer_dma
;
54 /* Controller-specific per-slave state */
55 struct atmel_spi_device
{
56 unsigned int npcs_pin
;
60 #define BUFFER_SIZE PAGE_SIZE
61 #define INVALID_DMA_ADDRESS 0xffffffff
64 * Version 2 of the SPI controller has
66 * - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
67 * - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
69 * - SPI_CSRx.SBCR allows faster clocking
71 * We can determine the controller version by reading the VERSION
72 * register, but I haven't checked that it exists on all chips, and
73 * this is cheaper anyway.
75 static bool atmel_spi_is_v2(void)
77 return !cpu_is_at91rm9200();
81 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
82 * they assume that spi slave device state will not change on deselect, so
83 * that automagic deselection is OK. ("NPCSx rises if no data is to be
84 * transmitted") Not so! Workaround uses nCSx pins as GPIOs; or newer
85 * controllers have CSAAT and friends.
87 * Since the CSAAT functionality is a bit weird on newer controllers as
88 * well, we use GPIO to control nCSx pins on all controllers, updating
89 * MR.PCS to avoid confusing the controller. Using GPIOs also lets us
90 * support active-high chipselects despite the controller's belief that
91 * only active-low devices/systems exists.
93 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
94 * right when driven with GPIO. ("Mode Fault does not allow more than one
95 * Master on Chip Select 0.") No workaround exists for that ... so for
96 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
97 * and (c) will trigger that first erratum in some cases.
99 * TODO: Test if the atmel_spi_is_v2() branch below works on
100 * AT91RM9200 if we use some other register than CSR0. However, don't
101 * do this unconditionally since AP7000 has an errata where the BITS
102 * field in CSR0 overrides all other CSRs.
105 static void cs_activate(struct atmel_spi
*as
, struct spi_device
*spi
)
107 struct atmel_spi_device
*asd
= spi
->controller_state
;
108 unsigned active
= spi
->mode
& SPI_CS_HIGH
;
111 if (atmel_spi_is_v2()) {
113 * Always use CSR0. This ensures that the clock
114 * switches to the correct idle polarity before we
117 spi_writel(as
, CSR0
, asd
->csr
);
118 spi_writel(as
, MR
, SPI_BF(PCS
, 0x0e) | SPI_BIT(MODFDIS
)
120 mr
= spi_readl(as
, MR
);
121 gpio_set_value(asd
->npcs_pin
, active
);
123 u32 cpol
= (spi
->mode
& SPI_CPOL
) ? SPI_BIT(CPOL
) : 0;
127 /* Make sure clock polarity is correct */
128 for (i
= 0; i
< spi
->master
->num_chipselect
; i
++) {
129 csr
= spi_readl(as
, CSR0
+ 4 * i
);
130 if ((csr
^ cpol
) & SPI_BIT(CPOL
))
131 spi_writel(as
, CSR0
+ 4 * i
,
132 csr
^ SPI_BIT(CPOL
));
135 mr
= spi_readl(as
, MR
);
136 mr
= SPI_BFINS(PCS
, ~(1 << spi
->chip_select
), mr
);
137 if (spi
->chip_select
!= 0)
138 gpio_set_value(asd
->npcs_pin
, active
);
139 spi_writel(as
, MR
, mr
);
142 dev_dbg(&spi
->dev
, "activate %u%s, mr %08x\n",
143 asd
->npcs_pin
, active
? " (high)" : "",
147 static void cs_deactivate(struct atmel_spi
*as
, struct spi_device
*spi
)
149 struct atmel_spi_device
*asd
= spi
->controller_state
;
150 unsigned active
= spi
->mode
& SPI_CS_HIGH
;
153 /* only deactivate *this* device; sometimes transfers to
154 * another device may be active when this routine is called.
