Merge branch 'core-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6/linux-2.6-openrd.git] / mm / memory-failure.c
blob6a0466ed5bfd74a21cb50bdc60c6f1d60e6ed1ef
1 /*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
9 * High level machine check handler. Handles pages reported by the
10 * hardware as being corrupted usually due to a 2bit ECC memory or cache
11 * failure.
13 * Handles page cache pages in various states. The tricky part
14 * here is that we can access any page asynchronous to other VM
15 * users, because memory failures could happen anytime and anywhere,
16 * possibly violating some of their assumptions. This is why this code
17 * has to be extremely careful. Generally it tries to use normal locking
18 * rules, as in get the standard locks, even if that means the
19 * error handling takes potentially a long time.
21 * The operation to map back from RMAP chains to processes has to walk
22 * the complete process list and has non linear complexity with the number
23 * mappings. In short it can be quite slow. But since memory corruptions
24 * are rare we hope to get away with this.
28 * Notebook:
29 * - hugetlb needs more code
30 * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
31 * - pass bad pages to kdump next kernel
33 #define DEBUG 1 /* remove me in 2.6.34 */
34 #include <linux/kernel.h>
35 #include <linux/mm.h>
36 #include <linux/page-flags.h>
37 #include <linux/kernel-page-flags.h>
38 #include <linux/sched.h>
39 #include <linux/ksm.h>
40 #include <linux/rmap.h>
41 #include <linux/pagemap.h>
42 #include <linux/swap.h>
43 #include <linux/backing-dev.h>
44 #include <linux/migrate.h>
45 #include <linux/page-isolation.h>
46 #include <linux/suspend.h>
47 #include "internal.h"
49 int sysctl_memory_failure_early_kill __read_mostly = 0;
51 int sysctl_memory_failure_recovery __read_mostly = 1;
53 atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0);
55 u32 hwpoison_filter_enable = 0;
56 u32 hwpoison_filter_dev_major = ~0U;
57 u32 hwpoison_filter_dev_minor = ~0U;
58 u64 hwpoison_filter_flags_mask;
59 u64 hwpoison_filter_flags_value;
60 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
61 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
62 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
63 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
64 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
66 static int hwpoison_filter_dev(struct page *p)
68 struct address_space *mapping;
69 dev_t dev;
71 if (hwpoison_filter_dev_major == ~0U &&
72 hwpoison_filter_dev_minor == ~0U)
73 return 0;
76 * page_mapping() does not accept slab page
78 if (PageSlab(p))
79 return -EINVAL;
81 mapping = page_mapping(p);
82 if (mapping == NULL || mapping->host == NULL)
83 return -EINVAL;
85 dev = mapping->host->i_sb->s_dev;
86 if (hwpoison_filter_dev_major != ~0U &&
87 hwpoison_filter_dev_major != MAJOR(dev))
88 return -EINVAL;
89 if (hwpoison_filter_dev_minor != ~0U &&
90 hwpoison_filter_dev_minor != MINOR(dev))
91 return -EINVAL;
93 return 0;
96 static int hwpoison_filter_flags(struct page *p)
98 if (!hwpoison_filter_flags_mask)
99 return 0;
101 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
102 hwpoison_filter_flags_value)
103 return 0;
104 else
105 return -EINVAL;
109 * This allows stress tests to limit test scope to a collection of tasks
110 * by putting them under some memcg. This prevents killing unrelated/important
111 * processes such as /sbin/init. Note that the target task may share clean
112 * pages with init (eg. libc text), which is harmless. If the target task
113 * share _dirty_ pages with another task B, the test scheme must make sure B
114 * is also included in the memcg. At last, due to race conditions this filter
115 * can only guarantee that the page either belongs to the memcg tasks, or is
116 * a freed page.
118 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
119 u64 hwpoison_filter_memcg;
120 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
121 static int hwpoison_filter_task(struct page *p)
123 struct mem_cgroup *mem;
124 struct cgroup_subsys_state *css;
125 unsigned long ino;
127 if (!hwpoison_filter_memcg)
128 return 0;
130 mem = try_get_mem_cgroup_from_page(p);
131 if (!mem)
132 return -EINVAL;
134 css = mem_cgroup_css(mem);
135 /* root_mem_cgroup has NULL dentries */
136 if (!css->cgroup->dentry)
137 return -EINVAL;
139 ino = css->cgroup->dentry->d_inode->i_ino;
140 css_put(css);
142 if (ino != hwpoison_filter_memcg)
143 return -EINVAL;
145 return 0;
147 #else
148 static int hwpoison_filter_task(struct page *p) { return 0; }
149 #endif
151 int hwpoison_filter(struct page *p)
153 if (!hwpoison_filter_enable)
154 return 0;
156 if (hwpoison_filter_dev(p))
157 return -EINVAL;
159 if (hwpoison_filter_flags(p))
160 return -EINVAL;
162 if (hwpoison_filter_task(p))
163 return -EINVAL;
165 return 0;
167 EXPORT_SYMBOL_GPL(hwpoison_filter);
170 * Send all the processes who have the page mapped an ``action optional''
171 * signal.