156 mr
= spi_readl(as
, MR
);
157 if (~SPI_BFEXT(PCS
, mr
) & (1 << spi
->chip_select
)) {
158 mr
= SPI_BFINS(PCS
, 0xf, mr
);
159 spi_writel(as
, MR
, mr
);
162 dev_dbg(&spi
->dev
, "DEactivate %u%s, mr %08x\n",
163 asd
->npcs_pin
, active
? " (low)" : "",
166 if (atmel_spi_is_v2() || spi
->chip_select
!= 0)
167 gpio_set_value(asd
->npcs_pin
, !active
);
170 static inline int atmel_spi_xfer_is_last(struct spi_message
*msg
,
171 struct spi_transfer
*xfer
)
173 return msg
->transfers
.prev
== &xfer
->transfer_list
;
176 static inline int atmel_spi_xfer_can_be_chained(struct spi_transfer
*xfer
)
178 return xfer
->delay_usecs
== 0 && !xfer
->cs_change
;
181 static void atmel_spi_next_xfer_data(struct spi_master
*master
,
182 struct spi_transfer
*xfer
,
187 struct atmel_spi
*as
= spi_master_get_devdata(master
);
190 /* use scratch buffer only when rx or tx data is unspecified */
192 *rx_dma
= xfer
->rx_dma
+ xfer
->len
- len
;
194 *rx_dma
= as
->buffer_dma
;
195 if (len
> BUFFER_SIZE
)
199 *tx_dma
= xfer
->tx_dma
+ xfer
->len
- len
;
201 *tx_dma
= as
->buffer_dma
;
202 if (len
> BUFFER_SIZE
)
204 memset(as
->buffer
, 0, len
);
205 dma_sync_single_for_device(&as
->pdev
->dev
,
206 as
->buffer_dma
, len
, DMA_TO_DEVICE
);
213 * Submit next transfer for DMA.
214 * lock is held, spi irq is blocked
216 static void atmel_spi_next_xfer(struct spi_master
*master
,
217 struct spi_message
*msg
)
219 struct atmel_spi
*as
= spi_master_get_devdata(master
);
220 struct spi_transfer
*xfer
;
223 dma_addr_t tx_dma
, rx_dma
;
225 if (!as
->current_transfer
)
226 xfer
= list_entry(msg
->transfers
.next
,
227 struct spi_transfer
, transfer_list
);
228 else if (!as
->next_transfer
)
229 xfer
= list_entry(as
->current_transfer
->transfer_list
.next
,
230 struct spi_transfer
, transfer_list
);
235 spi_writel(as
, PTCR
, SPI_BIT(RXTDIS
) | SPI_BIT(TXTDIS
));
238 atmel_spi_next_xfer_data(master
, xfer
, &tx_dma
, &rx_dma
, &len
);
239 remaining
= xfer
->len
- len
;
241 spi_writel(as
, RPR
, rx_dma
);
242 spi_writel(as
, TPR
, tx_dma
);
244 if (msg
->spi
->bits_per_word
> 8)
246 spi_writel(as
, RCR
, len
);
247 spi_writel(as
, TCR
, len
);
249 dev_dbg(&msg
->spi
->dev
,
250 " start xfer %p: len %u tx %p/%08x rx %p/%08x\n",
251 xfer
, xfer
->len
, xfer
->tx_buf
, xfer
->tx_dma
,
252 xfer
->rx_buf
, xfer
->rx_dma
);
254 xfer
= as
->next_transfer
;
255 remaining
= as
->next_remaining_bytes
;
258 as
->current_transfer
= xfer
;
259 as
->current_remaining_bytes
= remaining
;
263 else if (!atmel_spi_xfer_is_last(msg
, xfer
)
264 && atmel_spi_xfer_can_be_chained(xfer
)) {
265 xfer
= list_entry(xfer
->transfer_list
.next
,
266 struct spi_transfer
, transfer_list
);
271 as
->next_transfer
= xfer
;
277 atmel_spi_next_xfer_data(master
, xfer
, &tx_dma
, &rx_dma
, &len
);
278 as
->next_remaining_bytes
= total
- len
;
280 spi_writel(as
, RNPR
, rx_dma
);
281 spi_writel(as
, TNPR
, tx_dma
);
283 if (msg
->spi
->bits_per_word
> 8)
285 spi_writel(as
, RNCR
, len
);
286 spi_writel(as
, TNCR
, len
);
288 dev_dbg(&msg
->spi
->dev
,
289 " next xfer %p: len %u tx %p/%08x rx %p/%08x\n",
290 xfer
, xfer
->len
, xfer
->tx_buf
, xfer
->tx_dma
,
291 xfer
->rx_buf
, xfer
->rx_dma
);
292 ieval
= SPI_BIT(ENDRX
) | SPI_BIT(OVRES
);
294 spi_writel(as
, RNCR
, 0);
295 spi_writel(as
, TNCR
, 0);
296 ieval
= SPI_BIT(RXBUFF
) | SPI_BIT(ENDRX
) | SPI_BIT(OVRES
);
299 /* REVISIT: We're waiting for ENDRX before we start the next
300 * transfer because we need to handle some difficult timing
301 * issues otherwise. If we wait for ENDTX in one transfer and
302 * then starts waiting for ENDRX in the next, it's difficult
303 * to tell the difference between the ENDRX interrupt we're
304 * actually waiting for and the ENDRX interrupt of the
307 * It should be doable, though. Just not now...
309 spi_writel(as
, IER
, ieval
);
310 spi_writel(as
, PTCR
, SPI_BIT(TXTEN
) | SPI_BIT(RXTEN
));
313 static void atmel_spi_next_message(struct spi_master
*master
)
315 struct atmel_spi
*as
= spi_master_get_devdata(master
);
316 struct spi_message
*msg
;
317 struct spi_device
*spi
;
319 BUG_ON(as
->current_transfer
);
321 msg
= list_entry(as
->queue
.next
, struct spi_message
, queue
);
324 dev_dbg(master
->dev
.parent
, "start message %p for %s\n",
325 msg
, dev_name(&spi
->dev
));
327 /* select chip if it's not still active */
329 if (as
->stay
!= spi
) {
330 cs_deactivate(as
, as
->stay
);
331 cs_activate(as
, spi
);
335 cs_activate(as
, spi
);
337 atmel_spi_next_xfer(master
, msg
);
341 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
342 * - The buffer is either valid for CPU access, else NULL
343 * - If the buffer is valid, so is its DMA addresss
345 * This driver manages the dma addresss unless message->is_dma_mapped.
348 atmel_spi_dma_map_xfer(struct atmel_spi
*as
, struct spi_transfer
*xfer
)
350 struct device
*dev
= &as
->pdev
->dev
;
352 xfer
->tx_dma
= xfer
->rx_dma
= INVALID_DMA_ADDRESS
;
354 xfer
->tx_dma
= dma_map_single(dev
,
355 (void *) xfer
->tx_buf
, xfer
->len
,
357 if (dma_mapping_error(dev
, xfer
->tx_dma
))
361 xfer
->rx_dma
= dma_map_single(dev
,
362 xfer
->rx_buf
, xfer
->len
,
364 if (dma_mapping_error(dev
, xfer
->rx_dma
)) {
366 dma_unmap_single(dev
,
367 xfer
->tx_dma
, xfer
->len
,
375 static void atmel_spi_dma_unmap_xfer(struct spi_master
*master
,
376 struct spi_transfer
*xfer
)
378 if (xfer
->tx_dma
!= INVALID_DMA_ADDRESS
)
379 dma_unmap_single(master
->dev
.parent
, xfer
->tx_dma
,
380 xfer
->len
, DMA_TO_DEVICE
);
381 if (xfer
->rx_dma
!= INVALID_DMA_ADDRESS
)
382 dma_unmap_single(master
->dev
.parent
, xfer
->rx_dma
,
383 xfer
->len
, DMA_FROM_DEVICE
);
387 atmel_spi_msg_done(struct spi_master
*master
, struct atmel_spi
*as
,
388 struct spi_message
*msg
, int status
, int stay
)
390 if (!stay
|| status
< 0)
391 cs_deactivate(as
, msg
->spi
);