173 static int kill_proc_ao(struct task_struct *t, unsigned long addr, int trapno,
174 unsigned long pfn)
176 struct siginfo si;
177 int ret;
179 printk(KERN_ERR
180 "MCE %#lx: Killing %s:%d early due to hardware memory corruption\n",
181 pfn, t->comm, t->pid);
182 si.si_signo = SIGBUS;
183 si.si_errno = 0;
184 si.si_code = BUS_MCEERR_AO;
185 si.si_addr = (void *)addr;
186 #ifdef __ARCH_SI_TRAPNO
187 si.si_trapno = trapno;
188 #endif
189 si.si_addr_lsb = PAGE_SHIFT;
191 * Don't use force here, it's convenient if the signal
192 * can be temporarily blocked.
193 * This could cause a loop when the user sets SIGBUS
194 * to SIG_IGN, but hopefully noone will do that?
196 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
197 if (ret < 0)
198 printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
199 t->comm, t->pid, ret);
200 return ret;
204 * When a unknown page type is encountered drain as many buffers as possible
205 * in the hope to turn the page into a LRU or free page, which we can handle.
207 void shake_page(struct page *p, int access)
209 if (!PageSlab(p)) {
210 lru_add_drain_all();
211 if (PageLRU(p))
212 return;
213 drain_all_pages();
214 if (PageLRU(p) || is_free_buddy_page(p))
215 return;
219 * Only all shrink_slab here (which would also
220 * shrink other caches) if access is not potentially fatal.
222 if (access) {
223 int nr;
224 do {
225 nr = shrink_slab(1000, GFP_KERNEL, 1000);
226 if (page_count(p) == 0)
227 break;
228 } while (nr > 10);
231 EXPORT_SYMBOL_GPL(shake_page);
234 * Kill all processes that have a poisoned page mapped and then isolate
235 * the page.
237 * General strategy:
238 * Find all processes having the page mapped and kill them.
239 * But we keep a page reference around so that the page is not
240 * actually freed yet.
241 * Then stash the page away
243 * There's no convenient way to get back to mapped processes
244 * from the VMAs. So do a brute-force search over all
245 * running processes.
247 * Remember that machine checks are not common (or rather
248 * if they are common you have other problems), so this shouldn't
249 * be a performance issue.
251 * Also there are some races possible while we get from the
252 * error detection to actually handle it.
255 struct to_kill {
256 struct list_head nd;
257 struct task_struct *tsk;
258 unsigned long addr;
259 unsigned addr_valid:1;
263 * Failure handling: if we can't find or can't kill a process there's
264 * not much we can do. We just print a message and ignore otherwise.
268 * Schedule a process for later kill.
269 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
270 * TBD would GFP_NOIO be enough?
272 static void add_to_kill(struct task_struct *tsk, struct page *p,
273 struct vm_area_struct *vma,
274 struct list_head *to_kill,
275 struct to_kill **tkc)
277 struct to_kill *tk;
279 if (*tkc) {
280 tk = *tkc;
281 *tkc = NULL;
282 } else {
283 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
284 if (!tk) {
285 printk(KERN_ERR
286 "MCE: Out of memory while machine check handling\n");
287 return;
290 tk->addr = page_address_in_vma(p, vma);
291 tk->addr_valid = 1;
294 * In theory we don't have to kill when the page was
295 * munmaped. But it could be also a mremap. Since that's
296 * likely very rare kill anyways just out of paranoia, but use
297 * a SIGKILL because the error is not contained anymore.
299 if (tk->addr == -EFAULT) {
300 pr_debug("MCE: Unable to find user space address %lx in %s\n",
301 page_to_pfn(p), tsk->comm);
302 tk->addr_valid = 0;
304 get_task_struct(tsk);
305 tk->tsk = tsk;
306 list_add_tail(&tk->nd, to_kill);
310 * Kill the processes that have been collected earlier.
312 * Only do anything when DOIT is set, otherwise just free the list
313 * (this is used for clean pages which do not need killing)
314 * Also when FAIL is set do a force kill because something went
315 * wrong earlier.
317 static void kill_procs_ao(struct list_head *to_kill, int doit, int trapno,
318 int fail, unsigned long pfn)
320 struct to_kill *tk, *next;
322 list_for_each_entry_safe (tk, next, to_kill, nd) {
323 if (doit) {
325 * In case something went wrong with munmapping
326 * make sure the process doesn't catch the
327 * signal and then access the memory. Just kill it.
329 if (fail || tk->addr_valid == 0) {
330 printk(KERN_ERR
331 "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
332 pfn, tk->tsk->comm, tk->tsk->pid);
333 force_sig(SIGKILL, tk->tsk);
337 * In theory the process could have mapped
338 * something else on the address in-between. We could
339 * check for that, but we need to tell the
340 * process anyways.
342 else if (kill_proc_ao(tk->tsk, tk->addr, trapno,
343 pfn) < 0)
344 printk(KERN_ERR
345 "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
346 pfn, tk->tsk->comm, tk->tsk->pid);
348 put_task_struct(tk->tsk);
349 kfree(tk);
353 static int task_early_kill(struct task_struct *tsk)
355 if (!tsk->mm)
356 return 0;
357 if (tsk->flags & PF_MCE_PROCESS)
358 return !!(tsk->flags & PF_MCE_EARLY);
359 return sysctl_memory_failure_early_kill;
363 * Collect processes when the error hit an anonymous page.
365 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
366 struct to_kill **tkc)
368 struct vm_area_struct *vma;
369 struct task_struct *tsk;
370 struct anon_vma *av;
372 read_lock(&tasklist_lock);
373 av = page_lock_anon_vma(page);
374 if (av == NULL) /* Not actually mapped anymore */
375 goto out;
376 for_each_process (tsk) {
377 if (!task_early_kill(tsk))
378 continue;
379 list_for_each_entry (vma, &av->head, anon_vma_node) {
380 if (!page_mapped_in_vma(page, vma))
381 continue;
382 if (vma->vm_mm == tsk->mm)
383 add_to_kill(tsk, page, vma, to_kill, tkc);
386 page_unlock_anon_vma(av);
387 out:
388 read_unlock(&tasklist_lock);
392 * Collect processes when the error hit a file mapped page.
394 static void collect_procs_file(struct page *page, struct list_head *to_kill,
395 struct to_kill **tkc)
397 struct vm_area_struct *vma;
398 struct task_struct *tsk;
399 struct prio_tree_iter iter;
400 struct address_space *mapping = page->mapping;
403 * A note on the locking order between the two locks.
404 * We don't rely on this particular order.
405 * If you have some other code that needs a different order
406 * feel free to switch them around. Or add a reverse link
407 * from mm_struct to task_struct, then this could be all
408 * done without taking tasklist_lock and looping over all tasks.
411 read_lock(&tasklist_lock);
412 spin_lock(&mapping->i_mmap_lock);
413 for_each_process(tsk) {
414 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
416 if (!task_early_kill(tsk))
417 continue;
419 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff,
420 pgoff) {
422 * Send early kill signal to tasks where a vma covers
423 * the page but the corrupted page is not necessarily
424 * mapped it in its pte.
425 * Assume applications who requested early kill want
426 * to be informed of all such data corruptions.
428 if (vma->vm_mm == tsk->mm)
429 add_to_kill(tsk, page, vma, to_kill, tkc);
432 spin_unlock(&mapping->i_mmap_lock);
433 read_unlock(&tasklist_lock);
437 * Collect the processes who have the corrupted page mapped to kill.
438 * This is done in two steps for locking reasons.
439 * First preallocate one tokill structure outside the spin locks,
440 * so that we can kill at least one process reasonably reliable.
442 static void collect_procs(struct page *page, struct list_head *tokill)
444 struct to_kill *tk;
446 if (!page->mapping)
447 return;
449 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
450 if (!tk)
451 return;
452 if (PageAnon(page))
453 collect_procs_anon(page, tokill, &tk);
454 else
455 collect_procs_file(page, tokill, &tk);
456 kfree(tk);
460 * Error handlers for various types of pages.
463 enum outcome {
464 IGNORED, /* Error: cannot be handled */
465 FAILED, /* Error: handling failed */
466 DELAYED, /* Will be handled later */
467 RECOVERED, /* Successfully recovered */
470 static const char *action_name[] = {
471 [IGNORED] = "Ignored",
472 [FAILED] = "Failed",
473 [DELAYED] = "Delayed",
474 [RECOVERED] = "Recovered",
478 * XXX: It is possible that a page is isolated from LRU cache,
479 * and then kept in swap cache or failed to remove from page cache.
480 * The page count will stop it from being freed by unpoison.