395 list_del(&msg
->queue
);
396 msg
->status
= status
;
398 dev_dbg(master
->dev
.parent
,
399 "xfer complete: %u bytes transferred\n",
402 spin_unlock(&as
->lock
);
403 msg
->complete(msg
->context
);
404 spin_lock(&as
->lock
);
406 as
->current_transfer
= NULL
;
407 as
->next_transfer
= NULL
;
409 /* continue if needed */
410 if (list_empty(&as
->queue
) || as
->stopping
)
411 spi_writel(as
, PTCR
, SPI_BIT(RXTDIS
) | SPI_BIT(TXTDIS
));
413 atmel_spi_next_message(master
);
417 atmel_spi_interrupt(int irq
, void *dev_id
)
419 struct spi_master
*master
= dev_id
;
420 struct atmel_spi
*as
= spi_master_get_devdata(master
);
421 struct spi_message
*msg
;
422 struct spi_transfer
*xfer
;
423 u32 status
, pending
, imr
;
426 spin_lock(&as
->lock
);
428 xfer
= as
->current_transfer
;
429 msg
= list_entry(as
->queue
.next
, struct spi_message
, queue
);
431 imr
= spi_readl(as
, IMR
);
432 status
= spi_readl(as
, SR
);
433 pending
= status
& imr
;
435 if (pending
& SPI_BIT(OVRES
)) {
440 spi_writel(as
, IDR
, (SPI_BIT(RXBUFF
) | SPI_BIT(ENDRX
)
444 * When we get an overrun, we disregard the current
445 * transfer. Data will not be copied back from any
446 * bounce buffer and msg->actual_len will not be
447 * updated with the last xfer.
449 * We will also not process any remaning transfers in
452 * First, stop the transfer and unmap the DMA buffers.
454 spi_writel(as
, PTCR
, SPI_BIT(RXTDIS
) | SPI_BIT(TXTDIS
));
455 if (!msg
->is_dma_mapped
)
456 atmel_spi_dma_unmap_xfer(master
, xfer
);
458 /* REVISIT: udelay in irq is unfriendly */
459 if (xfer
->delay_usecs
)
460 udelay(xfer
->delay_usecs
);
462 dev_warn(master
->dev
.parent
, "overrun (%u/%u remaining)\n",
463 spi_readl(as
, TCR
), spi_readl(as
, RCR
));
466 * Clean up DMA registers and make sure the data
467 * registers are empty.
469 spi_writel(as
, RNCR
, 0);
470 spi_writel(as
, TNCR
, 0);
471 spi_writel(as
, RCR
, 0);
472 spi_writel(as
, TCR
, 0);
473 for (timeout
= 1000; timeout
; timeout
--)
474 if (spi_readl(as
, SR
) & SPI_BIT(TXEMPTY
))
477 dev_warn(master
->dev
.parent
,
478 "timeout waiting for TXEMPTY");
479 while (spi_readl(as
, SR
) & SPI_BIT(RDRF
))
482 /* Clear any overrun happening while cleaning up */
485 atmel_spi_msg_done(master
, as
, msg
, -EIO
, 0);
486 } else if (pending
& (SPI_BIT(RXBUFF
) | SPI_BIT(ENDRX
))) {
489 spi_writel(as
, IDR
, pending
);
491 if (as
->current_remaining_bytes
== 0) {
492 msg
->actual_length
+= xfer
->len
;
494 if (!msg
->is_dma_mapped
)
495 atmel_spi_dma_unmap_xfer(master
, xfer
);
497 /* REVISIT: udelay in irq is unfriendly */
498 if (xfer
->delay_usecs
)
499 udelay(xfer
->delay_usecs
);
501 if (atmel_spi_xfer_is_last(msg
, xfer
)) {
502 /* report completed message */
503 atmel_spi_msg_done(master
, as
, msg
, 0,
506 if (xfer
->cs_change
) {
507 cs_deactivate(as
, msg
->spi
);
509 cs_activate(as
, msg
->spi
);
513 * Not done yet. Submit the next transfer.