481 * Stress tests should be aware of this memory leak problem.
483 static int delete_from_lru_cache(struct page *p)
485 if (!isolate_lru_page(p)) {
487 * Clear sensible page flags, so that the buddy system won't
488 * complain when the page is unpoison-and-freed.
490 ClearPageActive(p);
491 ClearPageUnevictable(p);
493 * drop the page count elevated by isolate_lru_page()
495 page_cache_release(p);
496 return 0;
498 return -EIO;
502 * Error hit kernel page.
503 * Do nothing, try to be lucky and not touch this instead. For a few cases we
504 * could be more sophisticated.
506 static int me_kernel(struct page *p, unsigned long pfn)
508 return IGNORED;
512 * Page in unknown state. Do nothing.
514 static int me_unknown(struct page *p, unsigned long pfn)
516 printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
517 return FAILED;
521 * Clean (or cleaned) page cache page.
523 static int me_pagecache_clean(struct page *p, unsigned long pfn)
525 int err;
526 int ret = FAILED;
527 struct address_space *mapping;
529 delete_from_lru_cache(p);
532 * For anonymous pages we're done the only reference left
533 * should be the one m_f() holds.
535 if (PageAnon(p))
536 return RECOVERED;
539 * Now truncate the page in the page cache. This is really
540 * more like a "temporary hole punch"
541 * Don't do this for block devices when someone else
542 * has a reference, because it could be file system metadata
543 * and that's not safe to truncate.
545 mapping = page_mapping(p);
546 if (!mapping) {
548 * Page has been teared down in the meanwhile
550 return FAILED;
554 * Truncation is a bit tricky. Enable it per file system for now.
556 * Open: to take i_mutex or not for this? Right now we don't.
558 if (mapping->a_ops->error_remove_page) {
559 err = mapping->a_ops->error_remove_page(mapping, p);
560 if (err != 0) {
561 printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
562 pfn, err);
563 } else if (page_has_private(p) &&
564 !try_to_release_page(p, GFP_NOIO)) {
565 pr_debug("MCE %#lx: failed to release buffers\n", pfn);
566 } else {
567 ret = RECOVERED;
569 } else {
571 * If the file system doesn't support it just invalidate
572 * This fails on dirty or anything with private pages
574 if (invalidate_inode_page(p))
575 ret = RECOVERED;
576 else
577 printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
578 pfn);
580 return ret;
584 * Dirty cache page page
585 * Issues: when the error hit a hole page the error is not properly
586 * propagated.
588 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
590 struct address_space *mapping = page_mapping(p);
592 SetPageError(p);
593 /* TBD: print more information about the file. */
594 if (mapping) {
596 * IO error will be reported by write(), fsync(), etc.
597 * who check the mapping.
598 * This way the application knows that something went
599 * wrong with its dirty file data.
601 * There's one open issue:
603 * The EIO will be only reported on the next IO
604 * operation and then cleared through the IO map.
605 * Normally Linux has two mechanisms to pass IO error
606 * first through the AS_EIO flag in the address space
607 * and then through the PageError flag in the page.
608 * Since we drop pages on memory failure handling the
609 * only mechanism open to use is through AS_AIO.
611 * This has the disadvantage that it gets cleared on
612 * the first operation that returns an error, while
613 * the PageError bit is more sticky and only cleared
614 * when the page is reread or dropped. If an
615 * application assumes it will always get error on
616 * fsync, but does other operations on the fd before
617 * and the page is dropped inbetween then the error
618 * will not be properly reported.
620 * This can already happen even without hwpoisoned
621 * pages: first on metadata IO errors (which only
622 * report through AS_EIO) or when the page is dropped
623 * at the wrong time.
625 * So right now we assume that the application DTRT on
626 * the first EIO, but we're not worse than other parts
627 * of the kernel.
629 mapping_set_error(mapping, EIO);
632 return me_pagecache_clean(p, pfn);
636 * Clean and dirty swap cache.
638 * Dirty swap cache page is tricky to handle. The page could live both in page
639 * cache and swap cache(ie. page is freshly swapped in). So it could be
640 * referenced concurrently by 2 types of PTEs:
641 * normal PTEs and swap PTEs. We try to handle them consistently by calling
642 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
643 * and then
644 * - clear dirty bit to prevent IO
645 * - remove from LRU
646 * - but keep in the swap cache, so that when we return to it on
647 * a later page fault, we know the application is accessing
648 * corrupted data and shall be killed (we installed simple
649 * interception code in do_swap_page to catch it).
651 * Clean swap cache pages can be directly isolated. A later page fault will
652 * bring in the known good data from disk.
654 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
656 ClearPageDirty(p);
657 /* Trigger EIO in shmem: */
658 ClearPageUptodate(p);
660 if (!delete_from_lru_cache(p))
661 return DELAYED;
662 else
663 return FAILED;
666 static int me_swapcache_clean(struct page *p, unsigned long pfn)
668 delete_from_swap_cache(p);
670 if (!delete_from_lru_cache(p))
671 return RECOVERED;
672 else
673 return FAILED;
677 * Huge pages. Needs work.
678 * Issues:
679 * No rmap support so we cannot find the original mapper. In theory could walk
680 * all MMs and look for the mappings, but that would be non atomic and racy.
681 * Need rmap for hugepages for this. Alternatively we could employ a heuristic,
682 * like just walking the current process and hoping it has it mapped (that
683 * should be usually true for the common "shared database cache" case)
684 * Should handle free huge pages and dequeue them too, but this needs to
685 * handle huge page accounting correctly.
687 static int me_huge_page(struct page *p, unsigned long pfn)
689 return FAILED;
693 * Various page states we can handle.
695 * A page state is defined by its current page->flags bits.
696 * The table matches them in order and calls the right handler.
698 * This is quite tricky because we can access page at any time
699 * in its live cycle, so all accesses have to be extremly careful.
701 * This is not complete. More states could be added.
702 * For any missing state don't attempt recovery.
705 #define dirty (1UL << PG_dirty)
706 #define sc (1UL << PG_swapcache)
707 #define unevict (1UL << PG_unevictable)
708 #define mlock (1UL << PG_mlocked)
709 #define writeback (1UL << PG_writeback)
710 #define lru (1UL << PG_lru)
711 #define swapbacked (1UL << PG_swapbacked)
712 #define head (1UL << PG_head)
713 #define tail (1UL << PG_tail)
714 #define compound (1UL << PG_compound)
715 #define slab (1UL << PG_slab)
716 #define reserved (1UL << PG_reserved)
718 static struct page_state {
719 unsigned long mask;
720 unsigned long res;
721 char *msg;
722 int (*action)(struct page *p, unsigned long pfn);
723 } error_states[] = {
724 { reserved, reserved, "reserved kernel", me_kernel },
726 * free pages are specially detected outside this table:
727 * PG_buddy pages only make a small fraction of all free pages.
731 * Could in theory check if slab page is free or if we can drop
732 * currently unused objects without touching them. But just
733 * treat it as standard kernel for now.
735 { slab, slab, "kernel slab", me_kernel },
737 #ifdef CONFIG_PAGEFLAGS_EXTENDED
738 { head, head, "huge", me_huge_page },
739 { tail, tail, "huge", me_huge_page },
740 #else
741 { compound, compound, "huge", me_huge_page },
742 #endif
744 { sc|dirty, sc|dirty, "swapcache", me_swapcache_dirty },
745 { sc|dirty, sc, "swapcache", me_swapcache_clean },
747 { unevict|dirty, unevict|dirty, "unevictable LRU", me_pagecache_dirty},
748 { unevict, unevict, "unevictable LRU", me_pagecache_clean},
750 { mlock|dirty, mlock|dirty, "mlocked LRU", me_pagecache_dirty },
751 { mlock, mlock, "mlocked LRU", me_pagecache_clean },
753 { lru|dirty, lru|dirty, "LRU", me_pagecache_dirty },
754 { lru|dirty, lru, "clean LRU", me_pagecache_clean },
757 * Catchall entry: must be at end.
759 { 0, 0, "unknown page state", me_unknown },
762 #undef dirty
763 #undef sc
764 #undef unevict
765 #undef mlock
766 #undef writeback
767 #undef lru
768 #undef swapbacked
769 #undef head
770 #undef tail
771 #undef compound
772 #undef slab
773 #undef reserved
775 static void action_result(unsigned long pfn, char *msg, int result)
777 struct page *page = pfn_to_page(pfn);
779 printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n",
780 pfn,
781 PageDirty(page) ? "dirty " : "",
782 msg, action_name[result]);
785 static int page_action(struct page_state *ps, struct page *p,
786 unsigned long pfn)
788 int result;
789 int count;
791 result = ps->action(p, pfn);
792 action_result(pfn, ps->msg, result);
794 count = page_count(p) - 1;
795 if (ps->action == me_swapcache_dirty && result == DELAYED)
796 count--;
797 if (count != 0) {
798 printk(KERN_ERR
799 "MCE %#lx: %s page still referenced by %d users\n",
800 pfn, ps->msg, count);
801 result = FAILED;
804 /* Could do more checks here if page looks ok */
806 * Could adjust zone counters here to correct for the missing page.