515 * FIXME handle protocol options for xfer
517 atmel_spi_next_xfer(master
, msg
);
521 * Keep going, we still have data to send in
522 * the current transfer.
524 atmel_spi_next_xfer(master
, msg
);
528 spin_unlock(&as
->lock
);
533 /* the spi->mode bits understood by this driver: */
534 #define MODEBITS (SPI_CPOL | SPI_CPHA | SPI_CS_HIGH)
536 static int atmel_spi_setup(struct spi_device
*spi
)
538 struct atmel_spi
*as
;
539 struct atmel_spi_device
*asd
;
541 unsigned int bits
= spi
->bits_per_word
;
542 unsigned long bus_hz
;
543 unsigned int npcs_pin
;
546 as
= spi_master_get_devdata(spi
->master
);
551 if (spi
->chip_select
> spi
->master
->num_chipselect
) {
553 "setup: invalid chipselect %u (%u defined)\n",
554 spi
->chip_select
, spi
->master
->num_chipselect
);
560 if (bits
< 8 || bits
> 16) {
562 "setup: invalid bits_per_word %u (8 to 16)\n",
567 if (spi
->mode
& ~MODEBITS
) {
568 dev_dbg(&spi
->dev
, "setup: unsupported mode bits %x\n",
569 spi
->mode
& ~MODEBITS
);
573 /* see notes above re chipselect */
574 if (!atmel_spi_is_v2()
575 && spi
->chip_select
== 0
576 && (spi
->mode
& SPI_CS_HIGH
)) {
577 dev_dbg(&spi
->dev
, "setup: can't be active-high\n");
581 /* v1 chips start out at half the peripheral bus speed. */
582 bus_hz
= clk_get_rate(as
->clk
);
583 if (!atmel_spi_is_v2())
586 if (spi
->max_speed_hz
) {
588 * Calculate the lowest divider that satisfies the
589 * constraint, assuming div32/fdiv/mbz == 0.
591 scbr
= DIV_ROUND_UP(bus_hz
, spi
->max_speed_hz
);
594 * If the resulting divider doesn't fit into the
595 * register bitfield, we can't satisfy the constraint.
597 if (scbr
>= (1 << SPI_SCBR_SIZE
)) {
599 "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
600 spi
->max_speed_hz
, scbr
, bus_hz
/255);
604 /* speed zero means "as slow as possible" */
607 csr
= SPI_BF(SCBR
, scbr
) | SPI_BF(BITS
, bits
- 8);
608 if (spi
->mode
& SPI_CPOL
)
609 csr
|= SPI_BIT(CPOL
);
610 if (!(spi
->mode
& SPI_CPHA
))
611 csr
|= SPI_BIT(NCPHA
);
613 /* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
615 * DLYBCT would add delays between words, slowing down transfers.
616 * It could potentially be useful to cope with DMA bottlenecks, but
617 * in those cases it's probably best to just use a lower bitrate.
619 csr
|= SPI_BF(DLYBS
, 0);
620 csr
|= SPI_BF(DLYBCT
, 0);
622 /* chipselect must have been muxed as GPIO (e.g. in board setup) */
623 npcs_pin
= (unsigned int)spi
->controller_data
;
624 asd
= spi
->controller_state
;
626 asd
= kzalloc(sizeof(struct atmel_spi_device
), GFP_KERNEL
);
630 ret
= gpio_request(npcs_pin
, dev_name(&spi
->dev
));
636 asd
->npcs_pin
= npcs_pin
;
637 spi
->controller_state
= asd
;
638 gpio_direction_output(npcs_pin
, !(spi
->mode
& SPI_CS_HIGH
));
642 spin_lock_irqsave(&as
->lock
, flags
);
645 cs_deactivate(as
, spi
);
646 spin_unlock_irqrestore(&as
->lock
, flags
);
652 "setup: %lu Hz bpw %u mode 0x%x -> csr%d %08x\n",
653 bus_hz
/ scbr
, bits
, spi
->mode
, spi
->chip_select
, csr
);
655 if (!atmel_spi_is_v2())
656 spi_writel(as
, CSR0
+ 4 * spi
->chip_select
, csr
);
661 static int atmel_spi_transfer(struct spi_device
*spi
, struct spi_message
*msg
)
663 struct atmel_spi
*as
;
664 struct spi_transfer
*xfer
;
666 struct device
*controller
= spi
->master
->dev
.parent
;
668 as
= spi_master_get_devdata(spi
->master
);
670 dev_dbg(controller
, "new message %p submitted for %s\n",
671 msg
, dev_name(&spi
->dev
));
673 if (unlikely(list_empty(&msg
->transfers
)))
679 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
680 if (!(xfer
->tx_buf
|| xfer
->rx_buf
) && xfer
->len
) {
681 dev_dbg(&spi
->dev
, "missing rx or tx buf\n");
685 /* FIXME implement these protocol options!! */
686 if (xfer
->bits_per_word
|| xfer
->speed_hz
) {
687 dev_dbg(&spi
->dev
, "no protocol options yet\n");
692 * DMA map early, for performance (empties dcache ASAP) and
693 * better fault reporting. This is a DMA-only driver.
695 * NOTE that if dma_unmap_single() ever starts to do work on
696 * platforms supported by this driver, we would need to clean
697 * up mappings for previously-mapped transfers.
699 if (!msg
->is_dma_mapped
) {
700 if (atmel_spi_dma_map_xfer(as
, xfer
) < 0)
706 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
708 " xfer %p: len %u tx %p/%08x rx %p/%08x\n",
710 xfer
->tx_buf
, xfer
->tx_dma
,
711 xfer
->rx_buf
, xfer
->rx_dma
);
715 msg
->status
= -EINPROGRESS
;
716 msg
->actual_length
= 0;
718 spin_lock_irqsave(&as
->lock
, flags
);
719 list_add_tail(&msg
->queue
, &as
->queue
);
720 if (!as
->current_transfer
)
721 atmel_spi_next_message(spi
->master
);
722 spin_unlock_irqrestore(&as
->lock
, flags
);
727 static void atmel_spi_cleanup(struct spi_device
*spi
)
729 struct atmel_spi
*as
= spi_master_get_devdata(spi
->master
);
730 struct atmel_spi_device
*asd
= spi
->controller_state
;
731 unsigned gpio
= (unsigned) spi
->controller_data
;
737 spin_lock_irqsave(&as
->lock
, flags
);
738 if (as
->stay
== spi
) {
740 cs_deactivate(as
, spi
);
742 spin_unlock_irqrestore(&as
->lock
, flags
);
744 spi
->controller_state
= NULL
;
749 /*-------------------------------------------------------------------------*/
751 static int __init
atmel_spi_probe(struct platform_device
*pdev
)
753 struct resource
*regs
;
757 struct spi_master
*master
;
758 struct atmel_spi
*as
;
760 regs
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
764 irq
= platform_get_irq(pdev
, 0);
768 clk
= clk_get(&pdev
->dev
, "spi_clk");
772 /* setup spi core then atmel-specific driver state */
774 master
= spi_alloc_master(&pdev
->dev
, sizeof *as
);
778 master
->bus_num
= pdev
->id
;
779 master
->num_chipselect
= 4;
780 master
->setup
= atmel_spi_setup
;
781 master
->transfer
= atmel_spi_transfer
;
782 master
->cleanup
= atmel_spi_cleanup
;
783 platform_set_drvdata(pdev
, master
);
785 as
= spi_master_get_devdata(master
);
788 * Scratch buffer is used for throwaway rx and tx data.
789 * It's coherent to minimize dcache pollution.