809 return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
812 #define N_UNMAP_TRIES 5
815 * Do all that is necessary to remove user space mappings. Unmap
816 * the pages and send SIGBUS to the processes if the data was dirty.
818 static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
819 int trapno)
821 enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
822 struct address_space *mapping;
823 LIST_HEAD(tokill);
824 int ret;
825 int i;
826 int kill = 1;
828 if (PageReserved(p) || PageSlab(p))
829 return SWAP_SUCCESS;
832 * This check implies we don't kill processes if their pages
833 * are in the swap cache early. Those are always late kills.
835 if (!page_mapped(p))
836 return SWAP_SUCCESS;
838 if (PageCompound(p) || PageKsm(p))
839 return SWAP_FAIL;
841 if (PageSwapCache(p)) {
842 printk(KERN_ERR
843 "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
844 ttu |= TTU_IGNORE_HWPOISON;
848 * Propagate the dirty bit from PTEs to struct page first, because we
849 * need this to decide if we should kill or just drop the page.
850 * XXX: the dirty test could be racy: set_page_dirty() may not always
851 * be called inside page lock (it's recommended but not enforced).
853 mapping = page_mapping(p);
854 if (!PageDirty(p) && mapping && mapping_cap_writeback_dirty(mapping)) {
855 if (page_mkclean(p)) {
856 SetPageDirty(p);
857 } else {
858 kill = 0;
859 ttu |= TTU_IGNORE_HWPOISON;
860 printk(KERN_INFO
861 "MCE %#lx: corrupted page was clean: dropped without side effects\n",
862 pfn);
867 * First collect all the processes that have the page
868 * mapped in dirty form. This has to be done before try_to_unmap,
869 * because ttu takes the rmap data structures down.
871 * Error handling: We ignore errors here because
872 * there's nothing that can be done.
874 if (kill)
875 collect_procs(p, &tokill);
878 * try_to_unmap can fail temporarily due to races.
879 * Try a few times (RED-PEN better strategy?)
881 for (i = 0; i < N_UNMAP_TRIES; i++) {
882 ret = try_to_unmap(p, ttu);
883 if (ret == SWAP_SUCCESS)
884 break;
885 pr_debug("MCE %#lx: try_to_unmap retry needed %d\n", pfn, ret);
888 if (ret != SWAP_SUCCESS)
889 printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
890 pfn, page_mapcount(p));
893 * Now that the dirty bit has been propagated to the
894 * struct page and all unmaps done we can decide if
895 * killing is needed or not. Only kill when the page
896 * was dirty, otherwise the tokill list is merely
897 * freed. When there was a problem unmapping earlier
898 * use a more force-full uncatchable kill to prevent
899 * any accesses to the poisoned memory.
901 kill_procs_ao(&tokill, !!PageDirty(p), trapno,
902 ret != SWAP_SUCCESS, pfn);
904 return ret;
907 int __memory_failure(unsigned long pfn, int trapno, int flags)
909 struct page_state *ps;
910 struct page *p;
911 int res;
913 if (!sysctl_memory_failure_recovery)
914 panic("Memory failure from trap %d on page %lx", trapno, pfn);
916 if (!pfn_valid(pfn)) {
917 printk(KERN_ERR
918 "MCE %#lx: memory outside kernel control\n",
919 pfn);
920 return -ENXIO;
923 p = pfn_to_page(pfn);
924 if (TestSetPageHWPoison(p)) {
925 printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
926 return 0;
929 atomic_long_add(1, &mce_bad_pages);
932 * We need/can do nothing about count=0 pages.
933 * 1) it's a free page, and therefore in safe hand:
934 * prep_new_page() will be the gate keeper.
935 * 2) it's part of a non-compound high order page.
936 * Implies some kernel user: cannot stop them from
937 * R/W the page; let's pray that the page has been
938 * used and will be freed some time later.
939 * In fact it's dangerous to directly bump up page count from 0,
940 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
942 if (!(flags & MF_COUNT_INCREASED) &&
943 !get_page_unless_zero(compound_head(p))) {
944 if (is_free_buddy_page(p)) {
945 action_result(pfn, "free buddy", DELAYED);
946 return 0;
947 } else {
948 action_result(pfn, "high order kernel", IGNORED);
949 return -EBUSY;
954 * We ignore non-LRU pages for good reasons.
955 * - PG_locked is only well defined for LRU pages and a few others
956 * - to avoid races with __set_page_locked()
957 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
958 * The check (unnecessarily) ignores LRU pages being isolated and
959 * walked by the page reclaim code, however that's not a big loss.