791 as
->buffer
= dma_alloc_coherent(&pdev
->dev
, BUFFER_SIZE
,
792 &as
->buffer_dma
, GFP_KERNEL
);
796 spin_lock_init(&as
->lock
);
797 INIT_LIST_HEAD(&as
->queue
);
799 as
->regs
= ioremap(regs
->start
, (regs
->end
- regs
->start
) + 1);
801 goto out_free_buffer
;
805 ret
= request_irq(irq
, atmel_spi_interrupt
, 0,
806 dev_name(&pdev
->dev
), master
);
810 /* Initialize the hardware */
812 spi_writel(as
, CR
, SPI_BIT(SWRST
));
813 spi_writel(as
, CR
, SPI_BIT(SWRST
)); /* AT91SAM9263 Rev B workaround */
814 spi_writel(as
, MR
, SPI_BIT(MSTR
) | SPI_BIT(MODFDIS
));
815 spi_writel(as
, PTCR
, SPI_BIT(RXTDIS
) | SPI_BIT(TXTDIS
));
816 spi_writel(as
, CR
, SPI_BIT(SPIEN
));
819 dev_info(&pdev
->dev
, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
820 (unsigned long)regs
->start
, irq
);
822 ret
= spi_register_master(master
);
829 spi_writel(as
, CR
, SPI_BIT(SWRST
));
830 spi_writel(as
, CR
, SPI_BIT(SWRST
)); /* AT91SAM9263 Rev B workaround */
832 free_irq(irq
, master
);
836 dma_free_coherent(&pdev
->dev
, BUFFER_SIZE
, as
->buffer
,
840 spi_master_put(master
);
844 static int __exit
atmel_spi_remove(struct platform_device
*pdev
)
846 struct spi_master
*master
= platform_get_drvdata(pdev
);
847 struct atmel_spi
*as
= spi_master_get_devdata(master
);
848 struct spi_message
*msg
;
850 /* reset the hardware and block queue progress */
851 spin_lock_irq(&as
->lock
);
853 spi_writel(as
, CR
, SPI_BIT(SWRST
));
854 spi_writel(as
, CR
, SPI_BIT(SWRST
)); /* AT91SAM9263 Rev B workaround */
856 spin_unlock_irq(&as
->lock
);
858 /* Terminate remaining queued transfers */
859 list_for_each_entry(msg
, &as
->queue
, queue
) {
860 /* REVISIT unmapping the dma is a NOP on ARM and AVR32
861 * but we shouldn't depend on that...
863 msg
->status
= -ESHUTDOWN
;
864 msg
->complete(msg
->context
);
867 dma_free_coherent(&pdev
->dev
, BUFFER_SIZE
, as
->buffer
,
870 clk_disable(as
->clk
);
872 free_irq(as
->irq
, master
);
875 spi_unregister_master(master
);
882 static int atmel_spi_suspend(struct platform_device
*pdev
, pm_message_t mesg
)
884 struct spi_master
*master
= platform_get_drvdata(pdev
);
885 struct atmel_spi
*as
= spi_master_get_devdata(master
);
887 clk_disable(as
->clk
);
891 static int atmel_spi_resume(struct platform_device
*pdev
)
893 struct spi_master
*master
= platform_get_drvdata(pdev
);
894 struct atmel_spi
*as
= spi_master_get_devdata(master
);
901 #define atmel_spi_suspend NULL
902 #define atmel_spi_resume NULL
906 static struct platform_driver atmel_spi_driver
= {
909 .owner
= THIS_MODULE
,
911 .suspend
= atmel_spi_suspend
,
912 .resume
= atmel_spi_resume
,
913 .remove
= __exit_p(atmel_spi_remove
),
916 static int __init
atmel_spi_init(void)
918 return platform_driver_probe(&atmel_spi_driver
, atmel_spi_probe
);
920 module_init(atmel_spi_init
);
922 static void __exit
atmel_spi_exit(void)
924 platform_driver_unregister(&atmel_spi_driver
);
926 module_exit(atmel_spi_exit
);
928 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
929 MODULE_AUTHOR("Haavard Skinnemoen <hskinnemoen@atmel.com>");
930 MODULE_LICENSE("GPL");
931 MODULE_ALIAS("platform:atmel_spi");