961 if (!PageLRU(p))
962 shake_page(p, 0);
963 if (!PageLRU(p)) {
965 * shake_page could have turned it free.
967 if (is_free_buddy_page(p)) {
968 action_result(pfn, "free buddy, 2nd try", DELAYED);
969 return 0;
971 action_result(pfn, "non LRU", IGNORED);
972 put_page(p);
973 return -EBUSY;
977 * Lock the page and wait for writeback to finish.
978 * It's very difficult to mess with pages currently under IO
979 * and in many cases impossible, so we just avoid it here.
981 lock_page_nosync(p);
984 * unpoison always clear PG_hwpoison inside page lock
986 if (!PageHWPoison(p)) {
987 printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
988 res = 0;
989 goto out;
991 if (hwpoison_filter(p)) {
992 if (TestClearPageHWPoison(p))
993 atomic_long_dec(&mce_bad_pages);
994 unlock_page(p);
995 put_page(p);
996 return 0;
999 wait_on_page_writeback(p);
1002 * Now take care of user space mappings.
1003 * Abort on fail: __remove_from_page_cache() assumes unmapped page.
1005 if (hwpoison_user_mappings(p, pfn, trapno) != SWAP_SUCCESS) {
1006 printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
1007 res = -EBUSY;
1008 goto out;
1012 * Torn down by someone else?
1014 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1015 action_result(pfn, "already truncated LRU", IGNORED);
1016 res = -EBUSY;
1017 goto out;
1020 res = -EBUSY;
1021 for (ps = error_states;; ps++) {
1022 if ((p->flags & ps->mask) == ps->res) {
1023 res = page_action(ps, p, pfn);
1024 break;
1027 out:
1028 unlock_page(p);
1029 return res;
1031 EXPORT_SYMBOL_GPL(__memory_failure);
1034 * memory_failure - Handle memory failure of a page.
1035 * @pfn: Page Number of the corrupted page
1036 * @trapno: Trap number reported in the signal to user space.
1038 * This function is called by the low level machine check code
1039 * of an architecture when it detects hardware memory corruption
1040 * of a page. It tries its best to recover, which includes
1041 * dropping pages, killing processes etc.
1043 * The function is primarily of use for corruptions that
1044 * happen outside the current execution context (e.g. when
1045 * detected by a background scrubber)
1047 * Must run in process context (e.g. a work queue) with interrupts
1048 * enabled and no spinlocks hold.
1050 void memory_failure(unsigned long pfn, int trapno)
1052 __memory_failure(pfn, trapno, 0);
1056 * unpoison_memory - Unpoison a previously poisoned page
1057 * @pfn: Page number of the to be unpoisoned page
1059 * Software-unpoison a page that has been poisoned by
1060 * memory_failure() earlier.
1062 * This is only done on the software-level, so it only works
1063 * for linux injected failures, not real hardware failures
1065 * Returns 0 for success, otherwise -errno.
1067 int unpoison_memory(unsigned long pfn)
1069 struct page *page;
1070 struct page *p;
1071 int freeit = 0;
1073 if (!pfn_valid(pfn))
1074 return -ENXIO;
1076 p = pfn_to_page(pfn);
1077 page = compound_head(p);
1079 if (!PageHWPoison(p)) {
1080 pr_debug("MCE: Page was already unpoisoned %#lx\n", pfn);
1081 return 0;
1084 if (!get_page_unless_zero(page)) {
1085 if (TestClearPageHWPoison(p))
1086 atomic_long_dec(&mce_bad_pages);
1087 pr_debug("MCE: Software-unpoisoned free page %#lx\n", pfn);
1088 return 0;
1091 lock_page_nosync(page);
1093 * This test is racy because PG_hwpoison is set outside of page lock.
1094 * That's acceptable because that won't trigger kernel panic. Instead,
1095 * the PG_hwpoison page will be caught and isolated on the entrance to
1096 * the free buddy page pool.
1098 if (TestClearPageHWPoison(p)) {
1099 pr_debug("MCE: Software-unpoisoned page %#lx\n", pfn);
1100 atomic_long_dec(&mce_bad_pages);
1101 freeit = 1;
1103 unlock_page(page);
1105 put_page(page);
1106 if (freeit)
1107 put_page(page);
1109 return 0;
1111 EXPORT_SYMBOL(unpoison_memory);
1113 static struct page *new_page(struct page *p, unsigned long private, int **x)
1115 int nid = page_to_nid(p);
1116 return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1120 * Safely get reference count of an arbitrary page.
1121 * Returns 0 for a free page, -EIO for a zero refcount page
1122 * that is not free, and 1 for any other page type.
1123 * For 1 the page is returned with increased page count, otherwise not.
1125 static int get_any_page(struct page *p, unsigned long pfn, int flags)
1127 int ret;
1129 if (flags & MF_COUNT_INCREASED)
1130 return 1;
1133 * The lock_system_sleep prevents a race with memory hotplug,
1134 * because the isolation assumes there's only a single user.
1135 * This is a big hammer, a better would be nicer.
1137 lock_system_sleep();
1140 * Isolate the page, so that it doesn't get reallocated if it
1141 * was free.
1143 set_migratetype_isolate(p);
1144 if (!get_page_unless_zero(compound_head(p))) {
1145 if (is_free_buddy_page(p)) {
1146 pr_debug("get_any_page: %#lx free buddy page\n", pfn);
1147 /* Set hwpoison bit while page is still isolated */
1148 SetPageHWPoison(p);
1149 ret = 0;
1150 } else {
1151 pr_debug("get_any_page: %#lx: unknown zero refcount page type %lx\n",
1152 pfn, p->flags);
1153 ret = -EIO;
1155 } else {
1156 /* Not a free page */
1157 ret = 1;
1159 unset_migratetype_isolate(p);
1160 unlock_system_sleep();
1161 return ret;
1165 * soft_offline_page - Soft offline a page.
1166 * @page: page to offline
1167 * @flags: flags. Same as memory_failure().
1169 * Returns 0 on success, otherwise negated errno.
1171 * Soft offline a page, by migration or invalidation,
1172 * without killing anything. This is for the case when
1173 * a page is not corrupted yet (so it's still valid to access),
1174 * but has had a number of corrected errors and is better taken
1175 * out.
1177 * The actual policy on when to do that is maintained by
1178 * user space.
1180 * This should never impact any application or cause data loss,
1181 * however it might take some time.
1183 * This is not a 100% solution for all memory, but tries to be
1184 * ``good enough'' for the majority of memory.
1186 int soft_offline_page(struct page *page, int flags)
1188 int ret;
1189 unsigned long pfn = page_to_pfn(page);
1191 ret = get_any_page(page, pfn, flags);
1192 if (ret < 0)
1193 return ret;
1194 if (ret == 0)
1195 goto done;
1198 * Page cache page we can handle?
1200 if (!PageLRU(page)) {
1202 * Try to free it.
1204 put_page(page);
1205 shake_page(page, 1);
1208 * Did it turn free?
1210 ret = get_any_page(page, pfn, 0);
1211 if (ret < 0)
1212 return ret;
1213 if (ret == 0)
1214 goto done;
1216 if (!PageLRU(page)) {
1217 pr_debug("soft_offline: %#lx: unknown non LRU page type %lx\n",
1218 pfn, page->flags);
1219 return -EIO;
1222 lock_page(page);
1223 wait_on_page_writeback(page);
1226 * Synchronized using the page lock with memory_failure()
1228 if (PageHWPoison(page)) {
1229 unlock_page(page);
1230 put_page(page);
1231 pr_debug("soft offline: %#lx page already poisoned\n", pfn);
1232 return -EBUSY;
1236 * Try to invalidate first. This should work for
1237 * non dirty unmapped page cache pages.
1239 ret = invalidate_inode_page(page);
1240 unlock_page(page);
1243 * Drop count because page migration doesn't like raised
1244 * counts. The page could get re-allocated, but if it becomes
1245 * LRU the isolation will just fail.
1246 * RED-PEN would be better to keep it isolated here, but we
1247 * would need to fix isolation locking first.
1249 put_page(page);
1250 if (ret == 1) {
1251 ret = 0;
1252 pr_debug("soft_offline: %#lx: invalidated\n", pfn);
1253 goto done;
1257 * Simple invalidation didn't work.
1258 * Try to migrate to a new page instead. migrate.c
1259 * handles a large number of cases for us.
1261 ret = isolate_lru_page(page);
1262 if (!ret) {
1263 LIST_HEAD(pagelist);
1265 list_add(&page->lru, &pagelist);
1266 ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, 0);
1267 if (ret) {
1268 pr_debug("soft offline: %#lx: migration failed %d, type %lx\n",
1269 pfn, ret, page->flags);
1270 if (ret > 0)
1271 ret = -EIO;
1273 } else {
1274 pr_debug("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1275 pfn, ret, page_count(page), page->flags);
1277 if (ret)
1278 return ret;
1280 done:
1281 atomic_long_add(1, &mce_bad_pages);
1282 SetPageHWPoison(page);
1283 /* keep elevated page count for bad page */
1284 return ret;